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Abstract— We consider a two-user state-dependent mul-
tiaccess channel in which the states of the channel are
known non-causally to one of the encoders and only strictly
causally to the other encoder. Both encoders transmit a
common message and, in addition, the encoder that knows
the states non-causally transmits an individual message.
We find explicit characterizations of the capacity region
of this communication model in both discrete memoryless
and memoryless Gaussian cases. The analysis also reveals
optimal ways of exploiting the knowledge of the state only
strictly causally at the encoder that sends only the common
message when such a knowledge is beneficial. The encoders
collaborate to convey to the decoder a lossy version of the
state, in addition to transmitting the information messages
through a generalized Gel’fand-Pinsker binning. Particularly
important in this problem are the questions of 1) optimal
ways of performing the state compression and 2) whether
or not the compression indices should be decoded uniquely.
We show that both compression à-la noisy network coding,
i.e., with no binning, and compression using Wyner-Ziv bin-
ning are optimal. The scheme that uses Wyner-Ziv binning
shares elements with Cover and El Gamal original compress-
and-forward, but differs from it mainly in that backward
decoding is employed instead of forward decoding and the
compression indices are not decoded uniquely. Finally, by
exploring the properties of our outer bound, we show that,
although not required in general, the compression indices
can in fact be decoded uniquely essentially without altering
the capacity region, but at the expense of larger alphabets
sizes for the auxiliary random variables.

I. Introduction

Advances in the study of the effect of strictly causal states in
multiuser channels are rather very recent and concern mainly
multiple access scenarios. In [1], Lapidoth and Steinberg study
a two-encoder multiple access channel with independent
messages and states known causally at the encoders. They
show that the strictly causal state sequence can be beneficial,
in the sense that it increases the capacity for this model. This
result is reminiscent of Dueck’s proof [2] that feedback can
increase the capacity region of some broadcast channels. In
accordance with [2], the main idea of the achievability result
in [1] is a block Markov coding scheme in which the two users
collaborate to describe the state to the decoder by sending
cooperatively a compressed version of it. As noticed in [1],
although some non-zero rate that otherwise could be used to
transmit pure information is spent in describing the state to

the decoder, the net effect can be an increase in the capacity.
In [3], they show that strictly causal state information is
beneficial even if the channel is controlled by two independent
states each known to one encoder strictly causally. In this
case, each encoder can help the other encoder transmit at a
higher rate by sending a compressed version of its state to the
decoder. In [4], Li, Simeone and Yener improve the results of
[1], [3] and extend them to the case of multiple encoders. The
achievability results in [4] are inspired by the noisy network
coding scheme of [5] and, unlike [1], [3], do not use Wyner-
Ziv binning [6] for the compression of the state. In a very
recent contribution [7], Lapidoth and Steinberg derive a new
inner bound on the capacity region for the case of a single
state governing the multiaccess channel. They also prove that
the inner bound of [4] for the case of two independent states
each known strictly causally to one encoder can indeed be
strictly better than previous bounds in [1], [3] – a result which
is conjectured previously by Li, Simeone and Yener in [4].
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Fig. 1. State-dependent MAC with degraded message sets and states
known noncausally at the encoder that sends both messages and only
strictly causally at the other encoder.

In this paper, which generalizes our former work [8], we
study a two-user state-dependent multiple access channel
with the channel states known non-causally at one encoder
and only strictly causally at the other encoder. The decoder
is not aware of the channel states. As shown in Figure 1,
both encoders transmit a common message and, in addition,
the encoder that knows the states non-causally transmits an
individual message. More precisely, let Wc and W1 denote
the common message and the individual message to be
transmitted in, say, n uses of the channel; and Sn = (S1, . . . , Sn)
denote the state sequence affecting the channel during this
time. At time i, Encoder 1 knows the complete sequence
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Sn
= (S1, . . . , Si−1, Si, . . . , Sn) and sends X1i = φ1(Wc,W1, S

n),
and Encoder 2 knows only Si−1 = (S1, . . . , Si−1) and sends X2i =

φ2,i(Wc, S
i−1) – the functions φ1 and φ2,i are some encoding

functions. In this paper, we establish the capacity region of
this state-dependent MAC model. As our analysis will show,
this requires, among others, understanding the role of the
strictly causal part of the state that is revealed to Encoder 2.
We show that both compression of the state à-la noisy network
coding, i.e., with no binning, and compression using Wyner-
Ziv binning with or without non-unique decoding of the
compresion indices are optimal. The question of whether non-
unique decoding is beneficial in Wyner-Ziv type networks is
important. Related very recent works can be found in [9], [10].

