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Abstract—This work provides an algebraic framework for In [B] superposition coding was proposed for the binary
source coding with decoder side information and its dual prd- CCSI case for which random codes and maximum-likelihood
lem, channel coding with encoder side information, showing (ML) decoding is able to achieve capacity. Differently from

that nested concatenated codes can achieve the correspamgli it di ted codes h b d for-the bi
rate-distortion and capacity-noise bounds. We show that ae SUPErPOSIlION coding, nesteéd codes have been used for-the bl

concatenation preserves the nested properties of codes atimat Nary SCSI case, and a technique based on nested parity check
only one of the concatenated codes needs to be nested, whicltodes has been proposed[ih [7] which asymptotically ackieve

opens up a wide range of possible new code combinationsthe rate-distortion bound for a Bernoulli symmetric source
for these side information based problems. In particular, he Recently, in [[8] the authors present compound LDPC/LDGM

practically important binary version of these problems can be . . . .
addressed by concatenating binary inner and non-binary ougr constructions for both problems which asymptotically agki

linear codes. By observing that list decoding with folded Red- capacity for the CCSI problem and the rate distortion bound
Solomon codes is asymptotically optimal for encoding IIDg-ary  for the SCSI problem with bounded graphical complexity
sources and that in concatenation with inner binary codes itan ynder ML decoding. They show that these compound codes
asymptotically achieve the rate-distortion bound for a Benoulli essentially have a joint source-channel coding intergiceta
symmetric source, we illustrate our findings with a new algelaic Further, polar codes have been shown to be asymptotically

construction which comprises concatenated nested cyclicodes . . . .
and binary linear block codes. optimal for both problems with bounded decoding complexity

[Q]. However, their performance for practical block lergib

. INTRODUCTION - ;
Two traditional problems in the field of communications arg/orse th?” for other codes of the same lengff [10]. Finally,
the Wyner-Ziv coding probleni [1] and its dual version, ihgther coding schemes for both SCSI and CCSI based on com-
Gel'fand-Pinsker probleni[2][]3]. The first is an instande gnon modulatlo_n and coding schemes, as trellis coded quanti-
distributed source coding: one source is encoded by taldng gatlon/modulatlon and turbo codes have been presented (see
vantage of the fact that the decoder receives another atecel €.g., [6], [11], [12]).

A ) , . The novel contribution of this paper is an algebraic frame-
source as side information. In contrast, the Gel'fanddns ) -
. . . . ork which extends the above results for the binary SCSI and
problem is a channel coding problem in which a chann

(ESI cases to concatenated nested linear block codes.-In par

encoder embeds messages by using available channel Sh%u‘?ar, we show that by concatenating two linear block sode

information as side informatiori [3]. We will refer to thesenew binary constructions can be obtained which preserve the

problems also as source coding with decoder side Inforrmlatloested structure either of the outer or of the inner codes Thi

(SCSI) for the Wyner-Ziv case, and as channel coding Wi@] ens up a wide range of possible new code combinations
encoder side information (CCSI) for the Gel'fand-Pinskep "> UP 9 P . .

. . : and indicates that code concatenation can alleviate threlsea
problem in the following, respectively.

The duality of these problems has been studied’in [4] f(];?r both pra_lcncal and optimal constructions. W_e analyzéeco
ncatenations fog"-ary outer codes ang-ary inner codes

the Gaussian case, where the authors also analyze how fipgeat X ) :
. : : . . as a binary inner code can be simply obtained;by 2.

relationship can be exploited to design dual coset codedeWh ecent work by Guruswami and Rudga]13] gives an explicit

nested lattice based coset coding schemes for these poble y 9 P

. ¥ : construction of folded RS (FRS) codes that can achieve list
have been proposed for continuous-input (Gaussian) chann ecoding capacity. We show this result implies that if RSesod

