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Abstract— In this paper, we establish achievable rate regions for 
the multiple access channel (MAC) with side information 
partially known (estimated or sensed version) at the transmitters. 
Actually, we extend the lattice strategies used by Philosof-Zamir 
for the MAC with full side information at the transmitters to the 
partially known case. We show that the sensed or estimated side 
information reduces the rate regions, the same as that occurs for 
Costa Gaussian channel.  

Index Terms- achievabile rate  region; dirty multiple accsses 
channel; estimated or sensed or partial side information  

 

I.  INTRODUCTION  
Nowadays channels with side information are widely 

studied from both information-theoretic and communications 
aspects.Side information (SI) can be available at the transmitter 
(SIT), and/or at the receiver (SIR). Encoding for a single-user 
with causal SIT was first studied by Shannon [1]. The capacity 
of a general discrete memoryless channel with non-causal SIT 
was characterized by Gel’fand and Pinsker in [2]. Costa [3] 
applied the formula obtained by Gel’fand and Pinsker to the 
special model of Gaussian channel with additive Gaussian 
interference, and showed that the channel capacity in the 
presence of interference known at the transmitter is the same as 
the case without interference. In Costa’s dirty-paper channel 
(DPC), Gaussian random binning is able to eliminate the effect 
of interference which is known at the transmitter, and thus 
achieves capacity. Cover and Chiang [4] extended the above 
results and established a general capacity Theorem for the 
channel with two-sided state information. Gueguen-Sayrac [5] 
derived the capacity of the DPC with partial side information 
knowledge. The partial side information knowledge models the 
sensing process approximating the original information. It was 
shown that the capacity of the DPC with partial SI is reduced 
compared to the DPC with exact or complete SI. 

 In the multi-user setting, Das and Narayan [6] provided a 
multi-letter characterization of the capacity region of time-
varying MACs with various degrees of SIT and SIR. In  [7],  a  
general  framework  for  the  capacity  region of  MACs  with  
causal  and  non-causal  SI  was  presented where focused  on  
the  MAC  with  independent  side  information  at  the  two 
transmitters. Philosof-Zamir [8], [9], extended Jafar’s work and 
provided achievable rate regions for the discrete memoryless 
MAC with correlated side information known non-causally at 

the encoders using a random binning technique. They also 
considered the Gaussian doubly dirty MAC in the high-SNR 
strong interference regime [8-13].The achievable rates using 
Costa’s Gaussian binning vanish if both interference signals are 
strong. In contrast, it is shown that lattice-strategies (lattice pre-
coding) can achieve positive rates, independent of the 
interference power. Furthermore, in some cases (which depend 
on the noise variance and power constraints) high dimensional 
lattice strategies are in fact optimal [10].  

In this paper, we study the effect of partial SI knowledge in 
the Gaussian doubly dirty MAC considered by Philosof-Zamir 
[10]. We expect that achievable rate regions are reduced just 
the same as in Costa’s DPC considered by in [5]. It is readily 
seen that our achievable rates include the achievable rates of 
the MAC with full side information as especial cases.  

     The rest of the paper is organized as follows. In Section II, 
we state some basic terminology for lattices. Section III 
includes related works. In Section IV, we state the system 
model and our results based on lattice strategies for doubly 
dirty MAC with partial SIT. In particular, we devote Section 
IV-A to the imbalanced doubly dirty MAC with partial SIT, 
and Section IV-B to the nearly balanced doubly dirty MAC 
with estimated SIT.  

 

II. LATTICES AND NESTED LATTICE CODES  
We need some basic terminology for lattices before we can 

proceed and look at the modulo-lattice modulation. An ݊ 
dimensional lattice ߉  is defined by the generator matrix 
ܩ א ܴ௡ൈ௡. A point ݈ א Թ௡ belongs to the lattice if and only if it 
can be written as ݈ ൌ ܩ݅ , where ݅ א Ժ௡  and Ժ ൌ ሼ0, േ1, േ2, … ሽ. 
The nearest neighbor quantizer of a lattice ߉  is defined by  
ܳΛሺݔሻ ؜ arg ݉݅݊௟אΛԡݔ െ ݈ԡ  where ԡ. ԡ  is the Euclidean norm. 
The modulo-lattice operation is defined by 
Λ ݀݋݉ ݔ  ൌ ݔ െ ܳΛሺݔሻ.                                                              (1) 
The modulo-code operation satisfies as follows 
ሾ ݀݋݉ ݔ Λ ൅ Λ ݀݋݉ ሿݕ ൌ ሾ ݔ ൅  Λ.                                  (2) ݀݋݉ ሿݕ
The fundamental Voronoi region of Λ is the set of all points 
closer to the origin than to any other lattice point ࣰሺΛሻ ൌ
ሼݔ: ܳሺݔሻ ൌ 0ሽ with volume ܸ ൌ Vol൫ࣰሺΛሻ൯. The second moment 
per dimension of a uniform distribution over ࣰ is  
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The normalized second moment is  ܩሺΛሻ ൌ ఙ౻
మ