II. SystemModel and Definitions

We consider a stationary memoryless state-dependent
MAC WY|X1 ,X2 ,S whose output Y ∈ Y is controlled by the
channel inputs X1 ∈ X1 and X2 ∈ X2 from the encoders
and a channel state S ∈ S drawn according to a memoryless
probability law QS. We assume that the channel state Sn is
known non-causally at Encoder 1, i.e., beforehand, at the
beginning of the transmission block. Encoder 2 knows the
channel states only strictly-causally; that is, at time i, it knows
the states only up to time i − 1, Si−1

= (S1, . . . , Si−1).
Both encoders transmit a common message Wc and, in

addition, Encoder 1 transmits also an individual message
W1. We assume that Wc and W1 are independent random
variables drawn uniformly from the sets Wc = {1, · · · ,Mc} and
W1 = {1, · · · ,M1}, respectively. The sequences Xn

1
and Xn

2
from

the encoders are sent across a state-dependent multiaccess
channel modeled as a memoryless conditional probability
distribution WY|X1 ,X2 ,S. The joint probability mass function on
Wc×W1×S

n×Xn
1
×Xn

2
×Yn is given by

P(wc,w1, s
n, xn

1 , x
n
2 , y

n) = P(wc)P(w1)

n
∏

i=1

[

QS(si)P(x1,i|wc,w1, s
n)

·P(x2,i|wc, s
i−1)WY|X1 ,X2 ,S(yi|x1,i, x2,i, si)

]

. (1)

The receiver guesses the pair (Ŵc, Ŵ1) from the output Yn.
Definition 1: For positive integers n, Mc and M1, an

(Mc,M1, n, ǫ) code for the multiple access channel with states
known noncausally at one encoder and only strictly causally
at the other encoder consists of a mapping

φ1 : Wc×W1×S
n −→ Xn

1 (2)

at Encoder 1, a sequence of mappings

φ2,i : Wc×S
i−1 −→ X2, i = 1, . . . , n (3)

at Encoder 2, and a decoder map

ψ : Yn −→Wc×W1 (4)

such that the average probability of error is bounded by ǫ,

Pn
e = ES

[

Pr
(

ψ(Yn) , (Wc,W1)|Sn
= sn
)]

≤ ǫ. (5)

The rate of the common message and the rate of the individual
message are defined as

Rc =
1

n
log Mc and R1 =

1

n
log M1, (6)

respectively.

A rate pair (Rc,R1) is said to be achievable if for every ǫ > 0
there exists an (2nRc , 2nR1 , n, ǫ) code for the channel WY|X1 ,X2 ,S.
The capacity region of the considered state-dependent MAC
is defined as the closure of the set of achievable rate pairs.

Due to space limitation, the results of this paper are either
outlined only or mentioned without proofs. Detailed proofs,
converse proofs, the characterization of the capacity region in
the Gaussian case as well as other results and discussions can
be found in [11].

III. DiscreteMemoryless Case

In this section, it is assumed that S,X1,X2 are finite.

A. Capacity Region

Let P stand for the collection of all random variables
(S,U,V,X1,X2,Y) such that U, V, X1 and X2 take values in
finite alphabets U, V, X1 and X2, respectively, and

PS,U,V,X1,X2 ,Y(s, u, v, x1, x2, y)

= PS,U,V,X1X2
(s, u, v, x1, x2)WY|X1 ,X2,S(y|x1, x2, s) (7a)

PS,U,V,X1,X2
(s, u, v, x1, x2)

= QS(s)PX2
(x2)PV|S,X2

(v|s, x2)PU,X1 |S,V,X2
(u, x1|s, v, x2) (7b)

∑

u,v,x1 ,x2

PS,U,V,X1,X2
(s, u, v, x1, x2) = QS(s). (7c)

The relations in (7) imply that (U,V)↔ (S,X1,X2)↔ Y is a
Markov chain, and X2 is independent of S.