[5], in the following we focus on the binary version of these

e o L : are used as source codes, the rate-distortion bound isvadhie
problems, as this is beneficial in many applications whigheco .
o o for IID ¢-ary sources. Together with the fact that concatenated
with binary data and communication channels, as for example

in digital watermarking for the case of CCSI and in distrémlit inary codes using outer FRS codes can.ach|e.ve list decoding
, . capacity for concatenated codés][13], it motivates the use
video coding for SCSI. ; S N
of nested RS codes as outer codes in combination with list
This work was supported in part by Fundago de Amparo @es do decoding for both SCSI and CCSI problems. Finally, based on
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1017632. distortion and capacity-rate bounds with low encoding and
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decoding complexity. B. Source coding with decoder side information
1. NESTEDLINEAR BLOCK CODES This problem addresses the compression of a symmetric

These codes were first proposed [l[14] under the na@Urcel ~ Bern(;) by exploiting the knowledge of another

of partitioned cyclic codes and can be generally defined (égrrelat_ed sourcd” as side information at the decoder. The
follows. correlation between sources can be representéd asY @ S

o _ . whereS ~ Bern(p) is a “separation” vector corresponding to
Definition 1 (Nested Linear Block Code)A nested linear errors on a virtual BSG) modeling the correlation. For the
block codeC is defined such that (i C F,Y, (ii) C = C1+C2,  estimate of the source sequed&we require a constraint on

(i) C; NCy = {0}, whereC, and C, are subcodes. the maximal distortionD, given as

It has been shown in[5].[6].[8] that nested codes are able 1 & R
to achieve the rate-distortion bound for the SCSI probleoh an N ZdH(Wi, W;) <D, (6)
symmetric Bernoulli sources and the capacity-noise boond f i=1

the CCSI problem and binary symmetric channels (BSCs) @fered, (-) denotes the Hamming distance.

communication channels, respectively. In the followingg W The encoder receives a sequenceé\obits from sourceV,
revise these results and the use of nested linear block cogigsresented byW. It can be interpreted as

in these problems, where we focus on the binary case.
. . . . W =c+E, (7
A. Channel coding with encoder side information

iral
For this problem, we consider a BSC with noise vegior. Wherec € C. We also requireywy (E) < D due to [6), such

Bern(p) (BSC()) and interferencs, representing the channelthat the stored version 61’ is given asW = c, otherwise an
state, which is uniformly distributed ovef and knowna encoder error is declared. We again assume that information

priori at the encoder. The channel output is given by is conveyed inK; dimensions of theV-dimensional vector
space F{¥, corresponding to cod€;. Thus, the resulting
Y=E+S+7, (1) compression rate i&; /N.

whereE is the transmitted codeword under the input constraint At the decoder, the encoded information of length can
be recovered as a codeword@p of length N. Because the

1 . . .
NwH(E) <W, (2) decoder has access to side informatiénit can recoverc,

ding t
with wy () denoting the Hamming weight. according to

For encoding, we assume that without loss of generality c1+Y = Wacey+WHS,
subcodeC; carries the information which is transmitted in = co+tE+S. (8)
K, dimensions of theN-dimensional vector spacéy’. If . o
K = dim(C) according to property (ii) in Definitionl 1 we have The decoder can then reconstrid®t by considering that =
that K5 = dim(C,) where K = K| + K. Note that a nested €1 T C2-
parity-check code is simply a dual code of the nested gemreratemma 2 ([8]). The overall compression rate of the scheme
w[lﬂfj]eCG(N’ K, R) = Ci(N—Ks, K1, R)+Co(N, K, R+ K1) ynder the distortion constraint iff) is given as

For a given information vector encodeddn, there are2’> K1/N = h(p* D) —h(D) — ¢ )
possible vectors ifs. The encoder now has the task to finqlOr anye > 0, whereps D = p(1 — D)+ D(1 —p)

: represents
a vectorcs in Co such that

binary convolution.

