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Abstract—We study the problem of compressing a source
sequence in the presence of side-information that is relateto the X —
source via insertions, deletions and substitutions. We ppmose a
simple algorithm to compress the source sequence when thelsi
information is present at both the encoder and decoder. A key
attribute of the algorithm is that it encodes the edits conténed
in runs of different extents separately. For small insertion and ] Rop
deletion probabilities, the compression rate of the algothm is Encoder Decoder'—» X
shown to be asymptotically optimal.

Insertions, deletions
substitutions

Fig. 1. Structure of the system

|. INTRODUCTION

. . Here is an example of the source and side-information:
In [], we have studied the problem of compressing a source P

sequence with the help of mis-aligned decoder-only side- X
information, where the source and side-information are the
input and output of a deletion channel, respectively. The-mi
imum rate is shown to correspond to the amount of information :
in the deleted content plus the locations of the deletiomsyum In order to compare these tv‘,’? sequences, we can insert
the uncertainty in the locations given the source and sicg2Me 9aps, which are denoted by, to align them as follows.
information. We refer to the latter as “nature’s secret’isTh X+ (0.0.1,1,0,1,)

is the information that the encoder and decoder can never T

find out. It represents the over-counting of informationhie t Y* (0,-,1,0,0,1,1)

locations of the deletions. For example, if the input angatit ) . . . .

of a deletion channel and are, ) and (0), the encoder and' NS alignment explains th& with respect toY with an
decoder will never know and never need to know whether t{eS€tion, @ substitution and a deletiof is inserted between
first or the second bit is deleted. An interesting question i§t @ndY2; X4 substitutesys; Y is deleted. The encoder needs

how to construct a practical compression algorithm with tH@ describe the above editing information using the minimum

optimal compression rate, where the encoded bits do noarevBUMber of bits. o )

“nature’s secret’? In this paper we provide such a consouct 1h€ problem of synchronizing edited sequences has been
for a simpler problem where the side-information is avddabstudied by[[2]4[4] assuming the number of edits is a constant

at both the encoder and decoder. Although the availabifity #1at does not increase with the length of the sequence. Upper
the side-information is changed, the minimum rate remaias tand lower bounds on the minimum number of encoded bits

same. were provided as functions of the number of edits and the

In this paper, we study the problem of compressing a sour€@9th of the sequence. In[S], an interactive, low-comitjex
sequenceX, with the help of side-informationy, which and asymptotically optimal scheme was proposed. In compari

is available at both the encoder and the decoder. The sid@D: in this paper, we consider the case that a fraction atsou
information is related to the source via insertions, deteti Pits, rather than a constant number of bits, is edited, which

and substitutions. See Figuf@ 1 for an illustration of tH&@akes the problem more general. There are also practical
system. The objective of this work is to construct an encogYnchronization algorithms. such as RSYNC [6] for generic
ing/decoding algorithm to achieve the optimal compressidies and VSYNCI[7], which targets video applications. In the
rate defined as the minimum number of encoded bits p%q)emal case when the source and the side-informatifiardi

(0,0,1,1,0,1)

Y (0,1,0,0,1,1)

source bit only by substitutions (side-information is aligned), auansal
compression algorithm has been proposed by [8].
1This material is based upon work supported by the US NatiGeince In this paper, we propose a simple compression algorithm,

Foundation (NSF) under grants 23287 and 30149 and by a @it fr for which the compression rate is asymptotically optimal
Qualcomm Inc.. Any opinions, findings, and conclusions eoremendations

expressed in this material are those of the authors and duecetsarily reflect when the. _editing prOba.bi"ty is .Sma”_' The key ide"f‘S are.
the views of the NSF. (1) describing the locations of insertions and deletions by
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specifying the rursof side-information in which they appear,andZy. The deleted sequeneée {0, 1}* is a subsequence of

and (2) separately encoding the edits that appears in runsZ@f which is derived fronZx by deleting all thos&x;’s with

different extents. To explain idea (1), consider the examgls; = 1. Similarly, the deletion pattery ~ iid Bernoulli(dy)

where the side-information i¥ = (0,0, 1,0) and the source describes the deletion process frayn to Y.

