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Abstract—This work provides an algebraic framework for
source coding with decoder side information and its dual prob-
lem, channel coding with encoder side information, showing
that nested concatenated codes can achieve the corresponding
rate-distortion and capacity-noise bounds. We show that code
concatenation preserves the nested properties of codes andthat
only one of the concatenated codes needs to be nested, which
opens up a wide range of possible new code combinations
for these side information based problems. In particular, the
practically important binary version of these problems can be
addressed by concatenating binary inner and non-binary outer
linear codes. By observing that list decoding with folded Reed-
Solomon codes is asymptotically optimal for encoding IIDq-ary
sources and that in concatenation with inner binary codes itcan
asymptotically achieve the rate-distortion bound for a Bernoulli
symmetric source, we illustrate our findings with a new algebraic
construction which comprises concatenated nested cyclic codes
and binary linear block codes.

I. I NTRODUCTION
Two traditional problems in the field of communications are

the Wyner-Ziv coding problem [1] and its dual version, the
Gel’fand-Pinsker problem [2], [3]. The first is an instance of
distributed source coding: one source is encoded by taking ad-
vantage of the fact that the decoder receives another correlated
source as side information. In contrast, the Gel’fand-Pinsker
problem is a channel coding problem in which a channel
encoder embeds messages by using available channel state
information as side information [3]. We will refer to these
problems also as source coding with decoder side information
(SCSI) for the Wyner-Ziv case, and as channel coding with
encoder side information (CCSI) for the Gel’fand-Pinsker
problem in the following, respectively.

The duality of these problems has been studied in [4] for
the Gaussian case, where the authors also analyze how this
relationship can be exploited to design dual coset codes. While
nested lattice based coset coding schemes for these problems
have been proposed for continuous-input (Gaussian) channels
[5], in the following we focus on the binary version of these
problems, as this is beneficial in many applications which cope
with binary data and communication channels, as for example
in digital watermarking for the case of CCSI and in distributed
video coding for SCSI.
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In [6] superposition coding was proposed for the binary
CCSI case for which random codes and maximum-likelihood
(ML) decoding is able to achieve capacity. Differently from
superposition coding, nested codes have been used for the bi-
nary SCSI case, and a technique based on nested parity check
codes has been proposed in [7] which asymptotically achieves
the rate-distortion bound for a Bernoulli symmetric source.
Recently, in [8] the authors present compound LDPC/LDGM
constructions for both problems which asymptotically achieve
capacity for the CCSI problem and the rate distortion bound
for the SCSI problem with bounded graphical complexity
under ML decoding. They show that these compound codes
essentially have a joint source-channel coding interpretation.
Further, polar codes have been shown to be asymptotically
optimal for both problems with bounded decoding complexity
[9]. However, their performance for practical block lengths is
worse than for other codes of the same length [10]. Finally,
other coding schemes for both SCSI and CCSI based on com-
mon modulation and coding schemes, as trellis coded quanti-
zation/modulation and turbo codes have been presented (see,
e.g., [6], [11], [12]).

The novel contribution of this paper is an algebraic frame-
work which extends the above results for the binary SCSI and
CCSI cases to concatenated nested linear block codes. In par-
ticular, we show that by concatenating two linear block codes
new binary constructions can be obtained which preserve the
nested structure either of the outer or of the inner code. This
opens up a wide range of possible new code combinations
and indicates that code concatenation can alleviate the search
for both practical and optimal constructions. We analyze code
concatenations forqm-ary outer codes andq-ary inner codes
as a binary inner code can be simply obtained byq = 2.

Recent work by Guruswami and Rudra [13] gives an explicit
construction of folded RS (FRS) codes that can achieve list
decoding capacity. We show this result implies that if RS codes
are used as source codes, the rate-distortion bound is achieved
for IID q-ary sources. Together with the fact that concatenated
binary codes using outer FRS codes can achieve list decoding
capacity for concatenated codes [13], it motivates the use
of nested RS codes as outer codes in combination with list
decoding for both SCSI and CCSI problems. Finally, based on
our findings we exemplarily present an algebraic concatenated
nested coding scheme that asymptotically achieves the rate-
distortion and capacity-rate bounds with low encoding and
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decoding complexity.

II. N ESTEDL INEAR BLOCK CODES

These codes were first proposed in [14] under the name
of partitioned cyclic codes and can be generally defined as
follows.