Define C to be the set of all rate pairs (Rc,R1) such that

R1 ≤ I(U; Y|V,X2) − I(U; S|V,X2)

Rc + R1 ≤ I(U,V,X2; Y) − I(U,V,X2; S)

for some (S,U,V,X1,X2,Y) ∈ P. (8)

The following proposition states some properties of C.
Proposition 1: (properties of capacity region)

1. The set C is convex.
2. To exhaust C, it is enough to restrict V and U to satisfy

|V| ≤ |S||X1 ||X2| + 1 (9a)

|U| ≤
(

|S||X1 ||X2| + 1
)

|S||X1 ||X2 |. (9b)

As stated in the following theorem, the set C characterizes the
capacity region of the state-dependent discrete memoryless
MAC model that we study.

Theorem 1: The capacity region of the multiple access
channel with states known only strictly causally at the encoder
that sends the common message and non-causally at the
encoder that sends both messages is given by C.

Remark 1: The proof of achievability of Theorem 1 is based
on a block-Markov coding scheme in which a lossy version
of the state is conveyed to the decoder, in the spirit of [1], [3],
[7], in addition to a generalized Gel’fand-Pinsker binning for
the transmission of the information messages [12]. However,
unlike [1], [3] and [7] where Wyner-Ziv compression is
utilized for the transmission of the lossy version of the state,
here, inspired by the noisy network coding scheme of [5], at
each block the compression index of the state of the previous
block is sent using standard rate distortion, not Wyner-
Ziv binning [6]. Also, unlike [1], [3] and [7] where every



information message is divided into blocks and different
submessages are sent over these blocks and then decoded
one at a time using the same codebook as in the original
compress-and-forward scheme by Cover and El Gamal [13],
here the entire common message and the entire individual
message are transmitted over all blocks using codebooks that
are generated independently, one for each block, and the
decoding is performed simultaneously using all blocks as
in [5]. At the end of the transmission, the receiver uses the
outputs of all blocks to perform simultaneous decoding of
the information common and individual messages, without
uniquely decoding the compression indices. �

Proof of Achievability:
The transmission takes place in B blocks. The common

message Wc and the individual message W1 are sent over
all blocks. We thus have BWc

= nBRc, BW1
= nBR1, N = nB,

RWc
= BWc

/N = Rc and RW1
= BW1

/N = R1, where BWc
is

the number of common message bits, BW1
is the number of

individual message bits, N is the number of channel uses
and RWc

and RW1
are the overall rates of the common and

individual messages, respectively.
Codebook Generation: Fix a measure PS,U,V,X1,X2 ,Y ∈ P. Fix
ǫ > 0, ηc > 0, η1 > 0, η̂ > 0, δ > 1 and denote Mc = 2nB[Rc−ηcǫ],

M1 = 2nB[R1−η1ǫ], M̂ = 2n[R̂+η̂ǫ] and J = 2n[I(U;S|V,X2)+δǫ].
We randomly and independently generate a codebook for
each block.

1) For each block i, i = 1, . . . ,B, we generate McM̂ inde-
pendent and identically distributed (i.i.d.) codewords
x2,i(wc, t

′
i
) indexed by wc = 1, . . . ,Rc, t′

i
= 1, . . . , M̂, each

with i.i.d. components drawn according to PX2
.

2) For each block i, for each codeword x2,i(wc, t
′
i
), we

generate M̂ i.i.d. codewords vi(wc, t
′
i
, ti) indexed by ti =

1, . . . , M̂, each with i.i.d. components drawn according to
PV|X2

.
3) For each block i, for each codeword x2,i(wc, t

′
i
), for each

codeword vi(wc, t
′
i
, ti), we generate a collection of JM1

i.i.d. codewords {ui(wc, t
′
i
, ti,w1, ji)} indexed by w1 =

1, . . . ,M1, ji = 1, . . . , J, each with i.i.d. components draw
according to PU|V,X2

.