is X = (0,1,0). Neither the encoder nor the decoder knows Since the editing process frofy to X is a deletion process,

whether the first bit or the second bit is deleted. Therefoee tthe inverse process frorX to Zx can be regarded as an

encoder needs to describe the location of the deletion gmly imsertion process. Therefore frokto Y there are insertions

to a run, which consists of the first two bits in this examplég, b (from X to Zx), substitutions (fronZy to Zy) and deletions

not further. To explain idea (2), consider the example witege (from Zy to Y).

side-informationY = (0,0, 1,0) and the source iX = (0, 1). Both sequenceX andY are available to the encoder and

These sequences can be explained by two deletions, in the fifds available only to the decoder as side-information. Ad th

run and the third run oY, respectively. If the deletion processother sequence&Zy, Zy, Dx, andDy are available to neither

is memoryless and stationary, the longer first run is momdyik the encoder nor the decoder. The encoder encédées the

to contain a deletion than the shorter third run. Therefopgesence oY and sends a bit string of variable length to the

the two deletion events should be encoded separately, usitegoder so that the decoder can reprodtedthout any error.

entropy coders with diierent target distributions, or using aThe sequenceX andY are called the source sequence and

universal entropy coder. the side-information, respectively. Please see Eig. 2 fier t
Our compression algorithm can find applications in a nunstructure of the system together with the source model.

ber of settings, for example, to compress genomic sequences Source model

asin B]E The diference between the genomic sequences from ------------------------------------~ ;

two individuals of the same species is a small fraction of a
whole sequence, and is in the form of insertions, deletiowls a Zx 2y
substitutions. If one of the genomic sequences can be used as
side-information, the algorithm can be used to compress the! . .
other sequence. The algorithm can also be used in distdbute ! Deletion() @On@Y)
file backup or file sharing systems, wherdfelient source "~~~ ""] """ """ "T"TTTTTTTToTToTooqm T
nodes have dierent versions of the same filefldring by
a small number of edits including insertions, deletions and
substitutions. Here, an old version can be used as side-
information that is mis-aligned to the new version of the gam J_‘ Rop
file. Encoder Decoder'—» X
The rest of this paper is organized as follows. In Sediibn Il
we formally setup the problem. In Sectidénllll we considefig. 2. Structure of the system with the source model
a simple case where the source sequence is obtained from
side-information by pure deletion. We present the algorith The performance of the encoder and the decoder is mea-
and analyze the performance. In Section IV we present thered by the expected operational rate, which is defined as
algorithm in the general setup. Rop = limn.o E[Lm/Ly], whereLy is the length of encoded
Notation: Symbols in boldface represent sequences or mhit string, andLy is the length ofY. The objective of this
trices, and the symbols in non-boldface represent scalaes. work is to find an encoder and a decoder which minimize the
binary entropy function is denoted by (-). The notation expected operational rate.
{0, 1}" denotes the-fold Cartesian product gD, 1}, and{0, 1}*

C - o

denotes(Uk€Z+{O, 1}k) {0} I1l. A LGorRITHM FOR THE PURE DELETION CASE
In order to provide a clear presentation of our algorithm,
[I. PROBLEM SETUP we start by considering a special case of the general prob-

lem, where the source sequen¥eis derived from the side-
information Y only by deletion, but not substitution or in-
sertion. Formally speakingy = 0 anddy = 0, which imply
Zx = Zy = Y. For the sake of simplicity, in this section and
AppendiXA, we drop the subscriptin dx andDx and denote
%hem asd and D, respectively.

We will define two sequenceX and Y, which difer by
insertions, deletions, and substitutions.

First, consider an auxiliary length-sequenceZy =
(Zx1,...,Zxn) € {0,1}" ~ iid Bernoulli(p), wherep € (0, 1).
PassZx through a binary symmetric channel with crossov
probability g to getZy.

We will then make deletions i@y andZy to constructX ) )
andY, respectively. Let the deletion patteB be a length- A Algorithm for pure deletion
n sequence- iid Bernoulli(dy), which is independent oZ x The encoder has the following three stages.

1) Alignment: In this stage we insert some gapsXn
2A run is the maximal length sequence of a repeated symbol.ektent, to get X*, which has the same length & The fol-
or length, of a run is the number of times the symbol repeats.

3we would like to thank Dr. Tsachy Weissman for introducingteithis Iowing greed_y alignment algorithm described in[10,
application. Section 3.1] is used.



