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Abstract—We study the problem of transmission of binary
input non-linear functions over a network of mobiles based on
CDMA. Motivation for this study comes from the application
of using cheap measurement devices installed on personal cell-
phones to monitor environmental parameters such as air pol-
lution, temperature and noise level. Our model resembles the
MAC model of Nazer and Gastpar except that the encoders are
restricted to be CDMA encoders. Unlike the work of Nazer and
Gastpar whose main attention is transmission of linear functions,
we deal with non-linear functions with binary inputs. A main
contribution of this paper is a lower bound on the computational
capacity for this problem. While in the traditional CDMA
system the signature matrix of the CDMA system preferably
has independent rows, in our setup the signature matrix of the
CDMA system is viewed as the parity check matrix of a linear
code, reflecting our treatment of the interference.

I. INTRODUCTION

The problem of decoding functions of sources rather than
the sources themselves in a Multiple Access Channel (MAC)
has been studied in several works (see for instance [2] and
its follow up works, also [3] and [4]). It has been shown that
separation is not always optimal in such scenarios, even when
the sources are independent [2]. The intuitive reason for this is
that the interference caused by other users could be exploited
to compute a given function over the air, if the pattern of the
interference matches the functions we want to compute.

All of the previous models for transmission of functions
over MAC (that we have seen) do not impose any restrictions
on the structure of the encoders, except perhaps on the input
power. However some promising emerging applications may
violate this assumption. We were motivated by one such
application to impose a CDMA system as being part of the
encoders.

The application is monitoring the exposure of humans to
environmental parameters such as air pollution, temperature,
etc. since the authors are living in one of the world’s most
polluted cities. The traditional way of monitoring is to install
measurement devices distributed over a given area. Suggestion
has been made to install low cost measurement devices on
personal cell-phones, e.g. see [1]. Although the focus of this
paper is not the application, but we would like to mention a
motivation for this application since it may be new (we have
not seen it in the literature). Suppose we are interested in
the collective exposure of residents to air pollution (not just

Fig. 1. The communication model. The observations O1, · · · , OL are passed
through encoders (resulting in Ti’s), multiplied by signatures (the si’s) of a
CDMA systems and transmitted over the air (a Gaussian MAC channel). The
receiver gets sum of the transmitted signals plus noise (i.e. Y ), and wants to
recover a function f(O1, · · · , OL) of the observations (denoted by U ). In
the general model we also allow for b distinct functions instead of just one.

personal exposures or the general pollution maps). To find the
answer, it is not sufficient to have a pollution map, but also the
population density at the polluted areas at various times in a
day. Let us take the average of the measurements by the mobile
sensors that are being carried by the residents as they move
in the city. There will be just more cell-phones in populated
areas and we can simultaneously take into consideration both
the pollution and the population density.

Note that when the mobile system in the application is
employing the CDMA system, it is preferable to use the same
architecture to transmit functions of measurements by the cell-
phones. Thus, we are considering the problem of function
transmission over a network of mobiles based on CDMA.

We argue that finding the optimal scheme for transmission
of functions can be studied from two different criteria: i.e.
maximizing privacy and minimizing transmission rates. Trans-
mission of the whole data (rather than a function of it) may
not only be bad in terms of transmission rates, but also it
may compromise the privacy of cell-phone users. Therefore
we can either maximize privacy or minimize transmission rates
over all codes that allow reliable function computation. For the
Korner-Marton problem [3] the two criteria yield exactly the
same answer1; but we believe in general they may be different.

1This is because the equivocation rate for each user is bounded from above
by the entropy of their source conditioned on the function to be computed,
which is exactly what the Korner-Marton scheme achieves.
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Nonetheless in this study we follow the traditional approach
of minimizing the transmission rates.

Our model is shown in Fig. 1 which is similar to the
one considered in [2], except for addition of the signature
matrices. It is discussed rigorously in section III. But before
that in section II, we intuitively discuss our interpretation
of the signature matrix of the CDMA system as the parity
check matrix of a linear code, demonstrating our treatment
of interference. Section V-A discusses the lower bound of [2]
applied to transmission of non-linear functions in our setting.
Section V contains our main result, providing a lower bound
on the computational capacity for our problem. The bound
is expressed in terms of the answer to another problem that
we introduce, i.e. the problem of Slepian Wolf with the same
compression matrices (discussed in section IV). We believe the
latter problem can itself be of independent interest. We will not
be discussing any upper bounds, but one can derive an upper
bound using the ideas in [2] by merging all the transmitters
into one node (the same technique used in some versions of
the cut-set bound).

