
A Matroidal Framework for Network-Error
Correcting Codes

K. Prasad and B. Sundar Rajan, Dept. of ECE, IISc, Bangalore 560012, India.
Email: {prasadk5,bsrajan}@ece.iisc.ernet.in

Abstract—Matroidal networks were introduced by Dougherty
et al. and have been well studied in the recent past. It was shown
that a network has a scalar linear network coding solution if and
only if it is matroidal associated with a representable matroid.
A particularly interesting feature of this development is the
ability to construct (scalar and vector) linearly solvable networks
using certain classes of matroids. Furthermore, it was shown
through the connection between network coding and matroid
theory that linear network coding is not always sufficient for
general network coding scenarios. The current work attempts
to establish a connection between matroid theory and network-
error correcting and detecting codes. In a similar vein to the
theory connecting matroids and network coding, we abstract the
essential aspects of network-error detecting codes to arrive at the
definition of a matroidal error detecting network (and similarly,
a matroidal error correcting network abstracting from network-
error correcting codes). An acyclic network (with arbitrary sink
demands) is then shown to possess a scalar linear error detecting
(correcting) network code if and only if it is a matroidal error
detecting (correcting) network associated with a representable
matroid. Therefore, constructing such network-error correcting
and detecting codes implies the construction of certain repre-
sentable matroids that satisfy some special conditions, and vice
versa. We then present algorithms which enable the construction
of matroidal error detecting and correcting networks with a
specified capability of network-error correction. Using these
construction algorithms, a large class of hitherto unknown
scalar linearly solvable networks with multisource multicast and
multiple-unicast network-error correcting codes is made available
for theoretical use and practical implementation, with parameters
such as number of information symbols, number of sinks, number
of coding nodes, error correcting capability, etc. being arbitrary
but for computing power (for the execution of the algorithms).
The complexity of the construction of these networks is shown
to be comparable to the complexity of existing algorithms that
design multicast scalar linear network-error correcting codes.
Finally we also show that linear network coding is not sufficient
for the general network-error correction (detection) problem
with arbitrary demands. In particular, for the same number of
network-errors, we show a network for which there is a nonlinear
network-error detecting code satisfying the demands at the sinks,
while there are no linear network-error detecting codes that do
the same.

I. INTRODUCTION

Network coding, introduced in [1], is a technique to increase
the rate of information transmission through a network by
coding different information flows present in the network. One
of the chief problems in network coding is to find whether
a given network with a set of sources and sink demands is

Parts of the content of this work was presented at ISIT 2012 held at
Cambridge, Massachusetts, USA, during July 1 - 6, 2012 and at ISITA 2012
held at Honolulu, Hawaii, USA, during October 28-31, 2012.

solvable using a scalar linear network code. Much work has
been done on the existence and construction of scalar linear
network coding techniques in several papers including [2]–[4].

Matroids are discrete objects which abstract the notions
of linear dependence among vectors. They arise naturally in
several discrete structures including graphs and matrices. The
relationship between network coding and matroid theory was
first introduced in [5]. The authors of [5] showed that the scalar
linear solvability of a network with a given set of demands was
related to the existence of a representable matroid (matroids
which arise from matrices over fields) satisfying certain prop-
erties. This connection was further developed and strengthened
in [6]–[10]. Using the techniques of [5]–[7], it is known that
several network instances which are scalar (or vector) linearly
solvable can be constructed using representable matroids and
their generalisations. Using the equivalence between networks
and matroids, it was shown in [11] that linear network codes
are not always sufficient for solving network coding problems
where the sinks have arbitrary demands (i.e., not necessarily
multicast). An explicit network was demonstrated which had
a nonlinear network coding solution but no linear network
coding solutions.

Linear network-error correcting codes were introduced in
[12], [13] as special kinds of linear network codes which could
correct errors that occurred in the edges of the network. Linear
network-error detection codes are simply linear network-error
correction codes where the sinks are able to decode their
demands in the presence of errors at edges known to the sinks.
Together with the subsequent works [14]–[16], the bounds and
constructions similar to classical block coding techniques were
carried over to the context of linear network-error correction
and detection. As network-error correcting (detecting) codes
are essentially special kinds of network codes, the issues of
network coding especially with respect to existence and con-
struction have their equivalent counterparts in network-error
correction (detection). Network-error correction was extended
to case of non-multicast in [17]. In [18], linear network-error
correction schemes were found to be incapable of satisfying
the demands for networks with node adversaries rather than
edge adversaries. Nonlinear error correction schemes are also
found to perform better than linear error correction in networks
with unequal edge capacities [19].

In the current work, we present the connection between ma-
troids and network-error correcting and detecting codes. The
results of this work may be considered as the network-error
correction and detection counterparts of some of the results of
[5], [6], [11]. The organisation and the chief contributions of

ar
X

iv
:1

20
1.

64
59

v3
 [

cs
.I

T
]

 6
 J

ul
 2

01
3

2

our work are as follows.

• After reviewing linear network-error correcting and de-
tecting codes in Section II and matroid theory in Section
III, in Section IV we define the notion of a matroidal
error detecting network associated with a particular ma-
troid. Using this definition, we show that an acyclic
network has a scalar linear network-error detecting code
(satisfying general demands) if and only if there exists a
representable matroid M such that the given network is
a matroidal error detecting network associated with M.
Therefore, networks with scalar linear network-error de-
tecting codes are shown to be analogous to representable
matroids satisfying a certain set of properties. Because
of the equivalence between network-error detection and
network-error correction, all these results have their coun-
terparts for network-error correcting codes also.

• In Section V, we give algorithms which construct mul-
tisource multicast and multiple-unicast matroidal error
correcting networks associated with general matroids
(not necessarily representable) satisfying the required
properties. If the matroids associated with such networks
are representable over finite fields, then these networks
are obtained along with their corresponding scalar linear
network-error correcting codes. Therefore, our results
generate a large class of hitherto unknown networks
which have scalar linear network-error correcting codes, a
few of which are shown in this paper by implementing the
representable matroids version of our algorithms in MAT-
LAB. Though the implementation the nonrepresentable
matroids version of our algorithm is difficult, we do
give a small result as a first step in this direction in
Subsection V-D. The complexity of the construction of
multicast and multiple-unicast networks associated with
representable matroids is shown to be comparable to the
complexity of existing algorithms that design multicast
scalar linear network-error correcting codes for given
networks in Section VI.

• Based on the results from [11], in Section VII, we
prove the insufficiency of linear network coding for the
network-error detection problem on networks with gen-
eral demands (i.e., not necessarily multicast). In particu-
lar, we demonstrate a network (adapted from the network
used in [11] to demonstrate the insufficiency of linear
network coding for the general network coding problem)
for which there exists a nonlinear single edge network-
error detecting code that satisfies the sink demands, while
there are no linear network-error detecting codes that do
the same.

• In Subsection VII-C, we show that this network, for
which linear network-error detection is insufficient, is a
matroidal error detecting network with respect to a non-
representable matroid. Thus our definition of matroidal
error detecting networks is not limited to networks with
linear network-error detecting schemes alone, instead has
a wider scope, accommodating nonlinear error detection
schemes also.

Though algorithms for constructing network-error correct-

ing codes are known for given single source multicast net-
works [12], [13], [16], there is no general characterisation of
networks and demands for which scalar linear network-error
correction codes can be designed. The authors believe that the
algorithm given in this paper could provide useful insights
in this regard. Furthermore, it could also prove useful in the
design of practical network topologies in which network cod-
ing and network-error correction (detection) have advantages
over routing and classical error correction (detection). We also
highlight that though there are many papers in network coding
literature which discuss network coding for multiple-unicast
networks, the results obtained in our paper are some of the
first in network-error correction literature which talk about
network-error correction codes for multiple-unicast networks.

Notations: The following notations will be followed
throughout the paper. The disjoint union of any two sets A
and B is denoted by A] B. For a finite set A, the power
set of A is denoted by 2A. A finite field is denoted by the
symbol F. For some positive integer k, the identity matrix of
size k over F is denoted by Ik. The rank of a matrix A over F
is denoted by rank(A), and its transpose is denoted by AT .
The F-vector space spanned by the columns of a matrix A
over F is denoted by 〈A〉. The set of columns of A is denoted
by cols(A). The support set of a vector x and its Hamming
weight are denoted by supp(x) and wH(x) respectively. The
symbol 0 represents an all zero vector or matrix of appropriate
size indicated explicitly or known according to the context. For
some matrix A, we denote by Al the lth column of A, and
for a subset L of the column indices of A, we denote by AL

the submatrix of A with columns indexed by L. Likewise, we
denote by Aj the jth row of A, and by AJ the submatrix of
A with rows given by the subset J of the row indices.

II. NETWORK-ERROR CORRECTING AND DETECTING
CODES

As in [3], [12], we model the directed acyclic network as a
directed acyclic multigraph (one with parallel edges) G(V, E)
where V is the set of vertices of G representing the nodes in the
network and E is the set of edges representing the links in the
network. An ancestral ordering is assumed on E as the network
is acyclic. Each edge is assumed to carry at most one finite
field symbol at any given time instant. A non-empty subset
S ⊆ V , called the set of sources, generates the information
that is meant for the sinks in the network, represented by
another non-empty subset T ⊆ V . Each sink demands a
particular subset of the information symbols generated by the
sources. Any node in the network can be a source and a
sink simultaneously, however not generating and demanding
the same information. Let nsi be the number of information
symbols (from some finite field F) generated at source si. Let
µ =

{
1, 2, ...,

∑|S|
i=1 nsi = n

}
denote the ordered index set

of messages (each corresponding to a particular information
symbol) generated at all the sources. For each edge e ∈ E ,
we denote by tail(e) the node from which e is outgoing, and
by head(e) the node to which e is incoming. Also, for each
node v ∈ V, let In(v) denote the union of the messages (a
subset of µ) generated by v and the set of incoming edges

3

at v. Similarly, let Out(v) denote the union of the subset
of messages demanded by v and the set of outgoing edges
from v. Further, for any e ∈ E , we denote by In(e) the set
In(tail(e)).

A network code on G is a collection of functions, one asso-
ciated with each node of the network mapping the incoming
symbols at that node to its outgoing symbols. When these
functions are scalar linear, the network code is said to be
a scalar linear network code. To be precise, a scalar linear
network code is an assignment to the following matrices.
• A matrix Asi of size nsi×|E|, for each source si ∈ S, i =

1, 2, ..., |S|, denoting the linear combinations taken by
the sources mapping information symbols to the network,
with non-zero entries (from F) only in those columns
which index the outgoing edges from si.

• A matrix K of size |E| × |E| which indicates the linear
combinations taken by the nodes in the network to map
incoming symbols to outgoing symbols. For i < j,
the (i, j)th element of K, Ki,j , is an element from F
representing the network coding coefficient between edge
ei and ej . Naturally Ki,j can be non-zero only if ej is
at the downstream of ei.

Also, to each sink t ∈ T , we associate a matrix Bt of size
|E| × nt, where nt is the number of incoming edges at t.
Corresponding to the nt rows that index these incoming edges,
we fix the nt × nt submatrix of Bt as an identity submatrix.
The other entries of Bt are fixed as zeroes.

For i = 1, 2, ..., |S|, let xsi ∈ Fnsi be the row vector
representing the information symbols at source si. Let F =(
I|E| −K

)−1
and AsiFBt = Fsi,t. Let A be the n × |E|

row-wise concatenated matrix
As1
As2
.
.

As|S|

 . (1)

The columns of AF are known as the global encoding vectors
corresponding to the edges of the network, indicating the
particular linear combinations of the information symbols
which flow in the edges. We assume that no edge is assigned
an all zero global encoding vector, for then it can simply
be removed from the network and a smaller graph can be
assumed. The global encoding vector corresponding to the n
messages are fixed to be the n standard basis vectors over
F, the concerned field. A network code can also be specified
completely by specifying global encoding vectors for all edges
in the network, provided that they are valid assignments,
i.e., global encoding vectors of outgoing edges are linear
combinations of those of the incoming edges.

Let x =
(
xs1 xs2 ... xs|S|

)
be the vector of all infor-

mation symbols. Let Dt ⊆ µ denote the set of demands at
sink t, and let xsDt

denote the subvector of the super-vector
x corresponding to the information symbols indexed by Dt.

An edge is said to be in error if its input symbol (from
tail(e)) and output symbol (to head(e)), both from F, are
not the same. We call this as a network-error. We model the
network-error as an additive error from F. A network-error

vector is a |E| length row vector over F, whose components
indicate the additive errors on the corresponding edges. The
case of multicast network-error correction, where a single
source multicasts all its symbols to all sinks in the presence of
errors, has been discussed in several papers (see for example,
[12], [13], [16]) all being equivalent in some sense.

Now we briefly review the results for network-error cor-
recting and detecting codes in the case of arbitrary number
of sources and sinks with arbitrary demands. Let z be the
network-error vector corresponding to a particular instance of
communication in the network. Let FS,t be the matrix AFBt.
Let FBt = Ft. Then a sink t receives the nt length vector

yt = xFS,t + zFt. (2)

One way to interpret the input-output relationship shown by (2)
is to think of the network as a finite state machine whose states
are the symbols flowing on the edges. The matrix FS,t then
describes the transfer matrix of this state machine between
the sources and sink t. Some of the states of this network
could be in error (i.e. the network-errors at the edges), which
is captured by the network-error vector z. These errors are
also reflected at the sink outputs, in their appropriate linear
combinations, given by the matrix Ft. For more details the
reader is referred to [16].

A network code which enables every sink to successfully
recover the desired information symbols in the presence of
any network-errors in any set of edges of cardinality at most
α is said to be a α-network-error correcting code. A network
code which enables the sink demands to be recovered in the
presence of errors in at most β edges which are known to the
sinks, is called a β-network-error detecting code.

It is not difficult to see that a scalar linear network code is
a scalar linear α-network-error correcting code if and only if
the following condition holds at each sink t ∈ T .

yt = xFS,t + zFt 6= 0 ∈ Fnt ,
∀ x ∈ Fn : xsDt

6= 0, ∀ z ∈ F|E| : wH(z) ≤ 2α. (3)

Similarly, for a β-network-error detecting code, we must have
the following condition holding true for all sinks.

yt = xFS,t + zFt 6= 0 ∈ Fnt ,
∀ x ∈ Fn : xsDt

6= 0, ∀ z ∈ F|E| : wH(z) ≤ β. (4)

The proof that (3) indeed implies a α-network-error correcting
code follows from the fact that we can always demonstrate a
pair of information vectors x and x′ with xsDt

6= x′
sDt

and a
corresponding pair of error vectors z and z′ with wH(z) ≤ α
and wH(z′) ≤ α such that the corresponding outputs yt and
y′
t are equal, if and only if the sink t is not able to distinguish

between xsDt
and x′

sDt
in the presence of errors. A similar

argument can be given for (4).
Thus, by (3) and (4), it is clear that a β-network-error de-

tecting code is also a bβ2 c-network-error correcting code, while
an α-network-error correcting code is also a 2α-network-error
detecting code.

The error pattern corresponding to a network-error vector
z is defined as its support set supp(z), which we shall also
alternatively refer to using the corresponding subset of E . Let

4

Fsupp(z),t denote the submatrix of Ft consisting of those
rows of Ft which are indexed by supp(z). The condition (3)
can then be rewritten as

yt = (x z̄)

(
FS,t

Fsupp(z),t

)
6= 0, ∀ x ∈ Fn : xsDt

6= 0,

∀ z̄ ∈ F2α, ∀ supp(z) ∈ {F ⊆ E : |F| = 2α} . (5)

Similarly condition (4) becomes

yt = (x z̄)

(
FS,t

Fsupp(z),t

)
6= 0, ∀ x ∈ Fn : xsDt

6= 0,

∀ z̄ ∈ Fβ , ∀ supp(z) ∈ {F ⊆ E : |F| = β} . (6)

For the special case of a single source multicast, the
condition (5) becomes

yt = (x z̄)

(
Fs,t

Fsupp(z),t

)
6= 0 ∈ Fnt , ∀ x 6= 0,

∀ z̄ ∈ F2α, ∀ supp(z) ∈ {F ⊆ E : |F| = 2α} , (7)

which is known from [12]–[14], [16]. Some of these papers
also discuss the case of unequal error correcting capabilities at
different sinks, but in our paper we only consider α-network-
error correction at all sinks uniformly. The extension to the
unequal error capabilities is natural and therefore omitted.

For the multiple-unicast case, where each source has only
one symbol to unicast to some sink and each sink has only one
information symbol to receive from some source, the condition
(3) becomes

yt =xsDt
FsDt ,t

+

 |S|∑
i=1,i6=Dt

xsiFsi,t + zFt

 6= 0,

∀ x : xsDt
6= 0, ∀ z ∈

{
z ∈ F|E| : wH(z) ≤ 2α

}
,

(8)

where the first term above represents the signal part of the
received vector and the second term denotes the interference
plus noise part. Note that xsDt

denotes the demanded infor-
mation symbol at sink t, while xsi denotes the information
symbol generated at source si. Equations similar to (7) and
(8) can be obtained for β-network-error detecting codes also,
by simply replacing 2α by β.

A. A technical lemma

We now present a technical lemma, which will be used in
Section IV. The result of the lemma can be inferred from the
results of [17], but we give it here for the sake of completeness.

Lemma 1: Let IDt denote the (n + β) × |Dt| matrix
with a |Dt| × |Dt| identity submatrix in |Dt| of the first
n rows corresponding to the demands Dt at sink t, and
with all other elements being zero. For some supp(z) ∈
{F ⊆ E : |F| = β} , the condition

(x z̄)

(
FS,t

Fsupp(z),t

)
6= 0, ∀x ∈ Fn : xsDt

6= 0, ∀z̄ ∈ Fβ

(9)

holds if and only if the following condition holds

cols(IDt) ⊆
〈(

FS,t
Fsupp(z),t

)〉
. (10)

Therefore a given network code is β-network-error detecting
(or bβ2 c-network-error correcting) if and only if the condition
(10) holds for all supp(z) ∈ {F ⊆ E : |F| = β} at all sinks
t ∈ T .

Proof: We first prove the If part. Since cols(IDt) is in

the subspace
〈(

FS,t
Fsupp(z),t

)〉
, linear combinations of the

columns of
(

FS,t
Fsupp(z),t

)
should generate the columns of

IDt . Thus, we must have for some matrix X of size nt×|Dt|,(
FS,t

Fsupp(z),t

)
X = IDt .

Now suppose for some (x z̄) with xsDt
6= 0 and some z̄ ∈

Fβ we have

(x z̄)

(
FS,t

Fsupp(z),t

)
= 0.

Multiplying both sides by X, we then have xsDt
= 0, a

contradiction. This proves the If part.
Now we prove the only if part. Let FS,t,Dt denote the

submatrix of FS,t consisting of the |Dt| rows corresponding
to the symbols demanded by t. Let FS,t,Dt

denote the
submatrix of FS,t with rows other than those in FS,t,Dt . Then
because (9) holds, we must have

rank

(
FS,t

Fsupp(z),t

)
= rank(FS,t,Dt) + rank

(
FS,t,Dt

Fsupp(z),t

)
.

The above equation follows because (9) requires that the

rows of FS,t,Dt and
(

FS,t,Dt

Fsupp(z),t

)
be linearly independent.

Thus,

rank

(
FS,t

Fsupp(z),t

)
= |Dt|+ rank

(
FS,t,Dt

Fsupp(z),t

)
.

