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Abstract—We study the problem of compressing a source
sequence in the presence of side-information that is related to the
source via insertions, deletions and substitutions. We propose a
simple algorithm to compress the source sequence when the side-
information is present at both the encoder and decoder. A key
attribute of the algorithm is that it encodes the edits contained
in runs of different extents separately. For small insertion and
deletion probabilities, the compression rate of the algorithm is
shown to be asymptotically optimal.

I. Introduction

In [1], we have studied the problem of compressing a source
sequence with the help of mis-aligned decoder-only side-
information, where the source and side-information are the
input and output of a deletion channel, respectively. The min-
imum rate is shown to correspond to the amount of information
in the deleted content plus the locations of the deletions, minus
the uncertainty in the locations given the source and side-
information. We refer to the latter as “nature’s secret”. This
is the information that the encoder and decoder can never
find out. It represents the over-counting of information in the
locations of the deletions. For example, if the input and output
of a deletion channel and are (0, 0) and (0), the encoder and
decoder will never know and never need to know whether the
first or the second bit is deleted. An interesting question is:
how to construct a practical compression algorithm with the
optimal compression rate, where the encoded bits do not reveal
“nature’s secret”? In this paper we provide such a construction
for a simpler problem where the side-information is available
at both the encoder and decoder. Although the availability of
the side-information is changed, the minimum rate remains the
same.

In this paper, we study the problem of compressing a source
sequence,X, with the help of side-information,Y, which
is available at both the encoder and the decoder. The side-
information is related to the source via insertions, deletions
and substitutions. See Figure 1 for an illustration of the
system. The objective of this work is to construct an encod-
ing/decoding algorithm to achieve the optimal compression
rate defined as the minimum number of encoded bits per
source bit.

1This material is based upon work supported by the US NationalScience
Foundation (NSF) under grants 23287 and 30149 and by a gift from
Qualcomm Inc.. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do notnecessarily reflect
the views of the NSF.
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Fig. 1. Structure of the system

Here is an example of the source and side-information:

X = (0, 0, 1, 1, 0, 1)

Y = (0, 1, 0, 0, 1, 1)

In order to compare these two sequences, we can insert
some gaps, which are denoted by ‘−’, to align them as follows.

X∗ = (0, 0, 1, 1, 0, 1,−)

Y∗ = (0,−, 1, 0, 0, 1, 1)

This alignment explains theX with respect toY with an
insertion, a substitution and a deletion:X2 is inserted between
Y1 andY2; X4 substitutesY3; Y6 is deleted. The encoder needs
to describe the above editing information using the minimum
number of bits.

The problem of synchronizing edited sequences has been
studied by [2]–[4] assuming the number of edits is a constant
that does not increase with the length of the sequence. Upper
and lower bounds on the minimum number of encoded bits
were provided as functions of the number of edits and the
length of the sequence. In [5], an interactive, low-complexity
and asymptotically optimal scheme was proposed. In compari-
son, in this paper, we consider the case that a fraction of source
bits, rather than a constant number of bits, is edited, which
makes the problem more general. There are also practical
synchronization algorithms. such as RSYNC [6] for generic
files and VSYNC [7], which targets video applications. In the
special case when the source and the side-information differ
only by substitutions (side-information is aligned), a universal
compression algorithm has been proposed by [8].

In this paper, we propose a simple compression algorithm,
for which the compression rate is asymptotically optimal
when the editing probability is small. The key ideas are:
(1) describing the locations of insertions and deletions by
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specifying the runs2 of side-information in which they appear,
and (2) separately encoding the edits that appears in runs of
different extents. To explain idea (1), consider the example
where the side-information isY = (0, 0, 1, 0) and the source
is X = (0, 1, 0). Neither the encoder nor the decoder knows
whether the first bit or the second bit is deleted. Therefore the
encoder needs to describe the location of the deletion only up
to a run, which consists of the first two bits in this example, but
not further. To explain idea (2), consider the example wherethe
side-informationY = (0, 0, 1, 0) and the source isX = (0, 1).
These sequences can be explained by two deletions, in the first
run and the third run ofY, respectively. If the deletion process
is memoryless and stationary, the longer first run is more likely
to contain a deletion than the shorter third run. Therefore
the two deletion events should be encoded separately, using
entropy coders with different target distributions, or using a
universal entropy coder.