II. SIGNATURE MATRIX AS A PARITY CHECK MATRIX

In this section we discuss our use of the signature matrix
as a parity check matrix at a very simplistic level to convey
the basic intuitions. Let us assume that we have only three
cell-phones. These cell-phones are observing binary random
variable O1, O2 and O3 respectively. The goal of the base
station is to recover a boolean function of O1, O2 and O3.
Let us assume that the cell-phones directly insert their uncoded
bits into a CDMA system with a given signature matrix. For
instance, if the signature matrix is(

1 1 0
1 0 1

)
(1)

the signature of the first, second and the third cell-phones
would be the vectors s1 = (1, 1)t, s2 = (1, 0)t and s3 = (0, 1)t

respectively. Assuming tight power control, the receiver gets
the vector O1s1+O2s2+O3s3 plus some noise. Let us assume
that there is no noise for now. In this case, the receiver gets two
symbols, the first of which is Y1 = O1+O2 and the second one
is Y2 = O1+O3. Note that the summation here is real addition
in R, and not in the field F2. Because Oi takes values in {0, 1},
Y1 and Y2 will be numbers in the set {0, 1, 2}. If Y1 = 0, we
can conclude that O1 = O2 = 0. The value of O2 would then
specify O3. Similarly, when (Y1, Y2) = (2, 1) we can figure
out O1, O2 and O3 exactly. However, when (Y1, Y2) = (1, 1),
there are two possibilities: (O1, O2, O3) can be (1, 0, 0) or
(0, 1, 1). If one were to compute a function f(O1, O2, O3) at
the receiver, the necessary and sufficient condition for doing
so would be that f(1, 0, 0) = f(0, 1, 1). Note that this implies
that among 22

3

plausible boolean functions, half of them are
computable with the given signature matrix. Now, observe that
if we interpret the signature matrix given in equation (1) as
a parity check matrix, the codewords would be the triples
(0, 0, 0) and (1, 1, 1). This implies that the triples (1, 0, 0) and
(0, 1, 1) form a coset for this codebook, because their mod-2

TABLE I
NOTATION

Variable Description
Oi(1 ≤ i ≤ L) Observations by the nodes.
Ui(1 ≤ i ≤ b) Functions to be computed.

Ti Output of the ith cell-phone
to be multiplied by the signature.

si The signature of the ith cell-phone.
N Length of the signatures.

Vi(1 ≤ i ≤ r) In most places
∑

j=1:L hi[j]Oj (modulo 2).

sum is a codeword. The constraint f(1, 0, 0) = f(0, 1, 1) says
that f has to be constant over this coset.

The above simple example can be extended to more general
setups. It turns out that if we interpret the signature matrix as
a parity check matrix, and take a function f that is equal to a
constant over any coset of the parity check matrix2, we will
be able to perfectly recover f when the channel is noiseless.
When the channel is noisy, one can overcome noise via pre-
coding; this is explained formally in Sec. V.

III. THE COMMUNICATION MODEL

In this section we define the communication model for our
problem. Some of the notation we encounter as we go along
the paper are summarized in Table I. For a r.v. T we use Tn

as a shorthand for the sequence (T [1], T [2], . . . , T [n]).
Assume that there are L cell-phones. Let us denote the

observation of the i-th cell-phone by r.v. Oi taking values
in the discrete set Oi. R.Vs O1, O2, . . . , OL are jointly dis-
tributed according to a given pO1,O2,...,OL(o1, o2, . . . oL). We
assume that the L cell-phones are observing i.i.d. copies
O1, O2, . . . , OL. The goal of the cell-phones is to enable
the base station to recover i.i.d. copies of b functions of
the observations which we denote by Ui (1 ≤ i ≤ b),
Ui = fi(O1, O2, . . . , OL).

