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Abstract

We study the optimality of the minimax risk of truncated series estimators for sym-
metric convex polytopes. We show that the optimal truncated series estimator is within
O(logm) factor of the optimal if the polytope is defined by m hyperplanes. This rep-
resents the first such bounds towards general convex bodies. In proving our result, we
first define a geometric quantity, called the approximation radius, for lower bounding the
minimax risk. We then derive our bounds by establishing a connection between the ap-
proximation radius and the Kolmogorov width, the quantity that provides upper bounds
for the truncated series estimator. Besides, our proof contains several ingredients which
might be of independent interest: 1. The notion of approximation radius depends on the
volume of the body. It is an intuitive notion and is flexible to yield strong minimax lower
bounds; 2. The connection between the approximation radius and the Kolmogorov width
is a consequence of a novel duality relationship on the Kolmogorov width, developed by
utilizing some deep results from convex geometry [1, 19, 8].

1 Introduction

In this paper, we study the minimax risk of estimators for symmetric convex polytopes. We
show that for a symmetric convex polytope defined by m hyperplanes, the truncated series
estimator, a special type of linear estimator, is within O(logm) factor of the optimal.

In non-parametric statistics, the minimax risk of an estimator measures the worst case
expected loss of the estimator for input coming from some subset X ⊆ R

n (see Section 2.2
for a formal definition). Tremendous work has been done on understanding the optimal
minimax risk for various families of X. But it is usually very difficult to design the optimal
estimator. The truncated series estimator is a family of linear estimator that simply projects
an observation to a properly chosen subspace. Despite its simplicity, the truncated series
estimator is surprisingly powerful and is shown to be nearly optimal for wide families of
convex bodies. [17] shows that such estimator is nearly optimal for ellipsoids. In [5], it is
shown that it is nearly optimal for the wider family of orthosymmetric and quadratically
convex objects, including ℓp balls for p ≥ 2.

In this paper, we show that the power of truncated series estimator extends to the rich
class of symmetric polytopes. Specifically, we show that for a symmetric convex polytope
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defined by m hyperplanes, the truncated series estimator is within O(logm) factor of the
optimal. Previously, such results have only been obtained for particular family of convex
polytopes, such those corresponding to the Lipschitz condition [14] or satisfying certain iso-
metric conditions [18]. As a motivating example, we discuss one application of our result in
estimating values of a Lipschitz function.

Example. One important estimation problem in the literature is the estimation of functions
satisfying certain continuity or Lipschitz conditions from noisy measurements. Consider a
univariate Lipschitz function f : [0, 1] → R. Suppose that xi = f(ti) for i = 1, . . . , n, and we
have measurements yi according to the model yi = xi +wi for some gaussian noise wi. Then
Lipschitz condition, with constant L, translates to the linear constraints:

|xi+1 − xi| ≤ L |ti+1 − ti|, for i = 1, . . . , n− 1. (1)

Now, we are interested in estimating xi from yi. A key observation is that the vector
x = (x1, · · · , xn) falls in the set X, where

X = {x : |xi+1 − xi| ≤ L |ti+1 − ti|, for 1 ≤ i ≤ n− 1}. (2)

Note that X is a symmetric convex polytope.

When the sampling is uniform, i.e. ti = (i− 1)/(n − 1), then X has a more special form
of X = {x : |xi+1 − xi| ≤ L/(n − 1)}. In this case, previous work [14, 20] has shown that
the best truncated series estimator is nearly optimal. As a consequence of our work, the
truncated series estimator is nearly optimal (within O(log n) factor) for estimating Lipschitz
function at arbitrary sample set {t1, . . . , tn}.

At the high level, the proof of our results follows a very simple strategy. We choose a
family of “obstruction objects” for which we can obtain lower bounds of the minimax risk.
Then we show a “duality” result that if X does not have a good truncated series estimator,
then it will have to contain a “large” obstruction, and therefore no estimator can do well onX.
Of course, the difficulty is in choosing the obstruction so that we can prove the corresponding
duality result. Some natural obstructions include hyper-rectangles and Euclidean balls, for
which we know very tight minimax lower bound. But they turn out to be too restrictive
to allow a strong enough duality result. To overcome this difficulty, we consider a broader
family consisting of objects which contain a “non-negligible” fraction of a “large” Euclidean
ball; whence we are able to establish a desired duality relationship.

More specifically, we first define a geometric measure for any set, called approximation
radius, and then develop a lower bound technique which bounds the minimax risk of any
body by its approximation radius. Intuitively, the approximation radius of an object X is
the maximum radius of a ball with “non-negligible” volume fraction inside X. By refining
the technique in [23], we can show that the minimax risk of X is asymptotically as large as
that of the ball with X’s approximation radius (see Theorem 3.2). On the other hand, the
minimax risk of truncated series estimator is determined by the Kolmogorov width of the
object. Our bound is then derived by establishing a connection between the Kolmogorov
widths and the approximation radius of the symmetric convex bodies (see Theorem 3.4). For
the connection, we first derive a duality relationship between the Kolmogorov widths of X
and its polar dual X◦ (see Theorem 3.3), by utilizing some results from convex geometry
started in [1]. The Kolmogorov width of X◦ is then shown, by probabilistic arguments, to be
intimately related to the approximation radius of X.
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1.1 Related work

There is a vast body of work on the minimax estimators and it is beyond the scope of this
paper to survey all of them. We refer to [14, 20, 11] for comprehensive survey and will
describe some work most relevant to this paper. Since we focus on the mean squared error
(MSE), all the subsequent discussion is in the context of MSE.

The minimax bounds have been developed for various families of convex bodies through
intensive research in the past decades. Asymptotically tight bounds have been proposed for
convex bodies that correspond to various continuity or energy conditions; the classes of Hölder
balls, Sobolev balls, and Besov balls. We refer to Chapter 2.8 in [20] for a comprehensive
recount of the references. Despite these remarkable results, it is still largely unknown how to
compute the minimax risk for an arbitrary convex body. Some previous work does attempt
to deal with less specific objects (see [18] and the references therein), but all the optimality
results are under (fairly strong) isometric assumption about the objects.

On the other hand, the truncated series estimator has a nice geometric interpretation
and is related to the classical Kolmogorov width of the underlying space. In addition to its
simplicity, [5] shows that it is asymptotically optimal for the classes of orthosymmetric and
quadratically convex objects. This includes the class of diagonally stretched ℓp balls for p ≥ 2.
Present paper shows that the power of truncated series estimators also extend to the family
of symmetric convex polytopes, as long as the polytope is defined by nO(1) hyperplanes.