Definition 1 (Nested Linear Block Code). A nested linear
block codeC is defined such that (i)C ⊂ FN

2 , (ii) C = C1+C2,
(iii) C1 ∩ C2 = {0}, whereC1 and C2 are subcodes.

It has been shown in [5], [6], [8] that nested codes are able
to achieve the rate-distortion bound for the SCSI problem and
symmetric Bernoulli sources and the capacity-noise bound for
the CCSI problem and binary symmetric channels (BSCs) as
communication channels, respectively. In the following, we
revise these results and the use of nested linear block codes
in these problems, where we focus on the binary case.

A. Channel coding with encoder side information

For this problem, we consider a BSC with noise vectorZ ∼
Bern(p) (BSC(p)) and interferenceS, representing the channel
state, which is uniformly distributed overFN

2 and knowna
priori at the encoder. The channel output is given by

Y = E+ S+ Z, (1)

whereE is the transmitted codeword under the input constraint
1

N
wH(E) ≤W, (2)

with wH(·) denoting the Hamming weight.
For encoding, we assume that without loss of generality

subcodeC1 carries the information which is transmitted in
K1 dimensions of theN -dimensional vector spaceFN

2 . If
K = dim(C) according to property (ii) in Definition 1 we have
thatK2 = dim(C2) whereK = K1 +K2. Note that a nested
parity-check code is simply a dual code of the nested generator
codeCG(N,K,R) = C1(N−K2,K1, R)+C2(N,K2, R+K1)
[14].

For a given information vector encoded inC1, there are2K2

possible vectors inC2. The encoder now has the task to find
a vectorc2 in C2 such that

S = c1 + c2 +E, (3)

with c1 ∈ C1, such thatE satisfies the constraint in (2).
Otherwise, an encoder error is declared. From (1) we obtain
the received vector as

Y = c1 + c2 + Z. (4)

Lemma 1 ([8]). The error probability in recoveringc1 + c2

from Y approaches zero with increasingN under the con-
straint (2) for the transmitted codewordE if the maximal
message rate is given as

K1/N = h(W )− h(p)− ǫ. (5)

Note that (5) approaches the ratesh(W ) − h(p) of
the capacity-noise boundRGP (W, p) = u.c.e.{h(W ) −
h(p), (0, 0)} where “u.c.e.” denotes the upper convex enve-
lope. All other rates on the curveRGP (W, p) can be obtained
by time sharing with the point(0, 0).

B. Source coding with decoder side information

This problem addresses the compression of a symmetric
sourceW ∼ Bern(12 ) by exploiting the knowledge of another
correlated sourceY as side information at the decoder. The
correlation between sources can be represented asW = Y ⊕S
whereS ∼ Bern(p) is a “separation” vector corresponding to
errors on a virtual BSC(p) modeling the correlation. For the
estimate of the source sequenceŴ we require a constraint on
the maximal distortionD, given as

1

N

N∑

i=1

dH(Wi, Ŵi) ≤ D, (6)

wheredH(·) denotes the Hamming distance.
The encoder receives a sequence ofN bits from sourceW ,

represented byW. It can be interpreted as

W = c+E, (7)

wherec ∈ C. We also require1NwH(E) ≤ D due to (6), such
that the stored version ofW is given asŴ = c, otherwise an
encoder error is declared. We again assume that information
is conveyed inK1 dimensions of theN -dimensional vector
spaceFN

2 , corresponding to codeC1. Thus, the resulting
compression rate isK1/N .

At the decoder, the encoded information of lengthK1 can
be recovered as a codeword inC1 of lengthN . Because the
decoder has access to side informationY it can recoverc2
according to

c1 +Y = Ŵ + c2 +W + S,

= c2 +E+ S. (8)

The decoder can then reconstructŴ by considering thatc =
c1 + c2.

Lemma 2 ([8]). The overall compression rate of the scheme
under the distortion constraint in(6) is given as

K1/N = h(p ∗D)− h(D)− ǫ (9)

for any ǫ > 0, wherep ∗D = p(1−D)+D(1− p) represents
binary convolution.

The rateK1/N in (9) approaches the rateh(p ∗D)−h(D)
of the rate-distortion boundRWZ(D, p) = l.c.e.{h(p ∗D) −
h(D), (p, 0)}, where “l.c.e.” denotes the lower convex enve-
lope. All other rates on the curveRWZ(D, p) can be obtained
by time sharing with the point(p, 0).