Encoding: Suppose that a common message Wc = wc and
an individual message W1 = w1 are to be transmitted. As we
mentioned previously, wc and w1 will be sent over all blocks.
We denote by s[i] the state affecting the channel in block i,
i = 1, . . . ,B. For convenience, we let s[0] = ∅ and t−1 = t0 = 1
(a default value). The encoding at the beginning of block i,
i = 1, . . . ,B, is as follows.
Encoder 2, which has learned the state sequence s[i−1], knows
ti−2 and looks for a compression index ti−1 ∈ [1 : M̂] such that
vi−1(wc, ti−2, ti−1) is strongly jointly typical with s[i − 1] and
x2,i−1(wc, ti−2). If there is no such index or the observed state
s[i − 1] is not typical, ti−1 is set to 1 and an error is declared.
If there is more than one such index ti−1, choose the smallest.
Encoder 2 then transmits the vector x2,i(wc, ti−1).
Encoder 1 obtains x2,i(wc, ti−1) similarly. It then finds the
smallest compression index ti ∈ [1 : M̂] such that vi(wc, ti−i, ti)
is strongly jointly typical with s[i] and x2,i(wc, ti−1). Again, if
there is no such index or the observed state s[i] is not typical,
ti is set to 1 and an error is declared. Next, Encoder 1 looks for
the smallest ji such that ui(wc, ti−1, ti,w1, ji) is jointly typical

with s[i] given (x2,i(wc, ti−1), vi(wc, ti−1, ti)). Denote this ji by
j⋆
i
= j(s[i],wc, ti−1, ti,w1). If such j⋆

i
is not found, an error is

declared and j(s[i],wc, ti−1, ti,w1) is set to ji = J. Encoder 1 then
transmits a vector x1[i] which is drawn i.i.d. conditionally
given ui(wc, ti−1, ti,w1, j⋆

i
), s[i], vi(wc, ti−1, ti) and x2,i(wc, ti−1)

(using the conditional measure PX1 |U,S,V,X2
induced by (7)).

Decoding: At the end of the transmission, the decoder has
collected all the blocks of channel outputs y[1], . . . , y[B].
Step (a): The decoder estimates message wc using all blocks i =

1, . . . ,B, i.e., simultaneous decoding. It declares that ŵc is sent
if there exist tB

= (t1, . . . , tB) ∈ [1 : M̂]B, w1 ∈ [1 : M1] and jB
=

( j1, . . . , jB) ∈ [1 : J]B such that x2,i(ŵc, ti−1), ui(ŵc, ti−1, ti,w1, ji),
vi(ŵc, ti−1, ti) and y[i] are jointly typical for all i = 1, . . . ,B. One
can show that the decoder obtains the correct wc as long as n
and B are large and

Rc + R1 ≤ I(U,V,X2; Y) − I(U,V,X2; S). (10)

Step (b): Next, the decoder estimates message w1 using again

all blocks i = 1, . . . ,B, i.e., simultaneous decoding. It declares
that ŵ1 is sent if there exist tB

= (t1, . . . , tB) ∈ [1 : M̂]B, jB
=

( j1, . . . , jB) ∈ [1 : J]B such that x2,i(ŵc, ti−1), ui(ŵc, ti−1, ti, ŵ1, ji),
vi(ŵc, ti−1, ti) and y[i] are jointly typical for all i = 1, . . . ,B. One
can show that the decoder obtains the correct w1 as long as n
and B are large and

R1 ≤ I(U; Y|V,X2) − I(U; S|V,X2) (11a)

R1 ≤ I(U,V,X2; Y) − I(U,V,X2; S). (11b)

�

B. Wyner-Ziv Binning With Nonunique Decoding is Optimal

In the coding scheme of Theorem 1, the state compression is
standard, i.e., uses no Wyner-Ziv binning, the same message
is sent in every block, and the decoding of the sent message is
performed jointly using all blocks. Although of no benefit
in the case of one relay, the combination of these three
features was shown to be essential in achieving rates that
are strictly larger than those offered by schemes based on
Cover and El Gamal classic compress-and-forward scheme
[13] for certain networks with multiple relays in [5]. That is,
the coding scheme of [5] outperforms Cover and El Gamal
classic compress-and-forward for some multi-relay networks
in [5]. One can wonder whether the same holds for our
model, i.e., whether schemes based on Cover and El Gamal
classic compress-and-forward, i.e., block Markov encoding
combined with Wyner-Ziv binning, fall short of achieving
optimality for our model. In this paper, we show that the
capacity region C as given by (8) can be achieved alternatively
with a coding scheme that we obtain by building upon
and modifying Cover and El Gamal original compress-and-
forward scheme. The modification consists essentially in 1)
decoding block-by-block backwardly instead of block-by-
block forwardly and 2) non-unique decoding of the com-
pression indices. (In fact, by investigating more closely the
converse proof of Theorem 1, we will show later that 2) can
be relaxed essentially without altering the capacity region).
The following theorem states the result.