௏మ ೙ൗ .  For large 

enough ݊ , lim௡ ሺΛሻܩ ൌ ଵ
ଶగ௘

, i.e., there exist good lattice 
quantizers and ݈݃݋൫2ܩ݁ߨሺΛሻ൯ ൏ ߝ  for any ߝ ൐ 0 , ݊ ՜ ∞ .  
When used as a channel code over an unconstrained AWGN 
channel, [14], the decoding error probability is the probability 
that a white Gaussian noise vector ܈ exceeds the basic Voronoi 
cell ௘ܲ ൌ ௥ܲሺܼ ב ࣰሻ . For good AWGN channel coding, we 
have ௘ܲ ൌ ௥ܲሺܼ ב ࣰሻ ൏ ߝ  for any ߝ ൐ 0 . The Crypto lemma 
[15] which states that ሺݔ ൅ ܷሻ݉݀݋ Λ  (where ܷ is uniformly 
distributed over ࣰ ) is an independent random variable 
uniformly distributed over ࣰ.  

The differential entropy of an ݊-dimensional random vector 
۲ which is distributed uniformly over the fundamental Voronoi 
cell, i.e., ۲~ܷ݂݊݅ሺࣰሻ is given by [10]  

݄ሺ۲ሻ ൌ logଶሺܸሻ ൌ logଶ ቆ
ஃߪ

ଶ

ሺΛሻቇܩ
௡

ଶൗ

 

                               ൌ ݊
2ൗ logଶ ቀ ఙ౻

మ

ீሺஃሻቁ ൌ ݊
2ൗ logଶ൫2ߪ݁ߨஃ

ଶ൯               (3) 
where the last (approximate) equality holds for lattices that are 
good for quantization. A comprehensive study of lattices and 
lattice quantization can be found in [16]. 

 

III. RELATED WORKS 
 In this section, we briefly review the Gueguen-Sayrac and 

Philosof-Zamir works. 
Gueguen-Sayrac work: Fig.1 shows the channel encoding 

with partial observation of the side information at the encoder. 
The partial observation is modeled as a compression channel 
generating some distortion on the side information. ܈ , ܁ , ܆ and 
  are random variables which represent respectively, the ܇
source,  side  information, zero mean white Gaussian noise 
,ሺ0ࣨ~܈) ܰ))  and the output of the ergodic channel modeled by 
܇ ൌ ܆ ൅ ܁ ൅  are independent and ܁ and ܆ It is supposed that .܈
average power limited variables ॱሾ܆ଶሿ ൑ ௑ܲ  and ॱሾ܁ଶሿ ൑ ௦ܲ. 

 ෨ is the random variable representing the partial information܁
obtained at the channel encoder which satisfies the following 
Euclidean distortion ॱ ቂ൫܁ െ ෨൯ଶቃ܁ ൌ D.  

Gueguen-Sayrac Theorem [5, Theorem 2.1]: For a channel 
described as above, the channel capacity between the source 
and the output is expressed by ܥ ൌ ଵ

ଶ
log ቀ1 ൅ ௉೉

஽ାே
ቁ .  

As we see the partial side information reduces the capacity. 

 

 

 
Fig.1  DPC with estimated SIT [5]. 

 

Philosof-Zamir work: Fig.2 shows a general lattice-based 
transmission scheme as the Gaussian doubly dirty MAC. 
Encoder1 and encoder2 use the lattices Λଵ ൌ ݇ଵΛ and Λଶ ൌ ݇ଶΛ 
(where ݇ଵ, ݇ଶare real numbers), with second moments ߪଵ