ReadX andY from left to right. Take the first bit of  For the two extent-2 runs,,1’and ‘1, 1’, there is a deletion
X, and match it with the leftmost appearance of thig; each of them. Therefore we have

bit in Y; then take the second bit of, and match it

with the subsequent leftmost appearance of this bit in (V21,V22) = (1, 1)

Y; and so on. All the bits inY that are not matched For the only extent-3 run, ‘@, 0’, there is a deletion in it.
with bits from X are matched with gaps denoted by." Therefore we have

Let X*_be the a_ligne_zd version of with gaps inserted. (Va1) = (2).
The alignment implies a reconstructed deletion pattern
D, which can explain the deletion process frafto X, ~ Stage  3):  The  entropy ~ encoder  com-
but is in general dferent fromD. presses W11, V12, Vi3, Via), Vo1, V22), (Va1)) =
2) Describing the deletions with respect to runs: ((1,0,0,0).(1,1),(1)). Note that each entry in
Let the maximum extent of the runs ¥ be Lyay. For (V11 V12, Vi3, V1) is more likely to be 0 than\z1, V22) and
IID sequenceY, E[Lmad = ©(logn) [11]. (V3,1). Therefore we should use entropy encoder witffiedent
The encoder performs the following: target distributions to encode them, when the sequences are
) long.
o« Forl=1,..., Lmnax do: .
c ’ tel’J n;?]x ber of ¢ extehin Y On the decoder side:
— ~Omputets, the humber of TUns of extentn . Stage 1): The entropy decoder recon-
— Fori = 1,...,U;, computeV,;, the number of structs (V11 Vio, Vi3 Vi), (Var, Vas), (Var)) _
deletions in the-th run of extent in Y accordin Ny T TR eT Tesl RS
oD 9 ((1,0,0,0), (1,1),(1)).

] Stage 2): SinceMia, V12, Vis,Via) = (1,0,0,0), the de-
3) Entropy coding: For each=1,..., Lmax cOMpress the ¢qger deletes the first run of extent-1, i.e., the first bincsi

oding: o > |
sequencedVi;}iZ; using an entropy coder. Note thef; (V21, V22) = (1, 1), the decoder deletes a bit from each of the

with I =1,..., Lmax have diferent distributions. two runs of extent-2. It does not matter which bit to delete in
The encoded string generated by the encoder is the outpgth run. SinceVz1) = (1), the decoder deletes a bit in the
of the entropy coder in stage 3). only extent-3 run. The deletions are represente®mnd the
The decoder has the following two stages. reconstruction of the source sequence is denotel.by

1) Entropy decoder: Reconstrugt, }”!

i, for eachl.
2) Locate deletions up to runs: For edcand each, find
thei-th run of extent in Y, and deleteV;; bits in that

run. The outcome is the reconstructionof
Since the total number of entries i\, } is the total number
of runs inY, which is no larger tham, the size of memory
the algorithm takes i0(n). Since the greedy alignment,
the generation and coding ¢¥:,} take O(n) operations, the C. Performance of the algorithm

(1,0,1,1,0,0,0,1,0,1, 1)
(1,0,1,0,0,0,1,0,0,0,1)
(0,1,0,0,1,0,1).

X1 Ol <
no

SinceX = X, the reconstruction is correct.

algorithm takesO(n) operations. Let U = (U} and V = (V=Y. In the limit as
the lengths of the sequences tends to infinity, the opemtion

B. Example rate pf Fhis algorithm iRyp = liMpse H(V)/n. The opti_mal
Let the side-information, the hidden deletion pattern, ar{ate IS 1Moo H(X|Y_)/n. When the probability of delet|_0d )
the source sequence be as follows for example: is small, the following theorem shows that the algorithm is

asymptotically optimal.

Y = (1,0,14,100,0,10,1,1) Theorem 1: The gap between the operational rate of the
D = (1,0,0,1,0,1,0,0,0,1,0) algorithm described in Section 1A and the optimal rate
X = (0,1,0,0,1,0,1). sa:i%ﬁes: lIMoo[HV)/n = HX]Y)/n] = O(d%¢), for any
€ .
On the encoder side: The proof is provided in Appendix]A, which can be intu-
Stage 1): The greedy alignment algorithm alighsandY itively explained as follows. Whed is small, the deletions
and generateP as follows. are typically far away from each other. Therefore the inter-
Y = (1,011,000,1011) vals between the deletions are so long that can be used to
. synchronize segments of to segments ofY. As a result,
XA = (+01-00-101-) the deletions can be located within the correct runs witln hig
D = (1,0,0,1,0,0,1,0,0,0,1). probability. The exact positions of the deletions withire th

runs are impossible to find based on oilyandY. Since the
goal is to reconstruck, describing the positions within runs
is unnecessary. Moreover, the description of the locatans
the deletionsy, is almost independent of the decoder side-
informationY . Therefore sendin&’\ is approximately optimal

in terms of rate. See Sectidn I}D-2 for more discussions
(V1.1, V12, V13, V14) = (1,0,0,0). about the independence betwe®nand Y. The deletions