(11)

Let the concatenated matrix(
FS,t IDtFsupp(z),t

)
be denoted by Y. Again, it is easy to see that

rank(Y)

= rank
(
FS,t,Dt I|Dt|

)
+ rank

(
FS,t,Dt

Fsupp(z),t

)
= |Dt|+ rank

(
FS,t,Dt

Fsupp(z),t

)
= rank

(
FS,t

Fsupp(z),t

)
,

where the last equality follows from (11). This proves the only
if part. Together with (6), the lemma is proved.

5

III. MATROIDS

In this section, we provide some basic definitions and results
from matroid theory that will be used throughout this paper.
For more details, the reader is referred to [20].

Definition 1: Let E be a finite set. A matroidM on E is an
ordered pair (E, I), where the set I is a collection of subsets
of E satisfying the following three conditions

I1 φ ∈ I.
I2 If X ∈ I and X ′ ⊆ X, then X ′ ∈ I.
I3 If X1 and X2 are in I and |X1| < |X2|, then there is an

element e of X2 −X1 such that X1 ∪ e ∈ I.
The set E is called the ground set of the matroid and is also
referred to as E(M). The members of set I (also referred to
as I(M)) are called the independent sets of M. A maximal
independent subset of E is called a basis of M, and the set
of all bases of M is denoted by B(M). The set I(M) is
then obtained as I(M) = {X ⊆ B : B ∈ B(M)} . A subset
of E which is not in I is called a dependent set. A minimal
dependent set of E (any of whose proper subsets is in I) is
called a circuit and the set of circuits of E is denoted by
C or C(M). With M, a function called the rank function is
associated, whose domain is the power set 2E and codomain
is the set of non-negative integers. The rank of any X ⊆
E in M, denoted by rM(X), is defined as the maximum
cardinality of a subset of X that is a member of I(M). We
denote rM (E(M)) = r(M).

The set of circuits of a matroid M satisfy the property that
if C1, C2 ∈ C(M), and e ∈ C1∩C2, then there exists a circuit
C3 ⊆ (C1 ∪ C2)− e. This is known as the circuit-elimination
axiom.

Besides using the independent sets, a matroid on E can
defined by several other ways, including by specifying the set
of circuits, the set of bases or the rank function. We now give
the definition of a matroid based on the properties satisfied by
the rank function for our use in Section VII.

Definition 2: Let E be a finite set. A function r : 2E →
Z+ ∪ {0} is the rank function of a matroid on E if and only
if r satisfies the following conditions.
R1 If X ⊆ E, then 0 ≤ r(X) ≤ |X|.
R2 If X ⊆ Y ⊆ E, then r(X) ≤ r(Y).
R3 If X and Y are subsets of E, then

r(X ∪ Y) + r(X ∩ Y) ≤ r(X) + r(Y).

Definition 3: Two matroids M1 and M2 are said to be
isomorphic, denoted as M1=̃M2, if there is a bijection ϕ
from E(M1) to E(M2) such that, for all X ⊆ E(M1),
ϕ(X) is independent in M2 if and only if X is independent
in M1.

Definition 4: The vector matroid associated with a matrix
A over some field F, denoted by M[A], is defined as the
ordered pair (E, I) where E consists of the set of column
labels of A, and I consists of all the subsets of E which index
columns that are linearly independent over F. An arbitrary
matroid M is said to be F-representable if it is isomorphic
to a vector matroid associated with some matrix A over some
field F. The matrix A is then said to be a representation of
M. The rank function of a representable matroidM, given by

rM(X), X ⊆ E is therefore equal to the rank of the submatrix
of columns corresponding to X in the matrix A to which the
matroid is associated. A matroid which is not representable
over any finite field is called a nonrepresentable matroid.

Example 1: Let A =

(
1 0 0 1
0 1 0 1

)
with elements from

F2. Then the matroid M[A] over the set E = {1, 2, 3, 4} of
column indices of A is defined by

I(M) = {{1} , {2} , {4} , {1, 2} , {1, 4} , {2, 4}} .

Definition 5: Let E = {1, 2, ...,m} for some positive
integer m. For some non-negative integer k ≤ m, let
I = {I ⊆ E : |I| ≤ k} . The set I satisfies the axioms of
independent sets of a matroid on E, referred to as the uniform
matroid Uk,m.

Remark 1: The vector matroid of a generator matrix of
an MDS code of length m and with number of information
symbols k is isomorphic to the uniform matroid Uk,m.

Definition 6: Let {Mi : i = 1, 2, ..,m} be a col-
lection of matroids defined on the disjoint groundsets
{Ei : i = 1, 2, ..,m} respectively. The direct sum of the ma-
troids, denoted by �mi=1Mi, over the groundset]mi=1Ei is the
matroid with the independent sets as follows.

I = {]Ii : Ii ∈ I(Mi)} .

Lemma 2 ([20]): Let M =M[A], A being a matrix over
some field F. The matroid M remains unchanged if any of
the following operations are performed on A

• Interchange two rows.
• Multiply a row by a non-zero member of F.
• Replace a row by the sum of that row and another.
• Adjoin or delete a zero row.
• Multiply a column by a non-zero member of F.

By the row operations of Lemma 2, it is clear
that any F-representable matroid can be uniquely ex-
pressed as the vector matroid of a matrix of the form(
Ir(M) Ar(M)×(|E(M)|−r(M))

)
, with elements from F.

Definition 7: LetM be the matroid (E, I) and suppose that
X ⊆ E. Let I|X = {I ⊆ X : I ∈ I} . Then the ordered pair
(X, I|X) is a matroid and is called the restriction of M to
X or the deletion of E −X from M. It is denoted as M|X
orM\(E−X). It follows that the circuits ofM|X are given
by C(M|X) = {C ⊆ X : C ∈ C(M)} .

The restriction of a F-representable matroid is also F-
representable. The restriction of a vector matroid M[A] to
a subset T of the column indices of A is also obtained as the
vector matroid of a matrix A′ where A′ is obtained from A
by considering only those columns of A indexed by T.

Example 2: Let M =M[A] be the matroid from Example
1. Let T = {1, 2, 3} ⊆ E(M). The matroid M|T is given
by I(M|T) = {{1} , {2} , {1, 2}} = I(M[A′]), where A′ =(

1 0 0
0 1 0

)
.

Definition 8: Let M be a matroid and B∗(M) be
{E(M)−B : B ∈ B(M)}. Then the set B∗(M) forms the
set of bases of a matroid on E(M), defined as the dual

6

matroid of M, denoted as M∗. Clearly (M∗)∗ = M. We
also have

rM∗(X) = |X| − r(M) + rM(E(M)−X),

for any X ⊆ E(M).
Example 3: The dual matroid of the matroidM[A] given in

Example 1 is given by the vector matroid M[A′] correspond-

ing to the matrix A′ =

(
0 0 1 0
1 1 0 1

)
.

Definition 9: Let M be a matroid on E and T ⊆ E. The
contraction of T from M, denoted as M/T, is given by the
matroid (M∗\T)∗ with E − T as its ground set. The set of
independent sets of M/T is as follows.

I(M/T) = {I ⊆ E − T : I ∪BT ∈ I(M)} (12)

where BT is some basis of M|T. The set of circuits
of M/T consists of the minimal non-empty members of
{C − T : C ∈ C(M)} .

In Section IV, we show that for a network to be a matroidal
error detecting (or correcting) network associated with a ma-
troid M, the circuits of M have to satisfy certain conditions.
Thus the concept of circuits of a matroid is the gateway for
our results concerning matroidal error detecting (correcting)
networks. This is in contrast with the theory of matroidal
networks developed in [5], [6], where any arbitrary matroid
can give rise to a corresponding matroidal network.

Example 4: Let M be the matroid with ground set E =
{a, b, c, d, e} and with set of bases B being the set of all
subsets of E of size four. We wish to find M/ {d, e} . It can
be seen that the dual matroidM∗ has the set of all singletons
of E as its set of bases B∗. Then, the matroidM∗\ {d, e} has
the ground set E′ = {a, b, c} and the set of bases

B′ = {{a}, {b}, {c}} .

The dual matroid ofM∗\ {d, e} is the matroidM/ {d, e} with
the ground set {a, b, c} and the set of bases

B′′ = {{a, b}, {a, c}, {b, c}} .

Remark 2: [20] The contraction of a F-representable matroid
is also F-representable. Let M[A] be the vector matroid
associated with a matrix A over F. Let e be the index of
a non-zero column of A. Suppose using the elementary row
operations listed in Lemma 2, we transform A to obtain a
matrix A′ which has a single non-zero entry in column e. Let
A′′ denote the matrix which is obtained by deleting the row
and column containing the only non-zero entry of column e.
Then

M[A]/ {e} = (M[A]∗\ {e})∗ =M[A′′],

where M[A]∗ is the dual matroid of M[A].
Example 5: Let M =M[A] be the matroid from Example

1. We want to find M[A]/ {4} . We first obtain M[A]/ {4}
in a straightforward manner according to the definition of
contraction. The dual matroid of M[A] is the vector matroid
corresponding to the matrix

Ad =

(
0 0 1 1
1 1 0 1

)
.

Now M[Ad]\ {4} is the vector matroid corresponding to the
matrix

A′d =

(
0 0 1
1 1 0

)
.

According to the definition of contraction, M[A′d]
∗ =

M[A]/ {4} . The set of bases ofM[A′d]
∗ is {{1}, {2}} . Thus

the matroid

M[A]/ {4} = (E = {1, 2, 3} , I = {φ, {1}, {2}}) .

We can also obtain M[A]/ {4} using the technique shown in
Remark 2. Towards that end, using row operations on A, we
obtain the matrix

A′ =

(
1 0 0 1
1 1 0 0

)
.

By removing the row corresponding to the only non-zero entry
in the 4th column of A′ and the 4th column itself, we obtain
the matrix A′′ = (1 1 0). It is easily verified that M[A′d]

∗ =
M[A′′].

Definition 10: LetM be a matroid on E and X be a subset
of E. The closure of X is then defined to be the set clM(X) =
{x ∈ E : rM(X ∪ x) = rM(X)} . If X = clM(X), then X
is said to be a flat of M. A flat H such that rM(H) =
r(M)− 1 is called a hyperplane of M. Moreover, X ⊂ E is
a hyperplane of M if and only if E −X is a circuit of M∗.

Example 6: Consider the matroid M[A] of Example 1. Let
X = {1} , then clM(X) = {1, 3} is a flat. Moreover it is also
a hyperplane of M. Also, it can be easily verified that the set

E({M[A]})− {1, 3} = {2, 4}

is a circuit of the dual matroid M[A]∗, given in Example 3.
Definition 11: Let N be a matroid on E. If for some e ∈ E,

{e, f} ∈ C(N) for some f ∈ E, then the matroid N is said
to be a parallel extension of M = N\{e}, and is denoted by
M +p

f e. The element e is said to be added in parallel with
element f. Also, a parallel extension N ∗ of M∗ is said to be
a series extension of M, in which case M = N/{e} and N
is denoted byM+s

f e. The element e is then said to be added
in series with element f.

The following two lemmas summarise equalities which can
be proved easily from the definitions of the series and parallel
matroids and the duality relations between them. We state them
here without proof so that we may use them later in Section
V.

Lemma 3: Let f ∈ E(M) such that {f} /∈ C(M). In
a parallel extension N = M +p

f e of M. The following
statements are true.

rN (X) = rM(X),∀X ⊆ E(M). (13)
rN (X − f + e) = rM(X),∀X ⊆ E(M) with f ∈ X. (14)
r(N) = r(M). (15)
M = N\{e}. (16)

Lemma 4: Let f ∈ E(M) such that {f} /∈ C(M). In a
series extension N =M+s

f e ofM, The following statements

7

are then true.

B(N) = {B ∪ {e} : B ∈ B(M)}. (17)
rM(X) = rN (X),∀X ⊆ E(M) such that f /∈ X. (18)
M = N/{e}. (19)

We now present two lemmas, which will be useful for
describing the construction of matroidal error detecting (cor-
recting) networks in Section V. They also serve as examples
for parallel and series extensions of a matroid. To the best
of our knowledge they are not explicitly found in existing
matroid literature. Therefore, we prove them here for the sake
of completeness.

Lemma 5: Let A be an n × N matrix over F. For some
1 ≤ i ≤ n, let Ai be a non-zero column of A. Let B be the
n× (N + 1) matrix(

A1 A2 ... AN Ai
)
.

Then, M[B] = M[A] +p
i {N + 1} , i.e., M[B] is a parallel

extension of the vector matroid associated with A.
Proof: Clearly M[B]\ {N + 1} = M[A] = M. More-

over, in M[B], the (N + 1)
th column of B is equal to the

ith column, thus {i,N + 1} ∈ C(M[B]). Thus, by definition,
M[B] =M[A] +p

i {N + 1} , the parallel extension of M[A]
at i. This proves the lemma.

Lemma 6: Let A =
(
A1 A2 ... AN

)
be an n × N

matrix over F, where Aj denotes the jth column of A. For
some 1 ≤ i ≤ n, let Ai be a non-zero column of A such that
Ai ∈

〈(
A{1,...,N}−i

)〉
. Let B be the (n+1)×(N+1) matrix(

A1 A2 ... Ai−1 Ai Ai+1 ... AN 0
0 0 ... 0 1 0 0 1

)
,

where 0 ∈ Fn. Then the vector matroid associated with B,
M[B], is a series extension of the vector matroid associated
with A,M[A] at i, i.e., M[B] =M[A] +s

i {N + 1} .
Proof: Because Ai ∈

〈(
A{1,...,N}−i

)〉
, we must

have Bi ∈
〈(
B{1,...,N,N+1}−i)〉 . Also from the

form of B, we have Bi /∈
〈(
B{1,...,N}−i

)〉
. Thus,

{1, 2, .., N + 1}− {i,N + 1} of columns forms a hyperplane
of M[B]. Therefore, {i,N + 1} is a circuit in M[B]∗.
Also, as M[B]/ {N + 1} = M[A], we must have
M[B]∗\ {N + 1} = M[A]∗. Thus M[B]∗ is a parallel
extension of M[A]∗, i.e., M[B]∗ = M[A]∗ +p

i {N + 1} .
Hence M[B] = M[A] +s

i {N + 1} , i.e., M[B] is a series
extension of M[A]. This proves the lemma.

Definition 12: If a matroid M is obtained from a matroid
N by deleting a non-empty subset T of E(N), then N is
called an extension of M. In particular, if |T | = 1, then N is
said to be a single-element extension of M.

Definition 13: Let K be a set of flats of M satisfying the
following conditions.
• If F ∈ K and F ′ is a flat of M containing F, then
F ′ ∈ K.

• If F1, F2 ∈ K are such that rM(F1) + rM(F2) =
rM(F1 ∪ F2) + rM(F1 ∩ F2), then F1 ∩ F2 ∈ K.

Any set K of flats ofM which satisfies the above conditions is
called a modular cut ofM. There is a one-one correspondence
between the set of all modular cuts of a matroid and the set

of all single-element extensions of a matroid. We denote the
single-element extension N corresponding to the modular cut
K asM+K e, where e is the new element that is added. Also,
the set K consists precisely of those flats of M such that for
each F ∈ K, we have rN (F ∪ e) = rN (F).

Example 7: LetM be the vector matroid of the matrix over
F2

B =

 1 0 0 0 1
0 1 0 0 1
0 0 1 0 1

 .

Consider the flats F1 = {3, 4, 5} and F2 = {1, 2, 3, 4, 5}. Note
that the flats F1 and F2 form a modular cut K satisfying the
conditions in Definition 13. Thus there exists a single-element
extension of M which corresponds to this modular cut. Let
M′ be this matroid. It can be verified that M′ is the vector
matroid of the matrix over F3

B′ =

 1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 1 2

 .

However,M′ does not have a representation over the field F2.
Definition 14: Let M be a matroid. For a flat F in the set

of flats of M, let KF denote the set of all flats of M which
contain F. Then KF can be easily verified to be a modular
cut of M and is defined as the principal modular cut of M
generated by the flat F. The single-element extension of M
corresponding to this principal modular cut is then defined as
the principal extension of M generated by the flat F, and is
denoted by M+KF e, where e is the new element added.

Example 8: The single-element extension shown in Example
7 is a principal extension of the matroid M generated by
the flat F1. The principal modular cut corresponding to this
extension is then K.

IV. MATROIDAL ERROR CORRECTING AND DETECTING
NETWORKS

In this section, we define matroidal error correcting and
detecting networks and establish the link between matroids
and network-error correcting and detecting codes. The contents
of this section are logical extensions of the concept of the
matroidal networks defined in [5] which gave the connection
between matroids and network codes. The definition of a
matroidal network is as follows.

Definition 15 ([5]): Let G(V, E) be a network with a
message set µ. Let M = (E, I) be a matroid. The network
G is said to be a matroidal network associated with M if
there exists a function f : µ∪ E → E such that the following
conditions are satisfied.

1) f is one-one on µ.
2) f(µ) = ∪m∈µf(m) ∈ I.
3) rM(f(In(v))) = rM(f(In(v) ∪Out(v))), ∀v ∈ V.
Suppose M is a representable matroid. Then the first two

conditions of Definition 15 can be interpreted as associating
independent global encoding vectors with the information
symbols. The last condition will then ensure that flow conser-
vation holds throughout the network, and also that the sinks
are able to decode the demanded information symbols. Thus

8

Definition 15 can be looked at as the matroidal generalization
of a scalar linear network code, which is confirmed by the
following theorem proved in parts in [5] and [6].

Theorem 1: A network G is matroidal in association with
a representable matroid if and only if it has a scalar linear
network coding solution.

Let G(V, E) be an acyclic network with a collection of
sources S with message set µ (with n elements) and sinks
T , and a given topological order on E . Let β < |E| be a non-
negative integer, and F = {F ⊆ E : |F| = β} be the collection
of error patterns of size β. LetM be a matroid over a ground
set E with n+ 2|E| elements, and with r(M) = n+ |E|. We
now define matroidal error detecting and correcting networks
by extending the definition of matroidal networks of [5] for
the case of networks where errors occur.

Definition 16: The network G is said to be a matroidal β-
error detecting network associated with M, if there exists a
function f : µ∪E → E(M) such that the following conditions
are satisfied.
(A) Independent inputs condition: f is one-one on µ, where

f(µ) = ∪m∈µf(m) ∈ I(M).
(B) Flow conservation condition: For some basis B of
M obtained by extending f(µ) (where B − f(µ) ={
bn+1, ..., bn+|E|

}
is ordered according to the given topo-

logical order on E), the following conditions should hold
for all ei ∈ E .
(B1) f(ei) /∈ clM(B − f(µ))
(B2) rM (f (In(ei)) ∪ f(ei) ∪ bn+i)

= rM (f (In(ei)) ∪ bn+i)
= rM (f (In(ei))) + rM(bn+i)

= rM (f (In(ei))) + 1.

(C) Successful decoding condition: For each error pattern
F =

{
ei1 , ei2 , ..., eiβ

}
∈ F, let BF = B − f(µ) −{

bn+i1 , bn+i2 , ..., bn+iβ
}
. Let MF be the n + β + |E|

element matroid M/BF . Then, at every sink t ∈ T , for
each F ∈ F, we must have

rMF (f (InE(t)) ∪ f (Dt)) = rMF (f (InE(t))) ,

where InE(t) ⊆ In(t) denotes the set of incoming edges
at sink t and Dt is the set of demands at t.

Definition 17: The network G is said to be a matroidal α-
error correcting network associated with a matroidM, if it is
a matroidal 2α-error detecting network associated with M.