ଶ ൌ ଵܲ 
and ߪଶ

ଶ ൌ ଶܲ  and fundamental Voronoi regions ଵࣰ  and ଶࣰ , 
respectively. ܄ଵ א ሺ݂݅݊ݑ ଵࣰሻ, ܄ଶ א ሺ݂݅݊ݑ ଶࣰሻ are independent and 
carry the information of user1 and user2. The encoders use 
independent (pseudorandom) dither signals ۲ଵ~݂݅݊ݑሺ ଵࣰሻ  and 
۲ଶ~݂݅݊ݑሺ ଶࣰሻ  where ۲ଵ  is known to encoder1 and to the 
decoder, and ۲ଶ is known to encoder2 and to the decoder. From 
the dithered quantization property, there is  
ሺ݂݅݊ݑ~௜܆ ௜ࣰሻ  for any ܄௜ ൌ ݅ ,௜ܞ ൌ 1,2                                       (4) 
where ܆௜ independent of  ܄௜ . , ௜܁  ݅ ൌ 1,2 is SI in the encoders.  
The transmitted signals by encoders are: 
ଵ܆ ൌ ሾ܄ଵ െ ଵ܁ଵߙ ൅ ۲ଵሿ݉݀݋Λଵ  
ଶ܆ ൌ ሾ܄ଶ െ ଶ܁ଶߙ ൅ ۲ଶሿ݉݀݋Λଶ                                                 (5) 
where ܆௜ independent of  ܄௜  and ߙଵ, ଶߙ א  ሾ0,1ሿ . The input of 
decoder is  ܇ ൌ ૚܆ ൅ ଶ܆ ൅ ଵ܁ ൅ ଶ܁ ൅ ܈  . The decoder uses a 
lattice Λ௥ ൌ ݇௥Λ , which is another scaled version of  Λ , and 
reduces modulo-Λ௥  the term ߙ௥܇ െ ۲ଵߛ െ   .۲ଶ, i.eߚ
′܇ ൌ ሾߙ௥܇ െ ۲ଵߛ െ ,ଵߙ Λ௥                                               (6) The scalars݀݋۲ଶሿ݉ߚ ,ଶߙ ,௥ߙ ݇ଵ, ݇ଶ, ݇௥, ,ߚ  and the basic lattice Λ ߛ
will be determined in each scenario. Robustness is the main 
advantage of the lattice-alignment transmission above [10]. 
They provide conditions under which lattice-strategies are 
optimal, imbalanced case ܰ ൑ ඥ ଵܲ ଶܲ െ ݉݅݊ሺ ଵܲ, ଶܲሻ  and nearly 
case  ܰ ൒ ඥ ଵܲ ଶܲ െ ݉݅݊ሺ ଵܲ, ଶܲሻ.  

Philosof-Zamir Theorem [10, Theorem 2]:  The capacity 
region of the imbalanced doubly dirty MAC in the limit of 
strong interferences is given by the set of all rate pairs ሺܴଵ, ܴଶሻ 
satisfying  
ܴଵ ൅ ܴଶ ൑ ଵ

ଶ
݃݋݈ ቀ1 ൅ ௠௜௡ሺ௉భ,௉మሻ

ே
ቁ.                                                (7) 

    Philosof-Zamir Theorem [10, Theorem 3]:  The inner bound 
of the capacity for the general nearly balanced case is given as 
follows  

ܴଵ ൅ ܴଶ ൑ .ݑ ܿ. ݁ ቊቈଵ
ଶ

݃݋݈ ቆ ௉భା௉మାே

ଶேା൫ඥ௉భିඥ௉మ൯
మቇ቉

ା

ቋ                              (8) 

where the upper convex envelope is with respect to ଵܲ and ଶܲ. 
    The inner bound for the exactly balanced case (nearly case 
with ଵܲ ൌ ଶܲሻ  is derived as follows  

ܴଵ ൅ ܴଶ ൑ .ݑ ܿ. ݁ ൜ቂଵ
ଶ

݃݋݈ ቀଵ
ଶ

൅ ௉
ே

ቁቃ
ା

ൠ.                                           (9) 

 
Fig.2 Gaussian Doubly Dirty MAC [10]. 



 
Fig.3 Gaussian Doubly Dirty MAC with partial SIT. 

 

IV. MAIN RESULTS 
 System Model 

 We consider the extended model of Gaussian doubly dirty 
MAC with partial side information in Fig.3. Most of the 
definitions and assumptions we make at this work are similar to 
[10], except that we have estimated SI (܁෨௜) instead of exact SIT 
 at the transmitters which satisfies the following Euclidean (௜܁)
distortion ॱ ቂ൫܁௜ െ ෨௜൯܁

ଶ
ቃ ൌ , ௜ܧ ݅ ൌ 1,2.   

Therefore the transmitted signals by encoders are: 
ଵ܆ ൌ ଵ܄ൣ െ ෨ଵ܁ଵߙ ൅ ۲ଵ൧݉݀݋Λଵ                                              

ଶ܆ ൌ ଶ܄ൣ െ ෨ଶ܁ଶߙ ൅ ۲ଶ൧݉݀݋Λଶ                                               (10) 
 
Main Results: 
      In the following Theorems, we provide conditions under 
which lattice-strategies are optimal (Like Philosof Zamir’s 
work [10]). By considering two cases, imbalanced doubly 
dirty MAC with estimated (partial) SIT ( ଵܧ ൅ ଶܧ ൅ ܰ ൑
ඥ ଵܲ ଶܲ െ ݉݅݊ሺ ଵܲ, ଶܲሻ ) and nearly doubly dirty MAC with 
estimated (partial) SIT ( ଵܧ ൅ ଶܧ ൅ ܰ ൒ ඥ ଵܲ ଶܲ െ ݉݅݊ሺ ଵܲ, ଶܲሻ ), 
we give the achievable rate regions. 