Our compression algorithm can find applications in a num-
ber of settings, for example, to compress genomic sequences,
as in [9].3 The difference between the genomic sequences from
two individuals of the same species is a small fraction of a
whole sequence, and is in the form of insertions, deletions and
substitutions. If one of the genomic sequences can be used as
side-information, the algorithm can be used to compress the
other sequence. The algorithm can also be used in distributed
file backup or file sharing systems, where different source
nodes have different versions of the same file differing by
a small number of edits including insertions, deletions and
substitutions. Here, an old version can be used as side-
information that is mis-aligned to the new version of the same
file.

The rest of this paper is organized as follows. In Section II
we formally setup the problem. In Section III we consider
a simple case where the source sequence is obtained from
side-information by pure deletion. We present the algorithm
and analyze the performance. In Section IV we present the
algorithm in the general setup.

Notation: Symbols in boldface represent sequences or ma-
trices, and the symbols in non-boldface represent scalars.The
binary entropy function is denoted byh2(·). The notation
{0, 1}n denotes then-fold Cartesian product of{0, 1}, and{0, 1}∗

denotes
(⋃

k∈Z+{0, 1}
k
)⋃
{∅}.

II. Problem Setup

We will define two sequencesX and Y, which differ by
insertions, deletions, and substitutions.

First, consider an auxiliary length-n sequenceZX =

(ZX,1, . . . , ZX,n) ∈ {0, 1}n ∼ iid Bernoulli(p), where p ∈ (0, 1).
PassZX through a binary symmetric channel with crossover
probability q to getZY .

We will then make deletions inZX and ZY to constructX
and Y, respectively. Let the deletion patternDX be a length-
n sequence∼ iid Bernoulli(dX), which is independent ofZX

2A run is the maximal length sequence of a repeated symbol. Theextent,
or length, of a run is the number of times the symbol repeats.

3We would like to thank Dr. Tsachy Weissman for introducing usto this
application.

andZY . The deleted sequenceX ∈ {0, 1}∗ is a subsequence of
ZX , which is derived fromZX by deleting all thoseZX,i’s with
DX,i = 1. Similarly, the deletion patternDY ∼ iid Bernoulli(dY)
describes the deletion process fromZY to Y.

Since the editing process fromZX to X is a deletion process,
the inverse process fromX to ZX can be regarded as an
insertion process. Therefore fromX to Y there are insertions
(from X to ZX), substitutions (fromZY to ZY ) and deletions
(from ZY to Y).

Both sequencesX and Y are available to the encoder and
Y is available only to the decoder as side-information. All the
other sequences,ZX , ZY , DX , andDY are available to neither
the encoder nor the decoder. The encoder encodesX in the
presence ofY and sends a bit string of variable length to the
decoder so that the decoder can reproduceX without any error.
The sequencesX and Y are called the source sequence and
the side-information, respectively. Please see Fig. 2 for the
structure of the system together with the source model.
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Fig. 2. Structure of the system with the source model

The performance of the encoder and the decoder is mea-
sured by the expected operational rate, which is defined as
Rop := limn→∞ E[LM/LY ], whereLM is the length of encoded
bit string, andLY is the length ofY. The objective of this
work is to find an encoder and a decoder which minimize the
expected operational rate.

III. A lgorithm for the Pure Deletion Case

In order to provide a clear presentation of our algorithm,
we start by considering a special case of the general prob-
lem, where the source sequenceX is derived from the side-
information Y only by deletion, but not substitution or in-
sertion. Formally speaking,q = 0 and dY = 0, which imply
ZX = ZY = Y. For the sake of simplicity, in this section and
Appendix A, we drop the subscriptX in dX andDX and denote
them asd andD, respectively.

A. Algorithm for pure deletion

The encoder has the following three stages.
1) Alignment: In this stage we insert some gaps inX

to get X∗, which has the same length asY. The fol-
lowing greedy alignment algorithm described in [10,
Section 3.1] is used.
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ReadX and Y from left to right. Take the first bit of
X, and match it with the leftmost appearance of this
bit in Y; then take the second bit ofX, and match it
with the subsequent leftmost appearance of this bit in
Y; and so on. All the bits inY that are not matched
with bits fromX are matched with gaps denoted by ‘−’.
Let X∗ be the aligned version ofX with gaps inserted.
The alignment implies a reconstructed deletion pattern
D̂, which can explain the deletion process fromY to X,
but is in general different fromD.

2) Describing the deletions with respect to runs:
Let the maximum extent of the runs inY be Lmax. For
IID sequenceY, E[Lmax] = Θ(logn) [11].
The encoder performs the following:
• For l = 1, . . . , Lmax, do:

– ComputeUl, the number of runs of extentl in Y.
– For i = 1, . . . ,Ul, computeV̂l,i, the number of

deletions in thei-th run of extentl in Y according
to D̂.