S=c1tcx+E, ) The ratek, /N in @) approaches the rate(p + D) — h(D)
with c¢; € (i, such thatE satisfies the constraint if](2).of the rate-distortion bound®y z (D, p) = l.c.e{h(p * D) —
Otherwise, an encoder error is declared. Friin (1) we obtdinD), (p,0)}, where “l.c.e.” denotes the lower convex enve-
the received vector as lope. All other rates on the cun®&y z (D, p) can be obtained

Y=ci+ca2+Z ) by time sharing with the poingp, 0).

Lemma 1 ([8]). The error probability in recovering:; + c2 lll. CONCATENATION OF NESTED CODES
from Y approaches zero with increasiny under the con- The results presented in Section Il indicate that nest&aitin
straint (@) for the transmitted codeword if the maximal block codes can asymptotically achieve the limits for both
message rate is given as SCSI and CCSI problems but does not address how practical
capacity-approaching codes for these cases can be ohtained
K1/N = h(W) = h(p) — e ®) However, the asymptotically capacity-achieving resubbs f
Note that [[b) approaches the ratégsW) — h(p) of compound LDGM/LDPC codes in[8] suggests that code
the capacity-noise boundRgp(W,p) = u.c.e{h(W) — concatenation may result in practical and efficient codes fo
h(p), (0,0)} where “u.c.e.” denotes the upper convex envehese applications.
lope. All other rates on the cuniqp (W, p) can be obtained  In this section we provide an new algebraic framework for
by time sharing with the point0, 0). nested concatenated codes for which the constructiorig in [8



can be seen as special cases. In particular, we formallyepra®(u) = 0}, whereC,(nm, km) is the equivalent cod€ in
that code concatenation preserves the nested code seuctine underlying fieldF;,. As ¢* is one-to-one, kei)*) = {0},
where the inner code serves as translator tpaay field in i.e.,, u = 0. Equivalently, kef¢) = {0}, which means that
such way that the outer code operates in the correspopding v = 0. But sinceC; N Cy; = {0}, thenv = 0 if and only
ary extension field. This especially also covers the prafliyic if vi = vo = 0. In other words)*(¢(C1 N Ce = {0})) =
important binary case foy = 2. W00 bnee DU (6(v2)hvsce, = (0} -

— o s o T By using a similar approach, it follows from Propositign 1
I:_)ef|n|t|on 2. L?w FFG — By, with Q = ¢™, be a bijective that its converse also holds, i.e., that the nested property
linear map defined ag(v) = u, wherev € F{j andu € "™,

This means that a sequence of lengtin 7, can be expressed preserved if the inner code is a nestedry linear block code
and the outer code is @-ary linear block code.

as ag-ary sequence of lengthm. If m = 1 we haveu = v
and there is no mapping. Proposition 2. The concatenation between a linear code
C(n,k) over Fp and a linear codeCy over F,, Cy =
Cy1 + Cy2 and Cy; N Cy2 = {0}, produces codewords of
an equivalent linear cod€., (N, K') over Fy, such that

1) Ceq(N, K) = {41 (0(v)) + ¥3(0(v)) }vee,

2) {¢1(o(v)) N3(d(v))}vee = {0},
_ - _ N _ where ¢ : F)'™ — FN and¢j : F'™ — FN are linear
This definition means that the sequencis partitioned into - maps such thab” (ui, ..., u,) = (1; (W), . ., 1 (), ith
[ groups ofnm/1 g-ary symbols that are each encodeddy w e Frmito s n, and; : NG B
Note that this partition corresponds to amf{/l/)-folded code ~* -~ "% '~ 777" Jood i J = e
over F(;"”/l, If I = n, then the groups have length, and Propositiond 1l an@12 show that properties (i) and (i) in
are theg-ary representation of @-ary symbol. Ifl = 1, the Definition [1 still hold after code concatenation, no matter
entire g-ary sequence is encoded as a single input messag‘@hether the nested code is an inner or outer code. The only

by Cy. requirement is that both subcodes are concatenated with the
" i . same outer code, in order to preserve property (ii). We define
Definition 4. We define the extended one-to-one linear m b property (i)
A