A. Imbalanced Doubly Dirty MAC with partial SIT 
We consider the case that ܧଵ ൅ ଶܧ ൅ ܰ ൑ ඥ ଵܲ ଶܲ െ

݉݅݊ሺ ଵܲ, ଶܲሻ and named “imbalanced case”. 

      Theorem 1: In imbalanced case for ଵܲ ് ଶܲ  the 
achievabile rate of the doubly dirty MAC with estimation of 
side information in transmitters is given by the set of all rate 
pairs ሺܴଵ, ܴଶሻ satisfying  
ܴଵ ൅ ܴଶ ൑ ଵ

ଶ
݃݋݈ ቀ1 ൅ ௠௜௡ሺ௉భ,௉మሻ

ாభାாమାே
ቁ                                              (11) 

      Corollary 1: Theorem 1 is reduced to Theorem 2 [10] by 
ଵܧ ൌ ଶܧ ൌ 0. 
 

Proof of Theorem 1: In this proof we consider four cases, 
the first case user1 is a helper for user2 where 

ଵܲ ൒ ଶܲ ቀ௉మାேାாభାாమ

௉మ
ቁ

ଶ
 , the second case user1 is a helper for 

user2 where ଶܲ ൒ ଵܲ ቀ௉భାேାாభାாమ

௉భ
ቁ

ଶ
 , the third case user2 is a 

helper for user1 where ଵܲ ൒ ଶܲ ቀ௉మାேାாభାாమ

௉మ
ቁ

ଶ
 , the fourth case 

user2 is a helper for user1 where ଶܲ ൒ ଵܲ ቀ௉భାேାாభାாమ

௉భ
ቁ

ଶ
. Now, 

we show achievability for the first case i.e., for the point 

 ሺܴଵ, ܴଶሻ ൑ ቆ0, ଵ
ଶ

݃݋݈ ቀ1 ൅ ௠௜௡ሺ௉భ,௉మሻ
ாభାாమାே

ቁቇ.                                     (12) 

By applying the lattice transmission scheme and 
considering ߙଵ ൌ ߚ ൌ ݇ଵ ൌ 1 ,  ݇ଶ ൌ ݇௥ ൌ ߛ ൌ ௥ߙ ൌ , ଶߙ ଵ܄ ൌ ૙ 
and ߪଵ

ଶ ൌ ଵܲ , ଶߪ
ଶ ൌ ଶߙ

ଶ
ଵܲ , the encoder1 and encoder2 send ܆ଵ  

and  ܆ଶ ,respectively, where they are generated as follows 

ଵ܆ ൌ ൣെ܁෨ଵ ൅ ۲ଵ൧݉݀݋Λଵ , 

ଶ܆ ൌ ଶ܄ൣ െ ෨ଶ܁ଶߙ ൅ ۲ଶ൧݉݀݋Λଶ                                                (13) 

      The output of the decoder is  ܇′ ൌ ሾߙଶሺ܇ െ ۲ଵሻ െ
۲ଶሿ݉݀݋Λଶ. Therefore we have 
′܇ ൌ ሾߙଶሺ܆૚ ൅ ଶ܆ ൅ ଵ܁ ൅ ଶ܁ ൅ ܈ െ ۲ଵሻ െ ۲ଶሿ݉݀݋Λଶ    (14)    
     ൌ ሾߙଶ܆૚ ൅ ଶ܆ െ ሺ1 െ ଶ܆ଶሻߙ ൅ ଵ܁ଶߙ ൅ ଶ܁ଶߙ ൅ ܈ଶߙ െ
ଶ۲ଵߙ             െ  ۲ଶሿ݉݀݋Λଶ                                                            (15) 
     ൌ ෨ଵ܁ଶൣെߙൣ ൅ ۲ଵ൧݉݀݋Λଵ ൅ ଶ܄ൣ െ ෨ଶ܁ଶߙ ൅ ۲ଶ൧݉݀݋Λଶ െ
         ሺ1 െ ଶ܆ଶሻߙ ൅ ଵ܁ଶߙ ൅ ߙଶ܁ଶ ൅ ܈ଶߙ െ ଶ۲ଵߙ െ ۲ଶ൧݉݀݋Λଶ  (16) 
     ൌ ଶ܄ൣ െ ሺ1 െ ଶ܆ଶሻߙ ൅ ଵ܁ଶ൫ߙ െ ܁෨ଵ൯ ߙଶ൫܁ଶ െ ෨ଶ൯܁ ൅ ܈ଶߙ െ
෨ଵ܁ଶܳΛభ൫െߙ            ൅ ۲ଵ൯ ൅൧݉݀݋Λଶ                                             (17) 
     ൌ ଶ܄ൣ െ ሺ1 െ ଶ܆ଶሻߙ ൅ ଵ܁ଶ൫ߙ െ ෨ଵ൯܁ ൅ ଶ܁ଶ൫ߙ െ ෨ଶ൯܁ ൅
 Λଶ                                                                  (18)݀݋൧݉܈ଶߙ            
where (16) follows from (13) and (17) follows from (1), (2). 
Since  Λଵ ൌ Λ  , Λଶ ൌ ଶΛߙ , and ߙଶܳΛభ൫െ܁෨ଵ ൅ ۲ଵ൯ א Λଶ , then 
this element disappears after the modulo-Λଶ  operation (in 
(18)). The rate achieved by user 2 is given by:  