To achieve our result, we develop a lower bound technique based on a geometric quantity
which we dub approximation radius. Using Fano’s inequality and the refinement developed
in [23, 18], we show that the minimax risk of a convex body is lower bounded by that of the
ball with radius equal to the approximation radius of that body. Compared to the existing
lower bound techniques, such as the Bernstein bound and the bound followed from considering
the worst (typically discrete) distributions (see [14, 20] and [4, 6]), the approximation radius
relies on a volume estimation and is both convenient to operate and flexible to provide strong
lower bounds.

One center piece in this paper is the connection established between the approximation
radius and the Kolmogorov width. Towards this step, we use some results developed in Ba-
nach space geometry which was initialized in [1] for investigating the invertibility of matrices
with large “robust” rank and subsequently developed by [19, 8]. In particular, we show a
duality relationship between the Kolmogorov widths of a convex body and its polar dual
body. Our result has a similar flavor to the classical duality in [13] but is tighter when the
dimension gap is small.

2 Preliminaries

2.1 Notations and definitions

For a vector x = (x1, · · · , xn) and a real number p ≥ 1, denote by ‖x‖p the ℓp-norm of x,
and ‖x‖∞ = maxi |xi|. When p is absent, it means ℓ2 norm. Let Bn

p (x, r) denote the n
dimensional ℓp ball with radius r and center x. Whenever the center is at the origin, it is
denoted by Bn

p (r). Also, we drop the superscript n, whenever the dimension is clear from
the context, and suppress the argument r for r = 1.

A set X ⊂ R
n is called centrally symmetric (or simply symmetric) if for any x ∈ X, we
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have −x ∈ X. For a set K, the (ℓ2) radius of X is defined as in the following.

rad(X) = max
x∈K

‖x‖.

For p > 0, and n ≥ 1, the family Fm,n
p is defined as

Fm,n
p = {X : X = {x : |Ax|p ≤ 1}, for A ∈ R

m×n} (3)

In particular, when p = ∞, Fm,n
∞ consists of symmetric convex polytopes defined by m

hyperplanes. Throughout we consider bounded convex bodies. Our results easily extend to
unbounded convex bodies, but the presentation would be cumbersome by including separate
case analysis which does not add any new insight.

2.2 Minimax risk

Suppose we are given measurements of an unknown n-dimensional vector x, according to the
model

y = x+ w, (4)

where w ∈ R
n follows the normal distribution, w ∼ N(0, σ2

I), and x lies in X, a compact
convex set in R

n. The goal of the minimax estimation problem is to estimate vector x, with
small error loss, and to evaluate the estimator under the minimax principle.

For any estimator M : Rn → Rn, the maximum mean squared error of M on (X,σ) is
defined as

R(M,X, σ) = max
x∈X

E ‖x−M(y)‖2 ,

and the minimax risk of X is

R(X,σ) = min
M

R(M,X, σ) .

Estimators generally can be nonlinear function. We denote by RL(X,σ) the minimax
risk when M is linear. An alternative to the linear and nonlinear estimators is the truncated
series estimator [5]. Truncated series estimator is obtained using projections M(y) = Py,
with P 2 = P . Throughout this paper, projection always mean orthogonal projection. The
minimax risk for truncated estimators is defined as

RT (X,σ) = min
P

max
x∈X

‖x− Py‖2,

where the minimum is taken over all the linear projections. Since truncated series estimators
are linear, we clearly have

R(X,σ) ≤ RL(X,σ) ≤ RT (X,σ).

It turns out that the minimax risk for truncated series estimators is completely charac-
terized by the Kolmogorov k-width dk of X, defined as [16]

dk(X) = min
Pk

max
x∈X

‖x− Pkx‖,
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where the minimum is taken over all k-dimensional projections. Then, we have

RT (X,σ) = min
k

dk(X)2 + kσ2 . (5)

For the mean squared error considered in this paper, there is a more direct equivalent
definition of the Kolmogorov k-width under ℓ2 metric.

dk(X) = min
P∈Pk

rad(P (X)) ,

where Pk denotes all the k-codimensional (or n − k dimensional) projections, and rad(K)
denotes the ℓ2 radius of K, defined as maxx∈K ‖x‖2. Furthermore,

rad(X) = d0(X) ≥ d1(X) ≥ . . . ≥ dn(X) = 0 . (6)

2.3 Approximation radius

We define the notion of approximation radius, a geometric measure of any convex body, which
as we shall show, provides a lower bound for the minimax risk of the body.

We use vol(X) to denote the volume ofX andHk
n to denote all the k dimensional subspaces

in R
n. Assume X ⊆ R

n is a convex body that contains the origin. For any r > 0, the volume
ratio vr(X, r) of X is defined as

vr(X, r) =

(

vol(X ∩Bn
2 (r))

vol(Bn
2 (r))

)1/n

,

and the k-volume ratio vrk(X, r) of X is defined as the maximum volume ratio over all
the k dimensional central cut of X, i.e.

vrk(X, r) = max
H∈Hk

n

vr(X ∩H, r) .

Clearly, 0 ≤ vr(X, r) ≤ 1. Further,

Fact 2.1. If X is convex and contains the origin, then vr(X, r), and hence vrk(X, r) for any
k, is non-increasing in r.

Proof. It suffices to show for any c > 1, vr(X, c · r) ≤ vr(X, r).

X ∩Bn
2 (c · r) = c(

1

c
X ∩Bn

2 (r)) ⊆ c(X ∩Bn
2 (r)) ,

where 1
cX ⊆ X follows from the assumption that X is convex and contains the origin.

Therefore vol(X ∩ Bn
2 (c · r)) ≤ cn vol(X ∩ Bn

2 (r)). The claim follows immediately from the
definition of volume ratio and the identity vol(Bn

2 (c · r)) = cn vol(Bn
2 (r)).

Central to lower bounding the minimax risk is the notion of approximation radius.

Definition 2.2. For 0 ≤ c ≤ 1, and integer 1 ≤ k ≤ n, the (c, k)-approximation radius of
X, denoted by zc,k(X), is defined as the maximum r such that vrk(X, r) ≥ c, i.e.

zc,k(X) = sup{r : vrk(X, r) ≥ c} . (7)

Note that if X contains the origin in its interior, then zc,k(X) is always defined for
0 ≤ c ≤ 1.
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2.4 Polar dual of convex bodies

The connection between the Kolmogorov width and the approximation radius is established
via the polar dual of the body. We state some basic facts about the polar dual body which
we will need later.

Definition 2.3. For any K ⊂ Rn, denote by K◦ the (polar) dual set of K,

K◦ = {y |x · y ≤ 1 for all x ∈ K} .

If K lies on a lower dimensional subspace, K◦ is understood as the dual set on the lowest
dimensional subspace that contains K.

Fact 2.4. If X = {x : |Ax|∞ ≤ 1}, then X◦ = ATBm
1 .

Fact 2.5. Let H be a subspace of Rn. Denote by PH the projection on H. Then PH(K◦) =
(H ∩K)◦.

