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Abstract—We study the problem of sampling a high-
dimensional bandlimited field on a union of shifted lattices
under certain assumptions motivated by some practical sampling
applications. Under these assumptions, we show that simple
necessary and sufficient conditions for perfect reconstruction can
be identified. We also obtain an explicit scheme for reconstructing
the field from its samples on the various shifted lattices. We
illustrate our results using examples.

I. INTRODUCTION

Consider the problem of sampling and reconstructing a d-
dimensional field f(r) : » € R% where r represents a d-
dimensional spatial location. If f is bandlimited, the classical
sampling theorem of Petersen and Middleton [1] provide
schemes for sampling and reconstructing the field from its
values measured on a lattice in RY. Various results on more
general sampling configurations are also known (see, e.g.,
[2] [3] for a summary). One example of such a sampling
configuration is a union of shifted lattices. Sampling on such
sets arises naturally in a number of applications in signal
processing and remote sensing [4], in interlaced sampling
schemes in tomography [5], in recovery of functions from
their local averages [6], and also in spatial sampling using
mobile sensors [7] . Such a configuration is easy to analyze [8]
when the points lie on a union of shifted versions of the same
lattice. Recently more general results on sampling on a union
of shifted lattices have been obtained in an abstract harmonic
analysis framework [9] but, to the best of our knowledge, there
are no works that study the general problem in the classical
signal processing context.

In this paper, we study the problem of sampling on a
union of shifted lattices, under certain assumptions on the lat-
tices. We describe practical spatial sampling scenarios where
these assumptions are satisfied. Under these assumptions,
we identify simple necessary and sufficient conditions for
perfect reconstruction of bandlimited fields. We also provide
an explicit reconstruction scheme for perfectly recovering the
bandlimited field from the measurements taken at the sampling
points. Our solution is easier to understand and implement than
the more general result on sampling on a union of lattices in
the abstract harmonic analysis literature.

A. Notation

For vectors z,y € R? we use (z,%) to denote the inner-
product in Euclidean space. For any set  C R? and r € R?

o
we use (2 to denote the interior of 2 in Euclidean space, x(.)
to denote the characteristic function of 2, and £2(r) to denote
a translated version of (), defined as:

Qr):={zecR:z—recQl.

B. Paper organization

We begin by providing background on related problems in
Section II. In Section IIT we discuss the problem of sampling
on unions of shifted lattices and present our results and
examples. We conclude in Section IV.

II. BACKGROUND AND RELATED RESULTS

We denote a field in d-dimensional space by a complex-
valued mapping f : R? s C. For a field f(.), we define its
Fourier transform F'(.) as

Fw)= fr)exp(—i{w, r))dr, weR?

Rd
where i denotes the imaginary unit, and (u,v) denotes the
scalar product between vectors « and v in R?. We use Bq to
denote the collection of fields with finite energy such that the
Fourier transform F of f is supported on a set Q C RY, i.e.,

Bao:={f € L*(R?) : F(w) =0 for w ¢ Q}. (1)

A bandlimited field has the advantage that it is possible to
represent the field using only the samples of the field measured
at a discrete collection of points. We say that a collection of
points A forms a sampling set for € if any field f € Bq can be
uniquely reconstructed using only its values on the points in
A. We use Sq to denote the collection of all sampling sets for
Q. We now discuss known results on conditions for sampling
and reconstruction of bandlimited fields.

A. Sampling on a lattice

The most well-known result on sampling of bandlimited
fields deals with sampling on a lattice. A lattice A in RY is
defined as a collection of points of the form

d
A= {Zmivi :m € 29}
i=1
where {v; : 1 <i < d} forms a basis for R%. We say that the
lattice A is generated by the vectors {v; : 1 < i < d}. The
necessary and sufficient conditions on A for reconstructing
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a field f in B using the samples of the field taken on
A follow from the results of [1]. Let {u; : 1 < i < d}
denote a reciprocal set of lattice vectors in R? satisfying
(u;,v;) = 2md;;. Then the associated sampled field spectrum

is composed of spectral repetitions of f and is supported on
d

the set U Q Z miui> . If the spectral repetitions overlap

mezd i=1
in the Fourier domain we say that the samples are aliased and

in this case it is not possible to perfectly reconstruct the field
from its samples. The repetitions do not overlap provided

d
an Q(Z miu;) = 0 for all m € 2\ {0}<.
i=1
This is the condition required to ensure that any field f € Bg
can be reconstructed based on samples on the lattice A. For
example if a field in R? is bandlimited to a set €2 in the form
of a circular disc of radius p, then it can be reconstructed
exactly by sampling on a rectangular lattice with v; = (X, 0)
and vy = (0,Y), provided X < % and ¥ < 7.