3) Entropy coding: For eachl = 1, . . . , Lmax, compress the
sequence{V̂l,i}

Ul

i=1 using an entropy coder. Note thatV̂l,i

with l = 1, . . . , Lmax have different distributions.
The encoded string generated by the encoder is the output

of the entropy coder in stage 3).
The decoder has the following two stages.
1) Entropy decoder: Reconstruct{V̂i,l}

Ul
i=1 for eachl.

2) Locate deletions up to runs: For eachl and eachi, find
the i-th run of extentl in Y, and deletêVi,l bits in that
run. The outcome is the reconstruction ofX.

Since the total number of entries in{Vi,l} is the total number
of runs in Y, which is no larger thann, the size of memory
the algorithm takes isO(n). Since the greedy alignment,
the generation and coding of{Vi,l} take O(n) operations, the
algorithm takesO(n) operations.

B. Example

Let the side-information, the hidden deletion pattern, and
the source sequence be as follows for example:

Y = (1, 0, 1, 1, 0, 0, 0, 1, 0,1,1)

D = (1, 0, 0, 1, 0, 1, 0, 0, 0,1,0)

X = (0, 1, 0, 0, 1, 0, 1).

On the encoder side:
Stage 1): The greedy alignment algorithm alignsX and Y

and generateŝD as follows.

Y = (1, 0, 1, 1, 0, 0, 0,1,0,1,1)

X∗ = (−, 0, 1,−, 0, 0,−, 1, 0,1,−)

D̂ = (1, 0, 0, 1, 0, 0, 1,0,0,0,1).

Stage 2): The maximum extent of the runs inY is Lmax = 3.
There areU1 = 4 runs of extent 1,U2 = 2 runs of extent 2,
and U3 = 1 run of extent 3. For the four extent-1 runs, ‘1’,
‘0’, ‘1’ and ‘0’, only the first one is deleted according tôD,
therefore we have

(V1,1,V1,2,V1,3,V1,4) = (1, 0, 0, 0).

For the two extent-2 runs, ‘1, 1’ and ‘1, 1’, there is a deletion
in each of them. Therefore we have

(V2,1,V2,2) = (1, 1).

For the only extent-3 run, ‘0, 0, 0’, there is a deletion in it.
Therefore we have

(V3,1) = (1).

Stage 3): The entropy encoder com-
presses ((V1,1,V1,2,V1,3,V1,4), (V2,1,V2,2), (V3,1)) =

((1, 0, 0, 0), (1, 1), (1)). Note that each entry in
(V1,1,V1,2,V1,3,V1,4) is more likely to be 0 than (V2,1,V2,2) and
(V3,1). Therefore we should use entropy encoder with different
target distributions to encode them, when the sequences are
long.

On the decoder side:
Stage 1): The entropy decoder recon-

structs ((V1,1,V1,2,V1,3,V1,4), (V2,1,V2,2), (V3,1)) =

((1, 0, 0, 0), (1, 1), (1)).
Stage 2): Since (V1,1,V1,2,V1,3,V1,4) = (1, 0, 0, 0), the de-

coder deletes the first run of extent-1, i.e., the first bit. Since
(V2,1,V2,2) = (1, 1), the decoder deletes a bit from each of the
two runs of extent-2. It does not matter which bit to delete in
each run. Since (V3,1) = (1), the decoder deletes a bit in the
only extent-3 run. The deletions are represented byD̃ and the
reconstruction of the source sequence is denoted byX̃.

Y = (1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1)

D̃ = (1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1)

X̃ = (0, 1, 0, 0, 1, 0, 1).

SinceX̃ = X, the reconstruction is correct.

C. Performance of the algorithm

Let U := {Ul}
Lmax

l=1 and V̂ := {V̂l,i}
Lmax,Ul

l=1,i=1. In the limit as
the lengths of the sequences tends to infinity, the operational
rate of this algorithm isRop = limn→∞ H(V̂)/n. The optimal
rate is limn→∞ H(X|Y)/n. When the probability of deletiond
is small, the following theorem shows that the algorithm is
asymptotically optimal.

Theorem 1: The gap between the operational rate of the
algorithm described in Section III-A and the optimal rate
satisfies: limn→∞[H(V̂)/n − H(X|Y)/n] = O(d2−ǫ), for any
ǫ > 0.