Proof. We include a proof of this fact for the sake of completeness. We prove the different
but equivalent identity PH(K)◦ = H ∩ K◦. Let m = dim(H) and H = (h1, . . . , hm) be an
orthonormal basis of H. With a slight abuse of notation, we denote by H the matrix in
R
n×m that has hi as columns. Then PH(x) = HHTx. Observe that for any x ∈ Rn, y ∈ Rm,

(HHTx) · (Hy) = xTHHTHy = xTHy = x · (Hy). Hence

Hy ∈ PH(K)◦ ⇔ ∀x ∈ K, (HHTx) · (Hy) ≤ 1

⇔ ∀x ∈ K,x ·Hy ≤ 1

⇔ Hy ∈ H ∩K◦ .

3 Main results

In this paper, we are interested in the minimax risk of the truncated series estimator for sym-
metric convex bodies. Define β(X) = maxσ>0 RT (X,σ)/R(X,σ), and βm,n

p = maxX∈Fm,n
p

β(X).
Our main result is

Theorem 3.1. If n = Ω(logm), then βm,n
∞ ≤ c · logm, where c < 2 · 108. Furthermore,

βm,n
∞ = Ω(

√

logm/ log logm).

The lower bound follows immediately from previous works. As shown in [4] (Theorem
3), for the unit ℓ1 ball X = Bn

1 , RT (X, 1/
√
n) = Ω(1) but R(X, 1/

√
n) = O(

√

log n/n).
Since Bn

1 ∈ Fm,n
∞ where m = 2n, we have βm,n

∞ = Ω(
√

logm/ log logm) for n = Ω(logm).
In this paper, our main result is to provide a nearly matching upper bound of O(logm).
The upper bound is the consequence of the following theorems: Theorem 3.2 lower bounds
the minimax risk by the approximation radius; Theorems 3.3, 3.4 together establish a lower
bound on the approximation radius by the Kolmogorov width, which in turn upper bounds
the minimax risk of the truncated series estimator. We assign concrete values to constants
whenever possible. They are purely for presentation clarity and by no means represent the
best possible constants.
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Theorem 3.2. There exists a universal constant C = 2.46·10−4 such that for any 0 < c∗ ≤ 1,

R(X,σ) ≥ Cc2∗max
k

min {zc∗,k(X)2, kσ2} . (8)

Theorem 3.3. For any convex centrally symmetric X ⊂ Rn and any 0 ≤ k ≤ n and
0 < ǫ < 1,

dk(X)dn−(1−ǫ)k(X
◦) ≤ c1

√

k

ǫ
, (9)

where c1 = 2/(
√
2− 1) ≤ 5.

Theorem 3.4. Let X ∈ Fm,n
∞ . For any 0 < c∗ ≤ 0.2 and 0 < k ≤ n,

zc∗,k(X) ≥ c2

√

k

lnm
· 1

dn−k(X◦)
, (10)

where

c2 = 0.4
√

ln(1/(2c∗)) . (11)

The paper is mainly devoted to proving Theorems 3.2, 3.3, and 3.4, which together imply
Theorem 3.1. We discuss some consequences of our results as well as some open questions at
the end.

4 Lower bounding the minimax risk

In this section we prove Theorem 3.2. Our starting point is from the obvious lower bound
for the Euclidean ball Bn

2 (r). It is well known that R(Bn
2 (r), σ) = Ω(min(r2, nσ2)). We shall

show that this is also true for any subset contained in Bn
2 (r) with “non-negligible” (a fraction

of Ω(cn) for some constant c > 0) volume.
The proof is based on the information-theoretic bound established in [23]. In this tech-

nique, the minimax risk is lower bounded by restricting to a maximal finite set of points
{x1, · · · , xr} in X, separated from each other by at least an amount ǫ in the loss metric. In-
deed, ǫ is the maximum separation distance such that the hypothesis {x1, · · · , xr} are almost
indistinguishable. The Fano inequality is then used to relate this indistinguishability to K-L
divergence.

We proceed by defining an ǫ-net and a δ-packing in a set S.

Definition 4.1. A set Nǫ ⊆ S is said to be an ǫ-net for S if for any x ∈ S, there exists a
x0 ∈ Nǫ, such that ‖x− x0‖ ≤ ǫ. In addition, a finite set Mδ ⊆ S is said to be an δ-packing
in S, if for any x, x′ ∈ Mδ, x 6= x′, we have ‖x− x′‖ > δ.

Proposition 4.2. For any set X, let Nǫ(X) be any ǫ-net for X and Mδ(X) be a δ-packing
in X. Then,

R(X,σ) ≥
(

δ

2

)2
(

1−
log |Nǫ(X)|+ ǫ2

2σ2 + 1

log |Mδ(X)|

)

. (12)
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Proposition 4.2 is a direct application of the bound proved in [23] (Theorem 1). For the
reader’s convenience, we give the details of its derivation in Appendix A.

Note that the strongest lower bound in Eq. (12) is achieved per the smallest ǫ-net and
the largest δ-packing of X. In the following, we will develop an upper bound on the size of
the smallest ǫ-net for X and a lower bound for the size of its largest δ-packing.

Lemma 4.3. For any X ⊆ R
n, r ≥ rad(X) and ǫ ≤ r, there exists an ǫ-net for X, with size

at most (3r/ǫ)n.

The proof of Lemma 4.3 is deferred to Appendix B.

Lemma 4.4. For any δ > 0, there exists a δ-packing Mδ(X) with size at least vol(X)
vol(B2(δ))

.

We refer to Appendix C for the proof of Lemma 4.4.
We are now in position to prove Theorem 3.2.

Proof. (Theorem 3.2) For any k and c∗ consider the k-dimensional central cross section Y
of X that attains the approximation radius zc∗,k. Let rk = min{zc∗,k(X),

√
kσ}, and Yk =

Y ∩ B2(rk). Clearly, R(X,σ) ≥ R(Yk, σ), since Yk ⊆ X. We will lower bound R(Yk, σ) by
applying Proposition 4.2 and Lemmas 4.3, 4.4.

Since rad(Yk) ≤ rk, by Lemma 4.3 for any ǫ ≤ rk, there exists an ǫ-net of Yk, say N ,
with |N | ≤ (3rk/ǫ)

k. On the other hand, by Fact 2.1, vrk(Y, rk) ≥ vrk(Y, zc∗,k(X)) = c∗.
Therefore

volk(Yk) = volk(Y ∩B2(rk)) = vrk(Y, rk)
k volk(B

k
2 (rk)) ≥ ck∗ volk(B

k
2 (rk)) .

Combining it with Lemma 4.4, there exists a δ-packing of Yk, say M , with |M | ≥
ck∗ volk(B

k
2 (rk))/ volk(B

k
2 (δ)) = (c∗ · rk/δ)k.