ଶ܀ ൌ ଵ
௡

;ଶ܄൫ܫ ൯′܇ ൌ ଵ
௡

൛݄൫܇′൯ െ ݄൫܇  ଶ൯ൟ                                  (19)܄|′
ൌ ଵ

௡
൛݄൫܇′൯ െ ݄൫െሺ1 െ ଶ܆ଶሻߙ ൅ ଵ܁ଶ൫ߙ െ ෨ଵ൯܁ ൅ ଶ܁ଶ൫ߙ െ ෨ଵ൯܁ ൅

 ൯ൟ                                                                                     (20)܈ଶߙ
൒ ଵ

ଶ
݃݋݈ ቀ ௉మ

ீሺΛమሻቁ െ ଵ
ଶ

݃݋݈ ൬2݁ߨቀሺ1 െ ଶሻଶߙ
ଶܲ ൅ ଶߙ

ଶሺܧଵ ൅ ଶܧ ൅ ܰሻቁ൰       
                                                                               (21) 

ൌ ଵ
ଶ

݃݋݈ ቀ ௉మ
ሺଵିఈమሻమ௉మାఈమ

మሺாభାாమାேሻቁ െ ଵ
ଶ

 ሺΛଶሻ൯                 (22)ܩ݁ߨ൫2݃݋݈
where (20) follows from this point that ܄ଶ  and ܆ଶ  are 
independent (according to (4)). Since ܄ଶ is uniform over ଶࣰ  
then ܇ ′  is uniform over ଶࣰ.  Gaussian distribution maximizes 
the entropy for fixed second moment and also modulo 
operation reduces the second moment, therefore we have 
inequality (21).  

Using the optimal MMSE factor for user 2, we have 
డோమ

డఈమ
ൌ 0   , ଶߙ 

כ ൌ ௉మ

௉మାாభାாమାே
 .                                                   (23) 

For ଵܲ ൌ ଶܲ ቀ௉మାேାாభାாమ

௉మ
ቁ

ଶ
and for lattice that is good for 

quantization, the achievable rate is given by 
ܴଶ ൑ ଵ

ଶ
݃݋݈ ቀ1 ൅ ௉మ

ாభାாమାே
ቁ                                                        (24) 

Now we consider the second case (where 

ଶܲ ൒ ଵܲ ቀ௉భାேାாభାாమ

௉భ
ቁ

ଶ
) and show achievability for the point 

satisfying 

ሺܴଵ, ܴଶሻ ൌ ቆ0, ଵ
ଶ

݃݋݈ ቀ1 ൅ ௉భ

ாభାாమାே
ቁቇ                                        (25) 



      By applying the lattice transmission scheme and 
considering ߙଶ ൌ ߛ ൌ ݇ଶ ൌ 1 , ݇ଵ ൌ ݇௥ ൌ ௥ߙ ൌ ,  ଵߙ ߚ ൌ 0, ଵ܄ ൌ
૙  , ۲ଶ ൌ ૙ and ߪଵ

ଶ ൌ ଵߙ
ଶ

ଶܲ , ଶߪ
ଶ ൌ ଶܲ, the encoder1 and encoder2 

send ܆ଵ and ଶ܆  , respectively, where they are generated as 
follows 
ଵ܆ ൌ ൣെߙଵ܁෨ଵ ൅ ۲ଵ൧݉݀݋Λଵ  , ଶ܆  ൌ ଶ܄ൣ െ  Λଶ               (26)݀݋෨ଶ൧݉܁