B. Sampling on a union of shifts of a lattice

A shift of a lattice A is a set of the form A + w :
{z +w : © € A} where w is a vector representing the
shift. A union of such shifted versions of the same lattice
A gives a more general configuration of sampling points,
e.g, Ur_ (A + wF) where wF € R? are the shifts. Such a
configuration of sampling points is also known by other names
such as periodic sampling or bunched sampling. Various au-
thors have studied such sampling configurations and identified
schemes for perfect reconstruction from samples taken on such
a configuration of points (see, e.g., [5] and references therein).
One approach for studying such sampling problems is to view
this as a special case of Papoulis’ generalized sampling [10]
in higher dimensions. Since a shift in the spatial domain can
be interpreted as a filtering operation, the samples obtained
from each individual lattice in the union can be viewed as
samples of a filtered version of the field taken at points on
the original lattice A. Thus this problem can be interpreted as
a multichannel sampling problem and solved using Papoulis’
approach [10] as outlined in [8].

A more general sampling configuration is a union of shifted
versions of lattices that are not necessarily identical. In the
following section, we consider this setting in detail. We
describe known results and then present new results.

III. SAMPLING ON A UNION OF SHIFTED LATTICES

Consider lattices A1, Ao, ..., Ay in R? where

d
Ay = {Z mjv;»c :m € 2%}
j=1
where for each k, the vectors {v;C : 1 < j < d} forms a basis

for R, For each k let {u;C :1 < j < d} denote a reciprocal
set of lattice vectors defined by the relation

(ub, o) = 2765 for all k.

We now study the problem of sampling bandlimited fields f €
Bg, on the union of shifted versions of these lattices given by

N
U=JAx+wb) 2)

k=1

where w* € RY represent the shifts. This problem has been
studied by various authors in one dimension [11] and higher
dimensions [9], [12]. However, in higher dimensions, the
conditions and algorithms for perfect reconstruction in [9] are
stated for locally compact abelian groups under an abstract
harmonic analysis framework. In this section, we show that
under certain conditions on the shifted lattices, this problem
admits a simple and explicit solution.

As we saw in Section II-A, the spectrum of the sampled
field obtained by samples taken on each individual lattice Ag
is composed of spectral repetitions in d directions. We also
saw that if the repetitions in the sampled spectrum on a lattice
do not overlap, then the original field can be reconstructed
exactly from the samples on this lattice. The same reasoning
holds for sampling on a shifted lattice since a spatial shift of
the field f € Bq does not change the support of its Fourier
transform. However, while sampling a field f € Bq on a union
of shifted lattices U, it may be possible to perfectly reconstruct
the field f based on all the samples even if the samples on each
individual shifted lattice are aliased (e.g., see Example 3.2 later
in the paper). In this section we present some conditions and
schemes for perfect recovery. Let Q C R? be defined as

N k
Q:= {Z(_n”k“; iy €{0,1},1<k < N}.

k=1

The following proposition gives a simple necessary condition
on U and § for perfect reconstruction.

Proposition 3.1: Let Q C R? be a compact set and let U
denote a union of shifted lattices of the form (2). Suppose

Q C Q(s) for some s € R%. Then U ¢ Sq.
Proof: Consider the field

N
fe(r) = exp(—i(s,7)) H sin (4 (uf, r — w*))
k=1

ﬁ sin(rge)
=1 Te€E ’

r e R%.

It is easily verified that the field f. vanishes at all points on
U. Hence f. cannot be distinguished from the function that is
identically zero using the field samples on U. Moreover, for €
small enough, the field f. has a Fourier transform supported
within a subset of ). Thus U ¢ Sq. [ |

Under certain assumptions the simple necessary conditions
stated above are also sufficient to ensure that U € Sg. We
require the following assumptions on U and €:

(A1) © is a compact convex set.
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(A2) For each k € {1,2,..., N} the vectors {v;C :
j > 2} are small enough so that the following
condition holds

d
an Q(Z mju;?) = () for all m € Z°
j=1

where Z? = {m e z°
0 for some j > 2}.

ﬂ?j i#

The assumption (A2) is equivalent to saying that each lattice
Ay is finely sampled along the directions {v;C i j > 2} so
that the overlaps in the corresponding sampled spectrum, if
any, arise due to repetitions in the direction u%. Hence under
assumption (A2) the spectrum from each shifted lattice Ay +
w* is aliased at most in one direction - the direction of u¥.