Definition of a code: (see Fig. 1) A code consists of
1) An encoder for each cell-phone, mapping Oki (k i.i.d.

copies of Oi) into a sequence of n bits (denoted by
Tni ),

2) A binary signature si of length N for the i-th cell-phone,
3) One decoder at the receiver.
The actual signals transmitted over the air are XnN

i for i ∈
[1 : L], that are formed by multiplying each bit of encoder’s
output Tni into the signature si. Note that the length of Tni is
n, and the length of si is N . Since each bit of Tni is multiplied
by the whole sequence si in the CDMA system, the output will
be a binary string of length nN , denoted by XnN

i .
Assuming a CDMA power control, the transmitted XnN

i

goes through a Gaussian MAC channel, and the receiver gets
Y nN where Y [i] =

∑L
j=1Xj [i] + Z[i], i ∈ [1 : nN ] for a

Gaussian noise sequence ZnN . The receiver (base station)
takes the output sequences Y nN and passes it through a
decoder to reconstruct the b functions Ûki (i ∈ [1 : b]). The
probability of error of the code is taken to be the probability
that Ûki 6= Uki for some i ∈ [1 : b]. The rate of the code is
taken to be R = k

nN . To impose a power constraint on the

2Of course the constant may depend on the coset.



users, we assume that that Tj [i] is taking values in {0, 1},3
and the variance of Z[i] is σ2.

Computational Capacity: Given a signature length N , A
communication rate RN is said to be achievable if there is a se-
quence of codes, Cn for n ∈ N, all having signatures of length
N , such that limn→∞ Pe(Cn) = 0 and limn→∞R(Cn) = RN
where Pe(Cn) and R(Cn) are the probability of error and rate
of the code respectively. The computational capacity for a
signature length N , CN , is taken to be the supremum of the
set of achievable rates for that signature length N .

IV. SLEPIAN-WOLF WITH THE SAME COMPRESSION
MATRICES

Before discussing our main result, we need to introduce the
problem of Slepian-Wolf with the same compression matrices.
We believe this problem can itself be of independent interest.

We first begin with the problem in a special case. Suppose
we have three correlated binary sources V1, V2 and V3 jointly
distributed according to p(v1, v2, v3). I.i.d. copies of these
three sources are observed by three parties, who want to
communicate these i.i.d. copies to a fourth party, Alice, using
noiseless links of rates R1, R2, and R3. We are interested in
the case of R1 = R2 = R3 = R. The minimum possible value
of R will be the minimum value of R such that (R,R,R) is
in the Slepian-Wolf region. We call this RSW . We know that
for any R > RSW we can achieve the rate triple (R,R,R)
using linear codes: there are matrices B1, B2 and B3 (of size
nR × n) where the three parties can use and send B1V

n
1 ,

B2V
n
2 and B3V

n
3 where V ni is a column vector consisting of

Vi[j] for j ∈ [1 : n]. The multiplication is in the field F2.
Now, what if we are interested to find a single matrix B,

such that having BV n1 , BV n2 and BV n3 we can recover (V n1 ,
V n2 and V n3 )? The three parties are sending at rates R1 =
R2 = R2 = R to Alice using the same compression matrix
B. We denote the minimum value of R in this case by Rs.c.SW .
Clearly Rs.c.SW is larger than or equal to RSW (defined in the
previous paragraph), because more restrictions are imposed on
the definition of Rs.c.SW . But is Rs.c.SW always equal to RSW ? We
show in Claim 2 that this is not true. The definition of Rs.c.SW

can be extended to more than three parties in the natural way.
Use of the same matrix B to compress correlated data

(or Slepian-Wolf with the same compression matrices) arises
naturally in our problem. It is also related to the “syndrome
technique” whereby a single code based is constructed for
distributed compression (see for instance [5][6][7]). And after
all, it is interesting to find the best compression rate one can
achieve if a universal compression code is used by all nodes
in a distributed source coding problem.

We do not know the exact value of Rs.c.SW , but prove a few
results about it.

3There will be a power gain by subtracting the mean of Tj [i] from it,
because that would reduce the variance of the transmitted signal. This would
convert Tj [i] into a ± bipolar signal. However, use of 0/1 signals makes the
exposition of the paper more appealing. Furthermore random variables Tj [i]
that we will end up using will have a uniform distribution over {0, 1} and can
be adjusted to bipolar signals at the very last stage to decrease the average
power consumption, while leaving the arguments unchanged.

Claim 1: Let us assume we have only two binary r.v.’s
V1 and V2. Let K = V1 + V2 (mod 2). Then Rs.c.SW for
transmission of these two r.v’s is less than or equal to
max(H(K), H(V1|K)).