Remark 3: As with Definition 15, Definitions 16 and 17
can be viewed as the matroidal abstractions of a scalar linear
network-error detecting and correcting codes (Theorem 2 will
present the formal statement and proof of this abstraction).
If M is a representable matroid, then as in Definition 15,
Condition (A) is equivalent to saying that the global encoding
vectors corresponding to the information symbols are linearly
independent. Condition (B1) is equivalent to saying that the
symbol flowing on any edge in the network is a non-zero
linear combination of the information symbols, added with a
(not necessarily non-zero) linear combination of the network-
errors in the network. Such a condition is not a restriction,
because if an edge carries an all-zero linear combination of

the input symbols, then such an edge can simply be removed
from the network. Condition (B2) is equivalent to a modified
flow conservation condition in networks with errors, implying
that the symbol flowing through any edge e in the network
is a linear combination of the incoming symbols at In(e)
and the network-error in that particular edge. Condition (C)
ensures that the sinks can decode their demands. Although
our definitions are abstracted from scalar linear network-error
detecting and correcting codes, we will show in Section VII
that it applies to nonlinear schemes also.

Remark 4: The Condition (C) of Definition 16 requires that
f(x),∀x ∈ µ∪E exist in E(MF) in the first place. However,
this is ensured by Condition (B1). To see this, first we note
that f(µ) ⊂ E(MF) because these elements are in B and are
not contracted out of M. Now consider the set f(e) ∪ (B −
f(µ)) for any e ∈ E , which is independent in M because of
Condition (B1). By (12) in the definition of the contraction of
a matroid, we have that f(e) exists and is also not dependent
in MF . Therefore, f(x) is well defined in MF also.

Remark 5: Although Definition 15 and Definition 16 in
the case of no network-errors do not immediately appear to
agree, it can be shown that a network is a matroidal network
associated with some matroid M, if and only if it is a
matroidal error detecting network with β = 0, with respect
to another matroid derived using extensions of M. This can
be inferred easily from the remainder of this paper, therefore
we leave it without an explicit proof.

We now present the main result of this paper which is the
counterpart of the results from [5], [6] which relate networks
with scalar linearly solvable network codes to representable
matroids.

Theorem 2: Let G(V, E) be an acyclic communication
network with sources S and sinks T . The network G is
a matroidal β-error detecting network associated with a F-
representable matroid if and only if it has a scalar linear
network-error detecting code over F that can correct network-
errors at any β edges which are known to the sinks.

Proof: If part: Suppose there exists a scalar linear β-
network-error detecting code over F for G with the matrices
Asi(i = 1, 2, ..., |S|),F and Bt, t ∈ T , as defined in Section
II, according to the given topological ordering on E . Let A be
the matrix as in (1).

Let X be the row-wise concatenated matrix
(
AF
F

)
of

size (n+ |E|)× |E|, and Y be the column-wise concatenated
matrix

(
In+|E| X

)
. Also, let M = M[Y], the vector

matroid associated with Y, with E(M) being the set of
column indices of Y. Let f : E ∪ µ→ E(M) be the function
defined as follows.

f(mi) = i, mi ∈ µ, i = 1, 2, ..., n.

f(ei) = n+ |E|+ i, ∀ ei ∈ E in the given ordering.

We shall consider the basis forM as B = {1, 2, ..., n+ |E|} ,
i.e., the first n + |E| columns of Y . This basis will be used
repeatedly in the proof. We shall now prove that the matroid
M and function f satisfy the conditions of Definition 16.
Towards this end, first we see that Condition (A) holds by the
definition of function f.

9

We first prove that Condition (B1) holds. We have that
Yn+|E|+i /∈

〈
(YB−f(µ))

〉
, because no edge is assigned a zero-

global encoding vector, i.e., no column of AF is zero. Thus
Condition (B1) holds.

To show Condition (B2), first note that because the given
set of coding coefficients for the network is a (valid) network
code, F is such that

F j =

 ∑
ei ∈ E :

tail(ej) = head(ei)

Ki,jF
i

+ 1j , (20)

where 1j is a column vector in F|E| with all zeros except for
the jth entry which is 1 ∈ F. Also, (20) implies that

(AF)
j

= AF j

= A

 ∑
ei ∈ E :

tail(ej) = head(ei)

Ki,jF
i

+A1j

=

 ∑
ei ∈ E :

tail(ej) = head(ei)

Ki,j (AF)
i

+Aj . (21)

Thus, combining (20) and (21), we have

X j = Yn+|E|+j

=

 ∑
ei ∈ E :

tail(ej) = head(ei)

Ki,jX i

+ Yf(µ)Aj + Yn+j

=

 ∑
ei ∈ E :

tail(ej) = head(ei)

Ki,jYn+|E|+i

+ Yf(µ)Aj + Yn+j ,

where Yn+j corresponds to bn+j ∈ B − f(µ) and the non-
zero coefficients of Aj can occur only in those positions
corresponding to the set of messages generated at tail(ej),
if any, which is a subset of In(tail(ej)) = In(ej). Also, for
any ei ∈ E with tail(ej) = head(ei), the vector Yn+|E|+i is
some column of the matrix Yf(In(ej)). Thus

Yn+|E|+j ∈
〈(
Yf(In(ej))∪bn+j

)〉
. (22)

We also note that the (n + j)th row of Yn+j contains 1
(indicating the error at the edge ej) while the (n + j)th row
of Yf(In(ej)) is all-zero because of the topological ordering
in the acyclic network (as symbols flowing in any edge
can have contribution only from upstream errors). Therefore
Yn+|E|+j /∈

〈
Yf(In(ej))

〉
. Along with (22), this proves that

Condition (B2) holds.
Now we prove that Condition (C) also holds. Let I(F) =

{i1, i2, ..., iβ} be the index set following the topological or-
dering corresponding to an arbitrary error pattern F ∈ F and

let the set {n+ i1, n+ i2, ..., n+ iβ} be denoted as n+I(F).
First we note that by definition, MF is the vector matroid of
the matrix

Z = Yf(µ)∪(n+I(F)) =
(
In+β Xf(µ)∪(n+I(F))

)
, (23)

where Xf(µ)∪(n+I(F)) =

(
AF
F I(F)

)
. Now for a sink t ∈ T ,

Zf(InE(t)) = X f(InE(t))f(µ)∪(n+I(F)) =

(
AF f(InE(t))

F
f(InE(t))
I(F)

)
.

But according to Section II, we have, AF f(InE(t)) = FS,t,

and F
f(InE(t))
I(F) = Fsupp(z),t, where supp(z) = F . By

Lemma 1, as the given network code is β-network-error
detecting, we must have

cols(IDt) ⊆
〈(
Zf(InE(t))

)〉
,

where Dt ⊆ µ is the set of demands at t. But then IDt =
Zf(Dt) by (23). This proves Condition (C) for sink t. The
choice of error pattern and sink being arbitrary, this proves
the If part of the theorem.

Only If part: Let M be the given F-representable ma-
troid, along with the function f, and basis B = f(µ)]{
bn+1, bn+2, ..., bn+|E|

}
that satisfy the given set of condi-

tions. Let Y = (In+|E| X) be a representation of M over F,
such that B = {1, 2, ..., n+ |E|} . First we prove the following
claim.

Claim: There exists an n × |E| matrix A, and a |E| × |E|
matrix F of the form F = (I|E| − K)−1 for some strictly
upper-triangular matrix K, such that

X =

(
AF
F

)
. (24)

Proof of claim:
Consider an edge ej ∈ E . Let µtail(ej) denote indices of

the set of messages generated at tail(ej). As Condition (B2)
holds, Yf(ej) is such that

Yf(ej)

=
∑

ei ∈ E :
tail(ej) = head(ei)

a′i,jYf(ei) +
∑

mi∈µtail(ej)

c′i,jYf(mi) + a′j,jYn+j ,

(25)

for some a′i,j and c′i,j in F. Note that if ej is such that
In(ej) ⊆ µ, then by (25), Yf(ej) is just a linear combination
of Yµtail(ej) and Yn+j . Following the ancestral ordering for
j, it can be seen that for any edge ej , Yf(ej) is a linear
combination of Y{1,2,...,n+j} and Yµ. Thus we have,

Yf(ej) =
∑

ei∈E:i≤j

ai,jYn+i +
∑
mi∈µ

ci,jYf(mi).

As Condition (B1) holds, we must have at least one ci,j 6=
0,∀i = 1, 2, ..., n and because of Condition (B2), we must
have aj,j = a′j,j 6= 0. This structure of Yf(ej) also implies
that Yf(ej) 6= Yb, for any b ∈ B. Moreover, we also see that
Yf(ei) 6= Yf(ej), for any distinct pair ei, ej of edges in E .

10

Arranging all the Yf(ei)s in the given topological order (i.e.,
with f(ej) = n+ |E|+ j), we get Yf(E) = X , and

X =

(
Jn×|E|
L|E|×|E|

)
,

where J comprises of the elements ci,j , 1 ≤ i ≤ n, 1 ≤ j ≤
|E| and L is the matrix

L =


a1,1 a1,2 . . a1,|E|
0 a2,2 . . a2,|E|
. 0 . . .
.
.
0 0 . 0 a|E|,|E|

 .

By Lemma 2, the matroid M does not change if some
row or some column of Y = (In+|E| X) is multiplied
by a non-zero element of F. Let Y ′ be the matrix obtained
from Y by multiplying the rows {n+ 1, n+ 2, ..., n+ |E|}
by the elements

{
a−11,1, a

−1
2,2, ..., a

−1
|E|,|E|

}
respectively, and

then multiplying the columns {n+ 1, n+ 2, ..., n+ |E|} by{
a1,1, a2,2, ..., a|E|,|E|

}
respectively. The matrix Y ′ is then of

the form (In+|E| X ′), where X ′ =

(
J

L′|E|×|E|

)
, L′ being

the upper-triangular matrix obtained from L, i.e.,

L′ =


1 a1,2a

−1
1,1 . . a1,|E|a

−1
1,1

0 1 . . a2,|E|a
−1
2,2

. 0 . . .

.

.
0 0 . 0 1

 .

As M is the vector matroid of Y ′ also, without loss of
generality we assume that Y = Y ′, with a1,1 = a2,2 = ... =
a|E|,|E| = 1.

Now let H be the n × |E| matrix whose columns are
populated as follows. For all j = 1, 2, ..., |E|,

Hj = Jj −
∑

ei ∈ E :
tail(ej) = head(ei)

a′i,jJ
i =

∑
mi∈µtail(ej)

c′i,jY
f(mi)
f(µ) .

We shall now show that Jj = HLj , ∀ j = 1, 2, ..., |E|.
Clearly for any edge ej such that In(ej) ⊂ µ, (such edges
exist because of acyclicity of G), we have Jj = HLj , as Lj

is the basis vector which picks the jth column of H, which
is equal to Jj . We now use induction on j (according to the
topological order) to show that Jj = HLj , ∀ j = 1, 2, ..., |E|.
Now assume that for some ej , all ei ∈ In(ej) are such that
J i = HLi. By (25), we have

Jj =
∑

ei ∈ E :
tail(ej) = head(ei)

a′i,jJ
i+

∑
mi∈µtail(ej)

c′i,jY
f(mi)
f(µ)

=
∑

ei ∈ E :
tail(ej) = head(ei)

a′i,jHL
i +Hj

= H

 ∑
ei ∈ E :

tail(ej) = head(ei)

a′i,jL
i + 1j


= HLj ,

where the second equality above follows from the induction
assumption and the definition of Hj , 1j is a column vector of
length |E| with all zeros except for the 1 at jth position, and
the last equality follows from (25). Thus we have Jj = HLj .
Continuing the induction on j, we have that Jj = HLj , ∀ j =

1, 2, .., |E|. Therefore, we have X =

(
HL
L

)
. Thus, with

A = H, and F = L, we have that X is of the form as in (24).
This proves the claim.

We finally show that there is a scalar linear β-network-error
detecting code for G. Let the matrices Asi , i = 1, 2, ..., |S| be
obtained according to (1) with H = A, and let the network
coding matrix K = I−L−1. Then, the columns of the matrix
HL denote the global encoding vectors of the edges of E in
the given topological order. Clearly this is a valid network
code for G, by the structure of the matrices H and L.

For some arbitrary error pattern, F ∈ F, MF (as in
Condition (C)) is clearly the vector matroid of the matrix

Z = Yf(µ)∪(n+I(F)) =
(
In+β Xf(µ)∪(n+I(F))

)
,

where I(F) = {i1, i2, ..., iβ} is the index set corresponding to

F , and Xf(µ)∪(n+I(F)) =

(
HL
LI(F)

)
. Now for a sink t ∈ T ,

Zf(InE(t)) = X f(InE(t))f(µ)∪(n+I(F)) =

(
HLf(InE(t))

L
f(InE(t))
I(F)

)
.

By Condition (C), we have cols(Zf(Dt)) ⊆
〈
(Zf(InE(t)))

〉
.

But we have by the notations of Section II, for supp(z) = F

Zf(Dt) = IDt

HLf(InE(t)) = FS,t

L
f(InE(t))
I(F) = Fsupp(z),t.

Thus, cols(IDt) ⊆
〈(

FS,t
Fsupp(z),t

)〉
. As the choice of

sink and error pattern was arbitrary, using Lemma 1 it is seen
that the network code given by the column vectors of HL
is β-network-error detecting. This completes the proof of the
theorem.

Theorem 2 has the following corollary which is easy to
prove.

Corollary 1: Let G(V, E) be an acyclic communication
network with sources S and sinks T . The network G is a
matroidal α-error correcting network associated with a F-
representable matroid if and only if it has a scalar linear
network-error correcting code over F that can correct network-
errors at any α edges in the network.

V. CONSTRUCTIONS OF MULTISOURCE MULTICAST AND
MULTIPLE-UNICAST ERROR CORRECTING NETWORKS

In the theory of matroidal networks developed in [5], [6],
we could start with any matroid and obtain a network which
is matroidal with respect to that matroid. In particular, if
we start with a representable matroid, we always obtain a
network which has a scalar linear network code. On the other
hand, to obtain matroidal error detecting (correcting) networks,
the matroid has to satisfy the conditions of Definition 16, in

11

particular Condition (C) which puts restrictions on the choice
of the matroid according to the nature of its contractions.
If we are looking for networks with scalar linear network-
error correcting codes, such matroids should be representable.
Thus, unlike [5], [6], it is not straightforward how to obtain or
construct such matroids (representable or otherwise). In this
section, we propose algorithms for constructing such matroids
(not necessarily representable) along with their corresponding
networks (in particular multisource multicast and multiple-
unicast), such that these networks are matroidal error cor-
recting networks associated with the constructed matroids.
The matroidal α-error correcting networks constructed by
our algorithms naturally are also matroidal 2α-error detecting
networks. The construction of matroidal β-error detecting
networks (for general β) can be done in a similar fashion,
and therefore we omit it.

Each such matroidal error correcting network is obtained by
constructing a series of networks and a corresponding series
of matroids associated with which the networks are matroidal
error correcting. The series of networks are constructed using
two types of nodes defined as follows.

• Nodes which have a single incoming edge from a coding
node and multiple outgoing edges to other coding nodes
or sinks are known as forwarding nodes. We denote the
set of all forwarding nodes as Vfwd.

• Nodes which combine information from several incoming
edges from the forwarding nodes and transmit the coded
information to their corresponding forwarding nodes are
known as coding nodes.

If the series of matroids constructed are representable ma-
troids, then the networks constructed are obtained along with
scalar linear network-error correcting codes that satisfy the
sink demands successfully.

Let In(Vfwd) be the set of all incoming edges of all
forwarding nodes Vfwd. In a network with the property that
coding and forwarding nodes alternate in any path from a
source to a sink in the network, it is sufficient to consider
error patterns that are subsets of In(Vfwd) to define the error
correcting capability of the network, rather than subsets of all
the edges in the network. If errors corresponding to such error
patterns are correctable, then in such networks other errors
are also correctable, as symbols flowing through edges other
than In(Vfwd) are only copies of symbols flowing through
In(Vfwd). The networks that we design using our algorithms
are restricted to have these properties, and therefore it is
sufficient to construct a matroid M with E = In(Vfwd) that
satisfies the conditions in Definition 16.

The goal of the construction algorithms is to generate a
network defined by the following parameters that are to be
given as inputs to the algorithms.

• Number of sources (|S|): The number of sources in the
multisource multicast network or in the multiple-unicast
network.

• Number of information symbols (n =
∑
sk∈S nsk): For

multicast, nsk is the number of information symbols gen-
erated by sk, while n is the total number of information
symbols generated by all sources. For the multiple-unicast

case, n represents the number of non-collocated sources
present in the network, each generating one information
symbol.

• Number of correctable network-errors (α): This fixes
the number of outgoing edges from the source(s). For
multicast, the number of outgoing edges from the source
sk is fixed as Nk = nsk + 2α. For multiple-unicast, the
number of outgoing edges from each source is fixed as
1+2α. These edges and their head nodes are for the sake
of clearly presenting our algorithm, and can be absorbed
back into the corresponding sources once the algorithm
is completed.

• Number of network-coding nodes (NC): At each iteration
in our algorithm, one network-coding node and one
forwarding node will be added to the network, and a
corresponding matroid constructed associated with which
the extended network will be a matroidal error correcting
network. The algorithm will run until NC forwarding
nodes have been added.

• Number of multicast sinks (|T |): This value indicates the
number of sinks to which the information symbols is to be
multicast. For the multiple-unicast case, we assume that
the number of sinks is equal to the number of sources
(i.e. messages).

A. Sketch of Construction and Illustrative Examples

Fig. 1 presents a sketch of our algorithm for constructing
acyclic matroidal α-error correcting multisource multicast and
multiple-unicast networks. The full description of the algo-
rithm for multisource multicast is given in Section V-B and
for multiple-unicast in Section V-C. We now present a couple
of illustrative examples before we give the full description of
our algorithm.

Example 9: Fig. 2(a)-2(e) describe the stages of a two source
multicast network with input parameters ns1 = 2, ns2 =
1, α = 1, |T | = 2, and NC = 4, as it evolves through the
iterations in the construction shown in the sketch. The network
shown in Fig. 2(a) is the initial naive network. A representation
of the initial matroid corresponding to this naive network is
shown in (26) in Fig. 3 and is obtained from two MDS codes
over F8, one of length ns1 + 2α = 4 implemented at source
s1 and another at source s2 with length ns2 + 2α = 3. Both
codes have minimum distance 3. Each successive iteration in
the construction adds a new coding node to the network, and
a new column and row to the matrix representing the matroid.
The equations (27)-(30) shown in Fig. 3 indicate the matrices
representative of the representable matroids which correspond
to the networks shown in Fig. 2(b)-2(e), respectively.

Let ei be the incoming edge at forwarding node i. The
function f for each corresponding pair of network and matroid
is defined as follows.

f(µ) = {1, 2, 3} .
f(ei) = 3 + |In(Vfwd)|+ i, ∀ ei ∈ In(Vfwd).

For reasons mentioned in the beginning of this section, it is
sufficient to define f for the input indices µ and the set of
edges In(Vfwd). Each network is seen to be matroidal 1-error

12

correcting with respect to the corresponding matroid along
with the function f.

Example 10: Fig. 4(a)-4(d) show the stages of the net-
work evolution of a multiple-unicast network with parameters
n = 3, α = 1, and NC = 3. For i = 1, 2, 3, the kth sink
demands the information symbol generated by the kth source.
The representative matrices of the corresponding matroids are
shown in (31)-(34) in Fig. 5. The initial matroid represented by
the matrix in (31) is obtained from a repetition code of length
3 and minimum distance 3. The function f is defined in the
same way as in the multicast example. Again, every network
is matroidal 1-error correcting with the corresponding matroid
and function f.