Assumption (A1) is often satisfied in practical applications
of sampling low-pass phenomena. We now discuss practical
sampling scenarios where the assumption (A2) is satisfied.
Suppose that the process of sampling the field is accomplished
by measuring the field values along hyperplanes at fine res-
olutions. For a field in R2, this means that the measurement
procedure involves scanning the field along straight lines at
high resolutions. Such a scenario is well motivated in spatial
sampling using mobile sensors [7]. A mobile sensor moving
along a straight line can sample the field at high resolutions
along its path without incurring any additional cost in terms
of distance traveled. Now consider a measurement setup in
which the measurements are taken by sensors moving along
a sequence of equispaced parallel lines. We refer to such a
sequence of equispaced parallel lines as a uniform set of
lines, like in [7]. If the samples taken on the various lines
are themselves aligned then the collection of all such samples
lies on a shifted lattice in R2. If we have a collection of
several such uniform sets, then the collection of all samples
lie on a union of shifted lattices in R2. Furthermore, since
the measurements are taken at a fine resolution along the
lines assumption (A2) is satisfied. An example of such a
sampling configuration is shown in Figure 1(a). Similarly, one
could consider a scheme for measuring fields in R? on several
uniform sets of planes. If the samples from the planes on a
uniform set are aligned, then they form a shifted lattice in
R3. The collection of all samples from several such uniform
sets lie on a union of shifted lattices in R? and since the
measurements are taken at a fine resolution along the planes,
it follows that assumption (A2) is satisfied.

Motivated by the practical examples provided above, we
show that, under assumptions (A1) and (A2), the necessary
conditions from Proposition 3.1 are also sufficient for perfectly
reconstructing bandlimited fields in Bg from their measure-
ments on U. We have the following theorem.

Theorem 3.2: Let U be a union of shifted lattices in R?
defined in (2), and Q@ C R? satisfy! Assumptions (A1)
and (A2). Suppose that the vectors {uj,u?, ..., ul} are

'A different set of conditions for perfect reconstruction can be obtained
without Assumption (A1) provided a stronger version of (A2) holds.

linearly independent. Then we have

U € Sq if Q¢ Qs) for all s € RY, and (3)

U¢Sqif QC (02(5) for some s € R%. (4)

Sketch of proof: The result of (4) follows from Proposi-
tion 3.1. The sufficient condition of (3) is proved by demon-
strating an explicit reconstruction strategy. This follows by the
same steps as used to prove [7, Thm 4.3]. The proof is long
and hence omitted. We refer the reader to [7] for details. MW
Now that we have identified the conditions for perfect re-
construction, we now seek explicit reconstruction schemes
for reconstructing the bandlimited fields assuming that the
sufficient condition of (3) holds. The reconstruction scheme
can be obtained by studying the spectra of the sampled fields.
In the sequel we use the following abusive notation for n € Z.
We use (n,v*) to denote 3¢, ngv¥ and (n,u*) to denote
ijl ngué?. Let f¥ denote the sampled impulse stream from
the &N shifted lattice Ag + w" defined as

FE0) =7 f(n, ") + wh)s(r = (n, o) — k) (5)

nezd

where §(.) represents the Dirac-delta function in d-dimensions.
It follows from [1] that the Fourier transform of this sampled
impulse stream is given by

d
FFw) = Z exp(ian<wk,uf>)F(w + (n,uk)),w € RY,
=1

nezd

Under assumption (A2) this spectrum satisfies

FFw) = Zexp(in(wk,ulf))F(w—|—nu]f),w € . (6)

nez

In the following proposition we provide the structure of
the reconstruction scheme. To maintain continuity the proof is
relegated to the appendix.

Proposition 3.3: Let f € Bgq denote a bandlimited field.
Under the conditions of Theorem 3.2, there exists a partition
of € into mutually disjoint sets €2, { = 1,2,..., L, integers
1 < my < oo, and scalars §; ., for i € {1,...,L},j €
{1,...,m;},k€{1,...,N},n € Z% such that

L N
Fo) = D3> Biknf (0, 0*) + wh)

nezd i=1 k=1
xa,(r— (n,vk> — wk), re R (7)

where Xq,(.) represents the inverse Fourier transform of the
characteristic function of €2;. O

Thus the interpolation formula of (7) can be used to reconstruct
the bandlimited field f € Bq using only its samples. The
exact values of f3; 1. ,, and €; depends on the specific problem
at hand. Thus (7) represents the interpolation formula for
reconstructing the field f from its measurements on a union of
shifted lattices U under assumptions (A1) and (A2). We now
discuss some examples where we can explicitly evaluate the
values of f3; , , and €2;.
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Example 3.1 (Rectangular lattices and isotropic field):
Suppose 2 is a circular disc of radius p centered at the origin,
corresponding to an isotropic bandlimited fields. And suppose
U is a union of shifted lattices as in (2) where A; and Ao
are both rectangular lattices with basis vectors

= (OvA)v’U% = (E,O),U% = (Avo)avg = (an)' (8)