Proof: Let R = max(H(K), H(V1|K)). Here is the
sketch of the proof: let us generate the coordinates of the
common compression matrix B (of size nR × n) uniformly
and randomly from {0, 1}. Then having BV n1 and BV n2 , we
can add them modulo two to get B(V n1 +V n2 ) = BKn. Since
R ≥ H(K), B is a good source code for recovering Kn

with high probability. Hence we can decode Kn first. The
Slepian-Wolf rate for recovering V n1 with Kn serving as a
side information is H(V1|K). Since R ≥ H(V1|K), B is a
good SW code with high probability. Therefore we can find
V n1 . Having V n1 and Kn, we can also recover V n2 .

Claim 2: There exists V1, · · · , Vr such that the value of
Rs.c.SW is strictly larger than RSW . Next, for any p(v1, · · · , vr),
Rs.c.SW is less than or equal to min(rRSW ,maxiH(Vi)).

Proof: Let V1 = V2 = · · · = Vr. Then RSW , i.e. the
minimum value of R such that (R,R,R) is in the Slepian-
Wolf region, is equal to H(V1)

r . However, Rs.c.SW is equal to
H(V1).

To show that Rs.c.SW ≤ rRSW always holds, we start from
an arbitrary code for RSW , and construct another code for
Rs.c.SW . Take an arbitrary code with compression matrices
B1, B2, ..., Br all of size nR × n. Let B to be equal to
[Bt1 B

t
2 · Btr]t where t is the transpose operation. One can

verify that matrix B is a valid common compression matrix,
and is achieving the rate rR for the problem of Rs.c.SW . Thus
Rs.c.SW ≤ rRSW . Note this upper bound on the ratio Rs.c.SW

RSW
cannot be made smaller than r because of the example given
at the beginning of this proof.

To show the inequality Rs.c.SW ≤ maxiH(Vi), observe that
a random compression matrix of size n[maxi(H(Vi) + ε]× n
allows for recovery of V ni from BV ni (for all i ∈ [1 : r]) with
the average probability of error converging to zero. Thus a
particular instance should also work.

V. MAIN RESULTS

In this section we state our main results. Proof is given in
Section VII.

Let fi(O1, . . . , OL) (1 ≤ i ≤ b) be a set of functions
satisfying the property that

fi(o1, o2, . . . , oL) = fi(o
′
1, o
′
2, . . . , o

′
L), i ∈ [1 : b],

for any two sequences (o1, o2, . . . , oL) and (o′1, o
′
2, . . . , o

′
L)

belonging to the same coset of some parity check matrix H .4

Without loss of generality we can assume that H has distinct
rows h1, h2, ..., hr. Thus matrix H is of size r × L.

Theorem 1: For any signature length N > r, the following
rate is achievable

RN =
c

N ·R
≥ c

N ·maxiH(
⊕mod 2

j=1:L hi[j]Oj)
,

4Vectors (o1, o2, . . . , oL) and (o′1, o
′
2, . . . , o

′
L) belong to the same coset

if H[o1, o2, . . . , oL]
t = H[o′1, o

′
2, . . . , o

′
L]

t where the product is in F2.



where R is Rs.c.SW for the choice of Vi =
∑
j=1:L hi[j]Oj

(modulo 2). The second lower bound comes from applying
Claim 2, and is an explicit lower bound expression.

The number c is the capacity of a channel with input
alphabet W = {0, 1} and output alphabet [− 1

2 ,
3
2 ] defined

as follows: the output is formed by adding W to a Gaussian
noise with variance σ2

bNr c
, and then taking it modulo 2, meaning

that we add an integer multiple of 2 to it to make it fall into
the interval [− 1

2 ,
3
2 ). Note that because of the symmetry the

capacity occurs at a uniform input distribution.

A. Comparison with the computational capacity of [2]

In this section we discuss how our lower bound extends
the result of Nazer and Gastpar in [2]. We find the set of
functions where we can use the result of Nazer and Gastpar,
and the lower bound it gives us.

Our formulation above is similar to the one given by Nazer
and Gastpar [2], except that we have a signature matrix here.
Nonetheless, if we fix the signature matrices, we can think
of a virtual channel between the encoder and decoders that
includes the signature matrix. The input to this virtual channel
is (T1, T2, ..., TL) and the output is Y (1 : N) =

∑L
i=1 Tisi(1 :

N)+Z(1 : N) where the noise vector Z(1 : N) has covariance
matrix σ2I . If we use the virtual channel n times, we get an
output vector of size nN that we were denoting by Y nN .