Theorem 2: For the state-dependent multiaccess channel
model that we study, there exists an optimal coding scheme
that uses Wyner-Ziv binning for the state compression. That



is, the capacity regionCgiven by (8) can also be achieved using
a coding scheme in which the state compression is performed
using Wyner-Ziv binning.

Proof: The achievability proof of Theorem 2 is based
on a block-Markov coding scheme that combines carefully
Gel’fand-Pinsker binning and Wyner-Ziv binning, and uti-
lizes backward decoding with non-unique decoding of the
compression indices.

The transmission takes place in B blocks. The common
message Wc is divided into B blocks wc,1, . . . ,wc,B of nRc

bits each, and the individual messages W1 are divided into
B blocks w1,1, . . . ,w1,B of nR1 bits each. For convenience,
we let wc,B = w1,B = 1 (a default value). We thus have
BWc
= n(B − 1)Rc, BW1

= n(B − 1)R1, N = nB, RWc
= BWc

/N =
Rc·(B − 1)/B and RW1

= BW1
/N = R1·(B − 1)/B, where BWc

is the number of common message bits, BW1
is the number

of individual message bits, N is the number of channel uses
and RWc

and RW1
are the overall rates of the common and

individual messages, respectively. For fixed n, the average
rate pair (RWc

,RW1
) over B blocks can be made as close to

(Rc,R1) as desired by making B large.

Codebook Generation: Fix a measure PS,U,V,X1,X2 ,Y ∈ P. Fix ǫ >
0 and denote Mc = 2n[Rc−ηcǫ], M1 = 2n[R1−η1ǫ], M0 = 2n[R0+η0ǫ],
M̂ = 2n[R̂+η̂ǫ], J = 2n[I(U;S|V,X2)+δUǫ].

1) We generate McM0 independent and identically dis-
tributed (i.i.d.) codewords x2(wc, s) indexed by wc =

1, . . . ,Rc, s = 1, . . . ,M0, each with i.i.d. components
drawn according to PX2

.
2) For each codeword x2(wc, s), we generate M̂ independent

and identically distributed (i.i.d.) codewords v(wc, s, z)
indexed by z = 1, . . . , M̂, each with i.i.d. components
drawn according to PV|X2

.
3) For each codeword x2(wc, s), for each codeword v(wc, s, z),

we generate a collection of JM1 i.i.d. codewords
{u(wc, s, z,w1, j)} indexed by w1 = 1, . . . ,M1, j = 1, . . . , J,
each with i.i.d. components draw according to PU|V,X2

.
4) Randomly partition the set {1, . . . , M̂} into M0 cells Cs,

s ∈ [1,M0].

Encoding: Suppose that a common message Wc = wc

and an individual message W1 = w1 are to be transmitted.
As we mentioned previously, message wc is divided into B
blocks wc,1, . . . ,wc,B and message w1 is divided into B blocks
w1,1, . . . ,w1,B, with (wc,i,w1,i) the pair messages sent in block
i. We denote by s[i] the channel state in block i, i = 1, . . . ,B.
For convenience, we let s[0] = φ and z0 = 1 (a default value),
and s0 the index of the cell containing z0, i.e., z0 ∈ Cs0

. The
encoding at the beginning of the block i, i = 1, . . . ,B, is as
follows.
Encoder 2, which has learned the state sequence s[i−1], knows
si−2 and looks for a compression index zi−1 ∈ [1, M̂] such that
v(wc,i−1, si−2, zi−1) is strongly jointly typical with s[i − 1] and
x2(wc,i−1, si−2). If there is no such index or the observed state
s[i − 1] is not typical, zi−1 is set to 1 and an error is declared.
If there is more than one such index zi−1, choose the smallest.
One can show that the probability of error of this event is
arbitrarily small provided that n is large and

R̂ > I(V; S|X2). (12)

Encoder 2 then transmits the vector x2(wc,i, si−1), where si−1

is such that zi−1 ∈ Csi−1
.