The proof is provided in Appendix A, which can be intu-
itively explained as follows. Whend is small, the deletions
are typically far away from each other. Therefore the inter-
vals between the deletions are so long that can be used to
synchronize segments ofX to segments ofY. As a result,
the deletions can be located within the correct runs with high
probability. The exact positions of the deletions within the
runs are impossible to find based on onlyX andY. Since the
goal is to reconstructX, describing the positions within runs
is unnecessary. Moreover, the description of the locationsof
the deletions,̂V, is almost independent of the decoder side-
informationY. Therefore sendinĝV is approximately optimal
in terms of rate. See Section III-D-2 for more discussions
about the independence between̂V and Y. The deletions
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cannot be located within the correct runs only if two or more
deletions are in the same run or adjacent runs, which occurs
with the probability in the order ofO(d2). Therefore the gap
between the operational rate and the optimum is in the order
of O(d2−ǫ).

Remark 1: In [1], we have shown that whenp = 1/2, for
anyǫ > 0, limn→∞ H(X|Y)/n = h2(d)−cd+O(d2−ǫ), wherec :=∑∞

l=1 2−l−1l log2 l ≈ 1.29.4 It captures the asymptotic expansion
of the optimal rate to the precision ofΘ(d) with a remainder
term O(d2−ǫ). Due to Theorem 1,Rop = h2(d) − cd + O(d2−ǫ),
which also matches the optimal rate to the precision ofΘ(d).

Remark 2: In [1], we have shown that limn→∞ H(X|Y)/n is
also the minimum rate when the side-information is only avail-
able available at the decoder but not the encoder. Although the
minimum rate is the same, constructing an explicit algorithm
to implement the distributed compression at the asymptotically
optimal rate remains an open problem.

D. Comparison to other compression algorithms

Let us compare the algorithm described in Section III-A
with two simpler but suboptimal algorithms in the simple case
Y ∼ iid Bernoulli(1/2) (p = 1/2). The comparison reveals
more intuition on why the algorithm is asymptotically optimal.

1) Sending D̂ directly: A simple and the most natural
algorithm to compressX given Y is first running a greedy
alignment to obtain̂D (as in stage 1)) and then compressing
D̂ using an entropy coder (similar to stage 3)). As the lengths
of the sequences tend to infinity, the operational rate is
limn→∞ H(D̂)/n. If we approximateH(D̂) by H(D)5, the opera-
tional rate is approximatelyh2(d) = −d log2 d+d log2 e+O(d2).
Therefore for smalld, the operational rate of this simple
algorithm matches the optimal expression up to the−d log2 d
term. But for theΘ(d) term, there is a gapcd ≈ 1.29d. That
is, this compression algorithm wastes 1.29 bits per deletion bit
on average. Whend is not very small,−d log2 d andd can be
in the same order of magnitude. Therefore the gap may not
be negligible in practice.

The above strategy is suboptimal becauseD̂ specifies the
exact positions of the deletions. Note that after specifying the
runs that contain the deletions and specifying the number of
deletions in each run,X can already be deduced fromY. How-
ever, this strategy goes further and specifies the exact positions
within the runs, which are redundant in terms of reconstructing
X. Therefore this strategy over-describes the positions of the
deletions beyond what is necessary to representX. The amount
of over-description,H(D|X,Y), is called “nature’s secret” in
[1], because only the hypothetical party “nature” has access
to D, but the encoder and decoder do not.

2) Locating deletions up to runs: The analysis of the
previous strategy suggests that the encoder should specifythe
location of the deletions with respect to runs. Therefore a
better algorithm than the one described in Section III-D-1 is
first defining a sequencêW such thatŴi is the number of

4In [1], Y is defined as the deleted version ofX. Therefore the expression
H(X|Y) in this paper corresponds toH(Y|X) in [1].

5It can be made rigorous using the techniques that are similarto those used
to prove argument (iii) in Appendix A

TABLE I
Performance of compression algorithms forn = 1000kb, d = 0.01.

p No SI Sec. III-D-1 Sec. III-D-2 Sec. III-A
0.5 990kb 81kb 71kb 68kb
0.1 469kb 81kb 63kb 46kb

deletions in thei-th run ofY according tôD, then compressing
Ŵ at the entropy rate.

Since the average extent of a run in an iid Bernoulli(1/2)
sequence is 2, the length of̂W is approximately half of that of
D̂. It can be shown6 that the operational rate can be approxi-
mated by (h2(d)−d). There is still a lineard gap between this
rate and the optimal one, given by (c − 1)d ≈ 0.29d. That is,
this algorithm wastes 0.29 bit per deletion bit.

Why is this algorithm suboptimal? The reason is because
Ŵ is significantly correlated withY. If the deletion process is
iid, then the longer runs ofY tend to contain more deletions
and the shorter runs tend to contain less deletions. ThereforeY
reveals a certain amount of information aboutŴ, that is about
0.29 bit per deletion bit. The algorithm described above does
not use this amount of information and thus is suboptimal.