In this case we can write down the lower bound given in [2]
when we have a linear function over a field. We are mainly
concerned with functions with binary inputs. The only linear
function on the field F2 is the XOR function. So this already
puts limitations on the lower bounds we can get by [2]. When
Ui (for 1 ≤ i ≤ b) is the XOR of a subset of the observations
O1, ..., OL, we get the following lower bound

I(⊕L
i=1Ti;Y (1 : N))

NH(U1, U2, . . . Ub)
,

where the factor N in the denominator comes from our
definition of rate. Because we are free to choose the signatures
s1, ..., sL we can take maximum of the above expression over
all s1, ..., sL.

max
s1,··· ,sL

I(⊕L
i=1Ti;Y (1 : N))

NH(U1, U2, . . . Ub)
.

The above result works only when the Uis are the XOR func-
tions of subsets of O1, ..., OL, and it involves a maximization
problem that we found hard to do, even when we have linear
functions on a field.

To compute arbitrary nonlinear boolean functions of the
observations, Nazer and Gastpar suggest that we increase
the field size and embed the non-linear function in a linear
function defined on a larger space (see Theorem 2 of [2]).
Although this would not solve the maximization problem over
the signatures s1, ..., sL mentioned above, it will result in a
lower bound for non-linear functions. In this paper we take
an alternative approach of using several linear functions in
the same field using a particular construction (rather than one
single linear function over a larger field). In order to transmit
several functions over a channel, [2] uses a successive Slepian-
Wolf type scheme. Our model allows us to do better than this.

Fig. 2. A model used for simulations. The observations O1, · · · , O3 are
assumed to be the result of a binary source S passed through three independent
BSC channels.

Fig. 3. The lower bound on the computational capacity for O1, O2 and
O3 of Fig. 2. The plot is in terms of p(W2 = 1) and p(W3 = 1) when
p(W1 = 1) = 0.

Through an appropriate choice of the signature matrix, we can
run part of the transmission of the functions in parallel, getting
an extra gain compared to the scheme considered by [2].

VI. SIMULATION

Consider the boolean function

f(O1, O2, O3) = O1O2O3 +O1O2O3 mod 2.

This is not a linear function in the field F2. Let us assume that
N = 2. We can use the signature matrix given in equation
1 since f is constant over all of its cosets. We have V1 =
O1 +O2(mod 2) and V2 = O1 +O3(mod 2). Therefore

H(V1) = h(p(O1 = O2)), and
H(V2) = h(p(O1 = O3)),

where h(·) is the binary entropy function. The main theorem
implies the following lower bound.

R =
c

2 ·max(h(p(O1 = O2)), h(p(O1 = O3)))
.

The value of c ≤ 1 depends on σ. For the sake of illustration
we assume that σ is such that c = 0.5.

Note that R =∞ when

p(O1 = O2) ∈ {0, 1}, and
p(O1 = O3) ∈ {0, 1}.

This is expected since in each of the four cases f(O1, O2, O3)
is a constant. It would be interesting to understand the behavior



of the lower bound when p(O1 = O2) and p(O1 = O3) are
not exactly {0, 1}, but rather in its vicinity. To study this, let
us consider the model depicted in Fig. 2 in which O1, O2

and O3 are assumed to be the result of a random variable B
passing through three independent BSC channels, i.e.

O1 = S +W1, O2 = S +W2, O3 = S +W3 mod 2,

where Wi’s are binary random variables. p(Wi = 1) is the
crossover probability of the ith channel. When p(Wi = 1) ∈
{0, 1}, the lower bound is ∞. Fig. 3 plots the lower bound R
in terms of p(W2 = 1) and p(W3 = 1) when p(W1 = 1) = 0.

VII. PROOFS

Proof of Theorem 1: We create the signature matrix of
the CDMA by repeating the matrix H to get a matrix of size
N × L. This means that each of the rows h1, h2, ..., hr
would be repeated bNr c times; extra zeros are padded if N

r
is not an integer. At the receiver, we can look at the received
Y ’s corresponding to each of the bNr c repetitions and take
their average. This would reduce the variance of noise for
that transmission to σ′2 = σ2

bNr c
. So, this would be as if the

signature matrix is of size r (instead of N ) identical to H ,
and the noise variance is σ′2 (instead of σ2). We are going
to continue assuming that the signature matrix and the parity
check matrix are both H .