Stage 2): The maximum extent of the runsvins Ly = 3.
There areU; = 4 runs of extent 1J, = 2 runs of extent 2,
andUs = 1 run of extent 3. For the four extent-1 runs, ‘1’
‘0, ‘1" and ‘0, only the first one is deleted according 0,
therefore we have



- . TABLE |
cannot be located within the correct runs only if two or more performance of compression algorithmstios 1000kb, d = 0.01.
deletions are in the same run or adjacent runs, which occurs

with the probability in the order o©(d?). Therefore the gap p_[ No SI'| SecIl-D-1 | Sec-0-2 | SecI-A
i i o 0.5 | 990kb 81kb 71kb 68kb
gl?tow(((ajg_ne)the operational rate and the optimum is in the order o1 | 289Kb 81kb 63k0 A6kD

Remark 1. In [I], we have shown that whep = 1/2, for
anye > 0, limy_,, H(X|Y)/n = hy(d)-cd+0O(d*¢), wherec := U = _
e o-1-1| log, | ~ 1.20A It captures the asymptotic expansionq~eletlons in the-th run of Y according tdD, then compressing

: - . : W at the entropy rate.
of the optimal rate to the precision @f(d) with a remainder . . .
term O(d2-<). Due to Theorerfil1Rop = ha(d) — cd + O(c>), Since the average extent of a run in an iid BernoulR(l

which also matches the optimal rate to the precisio® (). sequence is 2, the length 0 is approximately half of that of

Remark 2: In [, we have shown that ligy,.. H(XIY)/n is D. It can be shovfhthat the operational rate can be approxi-

o L C Y mated by fi;(d) —d). There is still a linead gap between this
also the minimum rate when the side-information is only lavai ate and the optimal one, given by+ 1)d ~ 0.29d. That s,

able available at the decoder but not the encoder. Altholuigh {his algorithm wastes.@9 bit per deletion bit

minimum rate is the same, constructing an explicit alganith Why is this algorithm suboptimal? The reason is because

to |mplement the d_|str|buted compression at the asymgattiyic W is significantly correlated wittY. If the deletion process is
optimal rate remains an open problem.

iid, then the longer runs of tend to contain more deletions
and the shorter runs tend to contain less deletions. Thergfo
D. Comparison to other compression algorithms reveals a certain amount of information ab®\t that is about

Let us compare the algorithm described in Secfion 11-R-29 bit per deletion bit. The algorithm described above does
with two simpler but suboptimal algorithms in the simpleeagd0t use this amount of information and thus is suboptimal.
Y ~ iid Bernoulli(1/2) (p = 1/2). The comparison reveals The algorithm described in Sectign 1IFA, however, treats

more intuition on why the algorithm is asymptotically op&im the deletions containeq in runs oftiirent extents tﬂjerently.
1) Sending D directly: A simple and the most naturalAS @ result the operational rate matches the optimal rate for

algorithm to compresX given Y is first running a greedy the @(d) term. .

alignment to obtairD (as in stage 1)) and then compressing Tablel prowd_esaco_mpanson among the pgrformance of the
D using an entropy coder (similar to stage 3)). As the lengtA¥0 algorithms in Sectio II-D and the one in Sectlon TI-A
of the sequences tend to infinity, the operational rate f@r N = 1000kb andd = 0.01. Note that wher¥ has biased
iMoo H(B)/n. If we approximateH(B) byH(Dﬁ the opera- bits .(p = 0.1.), the benefl_t. of the proposed algorithm in
tional rate is approximately(d) = —dlog, d+dlog, e+O(d?). SectlonI;I]]E is more significant than whep = 0.5. Thg
Therefore for smalld, the operational rate of this simplef€@son is that whep = 0.1, the runs ofY are longer and it
algorithm matches the optimal expression up to #idog,d  Pays to exploit the information from the run-lengths.