The example networks shown in this paper which are
obtained using our construction algorithms (executed in MAT-
LAB) are matroidal error correcting networks with respect to
a representable matroid, i.e., all the example networks have
a scalar linear solution. The reason for presenting networks
associated only with representable matroids is that obtaining
matroidal error correcting networks associated with nonrep-
resentable matroids seems to be a computationally difficult
problem. This is because our algorithms have to repeatedly
compute various types of matroid extensions satisfying dif-
ferent kinds of properties. Computations and descriptions of
the extensions of nonrepresentable matroids is a computation-
ally intensive task. We further elaborate on the difficulty of
obtaining networks associated with representable matroids in
Subsection V-D. Using stronger mathematical machinery with
respect to nonrepresentable matroids and their minors, the
complexity of obtaining associated networks could be reduced
and our algorithms can then be used to obtain examples of the
same. In Subsection V-D, we present a result which can be
considered as a first step towards obtaining matroidal error cor-
recting networks which are associated with nonrepresentable
matroids.

B. Multisource Multicast Construction
We now give the full description of our construction for

the case of multisource multicast. The construction generates
a multisource multicast network with the given parameters
|S|, {ns : s ∈ S} , α,NC , and |T |, along with a matroid (not
necessarily representable) with respect to which the network is
matroidal α-error correcting. For the sake of the completeness
of the description of our construction algorithm, we present a
simple lemma.

Lemma 7: Let N be a series extension of the matroidM =
N/e2 at e1, i.e., N = M +s

e1 e2. Let C be a circuit of M
containing e1, then C ∪ e2 is a circuit of N .

Proof: As C ∈ C(M), E(M) − C is a hyperplane of
M∗ not containing e1. To prove C ∪ e2 ∈ C(N), we prove
that E(N)−C ∪ e2 = E(M)−C is a hyperplane (obviously
not containing e1 or e2) in N ∗ also.

Note that N ∗ is a parallel extension of M∗. In a parallel
extension N ∗ of M∗, the rank of any subset X ⊆ E(M∗)
does not change in the extension. Therefore rN∗(E(M) −
C) = rM∗(E(M)− C) = rM∗ − 1 = rN∗ − 1.

Now all that we have to prove is that E(M)−C is a flat in
N ∗ also. Suppose not, then we must have that clN∗(E(M)−

C) = E(N ∗). Thus, as e1 /∈ (E(M)−C), there should be a
circuit C ′ such that C ′ ⊆ (E(M)− C) ∪ e1, with e1 ∈ C ′.
But then this means C ′ ∈ C(M∗) also, which implies that
e1 ∈ clM∗(E(M) − C) = E(M) − C. But this is not the
case. Hence E(M)− C is a flat, and hence a hyperplane, in
N ∗. Therefore C ∪ e2 = (E(N) − (E(M) − C)) ∈ C(N).
This proves the lemma.

We now present our construction as an elaboration of
the algorithm sketch shown in Fig. 1. The details of the
functionality of the algorithm sketch, such as the method
of updating the incoming edges to the sinks, the method
of updating the matroid, field size issues which govern the
possibility of adding new coding nodes and representability
of matroidal extensions, etc., can be inferred through the
description of our algorithm and the discussion that follows.
The construction is based on matroids which need not always
be representable. However, at all the appropriate junctures,
the equivalent scenario for representable matroids is given as
remarks. Throughout the remainder of this section we will
assume that a matroid remains unchanged when its elements
are reordered according to some permutation, as this implies
only a relabeling of the matroid elements.

Step 1: Initializing the network:
The network G is initialized by creating the collection of
source nodes S and a collection of sink nodes T .

Corresponding to each source sk ∈ S, create a set of Nsk =
nsk+2α forwarding nodes, each with one incoming edge from
sk. Let the collection of these incoming edges be e1, ..., eN ,
where N =

∑
sk
Nsk is the total number of forwarding nodes

added.
For each sink t, create N temporary incoming edges In(t)

originating from the N forwarding nodes. Because it is
sufficient to consider error patterns on the incoming edges
at the forwarding nodes, we abuse our notation to say that
In(t) = {e1, ..., eN} = E , ∀ t ∈ T . This initialized network
is represented in Fig. 6.

s1

Ns1

t1 t|Ƭ|

e1 e2
eNs1

s|S|

Ns|S|

eN

Fig. 6. The initialization of the multisource multicast network

Step 2: Initializing the matroid

13

St
ar

t w
ith

 a
 tr

iv
ia

l n
et

w
or

k
w

ith
 th

e
 g

iv
en

 n
um

be
r o

f s
ou

rc
es

 a
nd

 s
in

ks
,

 b
ut

 w
ith

 n
o

ne
tw

or
k

co
di

ng
 n

od
es

.

C
ho

os
e

th
e

in
iti

al
 re

pr
es

en
ta

bl
e

m
at

ro
id

, a
nd

th

e
fu

nc
tio

n
f,

su
ch

 th
at

 th
e

in
iti

al
 n

et
w

or
k

is
 a

 m
at

ro
id

al
 α

 e
rr

or
 c

or
re

ct
in

g
ne

tw
or

k
 w

ith
 re

sp
ec

t t
o

th
e

m
at

ro
id

.

R
an

do
m

ly
 c

ho
os

e
a

su
bs

et
 o

f f
or

w
ar

di
ng

 n
od

es

in
 th

e
ne

tw
or

k
an

d
te

m
po

ra
ri

ly
 u

pd
at

e
th

e
ne

tw
or

k
by

 c
re

at
in

g
a

ne
w

 c
od

in
g

no
de

, f
or

w
ar

di
ng

 n
od

e
an

d
an

 e
dg

e
be

tw
ee

n
th

em
.

Te
m

po
ra

ri
ly

 u
pd

at
e

th
e

m
at

ro
id

, a
nd

 th
e

fu
nc

tio
n

f,
su

ch
 th

at
 th

e
C

on
di

tio
ns

 (A
)

an
d

(B
) o

f t
he

 D
ef

in
iti

on
 1

6
ar

e
sa

tis
fi

ed
.

U
pd

at
e

th
e

in
co

m
in

g
ed

ge
s

to
 th

e
si

nk
s

ac
co

rd
in

g
to

 th
e

fl
ow

s
w

hi
ch

 h
av

e
be

en

co
m

bi
ne

d
to

 c
re

at
e

th
e

ne
w

 c
od

in
g

no
de

 .

U
pd

at
ed

 n
et

w
or

k
is

 m
at

ro
id

al

er
ro

r c
or

re
ct

in
g

w
ith

 re
sp

ec
t t

o
up

da
te

d
m

at
ro

id
 a

nd

sa
tis

fi
es

 g
iv

en
 re

qu
ir

em
en

ts
.

Ye
s

C
he

ck
 if

 th
e

m
at

ro
id

an

d
f s

at
is

fy
 C

on
di

tio
n

(C
)

of
 D

ef
in

iti
on

 1
6

fo
r s

om
e

sm
al

le
st

 s
ub

se
t o

f
 in

co
m

in
g

ed
ge

s
at

 e
ac

h
si

nk
 ,

 i.
e.

, i
f

th
e

up
da

te
d

ne
tw

or
k

is
 s

til
l m

at
ro

id
al

 α

er
ro

r c
or

re
ct

in
g.

C
he

ck
 if

 N
C

 c
od

in
g

no
de

s
ha

ve
 b

ee
n

ad
de

d

C
he

ck
 if

 a
ll

po
ss

ib
le

m

at
ro

id
al

 u
pd

at
es

ha
ve

 b
ee

n
us

ed

Fi
x

th
e

te
m

po
ra

ri
ly

 u
pd

at
ed

ne
tw

or
k,

 m
at

ro
id

 a
nd

 f
as

 th
e

 n
ew

 in
pu

t n
et

w
or

k,
 m

at
ro

id
,

 a
nd

 f,
 to

 th
e

ne
xt

 s
te

p.

R
ev

er
t t

he
 te

m
po

ra
ry

up

da
te

s
to

 th
e

ne
tw

or
k,

 m
at

ro
id

 a
nd

 f.

N
o

Ye
s

N
o

N
o

Ye
s

O
pt

io
na

l:
U

pd
at

e
th

e
in

co
m

in
g

ed
ge

s
of

th

e
si

nk
s

to
 th

e
sm

al
le

st
 s

ub
se

t s
at

is
fy

in
g

 C
on

di
tio

n
(C

) o
f D

ef
in

iti
on

 1
6.

Fi
g.

1.
Fl

ow
ch

ar
t

of
th

e
co

ns
tr

uc
tio

n
of

m
at

ro
id

al
er

ro
r

co
rr

ec
tin

g
ne

tw
or

ks
.S

om
e

su
bp

at
hs

ar
e

sh
ow

n
da

sh
ed

as
th

ey
cr

is
s-

cr
os

s
w

ith
ot

he
rs

.

14

S1

2 3 41

T2

S2

6 75

T1

(a) Network with 2 sources, 3 information symbols (of
which S1 generates two, and S2 generates one), 2 sinks
and α = 1, at initial stage of multicast construction

S1

2 3 41

T2

S2

6 75

T1

8

(b) Multicast network after first iteration

S1

2 3 41

T2

S2

6 75

T1

8 9

(c) Multicast network after second iteration

S1

2 3 41

T2

S2

6 75

T1

8 910

(d) Multicast network after third iteration. Notice that the
number of incoming edges to sink T2 drops from 7 to 5.
The reason for this is explained in the full description of
our algorithm in Subsection V-B.

S1

2 3 41

T2

S2

6 75

T1

8 910 11

(e) The final multicast network with 3 information symbols
and 3 sinks with single edge network-error correction

Fig. 2. The stages of network evolution in the construction of a multicast network with a 1-error correcting network code. Fig. 3 shows the representations
of the matroids associated with these networks.

15



1 1 1 1 0 0 0
1 2 4 3 0 0 0
0 0 0 0 1 1 1

I10 1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(26)



1 1 1 1 0 0 0 1
1 2 4 3 0 0 0 4
0 0 0 0 1 1 1 6

1 0 0 0 0 0 0 0
I11 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 6
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



(27)



1 1 1 1 0 0 0 1 1
1 2 4 3 0 0 0 4 1
0 0 0 0 1 1 1 6 5

1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0

I12 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 6 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 5
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



(28)



1 1 1 1 0 0 0 1 1 1
1 2 4 3 0 0 0 4 1 2
0 0 0 0 1 1 1 6 5 1

1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1

I13 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 6 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 5 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



(29)



1 1 1 1 0 0 0 1 1 1 1
1 2 4 3 0 0 0 4 1 2 3
0 0 0 0 1 1 1 6 5 1 1

1 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1 0

I14 0 0 1 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 6 0 1 1
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 5 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1



(30)

Fig. 3. The stages of evolution in the representable matroid in the construction of a 2-source multicast network (shown in Fig. 2) with a 1-error correcting
network code. All matrices are over F8 (with modulo polynomial x3 + x+ 1) and the entries are the decimal equivalents of the polynomial representations
of elements from F8.

16

s1

1 2 3

s2

4 5 6

s3

7 8 9

T1 T2 T3

(a) Unicast Network with 3 information symbols and α = 1 at
initial stage of multiple-unicast construction

s1

1 2 3

s2

4 5 6

s3

7 8 9

T1 T2 T3

10

(b) Multiple-unicast network after first iteration

s1

1 2 3

s2

4 5 6

s3

7 8 9

T1 T2 T3

10
11

(c) Multiple-unicast network after second iteration

s1

1 2 3

s2

4 5 6

s3

7 8 9

T1 T2 T3

10

11

12

(d) Multiple-unicast network after third iteration

Fig. 4. The stages of network evolution in the construction of a multiple-unicast network with a 1-error correcting network code. The representations of the
matroids associated with these networks are shown in Fig. 5.

We now obtain a matroid M such that the network G is
a matroidal α-error correcting network with respect to this
matroid M. Towards that end, we consider the direct sum

U = �|S|k=1Unsk ,Nsk ,

where Unsk ,Nsk is the uniform matroid of rank nsk with the
groundset with Nsk elements given as follows.

E(Unsk ,Nsk) =
{
uk1 , u

k
2 , ..., u

k
Nsk

}
.

The matroid U has rank n =
∑|S|
k=1 nsk . Let the ground set

of this matroid be

E(U) = {u1, u2, ..., uN} =]|S|k=1{u
k
1 , u

k
2 , ..., u

k
Nsk
}, (35)

where

{u1, u2, ..., un} =]|S|k=1{u
k
1 , u

k
2 , ..., u

k
nsk
}

is a basis for U .
Remark 6: If an MDS code of length Nsk and with nsk

information symbols exists, then Unsk ,Nsk corresponds to the
vector matroid of a generator matrix of an Nsk -length MDS
code which has minimum distance 2α + 1. If such an MDS
code exists, let this generator matrix be the nsk ×Nsk matrix
of the form Usk =

(
Insk Ask

)
. If such MDS codes exist

for each source, then a representation of the matroid U is given
as 

Us1 0 . . . 0
0 Us2 . . . 0
...

...
. . .

...
0 0 . . . Us|S|

 .

Rearranging the columns of the above representation, we have

17



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

I12 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



(31)



1 1 1 0 0 0 0 0 0 1
0 0 0 1 1 1 0 0 0 4
0 0 0 0 0 0 1 1 1 4

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1

I13 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 4
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 4
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



(32)



1 1 1 0 0 0 0 0 0 1 1
0 0 0 1 1 1 0 0 0 4 4
0 0 0 0 0 0 1 1 1 4 3

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0

I14 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 4 4
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 4 3
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1



(33)



1 1 1 0 0 0 0 0 0 1 1 2
0 0 0 1 1 1 0 0 0 4 4 7
0 0 0 0 0 0 1 1 1 4 3 1

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 3
0 0 1 0 0 0 0 0 0 1 0 1

I15 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 4 4 7
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 4 3 5
0 0 0 0 0 0 0 0 1 0 0 4
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 3
0 0 0 0 0 0 0 0 0 0 0 1



(34)

Fig. 5. The stages of evolution in the representable matroid in the construction of a multiple-unicast network (shown in Fig. 4) with a 1-error correcting
network code. All matrices are over F8 (with modulo polynomial x3 + x+ 1) and the entries are the decimal equivalents of the polynomial representations
of elements from F8.

the alternative representation for U which we shall use in the
description of our algorithm.

U = (In A) , (36)

where

A =


As1 0 . . . 0
0 As2 . . . 0
...

...
. . .

...
0 0 . . . As|S|

 .

Corresponding to the elements ui, i = 1, 2, ..., n, we add
the elements upi , i = 1, 2, ..., n respectively in parallel. By
definition of a parallel extension, it can be seen that the order
in which these elements are added does not matter. Let the
resultant matroid be Up. The set

E(Up) = {up1, u
p
2, ..., u

p
n, u1, u2, ..., uN}

is the ground set of Up such that {upi , ui},∀i = 1, 2, .., n are
circuits in Up. By repeatedly using (14) for the succession of
parallel extensions, it can be seen that the set {up1, u

p
2, ..., u

p
n}

forms a basis of Up.
Remark 7: If U is representable, by Lemma 5 a representa-

tion of the matroid Up is then the matrix U ′ = (In In A) .

Corresponding to the elements ui, i = 1, 2, ..., N, we now
add the elements usi , i = 1, 2, ..., N respectively in series.
Again, the order in which these elements are added does not
matter. Let Up,s be the resultant matroid. We then have

E(Up,s) = {up1, u
p
2, ..., u

p
n, u

s
1, u

s
2, ..., u

s
N , u1, u2, ..., uN}

=]|S|k=1{u
k
1 , u

k
2 , ..., u

k
Nsk
} ∪ {up1, ..., upn, us1, ..., usN}.

By repeatedly using Lemma 7, we see that all the circuits of
Up,s containing ui will also contain usi for all i = 1, 2, .., N.
In particular, the set of circuits include {upi , ui, usi},∀i =
1, 2, .., n. Moreover, by repeatedly using (17), we also see that
the set {up1, u

p
2, ..., u

p
n, u

s
1, u

s
2, ..., u

s
N} forms a basis for Up,s.

LetM be the matroid Up,s. Consider the initialized network
G with edges E =

{
e1, e2, ..., e|E|

}
and with E being the N

incoming edges (abusing the notation) at all sinks. For k =
0, 1, ..., |S| − 1, we define Rk =

∑k
j=1Nsj , where R0 = 0.

Let
f : E ∪ µ→ E(M)

be a function such that
• f(eRk+j) = uk+1

j , j = 1, 2, ..., Nsk , k = 0, 1, ..., |S|−1.
• f(mj) = upj ,mj ∈ µ, j = 1, 2, .., n.

18

Let

B =
{
b1, b2, .., bn+|E|

}
= {up1, u

p
2, ..., u

p
n, u

s
1, u

s
2, ..., u

s
N},

taken in the following one-one correspondence.

bi =upi , i =1, 2, .., n

bn+Rk+j =usi (where ui = uk+1
j) j =1, 2, ..., Nsk ,

k =0, 1, ..., |S| − 1.

Thus, the basis vector corresponding to the ith input (1 ≤ i ≤
n) is bi = upi and the basis vector corresponding to the error at
the edge eRk+j (for some k and j as above) is bn+Rk+j = usi
(for some i such that ui = uk+1

j).
Remark 8: Suppose U is representable, by Lemma 6 a

representation of the matroid Up,s is

U ′′ =

 In 0 0 In A
0 In 0 In 0
0 0 IN−n 0 IN−n

 , (37)

where N = |E|. Thus U ′′ is of the form (In+|E| X), where
X is the appropriate (n + |E|) × |E| matrix in (37). It is not
difficult to see that with the assignment f to µ∪ E , and basis
B, the network G is a matroidal α-error correcting network
in association with the representable matroid M, as (In A)
corresponds to a matrix defined as in (36), whose columns
correspond to the columns of generator matrices of MDS codes
implemented at each source.

However, we claim that even when U is not representable,
the network G is still a matroidal α-error correcting network in
association withM, with this assignment f to µ∪E , and with
basis B. We now prove this claim by verifying the conditions
of Definition 16 as follows.

Condition (A): Condition (A) is verified as

f(µ) = {upi : i = 1, 2, .., n} ⊆ B

and therefore is independent in Up,s.
Condition (B1): Suppose for some e ∈ E , Condition (B1)

is not satisfied, i.e.,

f(e) = uk+1
j = ui ∈ clUp,s(B − f(µ)).

This means that there is a circuit C1 ⊆ (B − f(µ)) ∪ {ui}
with ui ∈ C1. Note that in Up,s, the set C2 = {upi , ui, usi} is
also a circuit. Thus applying the circuit elimination axiom to
the circuits C1 and C2 with ui ∈ C1 ∩C2, we have that there
is some circuit

C3 ⊆ (B − f(µ)) ∪ {upi , u
s
i} ⊆ B.

However, B is an independent set in Up,s. Thus

f(e) = ui /∈ clUp,s(B − f(µ)),∀i = 1, 2, .., N.

Hence Condition (B1) is satisfied.
Condition (B2): Consider eRk+j ∈ E such that f(eRk+j) =

uk+1
j = ui (for some i). As {up1, u

p
2, ..., u

p
n} is a basis in Up,

we must have some circuit Ci ⊆ {up1, u
p
2, ..., u

p
n, ui}, with

ui ∈ Ci, for each ui, i = 1, 2, .., N. Therefore, in Up,s, by
Lemma 7, C ′i = Ci ∪ {usi} is a circuit. Thus

ui ∈ clUp,s({u
p
1, u

p
2, ..., u

p
n} ∪ {usi}).