At time i, the cell-phones are sending T1[i], T2[i], ..., TL[i]
respectively. The receiver gets H

[
T1[i], T2[i], ..., TL[i]

]t
plus

noise where the matrix multiplication here is in R. To convert
the matrix multiplication from R to that in F2, the receiver
computes the modulo 2 of each received number (as discussed
in the statement of the theorem), mapping it to the interval
[− 1

2 ,
3
2 ). This would be as if H

[
T1[i], T2[i], ..., TL[i]

]t
(matrix

multiplication in F2) is transmitted but the noise added to this
is no longer Gaussian; it is a Gaussian noise mod 2. Number c
in the statement of the theorem is the capacity of this channel.

Having described the signature matrix, and the decoder’s
mod 2 postprocessing of the signal, we now turn our attention
to the encoders and the decoder. We can divide the rest of
the proof into two parts. The first part is a general statement
about recovery of the desired functions of the observations
from Vi’s. This is used in the second part of the proof to
design the encoders and the decoder.
(I) We first claim that given any values for (o1, o2, . . . , oL),
knowing the values of

∑
j=1:L hi[j]oj modulo two for i ∈

[1 : r] is sufficient to perfectly recover fi(o1, o2, . . . , oL)
(1 ≤ i ≤ b). To see this note that having r equations∑
j=1:L hi[j]oj (modulo two) for i ∈ [1 : r] is equivalent to

having the product H[o1, o2, . . . , oL]
t in the matrix form; here

the multiplication is in F2. Note that the number of equations
is r whereas the number of free variables is L, so it first seems
that the decoder may not be able to figure out [o1, o2, . . . , oL].
The decoder can list the set of all [o′1, o

′
2, . . . , o

′
L] such that

H[o′1, o
′
2, . . . , o

′
L]
t (modulo two) is equal to the received

H[o1, o2, . . . , oL]
t (modulo two). This would be the coset

associated to [o1, o2, . . . , oL] for the parity check matrix H .
Because fi maps all the sequences in a coset into the same

number, namely fi(o
′
1, o
′
2, . . . , o

′
L) are all equal, the receiver

will be able to exactly recover fi(o1, o2, . . . , oL).
(II) From the first part of the proof we can conclude
that if we can reliably communicate i.i.d. copies of Vi =∑
j=1:L hi[j]Oj (modulo two) to the receiver, it will be

able to reliably recover i.i.d. copies of fi(O1, O2, . . . , OL)
(1 ≤ i ≤ b). Therefore we have translated the original problem
into that of communicating linear functions. If we think of
the signature matrix as part of a virtual channel between
the encoder and decoders, this virtual channel will be a set
linear MACs (as defined by [2]) in parallel because of the
postprocessing at the receiver. Therefore our setting is not a
special case of one considered by Theorem 1 of [2] because
the channel is not a single linear MAC. Nonetheless we borrow
ideas from [2] to extend the proof of Theorem 1 of [2]; this is
not difficult given that the structure of the virtual channel and
the linear functions to be computed (i.e. Vis) are prepared to
“match”.

It is possible to find a binary matrix B of size (kR+ ε)×k
for the i.i.d. copies of (V1, V2, ..., Vr) such one can recover
i.i.d. copies of V1, V2, . . . VL, namely V k1 , V

k
2 , . . . , V

k
L , from

B[V k1 V k2 · · · V kL ]. within a probability of error ε, where by
V k1 we mean a column vector consisting of the k i.i.d. copies
of V1. The multiplication between the column vector V ki and B
is done in F2. Next we find a channel coding matrix G of size
kR+ε
c−ε × (kR+ ε) for communicating over a Gaussian channel

with variance σ′2. The ith cell-phone computes GBOki . It sets
this vector of size n = kR+ε

c−ε to be Tni . At time j, the random
variable Ti[j] is multiplied by signature si. The receiver gets∑
j Ti[j]si plus a noise vector. This is equivalent with getting

[Tn
1 Tn

2 · · · Tn
L ]Ht = GB[Ok

1 Ok
2 · · · Ok

L]H
t

= GB[V k
1 V k

2 · · · V k
L ],

plus noise. Since G is a channel coding matrix, we can recover
B[V k1 V k2 · · · V kL ] with high probability. From here we can
recover V ki because of the property of B mentioned above.
Thus, we have a good code. The rate of this code is

k
Nn = k

N kR+ε
c−ε

= c−ε
N(R+ ε

k )
.

Letting ε converge to zero, we get the desired result.
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