term. But for the®(d) term, there is a gapd ~ 1.29d. That

is, this compression algorithm waste24 bits per deletion bit IV. ALGORITHM FOR THE GENERAL CASE

ionn tﬁ\ée;gn?é V(;/rr:jee(: '(‘:'fnrﬁgviirzjzza.pg;g%zrg ;neddacar;nt;e Ot'I' he algorithm described in Secti@n IIFA can be extended
9 ’ 9ap may N8line general problem whek¢ is related toX by insertions,

be negligible in practice. : o
The above strategy is suboptimal becalsspecifies the deletions and substitutions.

exact positions of the deletions. Note that after specoifythe
runs that contain the deletions and specifying the number &f Algorithm for insertions, deletions and substitutions
deletions in each rurX can already be deduced froh How-
ever, this strategy goes further and specifies the exadigusi
within the runs, which are redundant in terms of reconsimngct

X. Therefore this strategy over-describes the positiondef t
deletions beyond what is necessary to repreXeite amount

of over-descriptionH(DIX,Y), is called “nature’s secret” in
[1], because only the hypothetical party “nature” has asces
to D, but the encoder and decoder do not.

2) Locating deletions up to runs: The analysis of the
previous strategy suggests that the encoder should spkeify
location of the deletions with respect to runs. Therefore a
better algorithm than the one described in SedionJII-B51 i
first defining a sequenc@/ such thatW is the number of

The encoder has the following stages.

1) Alignment: align X and Y using the minimum total
number of insertions, deletions and substitutions. Ifeéher
are multiple such alignments, pick any one of them. This
can be done by the Needleman-Wunsch algorithm [12]
with the gap penalty and the substitution penalty equal
to 1, with computation complexity of ordeéd(n?). The
algorithm generates two sequence’s and Y*, which
are X and Y with gaps, respectively. Then construct
Zx and Zy by replacing the gaps iX* andY* by the
corresponding bits iy* and X*, respectively.

2) Describing the insertions (frond to ZY):

The edits fromY to ZY can be viewed as insertions.
4In [I], Y is defined as the deleted versionf Therefore the expression The locations of the insertions are specified by the gaps
H(X]Y) in this paper corresponds td(Y|X) in [1].

5t can be made rigorous using the techniques that are sitildose used 6Using the techniques that are similar to those used to prapereent (i)
to prove argument (iii) in AppendikJA in Appendix[A



in Y*. The content of the insertions is specified by thsatisfies: lim_.,[H(V"S, VPurst s \deyn — H(X|Y)/n] =

corresponding bits iy O(d?>), for any e > 0, whered = maxdy, dy, g}.

All the insertions can be categorized into isolated in- The proof is similar to that of Theorefd 1 and is provided

sertions with only one bit per insertion event, anth Appendix[B.

bursts of insertions with two or more consecutive bits Intuitively, when the editing probabilitiesly, dy and g

per insertion event. For each insolated insertion, if trere small, the edits are typically far away from each other.

inserted bit is equal to the bit on the left (or right) sideTherefore the intervals between the edits are so long tieat th

the insertion is extending the run to the left (or right). Ikegments ofX in the intervals can be correctly matched to

the inserted bit is not equal to the bits on either side, it the corresponding segmentsYof As a result, the edits can be

breaking an existing run and creating a new run. We wilsolated. The operational message rate is approximatelsieq

describe the isolated insertions that extend runs, then hethe summation of the message rates in the pure deletion

insertions that break runs, then the bursts of insertionstoblem, the pure insertion problem and pure substitution
. In order to describe the insertions that extend rungfoblem. On the other hand, the conditional entropy rate

the encoder does the following. limn. H(X]Y) can be also approximated by the conditional
—Forl = 1,...,Lmax (Lmax is the the maximum €Ntropy rates of the pure deletion problem dim H(X|Zx)),
extent of the runs iry), do: the pure substitution problem (lim. H(Zx|Zv)), and the pure

insertion problem (lim,. H(Zv[Y)), with an approximation
gap no more tha®(d>€). Therefore the algorithm described
above is asymptotically optimal.

x Fori = 1,...,U; (Uy is the number of runs
of extentl in Y), let Vlifi‘s := 1 if the i-th run
of extentl in Y is extended by one bit, and
V" := 0 otherwise.