Assume that the lattices are not shifted so that w! = w? = 0.
The sampling configuration U is illustrated in Figure 1(a)
where A is shown in black and As in red. If ¢ < T then
Assumption (A2) holds. Suppose that this condition holds
From Theorem 3.2, it follows that perfect reconstruction is
possible (i.e. U € Sq) whenever A < A* := V27 Under
this condition the sampled spectra from the two lattices are
as depicted in Figure 1(b). We have shown only the supports
of the spectral repetitions that intersect with the main lobe.
Based on the sampled spectra, we can partition () into five
distinct regions as shown in Figure 1(c). Here 2; represents
the portion of {2 that is not aliased in either sampled spectrum,
Q9 and Q23 represent the portions that are aliased only in the
sampled spectrum from the first lattice and €24 and Q5 are the
portions aliased only in the sampled spectrum from the second
lattice. Hence the sampled spectra satisfy

Fi(w) = F(w),
F(w) F(w),
Thus F(.) can be recovered from the sampled spectra as
F(w)
= Fl(w)xa,u0.00; (@) + F2(w)xa,00, (w)

> fllnuh)

exp(—i Y ne(v},w))xe,un.ue, (@) +
nez?

(=1
> flnv?)

2
exp(—i Z Lz <U%7 w>)X92UQs (w)
nez? (=1

w691UQ4UQ5
w € Oy U Q3.

Taking inverse Fourier transforms we have

) = > flnv")Rawva.ue, (r — (n,0") +
nez?
Z f(<n7v2>)>292U93 (T‘ - <TL,U2>)
nez?

which is the interpolation formula for perfectly reconstructing
the field from the samples on the two lattices. This is the
equivalent of (7) for the current example. O

In the above example every part of {2 was unaliased in at
least one of the sampled spectra and thus reconstruction was
straightforward. However, in some cases it is possible to
reconstruct the field exactly even when this condition does
not hold, as we illustrate in the following example.

Example 3.2 (Rectangular lattices and non-isotropic field):
Suppose Q == {w € R? : w, > 0,|w,| + |wy| < p}is a
triangular region. As before let U be a union of two
rectangular lattices A; and Ao with basis vectors given by

= (A,0),v3 = (0,2¢),v = (0,2A),v3 = (¢,0).

us

Suppose ¢ < I which ensures that Assumption (A2) holds.
From Theorem 3.2, it follows that perfect reconstruction is
possible (i.e. U € Sq) whenever A < A* := 27”. Under this
condition, the partitions of € are as shown in Figure 2. We
see that unlike in the previous example now there are some
portions of €) that are aliased in both the sampled spectra.
Now the sampled spectra satisfy the following relations:

Flw) = Fw), weQuQuy
Fw) = Fw), weQus
F2w) = Fw)+Fw+ul), weUQy.

Thus the original spectrum can be recovered as
F(W) = Fsl (W)X91U92UQS (w) + FSQ((“))XQALUQE, (w)
+(F52(w) - Fsl(w + u%))XQGUQ7(w)

and the original field can be recovered by inverting the Fourier
spectrum as in the previous example. O

Fig. 2. Partition of €2 in Example 3.2.

IV. CONCLUSION

We have studied the problem of sampling and reconstructing
bandlimited fields on a union of shifted lattices under assump-
tions (A1) and (A2). These assumptions are well justified in
some practical problems of interest such as the sampling of
spatial fields using mobile sensors. Under these assumptions
we provide simple conditions for perfect reconstruction that
are easier to verify than those provided in known results [9]
on the general problem of sampling on a union of shifted
lattices. We also provide explicit reconstruction schemes that
are easier to implement than the known iterative reconstruction
schemes for the general problem.
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APPENDIX

Proof of Proposition 3.3: For w € Q let
{2} (w), 2% (w), ..., 2™ (w)} be all the elements z € Z" for
which w € Q(ZkN L rrut). Without loss of generality, we
assume ' (w) to be 0. Let

N
I(w):={zez" :w—ZxkulfeQ}

k=1

wkr {2t (W), 2%(w), ..., 2™ (w)}. Also let

PR R T < I( )} Grouping together

or equivalently, I

W(w) = {w —
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(a) Union of two rectangular lattices.

Fig. 1.

the w € €2 for which the set I(w) coincide yields a partition
of {2 into mutually disjoint subsets €24,/ = 1,2,..., L. Stated
formally the decomposition reads: 2 = U/, Q, with

(b) Sampled spectra from the two lattices.

77

(c) Partition of 2

Sampled spectra from two rectangular lattices and the associated partitioning of 2 for Example 3.1.

Taking inverse transform we get (7) where Ygq,(.) represents
the inverse Fourier transform of xq,(.), and

. — 3. . : i k k 4
Vee{l,...,L} there exists M, C Z", Pikin = Zlﬁl’J’k P |;xq ;WW et
= = =
j— — /1 émg
={0=2z iy ]
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