The receiver calculates ܇ᇱ ൌ ሾߙଵ܇ െ ۲ଵሿ݉݀݋Λଵ . By using 
(26), (1), (2) and this point that ߙଵܳஃమ൫܄ଶ െ ෨ଶ൯܁ א Λଵ , the 
equivalent channel is given by 

ᇱ܇ ൌ ଶ܄ଵߙൣ െ ሺ1 െ ଵ܆ଵሻߙ ൅ ଵ܁ଵ൫ߙ െ ෨ଵ൯܁ ൅ ଶ܁ଵ൫ߙ െ ෨ଶ൯܁ ൅
 Λଵ                                                                          (27)݀݋൧݉܈ଵߙ            

Since ܄ଶ  and ܆ଵ  are independent, the rate achieved by user 2 
is given by 
ଶ܀ ൌ ଵ

௡
;ଶ܄൫ܫ ൯′܇ ൌ ଵ

௡
൛݄൫܇′൯ െ ݄൫܇  ଶ൯ൟ                                      (28)܄|′

      ൌ ଵ
௡

൛݄ሺ܇ᇱሻ െ ݄൫െሺ1 െ ଵ܆ଵሻߙ ൅ ଵ܁ଵ൫ߙ െ ෨ଵ൯܁ ൅ ଶ܁ଵ൫ߙ െ ෨ଶ൯܁ ൅
   ൯ൟ܈ଵߙ         

൒ ଵ
ଶ

݃݋݈ ቀ ௉భ

ீሺΛభሻቁ െ ଵ
ଶ

݃݋݈ ൬2݁ߨቀሺ1 െ ଵሻଶߙ
ଵܲ ൅ ଵߙ

ଶሺܧଵ ൅ ଶܧ ൅ ܰሻቁ൰  

ൌ ଵ
ଶ

݃݋݈ ቀ ௉భ
ሺଵିఈభሻమ௉భାఈభ

మሺாభାாమାேሻቁ െ ଵ
ଶ

 ሺΛଵሻ൯                   (29)ܩ݁ߨ൫2݃݋݈

Since ߙଵ܄ଶ is uniform over ଵࣰ  then ܇′  is also uniform over 
ଵࣰ. Gaussian distribution maximizes the entropy for fixed 

second moment and also modulo operation reduces the second 
moment, therefore we have inequality (29). By using the 
optimal MMSE factor, we have 

ଵߙ
כ ൌ ௉భ

௉భା1ܧ൅2ܧାே
  .                                                                 (30) 

For ଶܲ ൌ ଵܲ ቀ௉భାேାாభାாమ

௉భ
ቁ

ଶ
and for lattice that is good for 

quantization, the rate is achieved as follows 

ܴଶ ൑ ଵ
ଶ

݃݋݈ ቀ1 ൅ ௉భ

ாభାாమାே
ቁ.                                                        (31) 

Therefore, the achievable rate for the point ሺ0, ܴଶሻ satisfies  

ܴଶ ൌ ൞

ଵ
ଶ

logଶ ቀ1 ൅ ௉భ

ேାாభାாమ
ቁ,   ଶܲ ൒ ଵܲ ቀ௉భାேାாభାாమ

௉భ
ቁ

ଶ
 

ଵ
ଶ

logଶ ቀ1 ൅ ௉మ

ேାாభାாమ
ቁ,   ଵܲ ൒ ଶܲ ቀ௉మାேାாభାாమ

௉మ
ቁ

ଶ
 
 .               (32) 

 By considering the third and fourth cases, also the point 
ሺܴଵ, 0ሻ is given by  

ܴଵ ൌ ൞

ଵ
ଶ

logଶ ቀ1 ൅ ௉భ

ேାாభାாమ
ቁ,   ଶܲ ൒ ଵܲ ቀ௉భାேାாభାாమ

௉భ
ቁ

ଶ
 

ଵ
ଶ

logଶ ቀ1 ൅ ௉మ

ேାாభାாమ
ቁ,   ଵܲ ൒ ଶܲ ቀ௉మାேାாభାாమ

௉మ
ቁ

ଶ
 
.                (33) 

By using time sharing between (32) and (33) for  ܧଵ ൅ ଶܧ ൅
ܰ ൑ ඥ ଵܲ ଶܲ െ ݉݅݊ሺ ଵܲ, ଶܲሻ  and ଵܲ ് ଶܲ , any rate pair in the 
straight line ܴଵ ൅ ܴଶ ൑ ଵ

ଶ
݃݋݈ ቀ1 ൅ ௠௜௡ሺ௉భ,௉మሻ

ாభାாమାே
ቁ  is achievable and 

the Theorem follows.  
    In the above lattice-alignment scheme, the “strong user” 
(the user with higher power constraint) effectively uses ߙ ൌ 1 
(the scalar factor which multiplies the interference at the 
encoder). 