Encoder 1 obtains x2(wc,i, si−1) similarly. It then finds the
smallest compression index zi ∈ [1, M̂] such that v(wc,i, si−1, zi)
is strongly jointly typical with s[i] and x2(wc,i, si−1). Again,
if there is no such index or the observed state s[i] is not
typical, zi is set to 1 and an error is declared. Let si ∈
[1,M0] such that zi ∈ Csi

. Next, Encoder 1 looks for the
smallest ji such that u(wc,i, si−1, zi,w1,i, ji) is jointly typical
with s[i], x2(wc,i, si−1) and v(wc,i, si−1, zi). Denote this ji by
j⋆
i
= j(s[i],wc,i, si−1, zi,w1,i). If such j⋆

i
is not found, an

error is declared and j(s[i],wc,i, si−1, zi,w1,i) is set to ji = J.
Encoder 1 then transmits a vector x1[i] which is drawn i.i.d.
conditionally given s[i], u(wc,i, si−1, zi,w1,i, j⋆

i
), v(wc,i, si−1, zi)

and x2(wc,i, si−1) (using the conditional measure PX1 |S,U,V,X2

induced by PS,U,V,X1,X2,Y ∈ P).
1) Decoding in Block B − 1:
The decoding of the pair (wc,B−1,w1,B−1) is performed in four

steps, as follows.
Step (a): The decoder knows wc,B = 1 and looks for the unique

cell index ŝB−1 such that the vector x2(wc,B, ŝB−1) is jointly
typical with y[B]. The decoding operation in this step incurs
small probability of error as long as n is sufficiently large and

R0 < I(X2; Y). (13)

Step (b): The decoder now knows ŝB−1 (i.e., the in-

dex of the cell in which the compression index zB−1

lies). It then decodes message wc,B−1 by looking for the
unique ŵc,B−1 such that x2(ŵc,B−1, sB−2), v(ŵc,B−1, sB−2, zB−1),
u(ŵc,B−1, sB−2, zB−1,w1,B−1, jB−1) and y[B − 1] are jointly typical
for some sB−2 ∈ [1,M0], w1,B−1 ∈ [1,M1], jB−1 ∈ [1, J] and
zB−1 ∈ CŝB−1

. One can show that the decoder obtains the correct
wc,B−1 as long as n and B are large and

R0 + (R̂ − R0) + Rc + R1 ≤ I(U,V,X2; Y) − I(U; S|V,X2). (14)

Step (c): The decoder knows ŵc,B−1 and can again obtain the

correct sB−2 if n is large and (13) is true. This is accomplished by
looking for the unique ŝB−2 such that the vector x2(ŵc,B−1, ŝB−2)
is jointly typical with y[B − 1].
Step (d): Finally, the decoder, which now knows message

ŵc,B−1 and the cell index ŝB−2 (but not the exact compression in-
dex zB−1), estimates w1,B−1 using y[B−1]. It declares that ŵ1,B−1

was sent if there exists a unique ŵ1,B−1 such that x2(ŵc,B−1, ŝB−2),
v(ŵc,B−1, ŝB−2, z

′
B−1

), u(ŵc,B−1, ŝB−2, z
′
B−1
, ŵ1,B−1, jB−1) and y[B−1]

are jointly typical for some z′
B−1
∈ CŝB−1

and jB−1 ∈ [1, J].

• If z′
B−1
= zB−1, the decoder finds the correct w1,b−1 for

sufficiently large n if

R1 ≤ I(U; Y|V,X2) − I(U; S|V,X2). (15)

• If z′
B−1
, zB−1, the decoder finds the correct w1,b−1 for

sufficiently large n if

(R̂ − R0) + R1 ≤ I(U,V; Y|X2) − I(U; S|V,X2). (16)

2) Decoding in Block b, b = B − 1,B − 2, . . . , 2:
Next, for b ranging from B− 1 to 2, the decoding of the pair

(wc,b−1,w1,b−1) is performed similarly, in five steps, by using
the information y[b] received in block b and the information
y[b − 1] received in block b − 1. More specifically, this is done
as follows.