The algorithm described in Section III-A, however, treats
the deletions contained in runs of different extents differently.
As a result the operational rate matches the optimal rate for
theΘ(d) term.

Table I provides a comparison among the performance of the
two algorithms in Section III-D and the one in Section III-A
for n = 1000kb andd = 0.01. Note that whenY has biased
bits (p = 0.1), the benefit of the proposed algorithm in
Section III-A is more significant than whenp = 0.5. The
reason is that whenp = 0.1, the runs ofY are longer and it
pays to exploit the information from the run-lengths.

IV. A lgorithm for the General Case

The algorithm described in Section III-A can be extended
to the general problem whereY is related toX by insertions,
deletions and substitutions.

A. Algorithm for insertions, deletions and substitutions

The encoder has the following stages.

1) Alignment: align X and Y using the minimum total
number of insertions, deletions and substitutions. If there
are multiple such alignments, pick any one of them. This
can be done by the Needleman-Wunsch algorithm [12]
with the gap penalty and the substitution penalty equal
to 1, with computation complexity of orderO(n2). The
algorithm generates two sequencesX∗ and Y∗, which
are X and Y with gaps, respectively. Then construct
ẐX and ẐY by replacing the gaps inX∗ and Y∗ by the
corresponding bits inY∗ andX∗, respectively.

2) Describing the insertions (fromY to ẐY ):
The edits fromY to ẐY can be viewed as insertions.
The locations of the insertions are specified by the gaps

6Using the techniques that are similar to those used to prove argument (iii)
in Appendix A
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in Y∗. The content of the insertions is specified by the
corresponding bits in̂ZY .
All the insertions can be categorized into isolated in-
sertions with only one bit per insertion event, and
bursts of insertions with two or more consecutive bits
per insertion event. For each insolated insertion, if the
inserted bit is equal to the bit on the left (or right) side,
the insertion is extending the run to the left (or right). If
the inserted bit is not equal to the bits on either side, it is
breaking an existing run and creating a new run. We will
describe the isolated insertions that extend runs, then the
insertions that break runs, then the bursts of insertions.

• In order to describe the insertions that extend runs,
the encoder does the following.

– For l = 1, . . . , Lmax (Lmax is the the maximum
extent of the runs inY), do:

∗ For i = 1, . . . ,Ul (Ul is the number of runs
of extent l in Y), let V̂ ins

l,i := 1 if the i-th run
of extent l in Y is extended by one bit, and
V̂ ins

l,i := 0 otherwise.

Having made such insertions,Y becomesY′.
• In order to describe the insertions that break runs,

the encoder does the following.
In the sequenceY′, a slot between two bits is a
potential location to break a run only if the two
bits are the same. The slots before the first bit and
after the last bit are also potential locations to create
new runs. LetU0 denote the total number of such
potential locations inY′. For i = 1, . . . ,U0, let
V̂ ins

0,i := 1 if a bit is inserted in thei-th potential
location, and̂V ins

0,i := 0 otherwise.
Having made such insertions,Y′ becomesY′′. Let
V̂ins denote all the descriptions up to this step:
{V̂ ins

l,i }l≥0.
• In order to describe the bursts of insertions, the en-

coder creates a sequenceV̂burst from ẐY by keeping
the bursts of inserted bits and replacing the other
bits by ‘∗’. V̂burst describes the insertions needed to
construct̂ZY from Y′′.

3) Describe the substitutions (from̂ZY to ẐX):
The edits from̂ZY to ẐX can be viewed as substitutions,
which can be described bŷV sub := ẐY ⊕ ẐX .

4) Describe the deletions (from̂ZX to X) as in stage 2) of
Section III-A. Denote the description bŷVdel.

5) Entropy coding: Use an entropy coder to compressV̂ins,
V̂burst, V̂ sub and V̂del.

The decoder decodeŝVins, V̂burst, V̂ sub and V̂del by an
entropy decoder, and then follow the stages 2) to 4) to
constructX from Y.

B. Performance analysis

The operational rate of the above algorithm can be analyzed
for small probability of insertion, deletion and substitution as
follows.

Theorem 2: The gap between the operational rate of the
algorithm described in Section IV-A and the optimal rate

satisfies: limn→∞[H(V̂ins, V̂burst, V̂ sub, V̂del)/n − H(X|Y)/n] =
O(d2−ǫ), for any ǫ > 0, whered = max{dX , dY , q}.

The proof is similar to that of Theorem 1 and is provided
in Appendix B.

