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Abstract—The generalized degrees of freedom (GDoF) of the
symmetric two-user Gaussian interference relay channel (IRC)
is studied. While it is known that the relay does not increasethe
DoF of the IC, this is not known for the more general GDoF.
For the characterization of the GDoF, new sum-capacity upper
bounds and lower bounds are derived. The lower bounds are
obtained by a new scheme, which is based on functional decode-
and-forward (FDF). The GDoF is characterized for the regimein
which the source-relay link is weaker than the interferencelink,
which constitutes half the overall space of channel parameters.
It is shown that the relay can indeed increase the GDoF of the
IRC and that it is achieved by FDF.

I. I NTRODUCTION

The exact characterization of the capacity of interference
networks is an open problem for several decades now. Given
the difficulty of the problem, there is shift of paradigm
to provide an approximate characterization of the capacity,
referred to as the degrees of freedom (DoF), which gets asymp-
totically tight for high signal-to-noise power ratios (SNR).
While the DoF provides interesting insights into the behaviour
of the system, the so-called generalized degrees of freedom,
or GDoF [1], is a much more powerful metric, as it allows
different signal strengths and thus captures a large variety of
scenarios.

The setups gets even more interesting for cases, in which
some of the nodes are dedicated relays. It is known that
relaying in wireless networks can play a vital role in improving
its performance in terms of coverage and achievable rates. As
such, a relay can help the network by establishing cooperation
between the nodes in the network. Interestingly enough, theca-
pacity of even the basic point-to-point (P2P) relay channel[2]
(without interference) is an open problem, although there exist
good approximations of the capacity of the Gaussian P2P relay
channel within one bit [3].

The improvements obtained depend heavily on the capa-
bility of and restrictions at the relay, such as cognition and
causality. For example, for a network with two transmitters,
two receivers, and a relay referred to as the interference relay
channel (IRC), several capacity bounds have been derived with
a causal or with a cognitive relay [4]–[10]. As for the relay
and the interference channel (IC) individually, the capacity of
the IRC remains an open problem.

Surprisingly, in characterizing the gains in terms of DoF by
deploying a relay in a wireless interference network, it was
shown in [11] that relaying does not increase the DoF. As a

consequence of this result, the DoF of the IRC is the same as
that of the IC, i.e., DoF=1. One question which immediately
arises with this result is whether this is also true in terms of
GDoF.

In this paper, we investigate the GDoF for the symmet-
ric Gaussian IRC. Shortly, our contribution includes deriv-
ing new upper bounds on the sum-capacity, providing new
achievable sum-rates by proposing a “functional decode-and-
forward” [12] (FDF) scheme. The distinct feature of the
achievable strategy is that the overall message is split in three
parts, namely a private, a common and a cooperative public
part. While the former two are in use already in the basic IC,
the latter one, encoded using nested lattices, is of particular
value to overcome the multiple-access-bottleneck at the relay.
We characterize the GDoF of the IRC for all cases in which
the interference link is stronger than the source-relay link.
This characterized regime covers half the space of all possible
channel parameters for the IRC, and is especially interesting
for the IRC with weak interference. It turns out that while a
relay does not increase the DoF of the IC, it does increase its
GDoF. In the next section, we formally define the IRC and
the notation used in the paper.

II. N ETWORK MODEL AND NOTATION

In the symmetric Gaussian IRC (Fig. 1), transmitteri, i ∈
{1, 2}, has a messagemi uniformly distributed over the set
Mi , {1, . . . , 2nRi}, to be sent to receiveri. The message
mi is encoded into ann-symbol codewordXn

i , whereXik is
a real valued random variable, and transmits this codeword.
At time instantk, the input-output equations of this setup are
given by

yik = hdxik + hcxjk + hrxrk + zik,

yrk = hsrx1k + hsrx2k + zrk.

for i 6= j, i, j ∈ {1, 2}. The coefficientshd, hc, hr, hsr ≥ 0
are real valued channel gains, andxrk is the transmit signal at
the relay at time instantk. The relay is causal, which means
thatxrk is a function of the previous observations at the relay,
i.e.,xrk = fr(y

k−1
r ). The source and relay signals must satisfy

a power constraintE[X2
i ] ≤ P , i ∈ {1, 2, r}. The receivers’

additive noisez1, z2, andzr is Gaussian with zero mean and
unit variance.
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Fig. 1. The 2-user interference relay channel (IRC).