Having made such insertion¥, becomesy’. V. ConcLupING REMARKS
- In order to describe the insertions that break runs, We have studied the problem of compressing a source se-
the encoder does the following. quence in the presence of side-information that is misaali

In the sequencé”’, a slot between two bits is ato the source due to insertions, deletions and substitsitid/e
potential location to break a run only if the twohave proposed an algorithm to compress the source sequence
bits are the same. The slots before the first bit anglven the side-information at both the encoder and decoder.
after the last bit are also potential locations to creafor small insertion and deletion probability, the compi@ss
new runs. LetUo denote the total number of suchrate of the algorithm is asymptotically optimal. Direction

potential locations inY’. Fori = 1,...,Uo, let for future work include (1) developing algorithms for byrst
Vor = 1if a bit is inserted in the-th potential insertions, deletions, and substitutions, and (2) dewetpp
location, and\/(i)”iS := 0 otherwise. distributed algorithms to compress a source sequence when

Having made such insertion¥; becomesY”. Let the reference sequence is only available at the decoder side
Vi’_‘s denote all the descriptions up to this step:
{V|I,?S}|20-

« In order to describe the bursts of insertions, the en-

coder creates a sequerfi@JrSt from Zy by keeping ] ) )
the bursts of inserted bits and replacing the other Stage 2) of the algorithm described in Section TlI-A com-

bits by ‘. Vbust describes the insertions needed tB'€sses the reconstructed deletion patﬁrand to generate
construciZy from Y” . V. LetV be the output if the true deletion pattebnwould be
3) Describe the substitutions (fro?iw to Zx)' used as the input. Note that the sizes/adndV are identical,

The edits frome to Zx can be viewed as substitutions,because they are both determinedy

APPENDIX A
ProoF or THEOREM[]]

which can be described by® := Zy & Zx. We have
4) Describe the deletions (fro@x to X) as in stage 2) of Hx|y) = H(X,V|Y)-H(VIX,Y)
SectiorII[-A. Denote the description By, @
5) Entropy coding: Use an entropy coder to comp@@& = HVIY)-H(VIX,Y)
Vburst [y/sib g \/del, = H(V)-1(V;Y) - H(VIX,Y),
The decoder decodeg™s, Vburst y/sb gnd i py an = H(V)-1I(V;Y) = H(VIX,Y) = (H(V) = H(V)),

entro decoder, and then follow the stages 2) to 4) to ) ) . .
const%ctx from Y g ) ) where step (a) is becauXes determined by andV. We will

prove the following three arguments: (i)lim. 1 (V;Y)/n=0,
(i) lim oo I(VIX,Y)/Nn = O(d? ) for any e > 0, and (iii)
B. Performance analysis iMoo [H(V) = H(V)l/n = O(d%€) for any e > 0.
The operational rate of the above algorithm can be analyzed
for small probability of insertion, deletion and subsiitatas Proof of argument (i): Given U; = u, {Vi;}, is an iid
follows. sequence with distributiopy,, (v) = (\'/)d"(l —d)"Y. Therefore
Theorem 2: The gap between the operational rate of th& — U — V forms a Markov chain. By the data processing
algorithm described in Section IVIA and the optimal ratéequality, we have lig.. I(X;V)/n < lim,_. H(U)/n = 0.



Therefore (i) is proved. and D = (1,0,0,0), the first ‘0" is deleted. The algorithm
will generateﬁ = (0,1,0,0), locating the deletion at the
Proof of argument (ii): Let an extended run be a run alongecond bit, which is in the same run as the first bit. Since
with one additional bit at each end of the riin][13]. We call afhie compressed representationsand V are only about the
extended run of atypical if it contains more than one deletiorlocations of deletions up to runs, the corresponding extrie
according toD. Let D* be the sequence that is identicalo V andV related to this deletion are identical.
in the atypical extended runs, and is equal tbdtherwise. If there is a deletion, and the run i that follows the
Suppose there ai¢ runs of %’s in D*, and thei-th run starts run containing the deletion is completely deleted, then the
from positiona; and ends at positioh;. Let C; := 2';’;34_ D;. greedy alignment will locate some deletions in wrong rums. F
Let C:=(Cyq,...,Ck). example, ify = (0,0,1,0) andD = (1,0, 1,0), the first ‘0’ and
With the help ofD* and C, aligning X and Y becomes the ‘1’ are deleted. The algorithm will generdde= (0,0, 1, 1),
easier. The atypical extended runs divide the whole se@sent9cating the deletion of ‘0" incorrectly in the third run itesd
into K segments. One can locaté segments inX, each Of the first run. Since such an event requires at least two
of which corresponds to a run of’6 in D*. Within each deletions in consecutive runs, it occurs with probabilg?).
segment, there are no longer atypical extended runs, apiice D and D will return to an agreement i©(1) steps,
the deletions can be located in the correct runs without awjth high probability,n - O(d?) deletions may be placed in
ambiguity [13, Proof of Lemma IV.4]. Sinc¥ is only about wrong runs by the greedy alignment algorithm throughout the
the locations of deletions up to runsl(V|X,Y,D* C) = 0, Sequence. Therefore up o O(d?) entries ofV andV can be
which implies thatH(V|X, Y) < H(D*, C). Since an extended different. Hence the entropy of the component-wistedénce
run is atypical with probabilityO(d2), E[K]/n = O(d2) and is H(V - V) = n-O(d?). _ _ _
H(D*, C)/n = O(d? ) for anye. Therefore argument (i) holds. ~ TherefordH(V)-H(V)I/n = [H(VIV)-H(VIV)|/n < 2H(V -
V)/n = O(d?), which completes the proof of argument (jii) and
Proof of argument (iii): We need to compare the compresse@heorentlL.
representation of the true deletion patt&nand that of the