Intuitively, when the editing probabilitiesdX, dY and q
are small, the edits are typically far away from each other.
Therefore the intervals between the edits are so long that the
segments ofX in the intervals can be correctly matched to
the corresponding segments ofY. As a result, the edits can be
isolated. The operational message rate is approximately equal
to the summation of the message rates in the pure deletion
problem, the pure insertion problem and pure substitution
problem. On the other hand, the conditional entropy rate
limn→∞ H(X|Y) can be also approximated by the conditional
entropy rates of the pure deletion problem (limn→∞ H(X|ZX)),
the pure substitution problem (limn→∞ H(ZX |ZY )), and the pure
insertion problem (limn→∞ H(ZY |Y)), with an approximation
gap no more thanO(d2−ǫ). Therefore the algorithm described
above is asymptotically optimal.

V. Concluding Remarks

We have studied the problem of compressing a source se-
quence in the presence of side-information that is mis-aligned
to the source due to insertions, deletions and substitutions. We
have proposed an algorithm to compress the source sequence
given the side-information at both the encoder and decoder.
For small insertion and deletion probability, the compression
rate of the algorithm is asymptotically optimal. Directions
for future work include (1) developing algorithms for bursty
insertions, deletions, and substitutions, and (2) developing
distributed algorithms to compress a source sequence when
the reference sequence is only available at the decoder side.

Appendix A
Proof of Theorem 1

Stage 2) of the algorithm described in Section III-A com-
presses the reconstructed deletion patternD̂ and to generate
V̂. Let V be the output if the true deletion patternD would be
used as the input. Note that the sizes ofV andV̂ are identical,
because they are both determined byY.

We have

H(X|Y) = H(X,V|Y) − H(V|X,Y)
(a)
= H(V|Y) − H(V|X,Y)

= H(V) − I(V; Y) − H(V|X,Y),

= H(V̂) − I(V; Y) − H(V|X,Y) − (H(V̂) − H(V)),

where step (a) is becauseX is determined byY andV. We will
prove the following three arguments: (i)limn→∞ I(V; Y)/n = 0,
(ii) lim n→∞ I(V|X,Y)/n = O(d2−ǫ) for any ǫ > 0, and (iii)
limn→∞ |H(V̂) − H(V)|/n = O(d2−ǫ) for any ǫ > 0.

Proof of argument (i): Given Ul = ul, {Vl,i}
Ul

i=1 is an iid
sequence with distributionpVl,i(v) =

(
l
v

)
dv(1− d)l−v. Therefore

Y − U − V forms a Markov chain. By the data processing
inequality, we have limn→∞ I(X; V)/n ≤ limn→∞ H(U)/n = 0.
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Therefore (i) is proved.

Proof of argument (ii): Let an extended run be a run along
with one additional bit at each end of the run [13]. We call an
extended run ofY atypical if it contains more than one deletion
according toD. Let D∗ be the sequence that is identical toD
in the atypical extended runs, and is equal to ‘∗’ otherwise.
Suppose there areK runs of ‘∗’s in D∗, and thei-th run starts
from positionai and ends at positionbi. Let Ci :=

∑bi
j=ai

D j.
Let C := (C1, . . . ,CK).

With the help ofD∗ and C, aligning X and Y becomes
easier. The atypical extended runs divide the whole sequences
into K segments. One can locateK segments inX, each
of which corresponds to a run of ‘∗’s in D∗. Within each
segment, there are no longer atypical extended runs, and
the deletions can be located in the correct runs without any
ambiguity [13, Proof of Lemma IV.4]. SinceV is only about
the locations of deletions up to runs,H(V|X,Y,D∗,C) = 0,
which implies thatH(V|X,Y) ≤ H(D∗,C). Since an extended
run is atypical with probabilityO(d2), E[K]/n = O(d2) and
H(D∗,C)/n = O(d2−ǫ) for anyǫ. Therefore argument (ii) holds.

Proof of argument (iii): We need to compare the compressed
representation of the true deletion patternD and that of the
reconstructed deletion pattern̂D generated by the greedy align-
ment algorithm. We introduce a sequence∆ = (∆0,∆1, . . . ,∆n)
to indicate the difference betweenD and D̂.

Let ∆0 := 0. For i = 1, 2, . . . , n, let ∆i := ∆i−1+Di − D̂i. The
condition∆i = 0 means that the greedy alignment algorithm
is aligningYi to the correct bit inX. Given∆i−1 and Di, the
value of∆i is as follows.

1) If ∆i−1 = 0 and Di = 0, then D̂i must be 0 and hence
∆i = 0.