Step (a): The decoder knows wc,b and looks for the unique

cell index ŝb−1 such that the vector x2(wc,b, ŝb−1) is jointly
typical with y[b]. The decoding error in this step is small
for sufficiently large n if (13) is true.
Step (b): The decoder knows ŝb−1 and decodes message wc,b−1

from y[b]. It looks for the unique ŵc,b−1 such that x2(ŵc,b−1, sb−2),
v(ŵc,b−1, sb−2, zb−1), u(ŵc,b−1, sb−2, zb−1,w1,b−1, jb−1) and y[b − 1]
are jointly typical for some sb−2 ∈ [1,M0], w1,b−1 ∈ [1,M1],
jb−1 ∈ [1, J] and zb−1 ∈ Cŝb−1

. One can show that the decoding
error in this step is small for sufficiently large n if (14) is true.
Step (c): The decoder knows ŵc,b−1 and obtains ŝb−2 by looking

for the unique ŝb−2 such that the vector x2(ŵc,b−1, ŝb−2) is jointly
typical with y[b − 1]. For sufficiently large n, the decoder
obtains the correct sb−2 with high probability if (13) is true.
Step (d): Finally, the decoder, which now knows mes-

sage ŵc,b−1 and the cell index ŝb−2 (but not the exact
compression index zb−1), estimates message w1,b−1 using
y[b − 1]. It declares that ŵ1,b−1 was sent if there exists
a unique ŵ1,b−1 such that x2(ŵc,b−1, ŝb−2), v(ŵc,b−1, ŝb−2, z

′
b−1

),
u(ŵc,b−1, ŝb−2, z

′
b−1
, ŵ1,b−1, jb−1) and y[b − 1] are jointly typical

for some z′
b−1
∈ Cŝb−1

and jb−1 ∈ [1, J].

• If z′
b−1
= zb−1, the decoder finds the correct w1,b−1 for

sufficiently large n if (15) is true.
• If z′

b−1
, zb−1, the decoder finds the correct w1,b−1 for

sufficiently large n if (16) is true.

Applying Fourier-Motzkin Elimination (FME) to project
out R0 and R̂ from (13),(14), (15) and (16), we get the desired
result (8). �

C. Non-unique Decoding is Not Needed

As we mentioned previously, the coding scheme of The-
orem 2 shares elements with Cover and El Gamal original
compress-and-forward [13, Theorem 7]; but differs from it
mainly in two aspects. First, it uses backward decoding
instead of the forward decoding of [13]; and, second, unlike
[13] it does not require unique decoding of the compression
indices. The second aspect is essential for getting the same rate
expression as in (8), with no additional constraints. However,
as we will see shortly in the corollary that will follow, one
can modify the coding scheme of Theorem 2 in a way to get
the compression indices decoded uniquely and still get the
capacity region, at the expense of slightly larger |V| and larger
|U|. The key element is the observation that the constraint
introduced by getting the compression index decoded, i.e.,

I(V; S|X2) − I(V; Y|X2) ≤ I(X2; Y), (17)

or, equivalently,

I(V,X2; Y) − I(V,X2; S) ≥ 0, (18)

is also implicit in the converse proof of Theorem 1. That is, the
auxiliary random variables U and V of the converse proof of
Theorem 1 satisfy (18).

Theorem 3: The coding scheme of Theorem 2 can be
modified in a way to get the compression index decoded.
The resulting coding scheme is optimal and achieves an
equivalent characterization of the capacity region of the
model that we study given by the set of all rate pairs (Rc,R1)
such that

R1 ≤ I(U; Y|V,X2) − I(U; S|V,X2)

Rc + R1 ≤ I(U,V,X2; Y) − I(U,V,X2; S) (19)

for some measure (S,U,V,X1,X2,Y) ∈ P and satisfying

I(V,X2; Y) − I(V,X2; S) ≥ 0, (20)

where the auxiliary random variables V and U have their
alphabets bounded as

|V| ≤ |S||X1 ||X2 | + 2 (21a)

|U| ≤
(

|S||X1 ||X2| + 2
)

|S||X1 ||X2|. (21b)

Proof: The coding scheme that we use for the proof of
Theorem 3 is very similar to that of Theorem 2, but with
unique decoding of the compression indices. (See [11]).
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