In other words, f(eRk+j) ∈ clUp,s(f(µ) ∪ {bn+Rk+j}). As
f(µ) = f(In(eRk+j)),

f(eRk+j) ∈ clUp,s(f(In(eRk+j)) ∪ {bn+Rk+j}). (38)

Moreover,

f(eRk+j) = ui /∈ clUp,s(f(µ)) = clUp,s(f(In(eRk+j))),
(39)

where ui /∈ clUp,s(f(µ)) follows from the fact that any circuit
containing ui in Up,s must also contain usi , by Lemma 7. Thus,
by (38) and (39), Condition (B2) is satisfied.

Condition (C): Let F = {eRk1+j1 , ..., eRk2α+j2α} ∈ F be
an arbitrary error pattern with

BF = B − f(µ)− {usi1 , ..., u
s
i2α},

where {usi1 , ..., u
s
i2α
} corresponds to the basis vectors of the

errors at F . The contraction M/BF then has the ground set

E(M/BF) = {up1, ..., upn, u1, u2, .., uN , usi1 , ..., u
s
i2α}.

By repeatedly using (19), we see that this matroid is pre-
cisely the matroid obtained from Up by adding the elements
{usi1 , ..., u

s
i2α
} in series with {ui1 , ..., ui2α} respectively. Now

to verify Condition (C), we have to show that

{up1, ..., upn} ⊂ clM/BF
({u1, u2, .., uN}), (40)

as f(µ) = {up1, ..., upn} and f(InE(t)) =
{u1, u2, .., uN},∀t ∈ T . To show (40), we consider the
set

UF = {u1, ..., uN} − {ui1 , ..., ui2α} =]|S|k=1U
k
F ,

where UkF = {uk1 , uk2 , ..., ukNsk } − {ui1 , ..., ui2α}. For each k,
the set UkF contains at least nsk elements. Thus, UkF contains
a basis of Unsk ,Nsk . Therefore, UF contains a basis of U . This
means that UF contains a basis of Up also. This is seen by
repeatedly using (13), given the fact that UF contains a basis
of U . Moreover as uj /∈ (UF ∪ f(µ)),∀j = i1, ..., i2α, again
by repeatedly using (18), we have

rM/BF
(UF) = rUp(UF) = n, (41)

rM/BF
(UF ∪ f(µ)) = rUp(UF ∪ f(µ)) = n, (42)

where the final equalities in both (41) and (42) follow from the
fact that UF has a basis of Up. Equations (41) and (42) together
prove (40), which proves that Condition (C) also holds.

Thus we have verified all the conditions of Definition 16.
Therefore the matroid Up,s is a candidate matroid for the initial
matroidal error correcting network G.

In the forthcoming steps, both the network G and the
matroid M are together made to evolve so as to preserve the
matroidal nature of G in association with M.

Step 3: Extending the network
Let Gtemp = G, Mtemp = M, Btemp = B, Etemp = E ,
Xtemp = X , and Intemp(t) = In(t), ∀ t ∈ T . Let
ftemp : Etemp ∪ µ → E(Mtemp) be the function defined as
ftemp(a) = f(a),∀a ∈ µ ∪ Etemp.

Choose a random subset EC ⊆ Etemp of size at least 2.
Add a new coding node to Gtemp having incoming edges

19

from the forwarding nodes whose incoming edges correspond
to those in EC . Add a new forwarding node, which has an
incoming edge denoted as e|Etemp|+1 coming from the newly
added coding node.

Step 4: Extending the matroid
Let cl be the closure operator in Mtemp. Let K be a modular
cut which contains cl(ftemp(EC)) but does not contain
cl (Btemp − ftemp(µ)) . If such a modular cut does not
exist, the algorithm goes back to Step 3 and proceeds with
a different choice for EC . If such a modular cut does not
exist for any choice of EC , then the algorithm ends without
producing the appropriate output network.

Let r being the rank function in Mtemp +K x, the single-
element extension ofMtemp corresponding to the modular cut
K. Then, in the matroid Mtemp +K x, the set ftemp(EC) ∪
x contains a circuit with x, as r(cl(ftemp(EC)) ∪ x) =
r(cl(ftemp(EC))) by definition of a single-element extension.

Remark 9: If Mtemp +K x is a representable extension, it
has a representation of the form

(In+|Etemp| X
′ x),

over some finite field such that the following hold.
• The submatrix X ′ is such that the matrix (In+|Etemp| X ′)

is also a representation for Mtemp, as

(Mtemp +K x)\x =Mtemp.

• The vector x is a column vector of size n+ |Etemp| and
can be obtained as a linear combination of the column
vectors of X ′ corresponding to ftemp(EC).

• Moreover, the first n components of x are not
all zero because x /∈ cl (Btemp − ftemp(µ)) , as
cl (Btemp − ftemp(µ)) /∈ K.

We now add element y in series with element x to get
the matroid (Mtemp +K x) +s

x y. Now the updates to the
temporary variables are made as follows.
(a) Mtemp = (Mtemp +K x) +s

x y.
(b) Btemp = Btemp∪bn+|Etemp|+1, where bn+|Etemp|+1 = y.
(c) ftemp(e|Etemp|+1) = x ∈ E(Mtemp).
(d) Let Gtemp be updated by adding the two new nodes

(coding node and forwarding node) to the node set,
and with Etemp = Etemp ∪ e|Etemp|+1. Thus the edge
e|Etemp|+1 is now referred to as e|Etemp|.

Remark 10: If Mtemp +K x is representable, then by
Lemma 6, so is (Mtemp +K x) +s

x y, with the corresponding
representation (

In+|Etemp| 0 X ′ x
0 1 0 1

)
, (43)

where the 0s represent zero row and column vectors of
the appropriate sizes. The column corresponding to the new

element y is then
(

0
1

)
. We also make the following update

Xtemp =

(
X ′ x
0 1

)
.

Step 5: Updating the incoming edges at the sinks
For each sink t, we update the set Intemp(t) at most once as
follows.
• For some ei ∈ Intemp(t), if there is some circuit Cei ⊆

(ftemp(EC) ∪ x ∪ y) such that (x ∪ ftemp(ei) ⊆ Cei) ,
then let Intemp(t) = (Intemp(t)− ei) ∪ e|Etemp|.

The update is based on the rationale that if the flow on ei
has been encoded into the flow in the newly added edge
e|Etemp|, then in any sink which has ei as an incoming edge,
the edge ei can be replaced by e|Etemp| in the set of incoming
edges. Such an update is only the most natural one possible.
It is possible to update the incoming edges at the sinks more
interestingly, however requiring more computations (such an
optional update is described in Step 6 of this algorithm).
An example instance of the extended network (from Fig. 6),
along with the updated incoming edges at the sinks is shown
in Fig. 7.

s1

Ns1

t1 t|Ƭ|

e1 e2
eNs1

s|S|

Ns|S|

eN

 eN+1

Fig. 7. Example of an extension of the network in Fig. 6 with EC ={
eNs1 , eR|S|−1+1

}
. The newly added nodes and edges are indicated in

blue and in bold. The unremoved incoming edges to the sinks are dimmed as
they criss-cross with the newly added nodes and edges.

Step 6: Checking the conditions of Definition 16
The matroid Mtemp along with function ftemp and basis
Btemp satisfies the conditions (A) and (B) of Definition 16
with respect to the network Gtemp for the following reasons.
• Condition (A) is satisfied because ftemp(µ) =
{b1, b2, ..., bn} ∈ Btemp.

• Condition (B1) is satisfied because ftemp(e|Etemp|) = x /∈
cl (Btemp − ftemp(µ)) , as cl (Btemp − ftemp(µ)) /∈ K.

• We know that Mtemp is the series extension of the
matroid Mtemp/y at x. Using this fact, and by applying
Lemma 7 (with N being the updated matroid Mtemp,
and with e1 = x and e2 = y), we have that any circuit
containing x in Mtemp also contains y. Therefore, we
have,

x ∈ cl(ftemp(EC) ∪ y) but x /∈ cl(ftemp(EC)),

20

where cl is the closure operator inMtemp. Thus it is seen
that Condition (B2) is satisfied as ftemp(e|Etemp|) = x
and y = bn+|Etemp|.

Condition (C) of Definition 16 is not ensured by Step 4 and
therefore has to be checked independently.

Remark 11: Suppose Mtemp is representable before exten-
sion, and we also wish to obtain a representable extension.
This corresponds to a scalar linear network-error correcting
code for Gtemp. In other words, the vector x of (43), which
corresponds to a linear combination of the global encoding
vectors from existing nodes, has to be designed such that
the error correcting capability of the scalar linear network-
error correcting code is maintained. Using the techniques of
[12]–[16], this can always be done as long as the field size is
large enough (discussed in Section VI). Once the vector x is
found, the matroid is also updated as the vector matroid of the
matrix in (43). Thus, we can find a suitable extension of the
initial matroid such that the updatedMtemp is a representable
matroid that maintains Condition (C). However, in this case
the field size demanded by the algorithms in [12]–[16] is in
general quite high, and therefore the scalar linear network-
error correcting code obtained operates over such a large field.

In general,Mtemp need not be representable. Therefore we
simply check Condition (C) by brute-force. If Condition (C)
does not hold, then the algorithm returns to Step 4 to search for
an extension of the matroid which satisfies all the conditions
of Definition 16.

If Condition (C) of Definition 16 holds for all sinks and
for all error patterns on the incoming edges of the forwarding
nodes, then all the concerned variables are updated as follows.

(a) In(t) = Intemp(t), ∀ t ∈ T .
(b) Optional Update: Optionally, for any sink t, the set In(t)

can be updated as the set I ∪ e|Etemp|, where I is the
smallest subset of (Intemp(t)− e|Etemp|) such that upon
fixing In(t) = I∪e|Etemp|, Condition (C) is still satisfied.
This involves further brute-force checking of Condition
(C) for each such subset of Intemp(t). However, it
can generate networks where there are no unnecessary
incoming edges at any sink. The implementation of this
optional update in our MATLAB program is illustrated in
Example 9 of Subsection V-A in the transition between
Fig. 2(c) and Fig. 2(d), and also in Example 12 in Section
VIII.

(c) M =Mtemp.
(d) B = Btemp.
(e) If Mtemp is representable, let X = Xtemp. (Thus the

matroid M is again the vector matroid of the matrix of
the form (In+|E| X).)

(f) G = Gtemp.
(g) E = Etemp.
(h) f(a) = ftemp(a) ∀a ∈ µ ∪ E .

If NC coding nodes have already been added, then the
algorithm ends with the output of all the above variables.
Otherwise, the algorithm returns back to Step 3, to find a
new extension to the graph and the matroid. Note that as the
network G is maintained to be a matroidal α-error correcting
network over the matroid M at each addition of a coding

node, the resultant network after the final extension is also a
matroidal α-error correcting network in association with the
matroid M. If M is a representable matroid, then a scalar
linear network-error correcting code is obtained according to
the proof of Theorem 2.

C. Multiple-Unicast Construction

We now present a similar algorithm as that of multicast for
the construction of multiple-unicast network instances. As this
algorithm follows the same pattern as that of the multicast
algorithm, we only point out the differences between the two.

Step 1: Initializing the multiple-unicast network
The network is initialized by creating n source nodes (each of
which generate one message), and 1 + 2α forwarding nodes
corresponding to each source node, each with one incoming
edge from the corresponding source. Let these edges be{
e1, e2, ..., en(1+2α)

}
= E . Let T be the collection of n sink

nodes created.
For the sink ti which demands the message from source

si, 1 + 2α imaginary incoming edges are drawn from the
forwarding nodes corresponding to that particular source.
Again, we abuse our notation and denote by In(ti) the
incoming edges of these forwarding nodes. This initialized
network is represented in Fig. 8.

s1

t1 tn

sn

1+2α 1+2α
e1+2αe1 en(1+2α)en(1+2α)

Fig. 8. Initial network of the multiple-unicast algorithm

Step 2: Initializing the matroid
As before, we obtain a matroid M such that the network G
is a matroidal α-error correcting network with respect to this
matroid M. Let A be the n× n(1 + 2α) matrix

11+2α 01+2α ... 01+2α

01+2α 11+2α ... 01+2α

.

.
01+2α 01+2α ... 11+2α

 ,

where 11+2α and 01+2α represent the all-ones and all-zeros
row vectors of size 1 + 2α over some finite field. Let M be
the vector matroid of the following matrix,(

In 0 A
0 In(1+2α) In(1+2α)

)
,

21

where the 0s represent zero matrices of appropriate sizes. Note
that the above matrix is of the form (In+|E| X) with |E| =
n(1 + 2α).

Let B = {1, 2, 3, ..., n+ |E|} be the basis ofM considered.
Let f : E ∪ µ→ E(M) be the function defined as follows.

f(mi) = i, mi ∈ µ, i = 1, 2, ..., n.

f(ei) = n+ |E|+ i, ∀ ei ∈ E .

Then it can be seen that this matroidM with the basis B and
function f satisfy the conditions of Definition 16, as each
source is simply employing a repetition code of length 1+2α.

Step 3(extending the network) and Step 4(extending the
matroid) are the same as the multicast construction. Therefore
we proceed to Step 5.

Step 5: Updating the incoming edges at the sinks
In multiple-unicast (or more generally, in the networks with
arbitrary demands), there arises the issue of interference from
other undesired source symbols with the desired symbols
at any sink, thereby necessitating the presence of side
information besides the sufficient error correction capability
in order to decode correctly. Therefore, unlike the multicast
case, simply replacing the encoded edge with the newly
formed edge will not suffice to update Intemp(t), as the
newly formed edge can include additional interference not
present in the encoded edge.

The following procedure is therefore adopted to update the
incoming edges at each of the sinks.

1) This is the same as in multicast and done at most once for
a sink. For some ei ∈ Intemp(t), if there is some circuit
Cei ⊆ ftemp(EC) ∪ x ∪ y such that x ∪ ftemp(ei) ⊆ Cei ,
then let Intemp(t) = (Intemp(t)− ei)∪ e|Etemp|+1. If no
such ei exists, there is no need to update Intemp(t) and
this entire step can be skipped.

2) Let ei be the element that is replaced in Intemp(t). Let
ej ∈ Etemp such that the following conditions hold.
• ej /∈ Intemp(t) but ftemp(ej) ∈ (Cei − ftemp(ei)).

• rMtemp
(f
(
Intemp(t)− e|Etemp|+1

)
∪ f(ej)

)
> rMtemp

(
f
(
Intemp(t)− e|Etemp|+1

))
.

This means that the flow in ej has been encoded as
additional new interference into the flow in the newly
added edge e|Etemp|+1, thus creating the necessity of
additional side information at the sink t to cancel
out this interfering flow. We thus update Intemp(t) as
Intemp(t) = Intemp(t) ∪ ej . Thus for each ej such that
the above two conditions hold at sink t, ej is included in
Intemp(t) so that sufficient side information is available
at the sink to decouple any newly introduced interference
and decode the necessary information. This is also to be
repeated at each sink.

An example instance of an extension of the network of Fig. 8,
along with the updated incoming edges at the sinks is shown
in Fig. 9. As with the multicast algorithm, it is possible to
update the sink incoming edges after Condition (C) has been

checked. Thus such an update can be optionally included at
the end of Step 6.

s1

t1 tn

sn

1+2α 1+2α

e

e1+2αe1 en(1+2α)

Fig. 9. Example of an extension of the network in Fig. 8. The newly added
nodes and edges are indicated in blue and in bold.

Step 6(checking the conditions of Definition 16) is the
same as that of the multicast construction, therefore we don’t
elaborate further. The optional update to the incoming edges
to the sinks can also be done in a similar fashion as in Step
6 of the multicast construction.

As in the multicast construction, at each step the matroidal
property of the network is preserved, thus the output of the
algorithm is a matroidal α-error correcting network which
unicasts the set of messages in the presence of at most α
network-errors.

D. On constructing matroidal error correcting networks as-
sociated with nonrepresentable matroids

One of the major results of [5] was that nonrepresentable
matroids can be used to construct matroidal networks for
which Shannon-type information inequalities (the most widely
used collection of information inequalities in information
theory) cannot bound their capacity as tightly as the non-
Shannon-type information inequalities do. In other words,
networks connected with nonrepresentable matroids can prove
to be very useful in obtaining insights on the general theory
of network coding. It can therefore be expected that ma-
troidal error correcting and detecting networks associated with
nonrepresentable matroids will be useful in obtaining similar
insights for network-error detection and correction. It was
already mentioned in the beginning of Section V that it is
not straightforward to obtain representable or nonrepresentable
matroids from which we can construct matroidal network-
error correcting or detecting networks directly. The difficulty
is that, unlike [5], Definitions 16 and 17 for matroidal error
detecting and correcting networks require matroids whose
contractions have to satisfy specific properties which enable
the decoding of the demanded symbols at sinks. Since this is

22

a fundamental requirement of error detecting and correcting
networks, it is clear that such a requirement cannot avoided.
This motivated the method used in our algorithms to construct
such networks, i.e., starting with simple matroids and their
counterpart networks and then extending them together while
keeping the conditions of error correction intact. The chief
reasons for the inability of using our algorithms to obtain
example networks which are associated with nonrepresentable
matroids are as follows.

• Descriptions of nonrepresentable matroids with many
elements in its groundset is not an easy task, even on
a computing device. More importantly, computing the
extensions (in particular single-element extensions, which
involve computation of the flats and the modular cuts) of
such nonrepresentable matroids with many elements is
computationally intensive. Furthermore, there are a large
number of possible single-element extensions for any ma-
troid with many elements in its groundset. Checking the
representability or nonrepresentability of such extensions
is not easy.

• Evaluating the error correcting property of a given linear
network-error correcting code involves going through
all possible error patterns and checking if the error
correction holds for each of them. To the best of the
authors’ knowledge, such a brute-force technique is used
in all available coherent linear network-error correction
literature (see [12], [14]–[16], for example) to construct
linear network-error correction codes. Thus checking
Condition (C) of Definitions 16 and 17 demands brute-
force analysis of all the contractions corresponding to
all possible error patterns. Compared to representable
matroids, computing the contractions of nonrepresentable
matroids is computationally intensive.

• In [5], Shannon and non-Shannon information inequali-
ties were used to capture the uniqueness of the Vamos net-
work obtained from the nonrepresentable Vamos matroid
(see [5] for more details). In our case, even if we suppose
that a matroidal error detecting (or correcting) network
associated on a nonrepresentable matroid is obtained
through our algorithm, such an analysis seems rather
complicated, again the issue being the number of possible
error patterns. Verifying that the best possible linear error
correction schemes have rates of information transmission
less than the best possible nonlinear schemes once again
implies going through each of the error-patterns and
evaluating the maximum possible rates of transmission.
The number of these calculations grows linearly with the
number of possible error-patterns and can quickly become
unwieldy.

Though we do not present examples of networks obtained us-
ing our algorithms which are associated with nonrepresentable
matroids from our algorithms because of the above reasons, we
present a proposition in this subsection as a first step towards
reducing the search-space of matroidal extensions in order to
obtain nonrepresentable matroids which satisfy the properties
in Definition 16. Also, in Section VII, using ideas from [11],
we present an example network which is a matroidal 1-error

detecting network associated with a nonrepresentable matroid,
using which we show that linear network-error detection and
correction schemes are not always sufficient to satisfy network
demands in the presence of network-errors.

Proposition 1 below shows that if we are to use the
constructions of Section V to obtain matroidal error correcting
or detecting networks associated with nonrepresentable ma-
troids, then the extension of the matroid considered in Step
4 of the multicast and the multiple-unicast constructions must
necessarily be a non-principal extension, i.e., the modular cut
corresponding to the extension must not be a principal modular
cut. The proof of the following proposition is given for the
sake of completeness as to the best of the authors’ knowledge
it seems to be unavailable in matroid theory literature.

Proposition 1: Let A be a matrix of size k ×m (k ≤ m)
with elements from some field Fq, and let M = M[A]. Let
KF be the principal modular cut of M generated by flat F
of M. Then the principal extension M+KF e of the matroid
M is representable over an extension of Fq.