After receivingyni , receiveri uses a decoder to detectmi by
processingyni . The messages set, encoders, and decoders de-
fine a code denoted(2nR1 , 2nR2 , n), with an error probability
Pe defined byPe = P (m̂1 6= m1 or m̂2 6= m2). A rate pair
(R1, R2) is said to be achievable if there exists a sequence
of (2nR1 , 2nR2 , n) codes such thatPe → 0 asn → ∞. The
capacity regionC of the IRC is defined as the closure of the
set of these achievable rate pairs, and the sum-capacityCΣ

is the maximum achievable sum-rateRΣ = R1 + R2, i.e.,
CΣ = max(R1,R2)∈C RΣ. The GDoF of the IRC is defined as
follows.

Definition 1. Let the following variables represent the channel
strength (as in [1])

α =
log(h2

cP )

log(h2
dP )

, β =
log(h2

rP )

log(h2
dP )

, γ =
log(h2

srP )

log(h2
dP )

. (1)

We define the GDoFd(α, β, γ) or simplyd as

d = lim
P→∞

CΣ(α, β, γ)
1
2 log(h

2
dP )

. (2)

Throughout the paper, we usexn to denote the length-n
sequence(x1, . . . , xn), and we useC(x) = (1/2) log(1 + x),
C+(x) = max {0, C(x)}.

III. M AIN RESULT

The main statement of the paper is characterizing the GDoF
of the IRC for all cases whereh2

sr ≤ h2
c . The GDoF in this

case is given in the following theorem.

Theorem 1. The GDoF of the IRC withγ ≤ α is given by

d = min
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
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


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. (3)

Figures 2 and 3 show the GDoF for two examples of the
IRC. The GDoF of the IC is also shown (dash-dotted) for
comparison. The characterization of the GDoF in the shaded
area, whereα < γ, is not considered in this paper. The proof
of this theorem is provided in the next section. Namely, in
Section IV we provide the sum-capacity upper bounds that
translate to this GDoF, in Section V we describe the scheme
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Fig. 2. β = 1.1 andγ = 0.2. A case where the GDoF of the IRC is larger
than that of the IC in both the weak and the strong interference regimes.
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Fig. 3. β = 1.4 andγ = 1.2. A case where the GDoF of the IRC is larger
than that of the IC in both the strong and the very strong interference regimes.

that is used to achieve it, and in Section VI we sketch the
proof of Theorem 1.

IV. U PPERBOUNDS

We start by providing the following bounds that can be
obtained from the cut-set bounds [13] applied to the IRC. The
cut-set bounds for the IRC are expressed in [4], [14].

Theorem 2. CΣ is upper bounded by
CΣ ≤ 2C((|hd|+ |hr|)2P ) andCΣ ≤ 2C(h2

dP + h2
srP ).

Using the definition ofβ in (1) and the first bound in
Theorem 2, we can writeCΣ ≤ 2C((|hd| + |hr|)2P ) ≤
2max{C(h2

dP ), C((h2
dP )β)+2, which, by using (2) translates

to the first argument in themin in (3). The second argument
in (3) can be obtained similarly from the second bound
in Theorem 2. Using a similar method, the third and fifth
arguments in (3) can be obtained from the bounds in [14,
Theorems 1 and 2]. The remaining expressions in (3) are
obtained from the following theorem.

Theorem 3. CΣ is upper bounded by

CΣ ≤ C(2h2
srP ) + C(h2

dP + h2
cP ) + C+

(

h2
d/h

2
c − 1

)

(4)

CΣ ≤ 2C(h2
c/h

2
sr + (1− hd/hc)

2
) + 2C(2h2

srP ). (5)

Due to space limitations, we only provide a sketch of the
proof of (4) in Appendix A. In the next section, we provide a
GDoF achieving scheme for the IRC.