III. C ONCATENATION OF NESTEDCODES

The results presented in Section II indicate that nested linear
block codes can asymptotically achieve the limits for both
SCSI and CCSI problems but does not address how practical
capacity-approaching codes for these cases can be obtained.
However, the asymptotically capacity-achieving results for
compound LDGM/LDPC codes in [8] suggests that code
concatenation may result in practical and efficient codes for
these applications.

In this section we provide an new algebraic framework for
nested concatenated codes for which the constructions in [8]



can be seen as special cases. In particular, we formally prove
that code concatenation preserves the nested code structure,
where the inner code serves as translator to aq-ary field in
such way that the outer code operates in the correspondingqm-
ary extension field. This especially also covers the practically
important binary case forq = 2.

Definition 2. Letφ : Fn
Q → Fnm

q , withQ = qm, be a bijective
linear map defined asφ(v) = u, wherev ∈ Fn

Q andu ∈ Fnm
q .

This means that a sequence of lengthn in FQ can be expressed
as aq-ary sequence of lengthnm. If m = 1 we haveu = v

and there is no mapping.

Definition 3. Let u = (u1, ...,ul) , ui ∈ F
nm/l
q , i = 1, ..., l,

where 1 ≤ l ≤ n and l is a divisor of mn. Further,
let CΨ(N/l, nm/l, dΨ) be a q-ary linear block code. Then,
ψ : F

nm/l
q → CΨ is a bijective linear map such that

ψ(ui) = uiGΨ, whereGΨ is a generator matrix forCΨ.

This definition means that the sequenceu is partitioned into
l groups ofnm/l q-ary symbols that are each encoded byCΨ.
Note that this partition corresponds to an (nm/l)-folded code
over Fnm/l

q . If l = n, then the groups have lengthm, and
are theq-ary representation of aQ-ary symbol. If l = 1, the
entireq-ary sequenceu is encoded as a single input message
by CΨ.

Definition 4. We define the extended one-to-one linear map
ψ∗ : Fnm

q → FN
q as ψ∗(u) , (ψ(u1), . . . , ψ(ul)) =

(u1GΨ, . . . ,ulGΨ).

Lemma 3. Let v be a codeword of the nested linear block
code C(n, k, d) over FQ with Q = qm and C = C1 +
C2. The concatenation betweenC and CΨ(N/l, nm/l, dΨ)
yields an equivalent codeCeq(N,K,D) over Fq according
to Ceq(N,K,D) = {ψ∗(φ(v))}v∈C where K = km and
D ≥ dΨd.

The proof follows in a straightforward way from sequential
concatenation [15]. Note thatφ(v) is a q-ary codeword of
Cq(nm, km, dq), which is the q-ary version of C in the
underlying fieldFq .

The following proposition represents the main result of this
section and states that the nested property as stated in Defini-
tion 1 is preserved if the outer code is a nestedq-ary linear
block code and the inner code is aQ-ary linear block code.
Proposition 1. The concatenation betweenC andCΨ produces
codewords of an equivalent linear codeCeq(N,K) over Fq,
such that

1) Ceq(N,K) = {ψ∗(φ(v1))}v1∈C1
+ {ψ∗(φ(v2))}v2∈C2

,

2) {ψ∗(φ(v1))}v1∈C1
∩ {ψ∗(φ(v2))}v2∈C2

= {0}.
Proof: 1) According to Lemma 3 we haveCeq =

{ψ∗(φ(v))}v∈C . SinceC = C1 + C2, thenCeq = {ψ∗(φ(v1 +
v2))}v1∈C1;v2∈C2

. But asψ∗ andφ are a linear maps and both
C1 andC2 are also subspaces over the ground fieldFq, asFn

Q is
equivalent toFnm

q , the additivity property of linear mappings
yields {ψ∗(φ(v1 + v2))}v1∈C1;v2∈C2

= {ψ∗(φ(v1))}v1∈C1

+ {ψ∗(φ(v2))}v2∈C2
.

2) We define the kernel ofψ∗ to be ker(ψ∗) , {u ∈ Cq |

ψ(u) = 0}, whereCq(nm, km) is the equivalent codeC in
the underlying fieldFq. As ψ∗ is one-to-one, ker(ψ∗) = {0},
i.e., u = 0. Equivalently, ker(φ) = {0}, which means that
v = 0. But sinceC1 ∩ C2 = {0}, thenv = 0 if and only
if v1 = v2 = 0. In other words,ψ∗(φ(C1 ∩ C2 = {0})) =
{ψ∗(φ(v1))}v1∈C1

∩ {ψ∗(φ(v2))}v2∈C2
= {0}.