Choose δ = (c∗/a) rk, and ǫ = rk, where a is a constant to be determined. Using the
bounds on |N | and |M | in Proposition 4.2, we obtain

R(Yk, σ) ≥
1

4

(c∗rk
a

)2 (

1−
k log 3 +

r2
k

2σ2 + 1

k log a

)

≥ 1

4

(c∗rk
a

)2 (

1− log 3 + 3
2

log a

)

. (13)

Maximizing the right hand side over a > 1, we get a = 12.89. Plugging in for a in Eq. (13),
we obtain R(Yk, σ) ≥ Cc2∗r

2
k, with C = 2.46 · 10−4. Since 1 ≤ k ≤ n is arbitrary, we have

R(X,σ) ≥ max
k

R(Yk, σ) ≥ max
k

Cc2∗r
2
k = Cc2∗ max

k
min{zc∗,k(X)2, kσ2}.

Invoking relation (5) and Theorem 3.2, in order to prove the near optimality of truncated
series estimators for family Fm,n

∞ , we establish some properties of the Kolmogorov width and
explore its relation to the approximation radius. Before proceeding, we make a comparison
between the proposed lower bound, and the one obtained by considering the hardest rectan-
gular sub-problem.

Relation to the hardest rectangular sub-problem. One technique in the literature [5,
14] for lower bounding the minimax risk is to find the “hardest” box contained in the body
(or compute the Bernstein width, defined as the side length of the largest cube enclosed in
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the body) and apply the known lower bound for the box. The approximation radius can
always be used to achieve at least the same asymptotical lower bound.

Suppose that X contains a box with side lengths τ1, . . . , τn. Then using the box bound [5],
we have that R(X,σ) = Ω(

∑

i τ
2
i σ

2/(τ2i + σ2)) = Ω(
∑

imin(τ2i , σ
2)). Now group τi’s as

follows. The first group consists of τ1, · · · , τk1 , where k1 is the smallest index such that
∑k1

j=1min(τ2j , σ
2) ≥ σ2. The seconds group consists of τk1+1, · · · , τk2 , where k2 is the smallest

number such that
∑k2

j=k1+1min(τ2j , σ
2) ≥ σ2, and so forth. Let k be the total number of

groups. Firstly, note that
∑

i∈I min(τ2i , σ
2) is at most 2σ2, for all groups I. Hence k =

Ω(
∑

imin(τ2i /σ
2, 1)). Secondly, by construction, for all groups I (except possibly the last

one), we have
∑

i∈I min(τ2i , σ
2) ≥ σ2. Let k′ be the number of these groups. For each of

them, we can replace the corresponding face by its diagonal with length
√

∑

i∈I τ
2
i ≥ σ. This

way we obtain an k′ dimensional box with each side length at least σ. Now it is straight
forward to see that, zc,k′(X) = Ω(

√
k′σ), and by Theorem 3.2, we get a lower bound of

Ω(k′σ2) = Ω(kσ2) = Ω(
∑

imin(τ2i , σ
2)).

5 A duality relationship for Kolmogorov widths

We take a detour to establish the connection between the Kolmogorov width and the approx-
imation radius. The connection is via a novel duality relationship between the Kolmogorov
widths of X and those of its polar dual, as stated in Theorem 3.3. The proof is an application
of some celebrated works in convex geometry [1, 19, 8].

Definition 5.1. A set of vectors V = {v1, · · · , vs} is called δ-wide if for any 1 ≤ i ≤ s,
dist(vi, span[V/{vi}]) ≥ δ.

The following proposition concerns an interesting property of δ-wide sets, and can be
gleaned from [1, 19, 8]. For reader’s convenience, we give the proof of this proposition in
Appendix D.

Proposition 5.2. For any δ-wide set V = {v1, · · · , vs}, there exists σ ⊆ {1, . . . , s} with
|σ| ≥ (1− ǫ)s such that for any α = (αj)j∈σ,

‖
∑

j∈σ

αjvj‖ ≥ c

√

ǫ

s
δ
∑

j∈σ

|αj | ,

with c = (
√
2− 1)/2.

Now we use the above proposition to prove Theorem 3.3.

Proof. (Theorem 3.3) Write δ = dk(X). Consider the k + 1 points V = {v1, . . . , vk+1} inside
X which forms the largest k + 1 simplex. By the maximality of the volume of V , for any
1 ≤ i ≤ k + 1,

dist(vi, span[V/{vi}]) = max
x∈X

dist(x, span[V/{vi}]) . (14)

Note that the vectors in V are affinely independent, and thus dim(V/{vi}) is either k or
k − 1. Therefore, there exists an r-codimensional projection P such that Ker(P ) = V/{vi},
and r ∈ {k − 1, k}. Then

dist(vi, span[V/{vi}]) = ‖P (vi)‖ . (15)
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Also, by Eq. (14), we have

‖P (x)‖ = dist(x, span[V/{vi}]) ≤ dist(vi, span[V/{vi}]) = ‖P (vi)‖ , (16)

for any x ∈ X. On the other hand, since dr(X) ≥ dk(X) = δ and X is centrally symmetric,
there exist x, y ∈ X, such that ‖P (x)− P (y)‖ ≥ 2δ. Hence

‖P (vi)‖ ≥ 1

2
(‖P (x)‖ + ‖P (y)‖) ≥ 1

2
‖P (x)− P (y)‖ ≥ δ .

Using Eq. (15), V is δ-wide. By Proposition 5.2, there exists σ ⊆ {1, . . . , k} with |σ| ≥ (1−ǫ)k
such that for any α = (αj)j∈σ,

‖
∑

j∈σ

αjvj‖ ≥ c

√

ǫ

k
δ
∑

j∈σ

|αj | , c =

√
2− 1

2
. (17)

Let H = span[{vi | i ∈ σ}]. We claim that

H ∩X ⊇ H ∩Bn
2 (c
√

ǫ/k δ) .

Consider Y = {∑j∈σ αjvj |
∑

j∈σ |αj | ≤ 1}. Since X is convex and centrally symmetric, and

{vi} ⊆ H∩X, we have Y ⊆ H∩X. Hence, it suffices to show that H∩Bn
2 (c
√

ǫ/k δ) ⊆ Y . For
any given x ∈ H ∩Bn

2 (c
√

ǫ/k δ), let r∗ = max{r : rx ∈ Y }. Clearly, there exists α = (α)j∈σ ,
such that, r∗x =

∑

j∈σ αjvj , and
∑

j∈σ |αj | = 1. Hence,

‖r∗x‖ = ‖
∑

j∈σ

αjvj‖ ≥ c

√

ǫ

k
δ
∑

j∈σ

|αj | = c

√

ǫ

k
δ . (18)

As x ∈ H ∩ Bn
2 (c
√

ǫ/k δ), we have ‖x‖ ≤ c
√

ǫ/k δ and by Eq. (18), we obtain r∗ ≥ 1.
Consequently, x ∈ Y . Since x ∈ H ∩Bn

2 (c
√

ǫ/k δ) was arbitrary, we have

H ∩Bn
2 (c
√

ǫ/k δ) ⊆ Y ⊆ H ∩X. (19)

By Fact 2.5,

PH(X◦) = (H ∩X)◦

⊆ (H ∩Bn
2 (c
√

ǫ/k δ))◦

= H ∩B2

(

1

c
√

ǫ/k δ

)

.