V. ACHIEVABILITY : FUNCTIONAL

DECODE-AND-FORWARD

Using nested-lattice coding and lattice alignment, we estab-
lish a cooperation strategy between the relay and the users.
This scheme is denoted “Functional Decode-and-Forward”
(FDF) using the terminology of [12]. We use three kinds of
messages in FDF, private (P), common (C), and cooperative
public (CP) messages. The private and the common messages
are the same as those used by Etkin et al. in the IC [1].
The CP message itself is also split intoK sub-messages. The
superposition of the CP messages is decoded by the relay, and
forwarded to the destinations. Using backward decoding, the
sum-rates given in the following theorems are achievable.

Theorem 4. The sum-rateRΣ = 2(Rp + Rc + Rcp) is
achievable where

Rp ≤ C

(

h2
dPp

1 + h2
cPp

)

, (6)

Rc ≤ C

(

min{h2
d, h

2
c}Pc

1 + (h2
d + h2

c)Pp

)

, (7)

2Rc ≤ C

(

(h2
d + h2

c)Pc

1 + (h2
d + h2

c)Pp

)

, (8)

wherePp + Pc +
∑K

k=1 P
(k)
cp = P , P (1)

r + P
(2)
r ≤ P , Rcp =

∑K
k=1 R

(k)
cp , K ∈ N, and where the constraints(9)-(11) on the

next page are satisfied.

Theorem 5. The sum-rateRΣ = 2(Rc + Rcp) is achievable
whereRc ≤ min

{

C
(

min{h2
d, h

2
c}Pc

)

, 1
2C
(

h2
dPc + h2

cPc

)}

,
and Rcp satisfies(12)-(14) on the next page, such thatPc +
∑K

k=1 P
(k)
cp = P , P (1)

r + P
(2)
r ≤ P , Rcp =

∑K

k=1 R
(k)
cp , K ∈

N.

Proof: Due to the lack of space, we refer the reader to
[15]–[17] for more details about nested-lattice coding. Inthis
work, we need nested-lattice codes with a fine latticeΛf and
a coarse latticeΛc ⊆ Λf denoted(Λf ,Λc). The nested-lattice
codewords are constructed asxn = (λ − d) mod Λc where
λ ∈ Λf ∩V(Λc) (V(.) for fundamental Voronoi region) andd
is a random dither.

A. Message splitting

For a transmission blockb, user 1 splits its messagem1(b)
into three parts, a private (P), a common (C), and a cooperative
public (CP) [18] part denotedm1,p(b), m1,c(b), andm1,cp(b),
respectively. Moreover, the CP message is divided intoK

CP sub-messagesm(k)
1,cp(b), k = 1, . . . ,K. The rates of these

messages are denotedRp, Rc, R
(1)
cp , R

(2)
cp , . . . , R

(K)
cp .

B. Encoding

Briefly, m1,p(b) and m1,c(b) are encoded intoxn
1,p(b)

and xn
1,c(b), respectively, whereX1,p ∼ N (0, Pp) and

X1,c ∼ N (0, Pc). Each CP messagem(k)
1,cp(b) is encoded

into x
(k),n
1,cp (b) = (λ

(k)
1,cp(b)− d

(k)
1,cp) mod Λ

(k)
c using a nested-

lattice code(Λ(k)
f ,Λ

(k)
c ) with powerP (k)

cp . In order to satisfy

the power constraint, we setPp + Pc +
∑K

k=1 P
(k)
cp = P .

Same is done at transmitter 2, using the same nested-lattices.
This enables the relay to decode the sum [17]u(k)(b) =

λ
(k)
1,cp(b) + λ

(k)
2,cp(b) moduloΛ

(k)
c . The transmitters then send

the superposition of their codes as

xn
j (b) = xn

j,p(b) + xn
j,c(b) +

∑

x
(k),n
j,cp (b) j ∈ {1, 2},

at each blockb ∈ {1, . . . , B − 1}. No messages are sent in
block B. This incurs a rate loss which, however, becomes
negligible for largeB.