By using a similar approach, it follows from Proposition 1
that its converse also holds, i.e., that the nested propertyis
preserved if the inner code is a nestedq-ary linear block code
and the outer code is aQ-ary linear block code.

Proposition 2. The concatenation between a linear code
C(n, k) over FQ and a linear codeCΨ over Fq, CΨ =
CΨ1 + CΨ2 and CΨ1 ∩ CΨ2 = {0}, produces codewords of
an equivalent linear codeCeq(N,K) overFq, such that

1) Ceq(N,K) = {ψ∗
1(φ(v)) + ψ∗

2(φ(v))}v∈C ,

2) {ψ∗
1(φ(v)) ∩ ψ

∗
2(φ(v))}v∈C = {0},

whereψ∗
1 : Fnm

q → FN
q and ψ∗

2 : Fnm
q → FN

q are linear
maps such thatψ∗

j (u1, . . . ,un) = (ψj(u1), . . . , ψj(un)), with

ui ∈ F
nm/l
q , i = 1, . . . , n, andψj : F

nm/l
q → CΨj , j = 1, 2.

Propositions 1 and 2 show that properties (i) and (ii) in
Definition 1 still hold after code concatenation, no matter
whether the nested code is an inner or outer code. The only
requirement is that both subcodes are concatenated with the
same outer code, in order to preserve property (ii). We define
the subcodes in the resultingq-ary nested structure ofCeq
as Ceq1 = {ψ∗(φ(v1))}v1∈C1

andCeq2 = {ψ∗(φ(v2))}v2∈C2

which now instead can be employed in both the SCSI and the
CCSI cases.

IV. CONCATENATED NESTEDCYCLIC CODES AND

BINARY L INEAR BLOCK CODES

When employing nested codes to the SCSI problem as in
Section II,Ceq2 is required to be a good channel code to correct
the error formed by the source encoding distortion and the
observation error. At the same time,Ceq must be aD-distortion
source code to output a codeword as close as possible to the
information sequence produced by the source with a distortion
constraintD. In the case of CCSI,Ceq2 takes on the role of
a goodW -distortion source code whereasCeq is the channel
code.

While channel coding can be performed by means of
good decoding algorithms, performing source coding with
error correcting codes makes it necessary to have complete
algorithms that can return the nearest codewords. Motivated
by recent results on list decoding of RS codes we will now
study the suitability of these codes for source encoding.

A. List decoding for folded Reed-Solomon codes

In [13], Guruswami and Rudra describe an explicit family
of codes with a list decoding algorithm that can asymptotically
achieve the information-theoretic limit of list decodability,
with encoding and decoding performed in polynomial time.
The proposed codes are folded RS codes, which can be seen
as standard RS codes viewed as codes over a larger alphabet.

Definition 5 (ν-Folded Reed-Solomon Code (FRS)). Let α ∈
Fq be a primitive element ofFq. Let n′ ≤ q− 1 be a multiple



of ν and 1 ≤ k < n. An FRS codeC(ν)(n′, k) over alphabet
F ν
q is a folded version of the RS codeC(n, k) overFq and is

defined as

{([i(αjν), i(αjν+1), ..., i(αjν+ν−1)], 0 ≤ j < n′) |

deg(i(x)) < k, i(x) ∈ Fq[x]}, (10)

wheren′ = n/ν. In other words, a FRS code is an RS code
whereν consecutive symbols each are grouped together.

The GR algorithm for FRS codes of rateR allows to list
decode in polynomial time up to a fraction of(1 − R − ε)
worst-case errors. The folding operation does not change the
rate of the RS code(R = k/n = k/n′ν), thus e′ν/n =
1 − k/n− ε, so e = e′ν is the number of correctable errors
for the corresponding unfolded RS code [13].

Proposition 3. If the GR list decoding algorithm is used
in conjunction with RS codes for source encoding of IIDq-
ary sources, the probability of encoding errors asymptotically
vanishes.