Thus rad(PH(X◦)) ≤ 1/(c
√

ǫ/k δ). Note that PH ∈ Pn−dim(H). Hence,

dn−dim(H)(X
◦) = min

P∈Pn−dim(H)

rad(P (X◦)) ≤ 1

c
√

ǫ/k δ
. (20)

Since dim(H) = |σ| ≥ (1 − ǫ)k, recalling Eq. (6), dn−(1−ǫ)k(X
◦) ≤ dn−dim(H)(X

◦). Taking

c1 = 1/c = 2/(
√
2− 1), we have

dk(X)dn−(1−ǫ)k(X
◦) ≤ c1

√

k

ǫ
. (21)
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Before we pass to the next section, we make a few remarks about the duality relationship
stated in Theorem 3.3.

Remark 5.3. The dependence on k is the best possible. Consider X = Bn
1 , the unit ℓ1

ball. Then X◦ = Bn
∞. It is easy to see that for any 0 ≤ k, k′ ≤ n, dk(X) ≥

√

1− k/n and
dn−k′(X

◦) ≥
√
k′. When k ≤ n/2 and k′ = Ω(k), we have that dk(X)dn−k′(X

◦) = Ω(
√
k).

We do not know if the dependence on ǫ is the best possible. But for the application in this
paper, the dependence on ǫ is not significant as it will be chosen as a constant.

Remark 5.4. By using the maximum volume ellipsoid, it is fairly easy to show that for any
0 ≤ k < n,

dk(X)dn−k−1(X
◦) ≤

√
n .

Consider the maximal enclosed ellipsoid E ⊆ X. By John’s theorem [10], E ⊆ X ⊆ √
nE.

Let the axes lengths of E be λ1 ≥ λ2 . . . ≥ λn ≥ 0. Then dk(X) ≤ √
nλk+1 since X ⊆ √

nE.
On the other hand, by duality X◦ ⊆ E◦. The axes lengths of E◦ are 1/λn ≥ . . . ≥ 1/λ2 ≥
1/λ1. So dn−k−1(X

◦) ≤ 1/λk+1. Therefore, dk(X)dn−k−1(X
◦) ≤ √

n.
However, proving the stated bound requires more advanced tool (Proposition 5.2) .

Remark 5.5. In [13], a duality about Gelfand numbers are given, where Gelfand number ck
is defined as

ck(X) = min
H:codim(H)=k

rad(H ∩X) .

Observe that ck ≤ dk. To put it in a comparable form, in [13], it is shown that there exists
constant D > 0, such that for any 0 < κ < 1, ck(X)c(1−κ)n−k−D(X◦) = O(1/κ). This duality
relation focuses on the duality gap, i.e. the product can be upper bounded by any constant.
In our case there is a factor of

√
k. However, the dimension gap, i.e. the difference between

the dimension in one term and the co-dimension in the other term, is κn in this relationship.
But ours is ǫk, much smaller when k is small. If we were to apply the duality in [13], we then
need to set κ = ǫk/n, resulting in a bound of O(n/(ǫk)), much larger than our bound when k
is small. But the duality in [13] holds with high probability for a randomly chosen subspace,
while it is not true for our bound.

6 Main theorem

In the previous section, we showed a relationship between the Kolmogorov widths of X and
its polar dual X◦. This easily translates to a relation between the Kolmogorov width and
the radius of the largest Euclidean ball contained in X, which in turn gives us a bound on
the minimax risk of the truncated series estimator. However, the bound is fairly weak due
to the large duality gap of

√
k. If it were some constant in place of

√
k, we would already

obtain the results we search after. Unfortunately per Remark 5.3, this dependence cannot
be improved. In this section, we show that if X is defined by m hyperplanes, we can scale
the largest Euclidean ball contained in X by the factor of

√

k/ logm such that the fraction
of its volume inside X is still non-negligible, despite that the scaled ball may grow outside of
X. This gives us the proof of Theorem 3.4, and therefore of Theorem 3.1.

11



Proof. (Theorem 3.4) Let X be an arbitrary element in Fm,n
∞ . Hence, there exists A ∈ R

m×n

such that X = {x ∈ R
n : |Ax|∞ ≤ 1}. Let τ = dn−k(X

◦). By definition of Kolmogorov
widths, there exists a subspace H with dim(H) = k, such that rad(PH(X◦)) = τ . Let
H = (h1, . . . , hk), where hi’s are any orthonormal bases of H. By Fact 2.4, X◦ = ATBm

1 , and
PH(X◦) = HHTATBm

1 . As rad(PH(X◦)) = τ , for any y ∈ PH(X◦), ‖y‖ ≤ τ . Equivalently,
for any w ∈ Bm

1 , ‖HTATw‖ ≤ τ . Let F = AH and write F = (fij)m×k. By duality of matrix
norms,

max
w∈B1

‖F Tw‖ = max
1≤i≤m

√

√

√

√

k
∑

j=1

f2
ij .

Since ‖F Tw‖ ≤ τ for w ∈ Bm
1 , we have

√

∑

j f
2
ij ≤ τ , for any 1 ≤ i ≤ m.

Consider a random vector g = (g1, . . . , gk) where gi’s are i.i.d. standard gaussians. Denote
by µ the probability density function of g, i.e.,

µ(g) =
1

(2π)k/2
exp{−1

2

k
∑

i=1

g2i }.

Let µ0 = 1/(2π)k/2, r =
√

2k ln(1/(2c∗)), and µ1 = P(‖g‖ ≤ r).
Using the standard tail bound for sum of random normal variables [7], for any constant

c > 0, and for any 1 ≤ i ≤ m,

P

{

|(Fg)i| ≥ c

√

√

√

√(

k
∑

j=1

f2
ij) lnm

}

≤ m−c2/2 . (22)

Since
√

∑

j f
2
ij ≤ τ , we obtain

P

{

|(Fg)i| ≥ cτ
√
lnm

}

≤ m−c2/2 . (23)

Applying union bound for 1 ≤ i ≤ m, we obtain

P{Fg ∈ cτ
√
lnmBm

∞} = 1− P
(

∪m
i=1 {|(Fg)i| ≥ cτ

√
lnm}

)

≥ 1−m1−c2/2. (24)

Consequently,

P{Hg ∈ cτ
√
lnmX} = P{|AHg|∞ ≤ cτ

√
lnm}

= P{|Fg|∞ ≤ cτ
√
lnm} ≥ 1−m1−c2/2.