Proof: Let X = AF , the submatrix of A with re-
spect the column indices given by F. Let 〈X〉q denote
the space spanned by the columns of X over Fq. Let
X(0), X(1), .., X(M−1) be the submatrices corresponding to all
the flats F0, F1, ..., FM−1 ofM which do not contain F. Thus
for each i = 0, 1, 2, ...,M−1, there exists at least one non-zero
vector vi ∈ Fkq such that vi ∈ 〈X〉q but vi /∈ 〈X(i)〉q.

Consider the extension field FQ, Q = qM . Let β be the
primitive element of FQ, with respect to Fq as the base field.
Thus any element of FQ can be uniquely expressed as a
polynomial of degree at most M − 1 in β.

Let

v =

M−1∑
i=0

viβ
i ∈ FkQ.

Let Ã = (A | v) be the matrix over FQ where the elements
of the submatrix A are viewed as elements from the base-
field Fq embedded in FQ. We claim that Ã is the required
representation for the matroid extension M+KF e. Let 〈X〉Q
denote the vector space spanned by the columns of X over
FQ. According to Definition 13, to show that Ã is the required
representation, it is enough to show that v ∈ 〈X〉Q but
v /∈ 〈X(i)〉Q, i = 0, 1, 2, ..,M − 1.

For each i = 0, 1, ...,M − 1, as vi ∈ 〈X〉q it is clear that
vi ∈ 〈X〉Q, also. Thus v ∈ 〈X〉Q. Now, for some r such that
0 ≤ r ≤ M − 1, consider a FQ linear combination of the
column vectors in X(r) as follows.

∑
j

gjX
j
(r) =

∑
j

M−1∑
j′=0

gj,j′β
j′

Xj
(r)

=

M−1∑
j′=0

∑
j

gj,j′X
j
(r)

βj
′
, (44)

where gj =
∑M−1
j′=0 gj,j′β

j′ ∈ FQ with gj,j′ ∈ Fq, ∀j′. As
vr /∈ 〈X(r)〉q, we must have that for any j′ = 0, 1, 2, ...,M−1,∑

j

gj,j′X
j
(r) 6= vr.

23

For the same reason, we must have

∑
j

gjX
j
(r) =

M−1∑
j′=0

∑
j

gj,j′X
j
(r)

βj
′
6=
M−1∑
i=0

viβ
i = v,

for any r = 0, 1, 2, ...,M − 1 and for any linear coefficients
gj ∈ FQ ∀j.

Thus v /∈ 〈X(i)〉Q, ∀i = 0, 1, 2, ...,M − 1. Thus Ã satisfies
the conditions to be a representation forM+KF e. This proves
the proposition.

VI. COMPLEXITY

We now calculate upper bounds on the complexity of the al-
gorithms for the case of scalar linear network-error correcting
codes (i.e., representable matroids). These calculations are for
the implementation of our algorithms without the execution of
the optional update to the incoming edges to the sinks in Step
6. Including this optional update step will certainly increase
the complexity of the algorithms. However, the calculations
that follow capture the essential running time of our algorithms
in the representable case. In the case of nonrepresentable
matroids, the complexity of our algorithms will depend heavily
on the matroidal operations involved to obtain the extensions,
computing the contractions and checking the ranks of subsets
in the computed contractions in order to verify the error
correcting properties of the matroidal network so formed.
As such matroidal operations are involved, it is not clear
how to proceed in this direction. Hence we take up on
computing the complexity of our algorithms in generating
networks associated only with representable matroids. In any
case, constructing network associated with nonrepresentable
matroids using our algorithm can be expected to be at least as
difficult as the representable case, since in the representable
case all the matroids have matrix representations and all
matroid operations are implementable as operations based on
linear algebra.

For obtaining the complexity of our multisource multicast
algorithm, we shall directly use the complexity of the con-
struction algorithm for single source multicast scalar linear
network-error correcting codes given in [15]. Further, we shall
also show that our multiple-unicast algorithm (in the case
of representable matroids) is equivalent to a variant of the
algorithm in [15] and therefore the complexity of the algorithm
of [15] can be used to obtain that of our multiple-unicast
algorithm also.

A. Network-Error Correcting Codes - Algorithm of [15]

Algorithm 1 is a brief version of the algorithm given in [15]
for constructing an scalar linear α-network-error correcting
code for a given single source, acyclic network that meets
the network Singleton bound given in [12]. The construction
of [15] is based on the network code construction algorithm
of [4]. The algorithm constructs a network code such that all
network-errors in upto 2α edges will be corrected as long
as the sinks know where the errors have occurred. Such a
network code is then shown [15] to be equivalent to an α-
network-error correcting code. Other equivalent (in terms of

complexity) network-error correction algorithms can be found
in [14] [16].

Algorithm 1: Algorithm of [15] for constructing a
network-error correcting code that meets the network Sin-
gleton bound.

Input: An acyclic network G(V, E) with mincut N from
the source s to the set of sinks T .

Output: An α-network-error correcting code for G that
meets the network Singleton bound

(1) Let F be the set of all subsets of E of size 2α. Add
an imaginary source s′ and draw n = N − 2α edges
from s′ to s.
(2) foreach F ∈ F do

(i) Starting from the original network, add an
imaginary node v at the midpoint of each edge e ∈ F
and add an edge of unit capacity from s′ to each v.
(ii) foreach sink t ∈ T do

Draw as many edge disjoint paths from s′ to t
passing through the imaginary edges added at
Step (i) as possible. Let mF

t (≤ 2α) be the
number of such paths.
Draw n edge disjoint paths passing through s that
are also edge disjoint from the mF

t paths drawn
in the previous step.

end
(iii) Use the algorithm from [4] using the identified
edge disjoint paths such that it ultimately gives a
network code with the following property. Let Bt(F)
be the (n+ 2α)×

(
n+mF

t

)
matrix, the columns of

which are the N length global encoding vectors
(representing the linear combination of the n input
symbols and 2α error symbols) of the incoming
edges at sink t corresponding to the n+mF

t edge
disjoint paths. Then Bt(F) must be full rank. As
proved in [15], this ensures that the network code
thus obtained is α-network-error correcting and meets
the network Singleton bound.

end

It is shown in [15] that Algorithm 1 results in a network
code which is a α-network-error correcting code meeting the
network Singleton bound, as long as the field size

q > |T ||F| = |T |
(
|E|
2α

)
. (45)

The complexity of the algorithm is then
O (|F||T |N (|E||F||T |+ |E|+N + 2α)) .

B. Multicast

We use the complexity of Algorithm 1 to calculate the
complexity of our multisource multicast algorithm. This re-
quires converting the multisource multicast network to the
single source multicast network, as Algorithm 1 works only
on a single source multicast network. This can be done after
Step 1 of the algorithm, where we can add a super-source
to the network from which edges flow into the actual set of

24

sources S. After Step 1, the network is clearly matroidal α-
error correcting with respect to the direct sum of the uniform
matroids. And thus the network after Step 1 has a multicast
scalar linear α-network-error correcting code if the direct
sum is representable. Constructing the NC nodes and their
global encoding vectors while preserving the error correcting
property, i.e. generating the network and appropriate matroid
extensions, can be done using Algorithm 1, once all the
variables have been initialized and the super source has been
added.

We consider errors only at the incoming edges of the
forwarding nodes, and there are at most |E| = N +NC such

edges at any iteration of our algorithm. Let η =

(
|E|
2α

)
. If

the field size of operation assumed is greater than |T |η, then by
Algorithm 1, a suitable extension to the representable matroid
(i.e., a suitable global encoding vector to the edge of the newly
added incoming node) exists at each iteration of our algorithm,
and the total complexity of obtaining the network and the rep-
resentable matroid (equivalently, the linear network-error cor-
recting code) will be O (η|T |N (|E|η|T |+ |E|+N + 2α)) ,
assuming that the other steps in the algorithm can be done
in constant time or with negligible complexity compared to
Step 4 and Step 6. With a smaller field size, the complexity
of obtaining the network and the matroid will continue to be
bounded similarly, provided the suitable vectors exist at all
iterations. At the end of using Algorithm 1 to obtain the coding
nodes and the linear network-error correction code, the super-
source and the outgoing edges from the super-source can be
removed to give our required network.

C. Multiple Unicast

Unlike multicast, there exist no known algorithms to con-
struct network-error correcting codes for multiple unicast net-
works which we can use to compute the complexity according
to the requirements of our algorithm. Therefore, we take an
indirect approach. At each iteration in our multiple unicast
algorithm (omitting the optional update in Step 6), we show
that the construction of a suitable global encoding vector (for
the current edge under processing) for satisfying the multiple-
unicast conditions is equivalent to the construction of a suitable
global encoding vector such that certain matrices are full-rank
as in Step 2(iii) of Algorithm 1 for each error pattern in F .
Thus, the complexity of our multiple-unicast algorithm can be
obtained from the complexity of Algorithm 1 after suitable
changes.

Let G(i) be the state of the multiple unicast network at
the iteration i (i = 0 representing the initial state and
i = NC representing the final iteration) of our multiple-
unicast algorithm. That is, in the network G(i), i − 1 coding
nodes have already been added and the global encoding vectors
corresponding to their incoming edges have been fixed. Also,
a particular subset of the forwarding nodes have been picked
and the ith coding and the corresponding forwarding node
have been added according to Step 3 of the algorithm. We
also update the incoming edges at the sinks according to Step
5 even before fixing the global encoding vector of the newly

added edge by simply adding edges containing all possible
interfering flows as the new side information for the sinks. So
the steps that remain to be executed are Step 4 and Step 6, i.e.,
picking a suitable global encoding vector for the newly added
edge en(2α+1)+i (from the newly added coding node) so that
the error correction capability and decoding continue to hold
at the sinks. After achieving this goal, those edges which carry
side information that are not used for the decoding process at
the sinks can be removed.

Let nt(i) be the number of incoming edges at sink t and
FS,t(i) be the transfer matrix of size n × nt(i) from the
sources to sink t at the end of iteration i of our multiple-unicast
algorithm (i.e., after fixing a suitable global encoding vector
for en(2α+1)+i). Towards obtaining a bound on the complexity
of our algorithm, we first prove the following lemma.

Lemma 8: For each sink t in G(i), there exists some full
rank square matrix At(i) of size nt(i) such that

FS,t(i)At(i) =
(
Ij Ij .. Ij | C(i)

)
,

where Ij is the jth basis vector corresponding to the input xj
demanded by sink t and is repeated 2α+1 times in the above
matrix.

Proof: The claim holds for G(0) with C(0) being an
empty matrix. We assume that the claim holds for G(i) and
will prove that it holds for G(i + 1) as well. Because of the
network code and the way the incoming edges at the sinks
are updated, we have for some nonsingular square matrix L
of size nt(i+ 1),

FS,t(i + 1) = (FS,t(i) | V)L,

where V is a matrix with n rows, consisting of the global
encoding vectors of the newly added incoming edges (at
iteration i+1) with interfering flows. Because the claim holds
for G(i), we must have

FS,t(i + 1)

=
((
Ij Ij .. Ij | C(i)

)
At(i)

−1 | V
)
L

=
(
Ij Ij .. Ij | C(i) | V

)(At(i)
−1 0

0 IV

)
L,

where the 0s represent zero matrices of appropriate sizes, and
IV is the identity matrix such that V = V IV .

The matrix

B =

(
At(i)

−1 0
0 IV

)
L

is invertible. Let C(i+1) = (C(i) | V) . Let At(i+1) = B−1.

FS,t(i + 1)At(i+ 1) =
(
Ij Ij .. Ij | C(i+ 1)

)
.

By induction on i (i = 1, 2, ..., NC) the lemma is proved.
Let Ft(i) denote the matrix Ft at the end of the ith

iteration. Let Fsupp(z),t(i) denote the submatrix of Ft(i)
consisting of those rows of Ft which are indexed by supp(z),
for some error vector z.

The following lemma is now a direct consequence of
Lemma 8 and Lemma 1 and will help us to connect our
multiple-unicast algorithm to Algorithm 1.

25

Lemma 9: Let Āt(i) be the matrix consisting of the first
2α+ 1 columns of At(i). The sink t can successfully decode
its demanded jth information symbol (Dt = j) in G(i) if the
square matrix (

1 1 . . . 1

Fsupp(z),t(i)Āt(i)

)
is full-rank for each error vector z such that supp(z) ∈ F ,
the set of all possible error patterns.

Proof: If the given matrix is full-rank for all possible
errors, then we must have for any such error vector z

cols(IDt) ⊆

〈(
Ij Ij . . . Ij

Fsupp(z),t(i)Āt(i)

)〉
,

as IDt =

(
Ij

0

)
and as

(
Ij Ij . . . Ij

Fsupp(z),t(i)Āt(i)

)
has

exactly 2α+ 1 non-zero rows. But then, this means

cols(IDt) ⊆

〈(
Ij Ij . . . Ij | C(i)

Fsupp(z),t(i)At(i)

)〉

⊆
〈((

FS,t
Fsupp(z),t(i)

)
At(i)

)〉
(46)

⊆
〈(

FS,t
Fsupp(z),t(i)

)〉
, (47)

where (46) is because of Lemma 8 and (47) is because At(i)
is full-rank. By Lemma 1, this means that the demand Dt = j
can be successfully decoded by the sink t.

Lemma 9 connects the problem of designing a multiple-
unicast network-error correcting code for G(i) with maintain-
ing the full-rankness of a set of matrices as in Algorithm 1.
Thus, Algorithm 1 can be used to design a multiple-unicast
network-error correcting code for G(i) by modifying Step
2(iii) to fix the local encoding kernels at the new coding node
such that the following condition is satisfied.

• The matrix

(
1 1 . . . 1

Fsupp(z),t(i)Āt(i)

)
is full-rank for

each sink t and for each error pattern supp(z) ∈ F ,
at each iteration i = 1, 2, ..., NC .

As in the multicast case, we have that the maximum number
of edges at any particular iteration is less than |E| = N +

NC . With η =

(
|E|
2α

)
, we invoke the result from [15] to

note that a suitable choice of the local encoding kernels is
possible if q ≥ |T |η = nη. The complexity of our multiple-
unicast algorithm is O (nNη (|E|nη + |E|+N + 2α)) , again
assuming that the other steps in the algorithm can be done in
constant time or with negligible complexity compared to Step
4 and Step 6.

VII. INSUFFICIENCY OF LINEAR NETWORK-ERROR
DETECTING AND CORRECTING CODES

In [11], it was shown that there exist networks for which
linear network codes (linearity in a very general sense) are
insufficient to achieve the maximum rate of information trans-
mission to the sinks, when compared to general network

coding (including nonlinear schemes). In other words, the
network coding capacity of a network could be strictly greater
than the linear network coding capacity of the network.
A network for which linear network coding cannot achieve
network coding capacity was explicitly constructed in [11].
The network in [11] was constructed by ‘conjoining’ two
subnetworks, of which one is linearly solvable over fields of
characteristic two, and the other is linearly solvable over fields
of odd characteristic. The two subnetworks were constructed
based on results from matroid theory, in particular the Fano
and the non-Fano matroids [20]. The matrix A shown below
considered over any field of characteristic two (for example,
F2) is a representation for the Fano matroid.

A =

 1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1

 . (48)

The matrix A is also a representation for the non-Fano matroid
except that it is over a field with characteristic not equal to
two (for example, F3). Combining the two subnetworks, the
conjoined network is shown to be linearly unsolvable. We refer
the reader to [11] for more details.

Because of the fact that network coding is a special case of
network-error correction (or equivalently network-error detec-
tion), it is to be expected that linear network-error correcting
(detecting) codes must be insufficient for solving network-
error correction (detection) problems on general networks. In
Subsection VII-C, we present an explicit example network
for which linear network-error detection (for the case of
single edge errors) is not sufficient, using simple extensions
of the networks shown in [11]. The reason for choosing such
simple extensions is two fold. Firstly, the networks chosen
are sufficient to prove the insufficiency claim. The second
reason, as the verification of the linear nonsolvability of
the chosen networks will make it clear, is that rigorously
proving that linear network-error correcting codes are not
sufficient for a particular network can require many times the
computations necessary for showing linear network coding is
insufficient. Choosing extensions of the networks shown in
[11] to demonstrate the insufficiency of linear network coding
makes our job easier. For these two reasons, we work with
the chosen networks which are simple extensions of those
from [11]. Nevertheless, it is certainly possible to construct
more complicated networks for which linear network-error
correction and detection are insufficient.

In the following subsections, we construct the network
for which linear network-error detection is insufficient, while
a nonlinear scheme is shown to provide the required error
detection. We combine simple extensions of the networks
shown in [11] to create the network that we are looking for.

A. A network solvable only on alphabets of characteristic two

Consider the network Ñ1 shown in Fig. 10. The nodes v4,
v5 and v6 generate the messages a, b and c (over some finite
field) respectively. The sinks v37, v38, and v39 demand the
symbols c, b, and a respectively. Some of the edges in the
network are marked by the values Mi which are coefficients

26

v4 v5 v6

v13 v14

v17 v18

v21 v22

v29 v30

v37 v38 v39
bc a

v6

v5
v4

M1 M2 M3 M4

M5
M6 M7

M8

M9

M10 M11 M12 M13

M14

M15
M16 M17

a b c

e1

e2

e3

e4 e5

e6 e7

Fig. 10. The network-error detection network Ñ1 which is solvable only
over fields of characteristic two. It is a matroidal 1-error detecting network
associated with the matroid MÑ1

whose representation is shown in (62).

of some arbitrary scalar linear network code for the network.
Any edge which is not marked by a coefficient is assumed
to have the identity element as its coefficient, meaning it just
forwards the information from its tail node to the head node. It
can be easily seen that these Mis are sufficient to characterise
any scalar linear network code for Ñ1. Each of the sinks have
a direct edge from the corresponding node generating their
demands, indicated by a duplicate node along with the edges
e1, e2 and e3. The networkN1 from [11] is simply the network
obtained from Ñ1 by the deletion of the edges e1, e2, and e3.
Thus Ñ1 is a simple extension of the network N1 from [11].
We now prove the following lemma.

Lemma 10: A single edge network-error detection code over
a finite field exists for Ñ1 if and only if the finite field used
has characteristic two.

Proof:
Only if part:
Let the network coding coefficients Mis define a single edge

network-error detecting code over some field F. Note that there
are exactly two paths from any source to the corresponding
sink, one through the network coded portion of the network
and the other through the direct edges e1, e2, and e3. Therefore
it is clear that for detecting single-edge errors, we require
M15,M16,M17 to be nonzero. Thus, we see that the sinks
v37, v38 and v39 can decode the required symbols by observing
the symbols on the direct edges e3, e2 and e1 from v6, v5 and
v4 respectively, as long as these edges are not in error.

In order to show that the characteristic of the field used
should be two for the network code defined using Mis to be
a single edge network-error detecting code, we consider the
single edge errors at the edges e1, e2 and e3.

Consider that the only error in the network occurs in

edge e3. Then the matrix
(

FS,t
Fsupp(z),t

)
corresponding to

supp(z) = e3 at the sink t = v37 is

F e3v37
=


M9 M1M5M10 0
0 (M2M5 +M3M6)M10 0
0 M4M6M10 M15

0 0 1

 ,

where the ordering of the columns adopted in the above matrix
corresponds to the incoming edges at the sink given as follows.

In(v37) = {v4 → v37, v29 → v37, e3}.

By Lemma 1, for some x1, x2, and x3 belonging to the finite
field, we must have

F e3v37
(x1 x2 x3)T =


0
0
1
0

 .