  

B. Nearly Balanced Doubly Dirty MAC with partial SIT 
We now derive an inner bound for the “nearly balanced” 

case, where ܧଵ ൅ ଶܧ ൅ ܰ ൒ ඥܲ1ܲ2 െ ݉݅݊ሺܲ1, ܲ2ሻ. For 

simplicity, we can divide nearly doubly dirty MACs with 
partial SIT to two cases, the symmetric (“exactly balanced”) 
case, i.e., ଵܲ ൌ ଶܲ ൌ ܲ  and the general “nearly balanced” 
case ଵܲ ് ଶܲ. 

 

Theorem 2:   In exactly balanced case, the achievable rate 
of the doubly dirty MAC with estimated SIT is given by the set 
of all rate pairs ሺܴଵ, ܴଶሻ satisfying  

ܴଵ ൅ ܴଶ ൑ .ݑ ܿ. ݁ ൜ቂଵ
ଶ

݃݋݈ ቀଵ
ଶ

൅ ௉
ாభାாమାே

ቁቃ
൅

ൠ                                (34) 

      Corollary 2: Theorem 2 is reduced to (9) by ܧଵ ൌ ଶܧ ൌ 0. 

Proof of Theorem 2: Using the lattice-alignment 
transmission scheme, we consider the case that ݇ଵ ൌ ݇ଶ ൌ ݇௥ ൌ
ߚ ൌ ߛ ൌ 1 and  ߙଵ ൌ ଶߙ   ൌ ௥ߙ ൌ  The encoder1 and encoder2 . ߙ
send ܆ଵ  and  ܆ଶ ,respectively which are generated as follows 
ଵ܆ ൌ ଵ܄ൣ െ ෨ଵ܁ߙ ൅ ۲ଵ൧݉݀݋Λ , ଶ܆   ൌ ଶ܄ൣ െ ෨ଶ܁ߙ ൅ ۲ଶ൧݉݀݋Λ     (35) 
and the receiver calculates 
ᇱ܇ ൌ ሾ܇ߙ െ ۲ଵ െ ۲ଶሿ݉݀݋Λ  .                                                  (36) 
By using (35) and (2), the equivalent channel is given by 
ᇱ܇ ൌ 1܄ൣ ൅ ଶ܄ െ ሺ1 െ ଵ܆ሻߙ െ ሺ1 െ ଶ܆ሻߙ ൅ ଵ܁൫ߙ െ ෨ଵ൯܁ ൅
ଶ܁൫ߙ             െ ෨ଶ൯܁ ൅  Λ.                                                    (37)݀݋൧݉܈ߙ

The sum of achievable rates is given by 
ܴଵ ൅ ܴଶ ൌ ଵ

௡
;ଶ܄ଵ܄൫ܫ ܇ ′൯ ൌ ଵ

௡
൛݄൫܇′൯ െ ݄൫܇  ଶ൯ൟ                      (38)܄ଵ܄|′

                 ൌ
ଵ
௡

൛݄ሺ܇ᇱሻ െ ݄൫ൣെሺ1 െ ଵ܆ሻߙ െ ሺ1 െ ଶ܆ሻߙ ൅ ଵ܁൫ߙ                      െ
෨ଵሻ܁   ൅ ଶ܁൫ߙ   െ ෨ଶ൯܁ ൅  Λ൯ൟ                (39)݀݋൧݉܈ߙ
                    ൒ ଵ

ଶ
݃݋݈ ቀ ௉

ீሺΛሻቁ െ ଵ
ଶ

݃݋݈ ቀ2݁ߨ൫2ሺ1 െ ሻଶܲߙ ൅ ଵܧଶሺߙ ൅

ଶܧ                           ൅ ܰሻ൯ቁ                                                                 (40) 

                    ൌ ଵ
ଶ

݃݋݈ ቀ ௉
ଶሺଵିఈሻమ௉ାఈమሺாభାாమାேሻቁ െ ଵ

ଶ
 ሺΛሻ൯.   (41)ܩ݁ߨ൫2݃݋݈

By using the optimal MMSE factor, we achieve                 
כߙ ൌ ଶ௉

ଶ௉ାாభାாమାே
. Therefore, any rate pair satisfying (42) is 

achievable. 
 ܴଵ ൅ ܴଶ ൑ ቂଵ

ଶ
݃݋݈ ቀଵ

ଶ
൅ ௉

ாభାாమାே
ቁቃ

൅
.                                               (42) 

Clearly, using a time sharing argument (34) can be achieved.            
 