(25)

Assuming m ≥ 2, and letting c =
√

4− 2 log2 µ1, we obtain P{Hg ∈ cτ
√
lnmX} ≥

1− µ1/2. Note that the function µ(g) is decreasing in ‖g‖. Therefore,

vol
(

cτ
√
lnmX ∩Bk

2 (r)
)

≥ 1

µ0
P

{

Hg ∈
(

cτ
√
lnmX ∩Bk

2 (r)
)}

≥ 1

µ0

(

P(Hg ∈ cτ
√
lnmX) + P(Hg ∈ Bk

2 (r))− 1
)

≥ 1

µ0

(

1− µ1

2
+ µ1 − 1

)

=
µ1

2µ0
.

(26)

Here, Bk
2 (r) is the k dimensional ℓ2 ball in the subspace H. (Recall that dim(H) = k).
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Fact 6.1. Let µ0 = 1/(2π)k/2, r =
√

2k ln(1/(2c∗)), and µ1 = P(‖g‖ ≤ r). The followings
hold true.
(a) µ1 ≥ µ0 e

−r2/2 vol(Bk
2 (r)).

(b) If 0 < c∗ ≤ 0.2, then

µ1 ≥ 1− 2c∗

√

2e ln
1

2c∗
≥ 0.1 . (27)

We refer to Appendix E for the proof of Fact 6.1.
Using Fact 6.1 (part (a)) in Eq. (26), we get

{

vol
(

cτ
√
lnmX ∩Bk

2 (r)
)

vol(Bk
2 (r))

}
1
k

≥ 1

21/k
e−r2/2k =

2c∗

21/k
≥ c∗ . (28)

Scaling the sets by factor 1/(cτ
√
lnm) in the left hand side of Eq. (28), and using the definition

of approximation radius,

zc∗,k(X) ≥ r

cτ
√
lnm

= c2

√

k

lnm
· 1

dn−k(X◦)
, (29)

where c2 = (
√
2/c)

√

ln(1/(2c∗)). Using Fact 6.1 (part (b)),

c =
√

4− 2 log2 µ1 ≤ 3.3 , (30)

whence we obtain c2 ≥ 0.4
√

ln(1/(2c∗)). This concludes the proof.

With all these preparations, we can now prove the main theorem.

Proof. (Theorem 3.1) As mentioned earlier, the lowerbound is implied by previous work. We
only show the upperbound. Recall that dk(X) is non-decreasing in k. (see Eq. (6)). Let
k∗ = min{k ≥ 1|dk(X)2 ≤ kσ2}. (k∗ exists since dn(X) = 0). Consider the two cases below
separately.

• (k∗ > 1) : Invoking Eq. (5), RT (X,σ) ≤ dk∗(X)2 + k∗σ2. By definition of k∗, RT (X,σ) ≤
2k∗σ2. Further,

dk∗(X)2 + k∗σ2 ≤ dk∗−1(X)2 +
k∗

k∗ − 1
(k∗ − 1)σ2

≤ dk∗−1(X)2 + 2dk∗−1(X)2 = 3dk∗−1(X)2.

Hence, RT (X,σ) ≤ 3min{dk∗−1(X)2, k∗σ2}. On the other hand,

zc∗,(k∗−1)/2(X) ≥ c2

√

k∗ − 1

2 lnm
· 1

dn−(k∗−1)/2(X◦)

≥ c2

2c1
√
lnm

dk∗−1(X),

(31)
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where the first inequality follows from Theorem 3.4 and the second one follows from Theo-
rem 3.3. Applying Theorem 3.2,

R(X,σ) ≥ Cc2∗min
{

zc∗,(k∗−1)/2(X)2,
k∗ − 1

2
σ2
}

≥ Cc2∗min
{ c22
4c21 lnm

dk∗−1(X)2,
k∗ − 1

2
σ2
}

≥ Cc2∗
4 lnm

min(c22/c
2
1, 1)min

{

dk∗−1(X)2, k∗σ2
}

≥ C1

lnm
RT (X,σ),

(32)

for C1 = (Cc2∗/12)min(c22/c
2
1, 1).

• (k∗ = 1) : Using Eq. (5),

RT (X,σ) ≤ min{d0(X)2, d1(X)2 + σ2} ≤ min{rad(X)2, 2σ2}, (33)

where we used the assumption k∗ = 1 in the final step. On the other hand, X contains a
segment S with length rad(X). Using the result of [5],

R(X,σ) ≥ R(S, σ) =
σ2 · rad(X)2

σ2 + rad(X)2
≥ 1

2
min(σ2, rad(X)2). (34)

Therefore, R(X,σ) ≥ (1/4)RT (X,σ).
Combining both cases, we have

RT (X,σ)

R(X,σ)
≤ Mc∗ lnm, (35)

where

Mc∗ =
1

C1
=

12

Cc2∗
max(c21/c

2
2, 1), C = 2.46 · 10−4 , c1 = 2/(

√
2− 1) , c2 = 0.4

√

ln(1/(2c∗)).

Minimizing Mc∗ over 0 < c∗ ≤ 0.2, we obtain c∗ = 0.2 with Mc∗ < 2 · 108.

Remark 6.2. It is essential that X is symmetric. Otherwise, we can take an orthant of Bn
1

which has O(n) faces and has large gap between RT (X,σ) and R(X,σ).

7 Discussions

7.1 Applications to estimating Lipschitz functions

The problem of estimating values of a Lipschitz function, at a set of sampled points, from
noisy measurements is discussed in the introduction. Since the Lipschitz condition can be
represented as linear conditions, Theorem 3.1 is widely applicable to such problems. For ex-
ample, the function can be defined on any metric space, the sampling points can be arbitrary
set of points, and the Lipschitz condition can be of higher order. As long as the corresponding
linear constraints is bounded by nO(1) for n samples, the approximation factor is within a
small factor of O(log n) of the optimal.
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7.2 Smooth convex bodies

In the above, we have shown that βm,n
∞ = O(logm). The celebrated Pinsker bound [17] states

that βm,n
2 = O(1). What about βm,n

p for other p’s? By plugging σ = 1/
√
n in Theorem 3

in [4], we have that for 1 ≤ p < 2, βn,n
p = Ω((n/ log n)1−p/2). So we will not be able to obtain

a similar bound to Theorem 3.1 when p < 2. On the other hand, we conjecture that similar
upperbound holds when p ≥ 2.

Conjecture 7.1. For any p ≥ 2, there exists a constant C = C(p), such that for any
m,n ≥ 2, βm,n

p ≤ C logm.