Proof: Starting from an observation that the normalized
covering radiust(C)/n of a linear codeC(n, k) [16] is
t(C)/n ≤ 1 − k/n, which is met with equality by RS codes,
we see thate = t(C)−ε, whereε > 0, C(n, k) is the unfolded
RS code andt(C) is its covering radius. Because a fraction
of errors overF ν

q is equivalent to a fraction of errors over
Fq, the GR algorithm for FRS codes asymptotically corrects a
number of errors overFq that is equal to the covering radius
of the corresponding unfolded RS code.

Note that list decoding may not output a single codeword
but a list of possible codewords. This does not pose a problem
since the source encoder can always pick the one which is
closest to the source sequence in Hamming distance.

Using concatenated codes for both the CCSI and the SCSI
problems, there are two different ways of implementing the
source encoding step of finding a vectorc2 ∈ Ceq2 and
c ∈ Ceq, respectively. The first way is to perform separate
source encoding for each of the concatenated codes. While
RS outer codes in conjunction with the GR algorithm can
optimally perform source encoding inFn

q , the performance of
this strategy also depends on the inner code. Another way is to
perform source encoding over the concatenated binary code.
In fact, list decoding capacity for binary codes can be asymp-
totically achieved if FRS codes are concatenated with random
binary linear block codes (BLBC) [13]. This means that every
Hamming sphere of radiush−1(1−R− ε) has polynomially
many codewords. Thus, it is possible to asymptotically achieve
the rate-distortion bound for a Bernoulli symmetric source.

In the following we provide a general setup which univer-
sally addresses the scenario of outer algebraic RS or BCH
codes and arbitrary inner BLBCs.

B. Nested cyclic codes

The coding scheme for the outer code is based on an
algebraic construction of nested cyclic codes. These codes
form an ideal in the polynomial ringFq[x]/(x

n − 1), where
Fq[x] is the set of polynomials inx with coefficients from the

finite field Fq, whereq = 2m. The polynomialxn − 1 can be
factorized as

xn − 1 = g(x)(r)f(x)(k1)h(x)(k2), (11)

wherer = n − (k1 + k2). The notation “a(x)(·)” is used to
indicate the degree of polynomial “a(x)”, and henceforth the
argument “(x)” will be omitted in order to simplify notation.
Note that form = 1 we obtain BCH codes, otherwise RS
codes are employed.

The polynomialg(r) corresponds to a generator polynomial
of the codeC(n, k1+k2), and(gf)(r+k1) is a generator poly-
nomial for C2(n, k2). The codewords inC can be expressed
as a sum of codewords as follows:

v(n−1) = i
(k1−1)
1 g(r) + i

(k2−1)
2 (gf)(r+k1), (12)

wherei(k1−1)
1 g(r) ∈ C1(n− k2, k1).

C. Construction for the CCSI case

At the outer encoder, informationi(k1−1)
1 is encoded using

g(r) of codeC(n, k1 + k2), producingv(n−1)
1 (zero padded to

achieve lengthn) of the shortened cyclic codeC1(n−k2, k1).
In order to allow incorporating binary side information, the
sequencev1 ∈ C1 is mapped to its binary representationu1,
which is then partitioned intol groups ofnm/l bits that are
each encoded by a BLBC codeCΨ(N/l, nm/l). Thus, the
resulting codewordsc1 = ψ∗(φ(v1)) have lengthN and are
codewords inCeq1(N −K2,K1).

Encoding steps:I) (Outer encoding): Encode information
i
(k1−1)
1 using the generatorg(r) for C(n, k1+k2), thus produc-

ing a codewordv(n−k2−1)
1 of C1(n − k2, k1) padded withk2

zeros; II) (Code concatenation): Encodel groups ofnm/l bits
of codewordv1 (received from the outer encoder) by using the
inner codeCΨ, resulting inc1; III) ComputeS− c1; IV) Find
c2 ∈ Ceq2 according to (3) such that (2) holds; V) TransmitE.

Note that the encoding complexity is essentially given by
step IV, because all other operations are linear. For FRS codes
a folding/unfolding step has to be performed before finding
v2 ∈ C2(n, k2) as follows.

Folding/unfolding step: (i) Code foldingσ : Fnm
2 → F

n/ν
2mν ,

σ(u) = u′, (ii) Code unfoldingσ∗ : F
n/ν
2mν →Fn

2m , σ
∗(v′2)=v2.

Proposition 4. Consider a symmetric Bernoulli source. Source
encoding via list decoding of RS/BLBC codeCeq2 can asymp-
totically achieve a vanishing probability of encoding error.
Thus, given a concatenated RS/BLBC channel codeCeq which
asymptotically achieves capacity on the BSC(p), the resulting
joint source-channel coding scheme for the CCSI case achieves
the capacity-noise boundRGP (W, p).