Thus we must have

M9x1 +M1M5M10x2 = 0.

M2M5M10x2 +M3M6M10x2 = 0.

M4M6M10x2 +M15x3 = 1.

x3 = 0.

Let M9x1 = M ′9, and M10x2 = M ′10. Then we have

M ′9 +M1M5M
′
10 = 0. (49)

M2M5M
′
10 +M3M6M

′
10 = 0. (50)

M4M6M
′
10 = 1. (51)

The transfer matrix corresponding to error at e2 at the sink
t = v38 (In(t) = {v29 → v38, v30 → v38, e2}) is

F e2v38
=


M1M5M11 M1M7M12 0

(M2M5 +M3M6)M11 M2M7M12 M16

M4M6M11 M8M12 0
0 0 1

 .

As before, by Lemma 1, for some finite field coefficients
y1, y2, and y3, we must have

M1M5M11y1 +M1M7M12y2 = 0.

(M2M5 +M3M6)M11y1 +M2M7M12y2 +M16y3 = 1.

M4M6M11y1 +M8M12y2 = 0.

y3 = 0.

Letting M11y1 = M ′11 and M12y2 = M ′12, we have

M1M5M
′
11 +M1M7M

′
12 = 0. (52)

M2M5M
′
11 +M3M6M

′
11 +M2M7M

′
12 = 1. (53)

M4M6M
′
11 +M8M

′
12 = 0. (54)

The transfer matrix corresponding to error at e1 at the sink
t = v39 (In(t) = {v30 → v39, v18 → v39, e1}) is

F e1v39
=


M1M7M13 0 M17

M2M7M13 M3M14 0
M8M13 M4M14 0

0 0 1

 .

27

Again, by Lemma 1, for some finite field coefficients z1, z2, z3,
we must have

M1M7M13z1 +M17z3 = 1.

M2M7M13z1 +M3M14z2 = 0.

M8M13z1 +M4M14z2 = 0.

z3 = 0.

Letting M13z1 = M ′13 and M14z2 = M ′14, we have

M1M7M
′
13 = 1. (55)

M2M7M
′
13 +M3M

′
14 = 0. (56)

M8M
′
13 +M4M

′
14 = 0. (57)

Equations similar to (49)-(57) were derived in [11] for the
network N1. Mimicking the arguments in [11], we now show
that the characteristic of the finite field used must be two.

From (51) and (55), we must have that the matrices
M1,M4,M6,M7,M

′
10, and M ′13 are all invertible. By (50),

we must then have M2M5 + M3M6 = 0. Thus by (53), we
must have

M2M7M
′
12 = 1. (58)

and therefore M2 and M ′12 are invertible. By (52), M5M
′
11 =

−M7M
′
12 and thus M5 and M ′11 are invertible. Furthermore,

M3M
′
14 = −M2M7M

′
13 by (56), and M ′9 = −M1M5M

′
10

by (49). Thus M3,M
′
14, and M ′9 are invertible. As M8 =

−M4M
′
14M

′−1
13 by (57), the matrix M8 is invertible too. Thus

all the matrices in the equations (49)-(57) are invertible.
From (52), we have

0 = M5M
′
11 +M7M

′
12

= M5M
′
11 +M−12 (M2M7M

′
12)

= M5M
′
11 +M−12 .

where the last equality follows from (58).
Thus we have

M2M5M
′
11 = −1. (59)

From (54), we have

0 = M4M6M
′
11 +M8M

′
12

= M4M
−1
3 M3M6M

′
11 −M4M

′
14M

′−1
13 M ′12, (60)

where the last equality follows from (57). Now, using (50) and
(56), we have

0 = −M4M
−1
3 M2M5M

′
11 +M4M

−1
3 M2M7M

′
13M

′−1
13 M ′12

= M4M
−1
3 (M2M7M

′
12 −M2M5M

′
11)

= M4M
−1
3 (1−M2M5M

′
11),

where the last equality follows from (58). Thus we must have

M2M5M
′
11 = 1. (61)

Thus, from (59) and (61), we see that we require 1 = −1.
This is true only in a field of characteristic two.

If part:
It is easy to verify that using Mi = 1 ∈ F2m (for any m)

for all i results in a single edge network-error detecting code
for Ñ1.

In the case of a network code with all Mi = 1 ∈ F2m , ∀i,
we now argue that the network Ñ1 is a matroidal 1-error
detecting network with respect to the vector matroid MÑ1

of the matrix over F2m shown below.

1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1

1 0 0 0 0 0 0
I10 0 1 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 1 0 1 1
0 0 0 0 1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(62)

Let the function with respect to which the matroid MÑ1
is

associated be

f1 : µÑ1
∪ EÑ1

→ E(MÑ1
). (63)

The function f1 maps the input symbols (µÑ1
= {a, b, c}) and

the edges of Ñ1 to the elements of the groundset E(MÑ1
).

The labeling on the columns (i.e., the mapping given by f1) of
the matrix given in (62) is as follows. The first three columns
correspond to the inputs µÑ1

. The next seven columns consti-
tute the basis elements of the errors at {ei : i = 1, 2, .., 7} as
shown in Fig. 10. The last seven columns correspond to the
linear combination of the input symbols and the errors flowing
on these edges. Though there are a total of 21 edges in Ñ1,
these seven edges are sufficient to characterise the matroid
associated with the single edge network-error detecting code
on Ñ1. It is easy to verify that the function f1 and the matroid
M̃Ñ1

satisfy all the requirements of Definition 16 for a single
edge network-error detecting code. We list the elements of the
ground set of MÑ1

in the ordering of the columns shown in
(62) as follows.

E(MÑ1
) = {xi : i = 1, 2, 3} ∪ {yi : i = 1, 2, ..., 7}

∪ {y′i : i = 1, 2, ..., 7} . (64)

Finally, we have the following lemma which follows from
Lemma 10 and the discussion above.

Lemma 11: The network Ñ1 is a matroidal 1-error detecting
network associated with a F2-representable matroid.

B. A network not solvable on alphabets of characteristic two

Consider the network Ñ2 shown in Fig. 11. The network has
five sources v7, v8, v3, v11 and v12 generating the information
symbols a, b, c, d, and e respectively. There are seven sinks
v40, v41, v42, v43, v44, v45 and v46 demanding the symbols
c, b, a, c, e, d, and c respectively. The network N2 of [11] is
the subnetwork of Ñ2 consisting of all nodes and edges except
the direct edges from v3, v8, v7, v3, v12, v11, and v3 to the
sinks. We seek the conditions to be satisfied by the finite field
over which a single edge network-error detection code can be
designed for Ñ2.

Again, it is easy to verify that assuming all 1s from a
finite field with characteristic not equal to two as the network

28


1 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 1 0 0 0 0 0 1 1 0 1 0 0 0 0

I5 0 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 1 0 1 1

0 I15 I15

 (65)

coding coefficients of Ñ2 results in a single edge network-
error detection code. The network Ñ2 is then a matroidal
1-error detecting network associated with the matroid MÑ2

whose representation (over any field with characteristic not
equal to two) is shown in (65) at the top of the next page. The
corresponding function f2 is given as

f2 : µÑ2
∪ EÑ2

→ E(MÑ2
), (66)

where µÑ2
= {a, b, c, d, e} is the collection of the input

symbols. As with Ñ1, not all the edges of Ñ2 are considered in
the representation ofMÑ2

. The columns of the matrix shown
in (65) (and therefore the mappings of the function f2) are
indexed as follows. The first five columns correspond to the
five input symbols. The next 15 columns correspond to the
error basis elements at the edges {ei : i = 1, 2, .., 15} as
shown in Fig. 11. The final 15 columns correspond to the
linear combination of the inputs and error symbols flowing at
these 15 edges. We list the elements of the ground set ofMÑ2

in the ordering of the columns shown in (65) as follows.

E(MÑ2
) = {xi : i = 1, 2, .., 5} ∪ {zi : i = 1, 2, ..., 15}

∪ {z′i : i = 1, 2, ..., 15} .
(67)

As with Ñ1, it can be seen that in the absence of errors in the
additional direct edges to the sinks (those not in N2), the sinks
of Ñ2 can straight away decode their required demands. As-
suming single edge network-errors on these additional edges
and using arguments equivalent to those in [11] (as was done
in the proof of Lemma 10), we have the following lemma,
which we state without proof.

Lemma 12: The network Ñ2 has a single edge network-
error detecting code if and only if the finite field used has
characteristic not equal to two.
The following lemma follows directly from Lemma 12 and
the preceding discussion.

Lemma 13: The network Ñ2 is a matroidal 1-error detecting
network associated with a F3-representable matroid.

It can be seen from the proof of Lemma 10 that particular
error patterns were considered in order to verify whether the
linear network code defined over a particular alphabet satisfies
the required network-error detection (correction) properties.
Given an arbitrary network, it may be necessary to consider

all possible error patterns, i.e.,
(
E
β

)
of them to verify the β

network-error detection capability. This is why proving insuffi-
ciency of linear network coding for network-error correction or
detection could be computationally much harder than proving
insufficiency of linear network codes for network coding with
no errors.

C. A network for which linear network-error detection is
insufficient

We now present the network Ñ3 shown in Fig. 12 for
which linear network coding is insufficient to achieve the
sinks demands in the presence of network-errors. The network
Ñ3 is a conjoining of the network Ñ1 and Ñ2 with the
exception of a few additional dummy edges. Thus, we assume
EÑ3

= EÑ1
∪EÑ2

. We ignore the dummy edges for the sake of
the clarity. The network N3 shown in [11] is equivalent to Ñ3

except for the direct edges to the sinks from the corresponding
sources. Because of Lemmas 10 and Lemma 12, the network
Ñ3 does not have a linear single edge network-error detecting
code over any field.

However, there is a nonlinear single edge network-error
detecting code over an alphabet A of size 4 , the corresponding
edge functions of which are shown along the edges of Ñ3 in
Fig. 12. Except for the additional direct edges from the sources
to the corresponding sinks, the network coding functions on
Ñ3 are adopted from the network code for N3 in [11]. All
the missing edge functions are considered to be identity. The
symbols + and − indicate the addition and subtraction in
the ring Z4, while the symbols ⊕ indicates the bitwise XOR
operation in Z2 ⊕ Z2. In other words, for any two elements
a, b ∈ A, the element a + b and a − b indicate the sum of
a and b and the difference between a and b viewing them as
elements from Z4. The element a⊕b indicates the bitwise XOR
between a and b viewing them as elements from Z2⊕Z2. For
some a ∈ A, t(a) is the element of A obtained by switching
the components of a considered as element of Z2 ⊕ Z2. The
nonlinearity of the network-error correction code comes from
the nonlinearity of the function t, and because ⊕ is linear in
Z2 ⊕Z2 but nonlinear in Z4, while + and − are linear in Z4

but nonlinear in Z2 ⊕ Z2. Using the arguments developed in
[11], it is straightforward to show that these coding functions
define a single edge network-error detection code for Ñ3.

We can now ask the question - Is the network Ñ3 a
matroidal 1-error detecting network? If the answer is yes, then
it would mean that our definition of a matroidal error detecting
network (Definition 16) has a wider scope and is not limited
to linear network-error detection and representable matroids.
Also, an equivalent question can be raised about the network
N3 shown in [11] - Is the network N3 a matroidal network?
This second question is left unanswered in both [11] (where
the insufficiency results for linear network coding in N3 was
first presented) and in [5] (where the matroidal connections to
the construction of N1 and N2 were discussed). We answer
these questions in the affirmative. In the rest of this Subsection,
we obtain a matroid MÑ3

associated with which the network
Ñ3 is a matroidal 1-error detecting network. That the network

29

v7 v8 v9

v15

v19

V23 v24 v25

v31 v32 v33

v40 v41 v42

v10 v11 v12

v16

v20

v26 v27 v28

v34 v35 v36

v44 v45 v46v43
bc a de cc

v3
ba

c

d e

v7

v3 v8 v12 v11
v3

e2 e1
e3

e4

e5e6e7

e8

e9 e10 e11

e12

e14e13 e15

Fig. 11. The network-error detection network Ñ2 which is not solvable over fields with characteristic two. This network is a matroidal 1-error detecting
network associated with the matroid MÑ2

whose representation is shown in (65).

v1 v2 v3

v4 v5 v6 v7 v8 v9

v13 v14

v17 v18

v21 v22

v29 v30

v37 v38 v39

v15

v19

V23 v24 v25

v31 v32 v33

v40 v41 v42

v10 v11 v12

v16

v20

v26 v27 v28

v34 v35 v36

v44 v45 v46v43

b+
c

a

b

c

a

b
+

b
 c

a

 c

a+
b+

c

a+
b

a+
c

t(c
)+

d

t(c
)+

d+
e

t(c
)+

e

d+
e

ba c

bc a bc a de cc

d e

v3 v2 v1
v3 v8

v7

v3

v11v12
v3

Fig. 12. The network-error detection network Ñ3 which does not have a linear single edge network-error detecting code. The code shown is a nonlinear
single edge network-error detecting code. This network is a matroidal 1-error detecting network associated with the matroid MÑ3

, which is an amalgam of
the matroids MÑ1

and MÑ2
.

30

N3 of [11] is matroidal follows easily.
We first prove the following lemma.
Lemma 14: Let E(MÑ3

) = E(MÑ1
) ∪ E(MÑ2

) be the
groundset of a matroid MÑ3

. If the matroid MÑ3
satisfies

the following two conditions

MÑ3
|E(MÑ1

) =MÑ1
. (68)

MÑ3
|E(MÑ2

) =MÑ2
, (69)

then the network Ñ3 is matroidal 1-error detecting associated
with MÑ3

.
Proof: Let µÑ3

= µÑ1
∪ µÑ2

. Clearly, µÑ3
= µÑ2

. Let
f3 : µÑ3

∪ EÑ3
→ E(MÑ3

) be a function such that

f3(µÑ3
) = f2(µÑ2

),

f3(e) = f1(e),∀e ∈ EÑ1
,

f3(e) = f2(e),∀e ∈ EÑ2
,

where f1 and f2 are defined as in (63) and (66) respectively.
Since Ñ3 is a conjoining of the networks Ñ1 and Ñ2, i.e.
as EÑ3

= EÑ1
∪ EÑ2

, it is clear that the function f3 is well
defined.

Now, since the networks Ñ1 and Ñ2 are already matroidal
1-error detecting networks associated to MÑ1

(with respect
to f1) and MÑ2

(with respect to f2) respectively, by the
definition of f3 it follows that Ñ3 is a matroidal 1-error
detecting network associated with Ñ3 with respect to f3.

In order to show that Ñ3 is matroidal 1-error detecting, we
have to demonstrate a matroid which satisfies the conditions
in Lemma 14. In the rest of this subsection, we show that such
a matroid can be obtained. We use Definition 2 of a matroid
based on its rank function to obtain our matroid MÑ3

.

Let r : 2E(MÑ1
)∪E(MÑ2

) → Z+∪{0} be a function defined
as

r(X) = rMÑ1
(X1) + rMÑ2

(X2)− rMÑ2
(X1,2),

where X1 = X ∩E(MÑ1
), X2 = X ∩E(MÑ2

), and X1,2 =
X ∩ E(MÑ1

) ∩ E(MÑ2
) = X ∩ {x1, x2, x3} = X1 ∩ X2.

The functions rMÑ1
and rMÑ2

are the rank functions of the
matroids MÑ1

and MÑ2
respectively. Clearly the function r

is well defined. Also, as rMÑ2
(X2) ≥ rMÑ2

(X1,2), we must
have r(X) ≥ 0, ∀X. Also, for any X ⊆ E(MÑ1

)∪E(MÑ2
),

we note that

rMÑ2
(X1,2) = rMÑ1

(X1,2) = |X1,2|. (70)

Now, suppose there is a matroid with the above function r as
its rank function. Then it can be seen that from the definition of
the function r that such a matroid satisfies the requirements of
Lemma 14. This is because for any X ⊆ E(MÑ1

), r(X) =
rMÑ1

(X), and for any X ⊆ E(MÑ2
), r(X) = rMÑ2

(X).

Thus the network Ñ3 would be a matroidal 1-error detecting
network associated with such a matroid. We now prove the
following lemma which shows that the function r defines a
matroid.

Lemma 15: The function r is the rank function of a matroid.
Proof: We have to show that the function r satisfies the

properties R1, R2, and R3 of Definition 2.

We first consider the condition R1. We have by the defini-
tion of r, for X ⊆ E(MÑ1

) ∪ E(MÑ2
),

r(X) = rMÑ1
(X1) + rMÑ2

(X2)− rMÑ2
(X1,2),

where X1 = X ∩E(MÑ1
), X2 = X ∩E(MÑ2

), and X1,2 =
X∩E(MÑ1

)∩E(MÑ2
) = X∩{x1, x2, x3}. Because rMÑ1

and rMÑ2
are rank functions and by (70), we must have

r(X) ≤ |X1|+ |X2| − |X1,2|
≤ |X1|+ |(X2 −X1,2)]X1,2| − |X1,2|

r(X) ≤ |X1|+ |X2 −X1,2| = |X|. (71)

We have already seen that r(X) ≥ 0,∀X. Along with (71),
this means that the function r satisfies R1. Now we prove that
R2 holds.

Let X ⊆ Y ⊆ E(MÑ1
) ∪ E(MÑ2

). Then X1 = X ∩
E(MÑ1

) ⊆ Y1 = Y ∩ E(MÑ1
). Similarly, X2 ⊆ Y2, and

X1,2 ⊆ Y1,2.
Let BX1

be a subset of X1 of the largest size which is
independent in MÑ1

. Similarly let BX2
⊆ X2, BX1,2

⊆
X1,2, BY1 ⊆ Y1, BY2 ⊆ Y2, BY1,2 ⊆ Y1,2 be some maximal
independent subsets in the appropriate matroids. Because
X1,2 ⊆ X1 ⊆ Y1, we can always find BX1,2

, BX1
, BY1

such
that BX1,2

⊆ BX1
⊆ BY1

, by repeated application of I3 in
Definition 1. Similarly, we assume BX1,2

⊆ BX2
⊆ BY2

and
BX1,2 ⊆ BY1,2 .

By the definition of r, we have

r(X) = |BX1
|+ |BX2

| − |BX1,2
|

= |BX1,2
] (BX1

−BX1,2
)|+ |BX2

| − |BX1,2
|

= |BX1,2
|+ |BX1

−BX1,2
|+ |BX2

| − |BX1,2
|

r(X) = |BX1
−BX1,2

|+ |BX2
|. (72)

As in (72), we have

r(Y) = |BY1
−BY1,2

|+ |BY2
|

≥ |BX1
−BY1,2

|+ |BY2
| (as BX1

⊆ BY1
)

≥ |BX1
− (BX1,2

] (BY1,2
−BX1,2

))|+ |BY2
|

r(Y) ≥ |BX1
−BX1,2

| − |BY1,2
−BX1,2

|+ |BY2
|. (73)

We also have the following equations.

|BY2 | = |BX2] (BY2 −BX2)|
= |BX2 |+ |BY2 −BX2 |
≥ |BX2 |+ |(BY2 −BX2) ∩ E(MÑ1

)|
|BY2
| ≥ |BX2

|+ |BY1,2
−BX1,2

|. (74)

By (73) and (74), we have

r(Y) ≥ |BX1
−BX1,2

|+ |BX2
|. (75)

Comparing (72) and (75), we have r(X) ≤ r(Y). Hence R2
holds. Finally, we prove the condition R3 also holds.