etiniton « v ‘ FRe subcodes in the resultingary nested structure df,,
o R B as ot = Wlm) b)) = as ey = {97 (0(v) e, andCgn = {07 (6(v)) }vaces
(u1Gy, ..., wGy). which now instead can be employed in both the SCSI and the
Lemma 3. Let v be a codeword of the nested linear blockoCSI cases.
code C(n, k,d) over Fg with @ = ¢™ andC = C; + V. CONCATENATED NESTEDCYCLIC CODES AND
C,. The concatenation betweeh and Cy(N/I,nm/l,dy) BINARY LINEAR BLOCK CODES

yields an equivalent codé., (N, K, D) over I, according  when employing nested codes to the SCSI problem as in
to Ceq(N, K, D) = {¢*(6(v))}vec Where K' = km and section I1,C,, is required to be a good channel code to correct
D > dyd. the error formed by the source encoding distortion and the

The proof follows in a straightforward way from sequentig?PServation error. At the same ting, must be aD-distortion

concatenation[[15]. Note that(v) is a g-ary codeword of Source code to output a codeword as close as possible to the
C,(nm, km, d,), which is the g-ary version ofC in the information sequence produced by the source with a distorti

underlying fieldF,. constraintD. In the case of CCSIC.,. takes on the role of

The following proposition represents the main result of th® 9oodW-distortion source code whereds, is the channel
section and states that the nested property as stated in-DefiRde- _
tion [ is preserved if the outer code is a nesgeary linear ~ While channel coding can be performed by means of
block code and the inner code iszary linear block code. 900d decoding algorithms, performing source coding with

Proposition 1. The concatenation betwe€randCy produces error.correcting codes makes it necessary to have complete
codewords of an equivalent linear code, (N, i) over F, algorithms that can return the nearest codewords. Motivate
q bl qr

by recent results on list decoding of RS codes we will now

Definition 3. Letu = (uy,...,w;) , u; € Fq’”"/l,z’ =1,..,1,
wherel < | < n and [ is a divisor of mn. Further,
let Cy(N/l,nm/l,dy) be ag-ary linear block code. Then,
v F;"”/l — Cy is a bijective linear map such that
¥(u;) = u;Gy, whereGy is a generator matrix foCy.

such that study the suitability of these codes for source encodin
1) Cey(N, K) = {$7(6(vi)) bvice, + {47 (6(v2)) hvsccs, Y N 9
2) {*(d(v1)}viec, N{U* (6(v2)) bvoec, = {0} A. List decoding for folded Reed-Solomon codes
Proof: 1) According to Lemma[d3 we hav€., = In [13], Guruswami and Rudra describe an explicit family

{4*(¢(v)) }vec- SinceC = C; + Cs, thenC,, = {1*(¢(v1 + 0f codes with a list decoding algorithm that can asympttigica
va)) bvieciivacc,- BUt asy* and¢ are a linear maps and bothachieve the information-theoretic limit of list decodatyil

C1 andC, are also subspaces over the ground figjdas /5 is with encoding and decoding performed in polynomial time.
equivalent toF,""", the additivity property of linear mappingsThe proposed codes are folded RS codes, which can be seen
yields {¢* (p(v1 + v2)) }viecyivaecs = {0 (0(v1)) }viec, as standard RS codes viewed as codes over a larger alphabet.

+{¥"(@(v2)) }vzeca- Definition 5 (v-Folded Reed-Solomon Code (FRShet o €
2) We define the kernel of* to be kefy*) £ {u € C, | F, be a primitive element of,. Letn’ < ¢— 1 be a multiple



of v and1 < k < n. An FRS cod&€ ) (n’, k) over alphabet finite field F,, whereqg = 2™. The polynomiak:™ — 1 can be
Fy is a folded version of the RS codén, k) over F,, and is factorized as

defined as 2" — 1 = g(2) f(z)*) p(z) k), (11)