Proof: From the rate distortion bound for a symmetric
Bernoulli sequence, the rate for theW -distortion source code
Ceq2 is given asK2/N ≥ 1−h(W ). Because list decoding can
asymptotically correct an error fraction ofh−1(1 − R2 − ε),
we see thatR2 = 1 − h(W ) − ε asymptotically achieves the
rate-distortion bound and therefore results in an encodingerror
probability which asymptotically tends to zero. Therefore, if
the RS/BLBC codeCeq achieves capacity on the BSC(p), we



haveR = 1 − h(p)− ε which results inR1 = h(W )− h(p).
This is equivalent to the capacity-noise boundRGP (W, p).

The channel coding performance of the proposed scheme
is essentially the one for the chosen concatenated RS/BLBC
codeCeq2. Here we can exploit the fact that some constructions
(e.g., RS/LDPC) are capacity approaching, for which effective
decoding algorithms exist.

After transmission ofE, the decoder receivesY in (1) and
the error vectorZ is corrected in the same fashion as in any
standard concatenated scheme (by using the corresponding
decoding algorithms for each code), resulting in an error-free
codeword (12). Then, the embedded informationi1 is extracted
by a modulo operation and a polynomial division according
to

i
(k1−1)
1 =

v(n−1) mod (gf)(k1+r)

g(r)
. (13)

Decoding steps:I) ReceiveY, recoverv ∈ C; II) Compute
i
(k1−1)
1 as in (13).

D. Construction for the SCSI case

The encoder receives a sequence ofN bits from a Bernoulli
symmetric sourceW , represented byW, which is equivalent
to a codewordŴ = c in Ceq(N,K) plus a “quantization”
errorE (7). An encoder error is declared if a codewordŴ = c

cannot be found.
Encoding steps:I) ReceiveW, recoverv ∈ C; II) Com-

pute: i(k1−1)
1 as in (13).

Analogous to the CCSI case, for FRS codes an extra
folding/unfolding step must be performed before findingv ∈
C(n, k), with the difference that now the folded codeword
is v′ ∈ C(ν)(n′, k), so σ∗(v′) = v. We have the following
statement which is analogous to Proposition 4.

Proposition 5. Consider a symmetric Bernoulli source. Source
encoding via list decoding of RS/BLBC codeCeq can asymp-
totically achieve a vanishing probability of encoding error.
Thus, given a concatenated RS/BLBC channel codeCeq2 which
asymptotically achieves capacity on the BSC(p ∗ D), the
resulting joint source-channel coding scheme for the SCSI case
achieves the rate-distortion boundRGP (W, p).

The encoder extracts a polynomiali(k1−1)
1 of lengthk1 (K1

bits) from v(n−1) (12), so the compression rate isK1/N .
The encoding steps in this case are essentially the same as
the decoding steps of CCSI, but instead of channel decoding
we employ source encoding algorithms which dominate the
encoding complexity (see encoder step I).

For decoding, the steps are analogous to the encoding steps
of the CCSI case, with the difference thatS becomesY, and
instead of sending the error pattern after findingc2 ∈ Ceq2,
the information word corresponding to the actual codeword
Ŵ = c1 + c2 is stored. Here, channel decoding is employed
which dominates the complexity as all other operations are
linear.

V. CONCLUSION

Within the proposed algebraic framework we proved that
code concatenation preserves the nested structure of joint

source-channel codes. Therefore, the optimal asymptotic per-
formance for both binary SCSI and CCSI problems can be
universally achieved by concatenation with a linear block code,
provided that one of the constituent codes has the necessary
nested property. In particular, while in [8] ML decoding is
assumed, through a novel RS/BLBC construction with low
encoding and decoding complexity we show that list decoding
provides the optimal source encoding performance asymp-
totically for both problems. At the same time, for channel
error correction any capacity-approaching algorithm can be
independently used.

It is still a challenge to exploit the full potential of con-
catenation with practical list decoding algorithms, but separate
source and channel encoding is a feasible approach as practical
encoding and decoding algorithms exist for each code. Future
work will focus on studying other concatenated schemes
employing QC-LDPC, polar, and BCH codes as outer codes,
which seems to be a promising avenue since these codes have
been successfully employed for source coding [9], [15], [17].
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