Define the distance d(X,Y ) between two centrally symmetric convex body X,Y as the
smallest c such that there exists a uniformly scaled orthogonal transformation F such that
FY ⊆ X ⊆ cFY . We note that d(·, ·) is similar to but different from the classical Banach-
Mazur distance in which F is any linear transformation. and that log d(·, ·) is a pseudometric
(non-negative, symmetric, and with triangular inequality). By straightforward arguments,
β(X) ≤ d(X,Y )2β(Y ). Since d(Bn

p , B
n
2 ) = n1/2−1/p and d(Bn

p , B
n
∞) = n1/p, we have the

following nontrivial bound.

Corollary 7.2. For p ≥ 2, βm,n
p = O(min(n1−2/p,m2/p logm)). In particular, for p ≥ 2,

βn,n
p = O(

√
n log n).

7.3 Tightness of the approximation radius bound

We have used the approximation radius to lower bound the minimax risk of a convex body
X. How tight is this bound? This paper has shown that it is at least within O(logm) factor
of the optimal upper bound, and it is achieved by using the (rather limited) truncated series
estimators.

As discussed before, the approximation radius provides a lower bound at least as good
as using Bernstein width, which is known to be asymptotically optimal for Bn

p when p ≥ 2.
In this section, we consider Bn

p for 1 ≤ p < 2 and show that the lower bound of using
approximation radius is very close to the minimax upper bound but does leave a small gap
of factor of Θ((log n)1−p/2).

We start by upper bounding zc,k(X). For any linear k-dimensional subspace Hk, and
Bk

2 (r) ⊂ Hk, we have

Bk
2 (r) ∩Bn

p ⊆ Hk ∩Bn
p . (36)

As it is proved in [12], if 1 ≤ p ≤ 2, then vol(Hk ∩Bn
p ) ≤ vol(Bk

p ). Using the formula for the
volume of k-dimensional ℓp ball [22], we have

vol(Bk
p ) = 2k

Γk(1 + 1
p)

Γ(kp + 1)
=

(

Cp

k1/p

)k

, (37)

where Cp is a constant that depends on p. Hence, for any Hk,

(

vol(Bk
2 (r) ∩Bn

p )

vol(Bk
2 (r))

)1/k

≤
(

Ck
p

Ck
2

· kk/2

kk/prk

)1/k

=
Cp

C2

k1/2−1/p

r
. (38)

15



Therefore, zc,k(B
n
p ) ≤ Cp

C2·c
k1/2−1/p. For the lower bound of zc,k(B

n
p ), choose Hk to be

one of the k-dimensional principal subspaces. Then Bn
p ∩ Hk = Bk

p ⊃ k1/2−1/pBk
2 . Hence,

zc,k(B
n
p ) ≥ 1

ck
1/2−1/p. So, zc,k = Θ(k1/2−1/p/c). Apply the lower bound in Theorem 3.2

and we obtain R(Bn
p , σ) = Ω(maxk min(k1−2/p, kσ2)). When σ ≤ 1, we choose k ≈ σ−p

and obtain a lower bound of R(Bn
p , σ) = Ω(σ2−p). By [4], the optimal upper bound for Bn

p

is R = Θ(σ2−p(2 log nσp)1−p/2) for (1/n)1/p ≪ σ ≪
√

1/ log n. Hence the approximation
radius bound leaves a gap of Θ((log n)1−p/2). Actually, the largest gap we know of is

√
log n

by setting p = 1 in the above bound.

7.4 Computational complexity

We have shown that the truncated series estimator is close to optimal for symmetric convex
polytopes. For the family of ellipsoids Fm,n

2 , the optimal truncated series estimator can be
computed by using the singular value decomposition. However, computing the best truncated
series estimator, or the Kolmogorov width, for symmetric convex polytopes, is a hard problem.
When k = 0, d0(X) is the diameter of X, and it is exactly the ℓ2-norm maximization problem
considered in [2]. The problem is NP-hard. Further, it is shown in [2] that it is hard to
approximate within any constant factor unless P=NP.

On the other hand, by using semi-definite programming (SDP) relaxation, one can com-
pute O(

√
logm) approximation of the diameter [9, 15], i.e. d0(X). However, it is not known

how to approximate dk(X) for k > 1. [21] showed that if the number of vertices of X is v,
then SDP gives an O(

√
log v) approximation for dk. However, in our problem, the number

of vertices of a symmetric convex body could be exponential in n. So the technique in [21]
does not directly apply to our problem.

8 Conclusion

In this paper, we show that the truncated series estimator can achieve nearly optimal minimax
risk for symmetric convex bodies defined by few hyperplanes. There are some outstanding
open questions raised by this work.

1. What is the best bound for βm,n
∞ ? Our work leaves a gap of Ω(

√

logm/ log logm) and
O(logm).

2. What is the best bound for βm,n
p for p ≥ 2? We conjecture it is O(logm).

3. How tight is the approximation radius bound for lower bounding the minimax risk for
convex bodies? For ℓ1 ball, it has a gap of Θ(

√
log n). This is the largest gap we know

of.

4. How to efficiently approximate the optimal truncated series estimator for any symmetric
convex polytope?

A Proof of Proposition 4.2

Consider any Mδ(X)- packing in X. Let Mδ(X) = {x1, · · · , xr}, and let u be a random
variable uniformly distributed on the hypothesis set {x1, · · · , xr}. Denote by M(y), the
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estimation of x given the observation y. Define w = argmin1≤j≤n‖M(y) − xj‖. Since ‖xj −
x′j‖ ≥ δ, we have w = j, if ‖M(y) − xj‖ ≤ δ/2. Therefore,

max
1≤j≤n

Epxj
‖M(y)− xj‖2 ≥

(

δ

2

)2

max
1≤j≤n

P{‖M(y)− xj‖ ≥ δ

2
|u = j}

≥ δ2

4r

r
∑

j=1

P(w 6= j|u = j)

≥
(

δ

2

)2

P(w 6= u).

(39)

Let h(p) be the entropy function defined as

h(p) = −p log p− (1− p) log(1− p), for 0 ≤ p ≤ 1.

Denote by H(u|w) the posterior entropy of u, given w, and denote by I(u;w) the mutual
information between u and w defined as

I(u;w) = H(u)−H(u|w) = log r −H(u|w).

Using Fano’s inequality ([3], p. 39),

P(w 6= u) log(r − 1) ≥ H(u|w)− h(1/2)

= H(u)− I(u;w) − log 2

≥ log r − I(u;w) − log 2.