2) If ∆i−1 = 0 andDi = 1, thenD̂i = Yi ⊕ Y j, whereY j is
the next undeleted bit. SinceY ∼ iid Bernoulli(p), D̂i ∼

Bernoulli(2p(1− p)). Therefore∆i ∼ Bernoulli(1− 2p+
2p2).

3) If ∆i−1 , 0, either Di = 0 or Di = 1, we haveD̂i =

Yi ⊕ Y j, whereY j is the next undeleted bit. Therefore
D̂i ∼ Bernoulli(2p(1− p)). Therefore∆i = ∆i−1+Di− D̂i

whereDi andD̂i are independent,Di ∼ Bernoulli(d) and
D̂i ∼ Bernoulli(2p(1− p)).

Therefore∆ is a first order Markov chain with the following
transition probabilities:P(∆i = 1|∆i−1 = 0) = 1 − P(∆i =

0|∆i−1 = 0) = d(1− 2p + 2p2). For k , 0, P(∆i = k + 1|∆i−1 =

k) = d(1 − 2p + 2p2), P(∆i = k|∆i−1 = k) = 2p(1 − p), and
P(∆i = k − 1|∆i−1 = k) = (1− d)(1− 2p + 2p2). An important
property of∆ is that, whend ≪ 1, starting from an arbitrary
state, the Markov chain returns to the state 0 inO(1) steps
on average. Therefore if the output of the greedy alignment
algorithm disagrees with the true deletion pattern at some
symbol, they will come back to an agreement inO(1) steps.

When we readD and Y from left to right, if there is
a deletion (Di = 1 for some i) and the run inY that
follows the run containing the deletion is not completely
deleted, then the greedy alignment algorithm can locate the
deletion in the correct run. For example, ifY = (0, 0, 1, 0)

and D = (1, 0, 0, 0), the first ‘0’ is deleted. The algorithm
will generate D̂ = (0, 1, 0, 0), locating the deletion at the
second bit, which is in the same run as the first bit. Since
the compressed representationsV and V̂ are only about the
locations of deletions up to runs, the corresponding entries in
V and V̂ related to this deletion are identical.

If there is a deletion, and the run inY that follows the
run containing the deletion is completely deleted, then the
greedy alignment will locate some deletions in wrong runs. For
example, ifY = (0, 0, 1, 0) andD = (1, 0, 1, 0), the first ‘0’ and
the ‘1’ are deleted. The algorithm will generateD̂ = (0, 0, 1, 1),
locating the deletion of ‘0’ incorrectly in the third run instead
of the first run. Since such an event requires at least two
deletions in consecutive runs, it occurs with probabilityO(d2).
Since D and D̂ will return to an agreement inO(1) steps,
with high probability,n · O(d2) deletions may be placed in
wrong runs by the greedy alignment algorithm throughout the
sequence. Therefore up ton ·O(d2) entries ofV andV̂ can be
different. Hence the entropy of the component-wise difference
is H(V − V̂) = n · O(d2).

Therefore|H(V̂)−H(V)|/n = |H(V̂|V)−H(V|V̂)|/n ≤ 2H(V̂−
V)/n = O(d2), which completes the proof of argument (iii) and
Theorem 1.

Appendix B
Proof of Theorem 2

In this appendix, let̂V denote (̂Vins, V̂burst, V̂ sub, V̂del). Let
V = (Vins,Vburst,V sub,Vdel) denote the corresponding descrip-
tion of the isolated insertions, bursty insertions, substitutions
and deletions if the underlying sourcesZX , ZY , DX and DY

are used. Note that the entries where bothDX andDY specify
deletions are not considered as edits at all. The probability
that such an entry occurs isO(d2).

As in the proof of Theorem 1, we have

H(X|Y) = H(X,V|Y) − H(V|X,Y)

= H(V|Y) − H(V|X,Y)

= H(V) − I(V; Y) − H(V|X,Y),

= H(V̂) − I(V; Y) − H(V|X,Y) − (H(V̂) − H(V)),

We will prove the following three arguments:
(i)lim n→∞ I(V; Y)/n = O(d2−ǫ) for any ǫ > 0, (ii)
limn→∞ I(V|X,Y)/n = O(d2−ǫ) for any ǫ > 0, and (iii)
limn→∞ |H(V̂) − H(V)|/n = O(d2−ǫ) for any ǫ > 0.