<0 JU ’- Jr+1 ’.”’- jrv+rv—1 ,O < i< /
(@), i(a) ;(a , )]k =/ ;) | 10 wherer = n — (k; + ko). The notation &(z)()” is used to
edi(x)) < k.i(z) € Fy[2l}, (10) jndicate the degree of polynomiak(z)”, and henceforth the
wheren’ = n/v. In other words, a FRS code is an RS codargument {z)" will be omitted in order to simplify notation.

wherer consecutive symbols each are grouped together. Note that form = 1 we obtain BCH codes, otherwise RS
) . codes are employed.
The GR algorithm for FRS codes of raté allows to list  The polynomialy") corresponds to a generator polynomial
decode in polynomial time up to a fraction 6f — R —¢) 4t the codeC(n, ki + k»), and (g f)"+) is a generator poly-
worst-case errors. The folding operation does not change thymial for Cs(n, k2). The codewords ir¢ can be expressed

rate of the RS codélt = k/n = k/n'v), thuse'v/n = a5 3 sum of codewords as follows:
1—k/n—e¢, soe = €'vis the number of correctable errors

for the corresponding unfolded RS code][13]. w1 = D () g ke (g gy (), (12)

Proposition 3. If the GR list decoding algorithm is usedwhereigkl—l)g(r) € Cy(n — ks, ky).
in conjunction with RS codes for source encoding of #D .
ary sources, the probability of encoding errors asymptdtjc C. Construction for the CCSI case

vanishes. At the outer encoder, informatioﬁkl’l) is encoded using

Proof: Starting from an observation that the normalized”’ Of codeC(n, k1 + k2), producingu;” ! (zero padded to
covering radiust(C)/n of a linear codeC(n,k) [16] is achieve lengt) of the shortgned _cycllc goc@(n—l@,_kl).
#(C)/n < 1 — k/n, which is met with equality by RS codes /N order to aIIowllncorporatmg _bma_ry side mformanpneth
we see that = ¢(C) — &, wheres > 0, C(n, k) is the unfolded S€quencev € C; is mapped to its binary representatian,

RS code and(C) is its covering radius. Because a fractio§’hich is then partitioned inté groups ofnm/! bits that are

of errors overF! is equivalent to a fraction of errors overéach encoded by a BLBS codsy (N/I,nm/l). Thus, the

F,, the GR algorithm for FRS codes asymptotically corrects'gsulting codewords, = 1 (¢(v1)) have lengthV and are

number of errors ovef, that is equal to the covering radiuscodewords irC,, (N — Ky, Ki). _ _

of the corresponding unfolded RS code. - (kEplc)odlng steps:1) (Outer encodinyy Encode information
Note that list decoding may not output a single codewofd =~ Using the generatas™ for C(n, ki +k2), thus produc-

but a list of possible codewords. This does not pose a problétg a codeworch{" """ of C(n — ks, k1) padded withk,

since the source encoder can always pick the one whichzgyos; Il) Code concatenatignEncodel groups ofnm/1 bits

closest to the source sequence in Hamming distance. of codewordv; (received from the outer encoder) by using the
Using concatenated codes for both the CCSI and the S@®rer codeCy, resulting incy; 1ll) ComputeS — cy; 1V) Find

problems, there are two different ways of implementing the: € Ceq2 according to[(B) such thdtl(2) holds; V) Transihit

source encoding step of finding a vectes € C.,. and Note that the encoding complexity is essentially given by

c € C.,, respectively. The first way is to perform separatgtep IV, because all other operations are linear. For FR8sod

source encoding for each of the concatenated codes. WHildolding/unfolding step has to be performed before finding

RS outer codes in conjunction with the GR algorithm cawz2 € C2(n, k2) as follows.

optimally perform source encoding i, the performance of ~ Folding/unfolding step: (i) Code foldings : F3'"™ — F;n{f

this strategy also depends on the inner code. Another way iss{(u) = «/, (ii) Code unfoldingr* : F;{L’_>F;m,g* (vh) =ws.

perform source encoding over the concatenated binary code. . . . .