C. Relay Processing

In this scheme, the relay only decodes the CP messages.
More precisely, the relay decodes the superposition of CP
messages as follows. The relay starts decoding at the end of
block b = 1 where the sumu(k)(1) = (λ

(k)
1,cp(1) + λ

(k)
2,cp(1))

mod Λ
(k)
c is decoded, starting withk = 1 and ending with

k = K (see successive compute-and-forward [19]). Decoding
this superposition of codewords is possible as long as the rate
constraint (9) is satisfied.

Notice that the set of all possible values ofu(k)(1) ∈

U (k) has size
∣

∣U (k)
∣

∣ = 2nR
(k)
cp . The relay combines all

u(k)(1), k = 1, . . . ,K, into one messagemr ∈ Mr.
Then the message setMr has a size which is equal to
the size of the Cartesian product of allU (k), i.e., |Mr| =
∣

∣U (1) × U (2) × · · · × U (K)
∣

∣ = 2n
∑

K
k=1 R(k)

cp . The relay then
maps the message tuple(u(1)(1), . . . , u(K)(1)) to a message
mr(2) ∈ Mr to be sent in blockb = 2. This message
is split into m

(1)
r (2) andm

(2)
r (2) with ratesR(1)

r andR
(2)
r ,

respectively. The relay messages are then encoded tox
(1),n
r (2)

andx(2),n
r (2), two Gaussian codewords with powersP (1)

r and
P

(2)
r , respectively, such thatP (1)

r + P
(2)
r ≤ P . The sum of

these codewords is sent in block2. This process is repeated
for every blockb = 1, . . . , B − 1. The relay sends in blocks
b = 2, . . . , B and does not send any signal in block 1.

D. Decoding

The receivers wait until the end of blockB where decoding
starts. Let us focus on receiver 1. At the end of blockB
where only the relay is active, receiver 1 hasyn1 (B) =

hr(x
(1),n
r (B) + x

(2),n
r (B)) + zn1 since the transmitters do not

send in this block. Then,m(1)
r (B − 1) andm

(2)
r (B − 1) are

decoded successively in this order, which is reliable if

R(1)
r ≤ C

(

h2
rP

(1)
r

1 + h2
rP

(2)
r

)

and R(2)
r ≤ C(h2

rP
(2)
r ). (15)

Now, the receiver knows(u(1)(B − 1), . . . , u(K)(B − 1)).
Decoding proceeds backwards to blockB − 1 where

yn1 (B − 1)

= hdx
n
1,p(B − 1) + hdx

n
1,c(B − 1) + hd

∑

x
(k),n
1,cp (B − 1)

+ hcx
n
2,p(B − 1) + hcx

n
2,c(B − 1) + hc

∑

x
(k),n
2,cp (B − 1)

+ hrx
(1),n
r (B − 1) + hrx

(2),n
r (B − 1) + zn1 .



R(k)
cp ≤ C+

(

h2
srP

(k)
cp

1 + 2h2
sr

∑K

i=k+1 P
(i)
cp + 2h2

srPc + 2h2
srPp

−
1

2

)

∀k ∈ {1, . . . ,K} (9)

R(k)
cp ≤ C

(

h2
dP

(k)
cp

1 + h2
d

∑K
i=k+1 P

(i)
cp + h2

c

∑K
i=k P

(i)
cp + h2

dPc + h2
cPc + h2

dPp + h2
cPp + h2

rP
(2)
r

)

∀k ∈ {1, . . . ,K} (10)

Rcp ≤ C

(

h2
rP

(1)
r

1 + h2
rP

(2)
r + h2

dP + h2
cP

)

+ C

(

h2
rP

(2)
r

1 + h2
dPc + h2

cPc + h2
dPp + h2

cPp

)

. (11)

R(k)
cp ≤ C+

(

h2
srP

(k)
cp

1 + 2h2
sr

∑K

i=k+1 P
(i)
cp + 2h2

srPc

−
1

2

)

∀k ∈ {1, . . . ,K} (12)

R(k)
cp ≤ C

(

h2
cP

(k)
cp

1 + h2
c

∑K

i=k+1 P
(i)
cp + h2

d

∑K

i=k P
(i)
cp + h2

dPc + h2
cPc + h2

rP
(2)
r

)

∀k ∈ {1, . . . ,K} (13)