reconstructed deletion pattebngenerated by the greedy align- ArpENDIX B
ment algorithm. We introduce a sequernce (Ao, Ay, . . ., An) PROBF OF THEOEEMq L
to indicate the dference betweeB andD. In this appendix, lelV denote Y"s, Vburst \ysub y/del) | et

LetAg:=0.Fori=1,2,...,n, letA; ;= Ai_1+D;—D;. The V = (Vs vburst \/sb \/del) denote the corresponding descrip-
condition A; = 0 means that the greedy alignment algorithrtion of the isolated insertions, bursty insertions, substins
is aligningY; to the correct bit inX. Given Aj_; and D;, the and deletions if the underlying sourc&s, Zv, Dx and Dy

value of A; is as follows. are used. Note that the entries where bbthandDy specify
1) If Ay = 0 andD; = 0, thenD; must be 0 and hence deletions are not considered as edits at all. The probgbilit
A =0. ’ that such an entry occurs 6(d?).

2) If Ay = 0 andD; = 1, thenD; = Y, ® Y, whereY; is As in the proof of Theorerl1, we have
the next undeleted bit. Sincé ~ iid Bernoulli(p), Di ~  H(X|Y) = H(X,V|Y)-H(VIX,Y)

Bernoulli(2p(1 - p)). ThereforeA; ~ Bernoulli(1-2p + ; H(VIY) = H(VIX, Y)

2p?). .
3) If Ai_y # 0, eitherD; = 0 or D; = 1, we haveD; = = H(Y) = 1(V;Y) = H(VIX, Y), N
Y; @ Yj, whereY; is the next undeleted bit. Therefore = H(V) - 1(ViY) - H(VIX,Y) = (H(V) - H(V)),

Di ~ Bernoulli(2p(1- p)). ThereforeA; = Ai_y + D; - Dj We
whereD; andpi are independenb; ~ Bernoulli{d) and OliMnow I(V;Y)/n = O2) for any e > 0, (i)
Di ~ Bernoulli(2p(1 - p)). liMpe I(VX, Y)/n = O(c<) for any e > 0, and (ii)
ThereforeA is a first order Markov chain with the following lim,,_,.. [H(V) — H(V)|/n = O(d?¢) for any € > 0.
transition probabilitiesP(A; = 1jAi.1 = 0) = 1 - P(A; =
0Ai_1 = 0) = d(1-2p+2p?). Fork # 0, P(Aj = k+ 1JAi.1 =  Proof of argument (i): 1(V;Y) = 1(VI"S; Y) + [ (Vburst: y|vins) 4
K) = d(1—2p+ 2p?), P(Ai = KlAi_1 = K) = 2p(1— p), and | (VsW; Y|vins \/bursty 4 | (ydels y|yins \/burst y/siby pue to the
P(Ai = k—1JAi_; = K) = (1 - d)(1 - 2p + 2p?). An important same reason as in the proof of argument (i) in Appefhdix A,
property ofA is that, whend < 1, starting from an arbitrary 1(VI"s;Y) = o(n). Since the bursty insertion appears with
state, the Markov chain returns to the state 00(1) steps probability O(d?), I(VPUS; Y|VINS) < H(VPUS) = n. O(d?).
on average. Therefore if the output of the greedy alignmeBince the substitutions represented 8§ are independent
algorithm disagrees with the true deletion pattern at soroé (Y, Dy, Dy), |(VS;Y|VInS, vPUsy = 0. Due to the same
symbol, they will come back to an agreementQ(il) steps. reason as in the proof of argument (i) in AppendiX A,
When we readD and Y from left to right, if there is [(V9;Y|Vins vourst ysib) - o). Combining these four
a deletion D; = 1 for somei) and the run inY that terms we have proved argument (i).
follows the run containing the deletion is not completely
deleted, then the greedy alignment algorithm can locate tReof of argument (ii): The sequenceZy, Zy, Dx and Dy
deletion in the correct run. For example,Nf = (0,0,1,0) imply edits including insertions, deletions and subsiitus.