(40)

We recall the definition of K-L distance between two probability densities p, q on a set Ω,
defined as [3],

DKL(p, q) =

∫

p log
p

q
dµ, (41)

where µ is any measure on Ω.
Using a property of mutual information, and its relation to K-L divergence ( [3], p. 30,

33), we have

I(u;w) = I(u;M(y)) ≤ I(u; y) = Eu{DKL(P (y|u), P (y))}
≤ max

1≤j≤r
DKL(P (y|xj), P (y)) (42)

Let Nǫ(X) be any ǫ-net for X. Considering the uniform prior distribution on Nǫ(X), we
write, P (y) = 1/|Nǫ(X)| ∑x̃∈Nǫ(X) P (y|x̃). Also, by definition of ǫ-net, for any xj, 1 ≤ j ≤ r,
there exists x̃j ∈ Nǫ(X), with ‖xj − x̃j‖ ≤ ǫ. Hence,

DKL(P (y|xj), P (y)) = E

{

log
P (y|xj)

1
|Nǫ(X)|

∑

x̃∈Nǫ(X) P (y|x̃)
}

≤ E

{

log
P (y|xj)
1

|Nǫ(X)|P (y|x̃j)
}

= log |Nǫ(X)| +D(P (y|xj), P (y|x̃j))

(43)
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Following the model (4), y|xj ∼ N(xj , σ
2
I), and y|x̃j ∼ N(x̃j , σ

2
I). Using the definition of

K-L distance (Eq. (41)), after some simple algebraic manipulations, we have

D(P (y|xj), P (y|x̃j)) =
1

2σ2
‖xj − x̃j‖2 ≤ ǫ2

2σ2
. (44)

Combining Eqs. (42),(43), and (44), we obtain

I(u;w) ≤ log |Nǫ(X)|+ ǫ2

2σ2
. (45)

Using Eq. (39), (40), and (45), we obtain the desired result.

B Proof of Lemma 4.3

Since r ≥ rad(X), X ⊆ B2(r). Hence, any ǫ-net for B2(r) is also an ǫ-net for X. We begin
by covering B2(r) with a finite family of balls of radius ǫ. Choose the sequence of centers
p1, p2, · · · in such a way that

pi+1 /∈
i
⋃

j=1

B2(pj, ǫ).

When this is no longer possible, the sequence is terminated. Now the set P = {pi} is an ǫ-net
for B2(r). Meanwhile, note that the smaller balls B2(pi, ǫ/2) are all disjoint (since no two of
the pi are within distance ǫ of each other). In addition, B2(pi, ǫ/2) ⊆ B2(r)⊕B2(ǫ/2), where
⊕ denotes the Minkowski sum. Therefore,

|P | vol(B2(ǫ/2)) =
∑

pi∈P

vol
(

B2(pi, ǫ/2)
)

≤ vol
(

B2(r)⊕B2(ǫ/2)
)

. (46)

Evidently, B2(ǫ/2) ⊆ 1/2B2(r), since ǫ ≤ r. Hence, B2(r) ⊕ B2(ǫ/2) ⊆ 3/2B2(r), and

vol
(

B2(r)⊕B2(ǫ/2)
)

≤ (3/2)n vol
(

B2(r)
)

. Using Eq. (46), we obtain

|P | ≤
(3/2)n vol

(

B2(r)
)

vol(B2(ǫ/2))
≤
(

3r

ǫ

)n

.

C Proof of Lemma 4.4

Let Mδ(X) denote the maximum size δ-packing of X. By maximality of Mδ(X), any other
point in X is within δ distance of one of the points in Mδ(X). Hence,

X ⊆
⋃

p∈Mδ(X)

B2(p, δ),

whence we obtain

|Mδ(X)| ≥ vol(X)

vol(B2(p, δ))
. (47)
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D Proof of Proposition 5.2

The proof is based in a crucial way on the following lemma proved in [8].

Lemma D.1. Let u1, · · · , us ∈ R
n, ‖ui‖ ≤ 1. Define the set

E = {(δj)sj=1 : ‖
s
∑

j=1

δjuj‖2 ≤ 2s}.

Then, for every ǫ ∈ (0, 1), there exists σ ⊆ {1, · · · , s} with |σ| ≥ (1− ǫ)s, such that

Pσ(E) ⊇ c
√
ǫ[−1, 1]σ , c =

√
2− 1√
2

,

where the restriction map Pσ is defined as Pσ : (δj)
s
j=1 → (δj)j∈σ.

Since the set V = {v1, · · · , vs} is δ-wide, there exist y1, · · · , ys ∈ R
n, so that

〈vi, yj〉 = 1{i=j}, and ‖yi‖ ≤ 1

δ
, i, j = 1, · · · , s. (48)

Let ui = δyi. Applying Lemma D.1, there exists a set σ ⊆ {1, · · · , s}, with |σ| ≥ (1− ǫ)s,
and Pσ(E) ⊇ c

√
ǫ[−1, 1]σ . Hence we can find (δj)

s
j=1 ∈ E, such that, δj = c

√
ǫ sign(αj), for

j ∈ σ. Then,

∑

j∈σ

|αj | = 〈
∑

j∈σ

αjvj ,

s
∑

i=1

sign(αi)yi〉

=
1

c
√
ǫ
〈
∑

j∈σ

αjvj ,
s
∑

i=1

δiyi〉

≤ 1

c
√
ǫ

∥

∥

∥

∑

j∈σ

αjvj

∥

∥

∥
· 1
δ

∥

∥

∥

s
∑

i=1

δiui

∥

∥

∥

≤ 1

c δ

√

2s

ǫ

∥

∥

∥

∑

j∈σ

αjvj

∥

∥

∥
,

(49)

where the first step follows form Eq. (48). Rearranging the terms in Eq. (49) implies the
result.

E Proof of Fact 6.1

Proof (Part (a)).

µ1 = P(‖g‖ ≤ r) =
1

(2π)s/2

∫

‖x‖≤r
e−x2/2dx

≥ µ0

∫

‖x‖≤r
e−r2/2dx = µ0 e

−r2/2 vol(Bs
2(r)).

(50)
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Proof (Part (b)). We will first upper bound P(‖g‖ > r) using a Chernoff Bound.

P(‖g‖ > r) = P(eλ
∑k

i=1 g
2
i > eλr

2
) ≤ E{eλ

∑k
i=1 g

2
i }

eλr2
. (51)

Since gi are i.i.d. standard normal variables, it is easy to see that

E{eλ
∑k

i=1 g
2
i } = (E{eλg21})k =

(

1√
1− 2λ

)k

. (52)

Using Eq. (52) in Eq. (51) and substituting for r, we obtain

P(‖g‖ > r) ≤
(

1√
1− 2λ

e−2λ ln 1
2c∗

)k

. (53)

Minimizing the right hand side over λ gives λ = 1/2(1 + 1/(2 ln(2c∗))). Notice that λ > 0,
for 0 < c∗ < 0.2. Substituting for λ in Eq. (53) gives

P(‖g‖ > r) ≤
(

2c∗

√

2e ln
1

2c∗

)k

≤ 2c∗

√

2e ln
1

2c∗
, (54)

where the last step follows from c∗ ≤ 0.2, and k ≥ 1. Now, µ1 = 1− P(‖g‖ > r). The result
follows.
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