In fact, list decoding capacity for binary codes can be asym(gmpo.s't'on.4' IC0n5|der.a symmetric Bernoulli source. Source

totically achieved if FRS codes are concatenated with rand ncoding via list decoding of RS/BLBC cadlg, can asymp-

. : ; tically achieve a vanishing probability of encoding arro
binary linear block codes (BLBC) [13]. This means that eve ) )
Hamming sphere of radius'(1 — R — £) has polynomially hus, given a concatenated RS/BLBC channel chgevhich

many codewords. Thus, it is possible to asymptotically exahi _as_ymptotically achieves _capacity on the BiCthe resulting_
the rate-distortion bound for a Bernoulli symmetric source joint source-channel coding scheme for the CCSI case agbiev

In the following we provide a general setup which univell—he capacity-noise boun#tc (W, p).
sally addresses the scenario of outer algebraic RS or BCH Proof: From the rate distortion bound for a symmetric
codes and arbitrary inner BLBCs. Bernoulli sequence, the rate for thg-distortion source code
. Ceq2 is given asky /N > 1—h(W). Because list decoding can
B. Nested cyclic codes asymptotically correct an error fraction of '(1 — Ry — ¢),
The coding scheme for the outer code is based on wae see tha?: = 1 — h(WW) — ¢ asymptotically achieves the
algebraic construction of nested cyclic codes. These codage-distortion bound and therefore results in an encoelingy
form an ideal in the polynomial rindg,[x]/(z™ — 1), where probability which asymptotically tends to zero. Therefafe
F,[x] is the set of polynomials in: with coefficients from the the RS/BLBC cod&., achieves capacity on the BS{( we



haveR = 1 — h(p) — € which results inR; = h(W) — h(p). source-channel codes. Therefore, the optimal asymptetic p
This is equivalent to the capacity-noise boukdp (1, p). B formance for both binary SCSI and CCSI problems can be
The channel coding performance of the proposed schem@versally achieved by concatenation with a linear blomtes
is essentially the one for the chosen concatenated RS/BLBfvided that one of the constituent codes has the necessary
codeC,q2. Here we can exploit the fact that some constructiomested property. In particular, while inl[8] ML decoding is
(e.g., RS/LDPC) are capacity approaching, for which eiffect assumed, through a novel RS/BLBC construction with low
decoding algorithms exist. encoding and decoding complexity we show that list decoding
After transmission of, the decoder receive¥ in (1) and provides the optimal source encoding performance asymp-
the error vectotZ is corrected in the same fashion as in angotically for both problems. At the same time, for channel
standard concatenated scheme (by using the correspondimgr correction any capacity-approaching algorithm can b
decoding algorithms for each code), resulting in an emree-f independently used.
codeword[(IR). Then, the embedded informatipis extracted It is still a challenge to exploit the full potential of con-
by a modulo operation and a polynomial division accordincatenation with practical list decoding algorithms, byiaate
to source and channel encoding is a feasible approach asgadacti
encoding and decoding algorithms exist for each code. Eutur
work will focus on studying other concatenated schemes
employing QC-LDPC, polar, and BCH codes as outer codes,
which seems to be a promising avenue since these codes have
been successfully employed for source codirdg [9]! [15]].[17

v(n_l) mod (gf)(kl+r)

g(T)

Z.gqu) _

(13)

Decoding stepsi) ReceiveY, recoverv € C; II) Compute
i1 as in [IB).
D. Construction for the SCSI case

The encoder receives a sequencévolbits from a Bernoulli
symmetric sourcéV, represented bW, which is equivalent
to a codewordW = c in C., (N, K) plus a “quantization”
errorE (@). An encoder error is declared if a codewdid = ¢
cannot be found.

Encoding steps:l) Receive W, recoverv € C; Il) Com-
pute:i{" " as in [I3). 4]

Analogous to the CCSI case, for FRS codes an extra
folding/unfolding step must be performed before finding
C(n, k), with the difference that now the folded codeword!®!
is v’ € C(n', k), soo*(v') = v. We have the following
statement which is analogous to Proposifidn 4.
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