31

Let X,Y ⊆ E(MÑ1
) ∪ E(MÑ2

). By the definition of r
and (70), we have

r(X) + r(Y)− r(X ∩ Y)

= rMÑ1
(X1) + rMÑ2

(X2)− |X1,2|
+ rMÑ1

(Y1) + rMÑ2
(Y2)− |Y1,2|

− rMÑ1
(X1 ∩ Y1)− rMÑ2

(X2 ∩ Y2) + |X1,2 ∩ Y1,2|.
(76)

Also, we have

r(X ∪ Y)

= rMÑ1
(X1 ∪ Y1) + rMÑ2

(X2 ∪ Y2)− |X1,2 ∪ Y1,2|
≤ rMÑ1

(X1) + rMÑ1
(Y1)− rMÑ1

(X1 ∩ Y1)

+ rMÑ2
(X2) + rMÑ2

(Y2)− rMÑ2
(X2 ∩ Y2)

− |X1,2 ∪ Y1,2|, (77)

where the last inequality follows from the fact that rMÑ1
and

rMÑ2
are rank functions.

From (76) and (77), to show that r(X ∪ Y) ≤ r(X) +
r(Y)− r(X ∩ Y), we must prove

|X1,2 ∪ Y1,2| ≥ |X1,2|+ |Y1,2| − |X1,2 ∩ Y1,2|. (78)

But (78) holds with equality by the law of unions of sets, and
thus the condition R3 holds for the function r.

Thus from Lemma 15, the function r defines a matroid.
Let this matroid be the candidate matroid MÑ3

as in Lemma
14. Note that MÑ3

satisfies the conditions of Lemma 14, as
explained in the discussion preceding Lemma 15. Thus, if
MÑ3

is representable over some field F, then the matroids
MÑ1

and MÑ2
must also be F-representable, as restrictions

of F-representable matroids are F-representable. However, the
matroidsMÑ1

andMÑ2
can never have representations over

the same field because of Lemma 10 and Lemma 12. Thus
MÑ3

is nonrepresentable. We thus have the following lemma.

Lemma 16: The network Ñ3 is a matroidal 1-error detecting
network associated with the nonrepresentable matroid MÑ3

.
Thus Definition 16 applies to error detecting networks

associated with nonrepresentable matroids also. A similar
argument can be given for Definition 17 also.

Remark 12: A matroid M on the groundset E = E1 ∪ E2

is said to be an amalgam of the matroids M1 = M|E1 and
M2 =M|E2 (the reader is referred to [20] for more details).
Thus the matroid MÑ3

is an amalgam of MÑ1
and MÑ2

.
By Lemma 16 and because of the connection between

the network Ñ3 and the network N3 shown in [11], it is
easy to prove that N3 is a matroidal network associated
with a nonrepresentable matroid, one which is constructed
as an amalgam of the matroids MÑ1

/ {yi : i = 1, ..., 7} and
MÑ2

/ {zi : i = 1, ..., 15} . We leave the details of this proof
to the reader.

VIII. MORE EXAMPLES

In this section, we present some examples of networks
with scalar linear network codes and network-error correcting
codes to illustrate our construction algorithms. Each example

shown in this section is obtained by running an instance of
the corresponding algorithm fixing the number of sources
(|S|), number of messages (n), number of correctable errors
(α), number of coding nodes to be added (NC), number of
sinks |T | (necessary for multicast) and the finite field used.
Furthermore, for ease of computation, we also fix the number
of edges whose symbols are to be encoded at any iteration in
the construction algorithm to the new coding node, i.e., |EC |
is fixed. These examples are obtained by randomly picking
existing forwarding nodes at any iteration in the algorithm
to combine their information flows, and then checking if the
resultant network code (or the equivalent matroid) satisfies
the necessary properties. The MATLAB codes that generate
these examples will be provided by the authors on request.
All the figures and the corresponding matroid representations
(or network coding coefficients) are shown at the end of the
manuscript.

A. Multicast

Example 11: Fig. 13 shows a single source multicast net-
work with a scalar linear 3-error correcting network code and
NC = 10. Table I shows all the relevant parameters using
which the algorithm designs the network and the linear net-
work coding coefficients obtained as outputs of the algorithm.
The global encoding vectors of the N outgoing edges from the
source in the network correspond to the columns of a generator
matrix of an MDS code with minimum distance 2α + 1 = 7
and length N = n + 2α = 9. The values in the last column
of Table I represent the particular linear combination using
which the information flows from the existing forwarding
nodes (specified by the first column in Table I) are combined
at the new coding node formed (the corresponding forwarding
node is given by the second column of Table I). These
linear encoding coefficients are represented by the decimal
equivalents of the polynomial representations of the respective
finite field elements. Also in Fig. 13, the direct links from the
source to the sinks are indicated by incoming edges from the
corresponding duplicate nodes (which are unconnected to the
rest of the network).

This example also illustrates the ability of our multicast
algorithm to construct scalar linear network-error correct-
ing codes for multicast networks over smaller fields when
compared with existing algorithms in [14]–[16]. To see this,
suppose that the network shown in Fig. 13 was given as the
input network to the algorithms in [14]–[16] in order to design
a multicast 3-network-error correcting code. These algorithms
require a field size q such that

q ≥
∑
t∈T

(
|E|
2α

)
≥
∑
t∈T

(
NC
2α

)
= 3

(
10
6

)
= 630

to design a multicast linear network-error correcting code that
can correct any 3 network-errors in the given network. Thus
only if q ≥ 630, the algorithms in [14]–[16] guarantee the
construction of a suitable network-error correcting code for
our final network. However, our algorithm obtains a network-
error correcting code for this network over F16 because it
designs the network and the associated matroids together and

32

representations of these associated matroids can be given
over F16. The topology of the network is controlled by our
algorithm. This is in contrast with the algorithms in [14]–
[16], which take a given network as the input and design
the network-error correcting code for that network. The field
size demands of [14]–[16] are less dependent on the actual
topology of the network and depend more on its size.

B. Multiple-Unicast

Example 12: Fig. 14(a)-14(d) show the stages of the net-
work evolution of a multiple-unicast network with parameters
n = 3, α = 0 (no error correction) and NC = 5. The direct
links from the different sources to the sinks are indicated
by incoming edges from the corresponding duplicate nodes.
Every sink demands the information symbol generated by
the corresponding source. The representative matrices of the
corresponding matroids are shown in (79)-(82) in Fig. 15.
Every network is a matroidal 0-error correcting network with
the corresponding matroid and function f, as defined in
Example 9. Note the reduction in the number of incoming
edges at Sink T2 from three in Fig. 14(c) to two in Fig. 14(d).
This is a result of using the optional update in Step 6 of
our multiple-unicast algorithm. The transfer matrix from the
sources to sink T2 at the end of the final iteration is

FS,T2 =

 1 2
4 1
3 6

 ,

where the matrix is over F8 (with modulo polynomial x3 +
x + 1), with the entries being the decimal equivalents of
the polynomial representations of elements from F8. The
demanded symbol at T2 is generated by s2, and corresponds
to the second row above. The interference from source s3,
corresponding to the third row, is seen to be a scaled version of
the interference from s1, corresponding to the first row. Thus in
this case, our multiple-unicast algorithm generates a network
for which the interference is aligned by the network rather
than canceled. However, the sink itself is enabled to cancel the
interference. It is easily seen that a linear combination of the
two columns of FS,T2 generates the basis vector (0 1 0 0)T ,
enabling the sink T2 to decode the demanded information
symbol generated by source s2.

Example 13: Fig. 16 shows a multiple-unicast network with
a 2-error correcting code, with all relevant parameters of which
are shown in Table II. The ith sink demands the information
symbol generated by the ith source. Each source employs a
repetition code of length 2α + 1 = 5 on its outgoing edges.
As in Table I, the values in the last column of Table II
represent the decimal equivalents of the field elements in their
polynomial representation. The direct links from the different
sources to the sinks are indicated by incoming edges from the
corresponding duplicate nodes.

IX. CONCLUDING REMARKS AND DISCUSSION

The matroidal connections to network-error correction and
detection have been analysed in this paper. It was shown
that networks with scalar linear network-error correcting and

detecting codes correspond to representable matroids with
certain special properties. We also presented algorithms which
can construct matroidal error correcting networks. The same
algorithms can also be used to construct matroidal error
detecting networks. By restricting ourselves to the class of
representable matroids, we can therefore obtain a large number
of networks with scalar linear network-error correcting and
detecting codes, some of which were presented as examples.
Further restricting ourselves to the matroids which are repre-
sentable over particular fields, we can obtain networks which
have scalar linear network-error correcting codes over those
particular fields. This may facilitate some intuition towards
finding the minimum field size requirement for scalar linear
network-error correcting codes to exist, which is known to be
a hard problem. Also, running our algorithms along with the
optional update of sink incoming edges in Step 6 may provide
insight on the solvability and capacity of general multisource
multicast and multiple-unicast networks in the presence of
errors. In particular, the multiple-unicast algorithm can then be
used to generate multiple-unicast networks where interference
from other sources is not always canceled by the network
nodes, as shown by Example 12. Following techniques similar
to [11], it was also shown that linear network codes prove are
not always sufficient to provide the demanded error correction.

It is known [20] that characterising all possible modular cuts
of a matroid, and therefore all possible extensions of a matroid
is in general a difficult task. Moreover, we require extensions
which satisfy certain constraints for the resultant network to
be matroidal, and have to satisfy even more constraints if they
have to be associated with representable matroids. Characteris-
ing such extensions could be a particularly rewarding exercise.
As a first step towards characterising such extensions and also
towards obtaining matroidal error correcting networks associ-
ated with nonrepresentable matroids, we proved Proposition 1
regarding the principal extensions of a representable matroid.
It can be expected that deeper theoretical insights on the theory
of network coding and error correction can be gained with
more powerful machinery from matroid theory.

REFERENCES

[1] R. Ahlswede, N. Cai, R. Li and R. Yeung, “Network Information
Flow”, IEEE Transactions on Information Theory, vol.46, no.4, July
2000, pp. 1204-1216.

[2] N. Cai, R. Li and R. Yeung, “Linear Network Coding”, IEEE Trans-
actions on Information Theory, vol. 49, no. 2, Feb. 2003, pp. 371-381.

[3] R. Koetter and M. Medard, “An Algebraic Approach to Network
Coding”, IEEE/ACM Transactions on Networking, vol. 11, no. 5, Oct.
2003, pp. 782-795.

[4] S. Jaggi, P. Sanders, P.A. Chou, M. Effros, S. Egner, K. Jain and
L.M.G.M. Tolhuizen, “Polynomial time algorithms for multicast net-
work code construction”, IEEE Trans. Inf. Theory, vol. 51, no. 6, June
2005, pp. 1973-1982.

[5] R. Dougherty, C. Freiling, and K. Zeger, “Networks, Matroids, and
Non-Shannon Information Inequalities”, IEEE Transactions on Infor-
mation Theory, Vol. 53, No. 6, June 2007.

[6] A. Kim and M. Medard, “Scalar-linear Solvability of Matroidal Net-
works Associated with Representable Matroids”, International Sym-
posium on Turbo Codes and Iterative Information Processing (ISTC),
Sep. 6-10, 2010, pp. 452 - 456.

[7] S. El Rouayheb, A. Sprintson, and C. Georghiades, “A new construction
method for networks from matroids,” ISIT 2009, June 28 - July 2009,
pp. 2872-2876.

33

[8] R. Dougherty, C. Freiling, and K. Zeger, “Linear Network Codes and
Systems of Polynomial Equations”, ISIT 2008, Toronto, Canada, July
6-11, pp. 1838 - 1842.

[9] Q. Sun, S. T. Ho, S.Y.R. Li, “On Network Matroids and Linear Network
Codes”, ISIT 2008, Toronto, Canada, July 6-11, 2008, pp. 1833-1837.

[10] S. Y. R. Li and Q. T. Sun, Network coding theory via commutative
algebra, IEEE Transactions on Information Theory, vol. 57, no. 1, Jan
2011, pp. 403-415.

[11] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of Linear Cod-
ing in Network Information Flow”, IEEE Transactions on Information
Theory, Vol. 51, No. 8, August 2005.

[12] R.W. Yeung and N. Cai, “Network error correction, part I: basic
concepts and upper bounds ”, Comm. in Inform. and Systems, vol.
6, 2006, pp. 19-36.

[13] N. Cai and R. W. Yeung, “Network error correction, part II: lower
bounds”, Comm. in Inform. and Systems, vol. 6, 2006, pp. 37-54.

[14] Z. Zhang, “Linear network-error Correction Codes in Packet Net-
works”, IEEE Transactions on Information Theory, vol. 54, no. 1, Jan.
2008, pp. 209-218.

[15] R. Matsumoto, “Construction Algorithm for Network Error-Correcting

Codes Attaining the Singleton Bound”, IEICE Trans. Fundamentals,
Vol. E90-A, No. 9, September 2007, pp. 1729-1735.

[16] S. Yang, R. W.Yeung, C. K. Ngai, “Refined Coding Bounds and
Code Constructions for Coherent Network Error Correction”, IEEE
Transactions on Information Theory, vol. 57, no. 9, Sep. 2011, pp.
1409-1424.

[17] S. Vyetrenko, T. Ho, M. Effros, J. Kliewer, E. Erez, “Rate regions
for Coherent and Noncoherent Multisource Network Error Correction”,
Proceedings of ISIT 2009, Seoul, Korea, June 28 - July 3, pp. 1001-
1005.

[18] O. Kosut, L. Tong, D. Tse, “Nonlinear Network Coding is Necessary to
Combat General Byzantine Attacks”, Proceedings of the Forty-Seventh
Annual Allerton Conference, Illinois, USA, Sep. 30 - Oct.2, pp. 593-
599.

[19] S. Kim, T. Ho, M. Effros, A. S. Avestimehr, “Network Error Correction
With Unequal Link Capacities”, IEEE Transactions on Information
Theory, vol. 57, no. 2, Feb. 2011, pp. 1144-1164.

[20] J. G. Oxley, “Matroid Theory”, Oxford University Press, 1992.

34

S

3 4 5 6 72 81 9

10

11

12

13 14

15

16

17

18

19

T1 T2 T3

8

9

1
2 5
4

6

2

1
9

4

Fig. 13. A network with a 3-network-error correcting code multicasting 3 information symbols. The direct links from the different sources to the sinks are
indicated by incoming edges from the corresponding duplicate nodes. The corresponding network coding coefficients are shown in Table I.

35

s1 s2 s3

T1 T2 T3

1 2 3

(a) Unicast Network with 3 information symbols with no error correction at
initial stage of multiple-unicast construction

s1 s2 s3

T1 T2 T3

1 2 3

4

(b) Multiple-unicast network after first iteration

s1 s2 s3

T1 T2 T3

1 2 3

45

3

6

2

5

57

(c) Multiple-unicast network after fourth iteration. The direct links from the
different sources to the sinks are indicated by incoming edges from the
corresponding duplicate nodes.

s1 s2 s3

T1 T2 T3

1 2 3

45

3

6

2

5

57 58

(d) Multiple-unicast network after fifth(final) iteration. Note the reduction in
the number of incoming edges at Sink T2. This is a result of using the optional
update in Step 6 of our multiple-unicast algorithm. In this case the interference
from sources s1 and s3 to sink T2 is aligned by the network itself rather than
canceled.

Fig. 14. The stages of network evolution in the construction of a multiple-unicast network with no error correction, i.e., using only network coding. Only
those networks corresponding to the initial stage and the first, fourth, and fifth iterations are given here. The representations of the associated matroids is
given in Fig. 15.

36

TABLE I
MULTICAST EXAMPLE (FIG. 13): n = 3, α = 3, NC = 10, |EC | = 2, |T | = 3, FINITE FIELD USED=F16 (MODULO x4 + x+ 1)

Nodes used to form new New forwarding node F linear combination of nodes of
coding node (see figure) formed (see figure) column 1 used to form new node

(4,8) 10 (1,2)
(6,10) 11 (1,5)
(1,11) 12 (1,9)
(5,7) 13 (1,2)
(3,8) 14 (1,3)

(2,12) 15 (1,8)
(7,9) 16 (1,13)

(13,16) 17 (1,1)
(15,17) 18 (1,2)
(14,18) 19 (1,1)



1 0 0
0 1 0
0 0 1

I6 1 0 0
0 1 0
0 0 1


(79)



1 0 0 0
0 1 0 1
0 0 1 2

I7 1 0 0 0
0 1 0 1
0 0 1 2
0 0 0 1


(80)



1 0 0 0 1 6 1
0 1 0 1 0 1 4
0 0 1 2 2 7 3

1 0 0 0 1 6 1
0 1 0 1 0 1 4

I10 0 0 1 2 2 7 3
0 0 0 1 0 0 4
0 0 0 0 1 6 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(81)



1 0 0 0 1 6 1 2
0 1 0 1 0 1 4 1
0 0 1 2 2 7 3 6

1 0 0 0 1 6 1 2
0 1 0 1 0 1 4 1

I11 0 0 1 2 2 7 3 6
0 0 0 1 0 0 4 1
0 0 0 0 1 6 0 2
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



(82)

Fig. 15. The stages of evolution in the representable matroid in the construction of a multiple-unicast network (shown in Fig. 14) with only network coding
and no network-error correction. Only those representations corresponding to the initial stage and the first, fourth, and fifth iterations are given here. All
matrices are over F8 (with modulo polynomial x3 + x+ 1) and the entries are the decimal equivalents of the polynomial representations of elements from
F8.

37

26

27

28

29

30
31 32

33

34 35
36

3737
38 39

40

T1

5 10 25

2

1

s1

1 2 3 4 5

s2

6 7 8 9 10

s3

11 12 13 14 15

s4

16 17 18 19 20

s5

21 22 23 24 25

T2

21
11

9

T3

18

2415

14

T4

21
74

T5

23

12

Fig. 16. A network with a 2-network-error correcting 5-unicast code. The direct links from the different sources to the sinks are indicated by incoming edges
from the corresponding duplicate nodes. Table II gives the corresponding network coding coefficients.

38

TABLE II
MULTIPLE-UNICAST EXAMPLE (FIG. 16): n = 5, α = 2, NC = 15, |EC | = 2, FINITE FIELD USED=F8 (MODULO x3 + x+ 1)

Nodes used to form New forwarding node formed F linear combination of nodes of
new coding node column 1 used to form new node

(7,8) 26 (1,4)
(12,24) 27 (1,2)
(4,20) 28 (1,5)
(3,19) 29 (1,7)
(21,26) 30 (1,1)
(11,18) 31 (1,3)
(17,26) 32 (1,2)
(30,32) 33 (1,3)
(8,16) 34 (1,6)
(10,28) 35 (1,3)
(6,22) 36 (1,3)
(17,27) 37 (1,2)
(13,27) 38 (1,2)
(20,25) 39 (1,6)
(33,38) 40 (1,6)

	I Introduction
	II Network-Error Correcting and Detecting Codes
	II-A A technical lemma

	III Matroids
	IV Matroidal Error Correcting and Detecting Networks
	V Constructions of Multisource Multicast and Multiple-Unicast Error Correcting networks
	V-A Sketch of Construction and Illustrative Examples
	V-B Multisource Multicast Construction
	V-C Multiple-Unicast Construction
	V-D On constructing matroidal error correcting networks associated with nonrepresentable matroids

	VI Complexity
	VI-A Network-Error Correcting Codes - Algorithm of Mat
	VI-B Multicast
	VI-C Multiple Unicast

	VII Insufficiency of Linear Network-Error Detecting and Correcting Codes
	VII-A A network solvable only on alphabets of characteristic two
	VII-B A network not solvable on alphabets of characteristic two
	VII-C A network for which linear network-error detection is insufficient

	VIII More Examples
	VIII-A Multicast
	VIII-B Multiple-Unicast

	IX Concluding remarks and Discussion
	References