Proof of argument (i): I(V; Y) = I(Vins; Y)+ I(Vburst; Y|Vins)+
I(V sub; Y|Vins,Vburst) + I(Vdel; Y|Vins,Vburst,V sub). Due to the
same reason as in the proof of argument (i) in Appendix A,
I(Vins; Y) = o(n). Since the bursty insertion appears with
probability O(d2), I(Vburst; Y|Vins) ≤ H(Vburst) = n · O(d2−ǫ).
Since the substitutions represented byV sub are independent
of (Y,DY ,DX), I(V sub; Y|Vins,Vburst) = 0. Due to the same
reason as in the proof of argument (i) in Appendix A,
I(Vdel; Y|Vins,Vburst,V sub) = 0(n). Combining these four
terms we have proved argument (i).

Proof of argument (ii): The sequencesZX , ZY , DX and DY

imply edits including insertions, deletions and substitutions.
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Let us define the neighborhood of an edit as follows. The
neighborhood of a substitution at positioni is the substitution
together with the first run starting at position (i+1), and the first
bit of the second run. For example, whenZX = (0, 1, 1, 0, 0),
ZY = (1, 1, 1, 0, 0), there is a substitution at positioni = 1,
the neighborhood of which consists of the first four bits. The
neighborhood of a deletion inDX at positioni is the run inZY

that contains the deletion, which ends at positionj, together
with positions j + 1, . . . , j + k, wherek is the smallest integer
satisfying k ≥ 2 and ZY, j+k , ZY, j+k−2. For example,ZX =

ZY = (1, 1, 0, 1, 0, 0), DX = (1, 0, 0, 0, 0, 0), there is a deletion
at position i = 1. The run containing the deletion ends at
position j = 2, andk = 4. Therefore the neighborhood of this
deletion consists of all six bits. The neighborhood of a deletion
in DY is similarly defined. The concept of neighborhood is
plays the same role as the “extended run” in the proof of
argument (ii) in Appendix A, because knowing that there is
no other edit within the neighborhood of the first edit, without
any ambiguity, the first edit can be located in the correct runif
the edit is a deletion or insertion, and can be located precisely
if it is a substitution.

When an edit appears and another edit appears within the
neighborhood of the first edit, we call this neighborhood
atypical. LetZ∗X , Z∗Y , D∗X and D∗Y be the sequences that are
identical toZX , ZY , DX andDY in the atypical neighborhoods,
and take the value ‘∗’ otherwise. Thus the sequences are
divided by the atypical neighborhoods intoK segments of
‘∗’s. Let Cins

i , Csub
i , and Cdel

i be the numbers of insertions,
substitutions and deletions in thei-th run, respectively. Let
C := (Cins

1 ,C
sub
1 ,C

del
1 , . . . ,C

ins
K ,C

sub
K ,C

del
K ).

With the help ofZ∗X , Z∗Y , D∗X and D∗Y and C, aligning X
and Y becomes easier. The atypical neighborhoods divide
the whole sequences intoK segments. One can locateK
segments inX and Y, each of which corresponds to a
run of ‘∗’s in Z∗X , Z∗Y , D∗X and D∗Y . Within each segment,
there are no longer atypical neighborhoods, and the edits
can be located in the correct runs for insertions and
deletions and can be located precisely for substitutions.
ThereforeH(V|X,Y,Z∗X,Z

∗
Y ,D

∗
X ,D

∗
Y ,C) = 0, which implies

that H(V|X,Y) ≤ H(Z∗X ,Z
∗
Y ,D

∗
X ,D

∗
Y ,C). Since an atypical

neighborhood appears with probabilityO(d2), E[K]/n = O(d2)
and H(Z∗X ,Z

∗
Y ,D

∗
X ,D

∗
Y ,C)/n = O(d2−ǫ) for any ǫ. Therefore

argument (ii) holds.

Proof of argument (iii): Stage 1) of the algorithm specified
in Section IV-A generates a reconstructed alignment with the
minimum number of edits, which can be compared with the
original alignment specified byZX , ZY , DX andDY .

For each edit in the original editing process, if there is no
other edit in its neighborhood, the reconstructed alignment
must locate the correct type of edit within the correct run
for if the edit is an insertion or a deletion, or at the correct
position if the edit is a substitution. Otherwise the erroneous
alignment leads to at least another edit in the neighborhood,
which violates the assumption that the reconstructed alignment
has the minimum number of edits.

If there is at least another edit in the neighborhood of
the previous edit, so that the neighborhood is atypical, the

reconstructed alignment is not guaranteed to be the same
as the original alignment. Since such event occurs with the
probability in the order ofO(d2), the number of atypical
neighborhoods is in the order ofn ·O(d2). ThereforêV andV
differ by no more thann · O(d2) entries. Therefore argument
(iii) holds.
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