Rcp ≤ C

(

h2
rP

(1)
r

1 + h2
rP

(2)
r + h2

dP + h2
cP

)

+ C

(

h2
rP

(2)
r

1 + h2
dPc + h2

cPc

)

. (14)

The receiver decodes the messages successively in this order:
m

(1)
r → m

(1)
1,cp → m

(2)
1,cp → · · · → m

(K)
1,cp → m

(2)
r →

(m1,c,m2,c) → m1,p. The messagem(1)
r (B − 1) is first

decoded while treating the other signals as noise, leading to the
first term in the rate constraint (11). Next, the receiver decodes
m

(1)
1,cp(B − 1) while treating the other signals as noise. Thus,

we have the rate constraint in (10) withk = 1.
Recall thatu(1)(B − 1) is known at the receiver from the

decoding process in blockB. Now interference cancellation is
performed. Since the receiver now knows bothm

(1)
1,cp(B − 1)

andu(1)(B−1), then, it can extractm(1)
2,cp(B−1) (see [17]). It

thus removes its contribution,hcx
(1),n
2,cp (B−1), fromyn1 (B−1).

Therefore, after decoding eachm(k)
1,cp(B−1), interference from

m
(k)
2,cp(B−1) is cancelled. This continues until all CP messages

are decoded, leading to the rate constraint (10). At this stage,
the receiver can calculate

hdx
n
1,p(B − 1) + hdx

n
1,c(B − 1) + hcx

n
2,p(B − 1)

+ hcx
n
2,c(B − 1) + hrx

(2),n
r (B − 1) + zn1 .

by subtracting the contribution ofm(1)
r (B−1), m(k)

1,cp(B−1),

andm
(k)
2,cp(B − 1), for k = 1, . . . ,K, from yn1 (B − 1). The

receiver then decodesm(2)
r (B−1), (m1,c(B−1),m2,c(B−1))

(jointly), and m1,p(B − 1) successively in this order, each
time treating the remaining signals as noise. This leads to the
second term in the rate constraint (11), and the constraints(6)-
(8). Notice that the first and second terms in (11) are more
binding than (15), thus the latter are ignored. Additionally,
since we haveR(1)

r + R
(2)
r = Rr =

∑K

k=1 Rcp(k) = Rcp,
then, we can write the bound (11).

Decoding then proceeds backwards till block 1 is reached
and the same is done at the second receiver, which proves
the achievability of Theorem 4. Theorem 5 can be proved

similarly, except that the interfering CP messages are decoded
first at each receiver instead of the desired CP messages.

At this point, it is worth to remark that a lattice strategy for
the IRC was also proposed in [8]. The first difference between
our scheme and the one in [8] is that we use P, C, and a set of
CP messages, while in [8] each user sends only a CP message.
The relay processing of the CP messages is the similar in both
cases. The fundamental difference however is the decoding at
the destination. We use interference cancellation described in
Section V-D which is not used in [8].

To examine the performance of the FDF scheme, one has to
carefully chooseK (the influence of which is explained in the
next section) and the power allocations, plug in the FDF rate
constraints, and compare to the upper bounds. In this way, it
is possible to prove that the GDoF in Theorem 1 is achievable.
Due to space constraints, we use an example to illustrate the
proof.

VI. GDOF: AN EXAMPLE

Consider an IRC withβ − 1 < γ ≤ α ≤ 1 ≤ β,
and 2α > 1 + γ. In this case, from (3) we obtaind =
min{2α, 1 + β − α}. Let us set the FDF parameters to
Pp = 1/h2

c , Pc = h2
dP/h

2
r − Pp, P (1)

r = P , P (2)
r = 0,K =

⌈

log
(

h2
r/h

2
d

)

/ log
(

h2
d/h

2
c

)⌉

,P (K)
cp = P

(

h2
c

h2
d

)K−1

− Pc −Pp,

andP
(k)
cp = P

(

h2
c

h2
d

)k−1

− P
(

h2
c

h2
d

)k

, for k = 1, . . . ,K − 1.
Evaluating the expressions stated in Theorem 4, gives the
achievable private GDoFdp = 1 − α. For the common
messages we getdc = min {2α− β, (1 + α− β)/2} where
we usedγ > β − 1 and 2α > 1 + γ. For the cooperative
public messages, by plugging the chosen parameters in (10)



we get

d(k)cp ≤ 1− α, ∀k = 1, . . . ,K − 1, (16)

d(K)
cp ≤ (K − 1)(α− 1)− 1 + β. (17)