will  prove the following three arguments:



Let us define the neighborhood of an edit as follows. Theconstructed alignment is not guaranteed to be the same
neighborhood of a substitution at positiois the substitution as the original alignment. Since such event occurs with the
together with the first run starting at positida-{), and the first probability in the order ofO(d?), the number of atypical

bit of the second run. For example, wh&g = (0, 1,1,0,0),
Zy = (1,1,1,0,0), there is a substitution at positian= 1,

neighborhoods is in the order of O(d?). ThereforeV andV
differ by no more tham - O(d?) entries. Therefore argument

the neighborhood of which consists of the first four bits. Th@i) holds.

neighborhood of a deletion iDy at positioni is the run inZy

that contains the deletion, which ends at positjpiogether
with positionsj + 1,..., j + k, wherek is the smallest integer [
satisfyingk > 2 and Zyj.x # Zyjk—2. For exampleZyx =

Zy =(1,1,0,1,0,0), Dx = (1,0,0,0,0,0), there is a deletion

at positioni = 1. The run containing the deletion ends at[]
position j = 2, andk = 4. Therefore the neighborhood of this
deletion consists of all six bits. The neighborhood of a tiete

in Dy is similarly defined. The concept of neighborhood is
plays the same role as the “extended run” in the proof of
argument (ii) in AppendiX_A, because knowing that there id4]
no other edit within the neighborhood of the first edit, witho
any ambiguity, the first edit can be located in the correctifun [5]
the edit is a deletion or insertion, and can be located pebcis [6]
if it is a substitution.

When an edit appears and another edit appears within thé
neighborhood of the first edit, we call this neighborhoo
atypical. LetZ}, Z}, Dy and D, be the sequences that are
identical toZx, Zvy, Dx andDy in the atypical neighborhoods,
and take the valuesx' otherwise. Thus the sequences ar
divided by the atypical neighborhoods int segments of
‘x's. Let CI"S, C*, and C™ be the numbers of insertions,[10]
substitutions and deletions in theth run, respectively. Let
C:= (C's,c0,cdd, ..., CiPs, P, Cie).

With the help ofZj, Z%, D} and Dy andC, aligning X [12]
and Y becomes easier. The atypical neighborhoods divide
the whole sequences intd segments. One can locate [13]
segments inX and Y, each of which corresponds to a
run of '+'s in Z§, Z{, Dy and Dj. Within each segment,
there are no longer atypical neighborhoods, and the edits
can be located in the correct runs for insertions and
deletions and can be located precisely for substitutions.
ThereforeH(V|X, Y, Z}, Z3, Dy, Dy, C) = 0, which implies
that H(VIX,Y) < H(Z},Z3,D§, Dy, C). Since an atypical
neighborhood appears with probabil®(d?), E[K]/n = O(d?)
and H(Z, Z}, Dy, Dy, C)/n = O(d?) for any e. Therefore
argument (ii) holds.

(11]

Proof of argument (iii): Stage 1) of the algorithm specified
in Section IV-A generates a reconstructed alignment with th
minimum number of edits, which can be compared with the
original alignment specified b¥x, Zv, Dx andDy.

For each edit in the original editing process, if there is no
other edit in its neighborhood, the reconstructed alignmen
must locate the correct type of edit within the correct run
for if the edit is an insertion or a deletion, or at the correct
position if the edit is a substitution. Otherwise the ermune
alignment leads to at least another edit in the neighborhood
which violates the assumption that the reconstructed alégrt
has the minimum number of edits.

If there is at least another edit in the neighborhood of
the previous edit, so that the neighborhood is atypical, the
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