Here comes the importance of the choice ofP
(k)
cp andK. The

choice of the powers of the CP signals leads toh2
dP

(k+1)
cp =

h2
cP

(k)
cp , i.e., while decoding thek-th CP message, the inter-

ference power from the (k+1)-th desired CP message is equal
to that of thekth interfering CP message. Thus, the (k + 1)-
th desired CP message does not affectd

(k)
cp . This allows the

achievability of1 − α. Now notice that without CP message
splitting, that is all we could achieve. By splitting the CP
messages, after decoding thek-th desired CP message, we can
cancel the interference of thek-th interfering CP message, and
then proceed to decode the (k + 1)-th desired CP message
where we haveh2

dP
(k+2)
cp = h2

cP
(k+1)
cp , achieving another

1 − α. By an appropriate choice ofK, the firstK − 1 CP
messages have1− α GDoF, leading to (16). While decoding
the K-th desired CP message, the strongest interferer is the
desired C message since

h2
c

(

h2
c/h

2
d

)K−1
P = h2

d

(

h2
c/h

2
d

)K
P ≤ h4

dP/h
2
r,

which follows from the choice ofK. In fact,K is chosen as
the largest number such thatK(1 − α) ≥ β − 1 leading to
the total CP GDoFdcp = β − 1. Interestingly, this is as if
there were no CP interference at all, whereβ − 1 would be
achievable by decoding the CP messages while treating only
the C and the P messages as noise. CP message splitting and
interference cancellation therefore providedcp = β−1 instead
of dcp = 1 − α. Similar CP GDoF expressions are obtained
by evaluating the bounds (9) and (11). Consequently, (9) and
(11) do not decrease the achievable CP GDoF, which is still
β−1. By addingdp, dc, anddcp, we get the overall achievable
GDoF of d ≤ min{2α, 1 + β − α}.

APPENDIX A
PROOF OF(4) IN THEOREM 3

The first bound in Theorem 3, i.e., (4) is obtained by giving
Y n
r and (Y n

r ,m1) as side information to receivers 1 and 2,
respectively. Using classical information theoretic procedures,
it is possible to write

n(RΣ − ǫn) ≤ I(m1,m2;Y
n
r ) + h(hdX

n
1 + hcX

n
2 + Zn

1 |Y
n
r )

− h(Sn
c |S

n
sr) + h(Sn

d |S
n
sr)− h(Zn

2 )

with ǫn → 0 asn → ∞, Ssr = hsrX2+Zr, Sc = hcX2+Z1,
andSd = hdX2 + Z2. We proceed by writing

n(RΣ − ǫn) ≤ I(m1,m2;Y
n
r ) + h(hdX

n
1 + hcX

n
2 + Zn

1 )

− h (Sn
c /hc|S

n
sr) + h (Sn

d /hd|S
n
sr)

+ (n/2) log
(

h2
d/h

2
c

)

− h(Zn
2 ),

which follows since conditioning does not increase entropy,
and sinceh(aX) = h(X) + 1

2 log(a
2). Now if h2

c ≤ h2
d, then

we can writeZn
1 /hc = Z̃n + Zn

2 /hd, whereZ̃n andZn
2 are

independent. Then we can write

h

(

Sn
d

hd

|Sn
sr

)

− h

(

Sn
c

hc

|Sn
sr

)

= −I

(

Z̃n;
Sn
d

hd

+ Z̃n |Sn
sr

)

,

which is negative. As a result, by lettingn → ∞, and using the
Gaussian distribution forX1 andX2 to maximize the upper
bound, we obtain (4). Ifh2

c > h2
d, then the bound (4) can be

obtained by enhancing receiver 2 by replacing the noiseZ2

by hdZ2/hc, and proceeding as above.
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