Theorem 3:   In the general “nearly balanced” case, where 
ଵܧ ൅ ଶܧ ൅ ܰ ൒ ඥ ଵܲ ଶܲ െ ݉݅݊ሺ ଵܲ, ଶܲሻ.  For general ଵܲ, ଶܲ , the 
achievable rate of the doubly dirty MAC with estimated SIT is 
given by the set of all rate pairs ሺܴଵ, ܴଶሻ satisfying  

ܴଵ ൅ ܴଶ ൑ .ݑ ܿ. ݁ ቊቈଵ
ଶ

݃݋݈ ቆ ௉భା௉మା1ܧ൅2ܧାே

ଶሺ1ܧ൅2ܧାேሻା൫ඥ௉భିඥ௉మ൯
మቇ቉

ା

ቋ.        (43)  

      Corollary 3: Theorem 3 is reduced to (8) by ܧଵ ൌ ଶܧ ൌ 0.  
      Proof of Theorem 3:  For proof of this Theorem, we 
consider two cases ଵܲ ൑ ଶܲ ൑ ଵܲ ቀ௉భାேାாభାாమ

ேାாభାாమ
ቁ

ଶ
 and ଶܲ ൑ ଵܲ ൑

ଶܲ ቀ௉మାேାாభାாమ

ேାாభାாమ
ቁ

ଶ
.  First, we consider the case of one and show 

achievability for the rate pair ሺܴଵ, 0ሻ where 



 ܴ1 ൌ 1

2
݃݋݈ ൬ ܲ1൅ܲ2൅1ܧ൅2ܧ൅ܰ

2ሺ1ܧ൅2ܧ൅ܰሻ൅൫ඥܲ1െඥܲ2൯
2൰.                                       (44) 

By the use of the lattice transmission scheme, we 
consider   ݇1 ൌ ݎ݇ ൌ ߚ ൌ 1ߙ

2ߙ
 , ݇ଶ ൌ ߛ ൌ 1 , ଵߙ ൌ ଶ܄ , ௥ߙ  ൌ ૙  and 

ଶߪ
ଶ ൌ ଶܲ , ଵߪ

ଶ ൌ ఈభ
మ

ఈమ
మ ଶܲ . The encoders send 

ଵ܆ ൌ ଵ܄ൣ െ ෨ଵ܁ଵߙ ൅ ۲ଵ൧݉݀݋Λଵ , ଶ܆   ൌ ൣെߙଶ܁෨ଶ ൅ ۲ଶ൧݉݀݋Λଶ.  (45)  
The receiver calculates Ԣ܇   ൌ ሾ܇1ߙ െ ۲1 െ  Λ1.  By݀݋۲2ሿ݉ߚ
using (45), (1), (2) and this point that  ఈభ

ఈమ
ܳஃమ൫െߙଶ܁෨ଶ ൅ ۲ଶ൯ א

Λଵ, we have  
′܇ ൌ ቂ܄ଵ െ ሺ1 െ ଵ܆ଵሻߙ െ 1ߙ

2ߙ
ሺ1 െ ଶ܆ଶሻߙ ൅ ܈ଵߙ ൅ ଵ܁ଵ൫ߙ െ ෨ଵ൯܁ ൅

ଶ܁ଵ൫ߙ            െ ෨ଶ൯ቃ܁  Λଵ                                                      (46)݀݋݉
Since ܆ଵ  is independent of  ܄ଵ  and ଶ܆    is independent of  
  ଵ,  then we can obtain ܴଵ as܆ ଵ and܄

ܴଵ ൌ
1
݊

;1܄ሺܫ ሻ′܇ ൌ
1
݊

ሼ݄ሺ܇′ሻ െ ݄ሺ1܄|′܇ሻሽ 

       ൌ ଵ
௡

ቄ݄ሺ܇ᇱሻ െ ݄ ቀቂെሺ1 െ ଵ܆ଵሻߙ െ 1ߙ
2ߙ

ሺ1 െ ଶ܆ଶሻߙ ൅ ܈ଵߙ ൅

ଵ܁ଵ൫ߙ                 െ ෨ଵ൯܁ ൅ ଶ܁ଵ൫ߙ െ ෨ଶ൯ቃ܁  Λଵቁቅ                           (47)݀݋݉

        ൒ ଵ
ଶ

݃݋݈ ቀ ௉భ

ீሺΛభሻቁ െ ଵ
ଶ

݃݋݈ ൭2݁ߨ ቆሺ1 െ ଵሻଶߙ
ଵܲ ൅ ቀఈభ

ఈమ
ቁ

ଶ
ሺ1 െ

ଶሻଶߙ              
ଶܲ ൅ ଵߙ

ଶሺܧଵ ൅ ଶܧ ൅ ܰሻቇ൱                                           (48) 

By considering ఈభ

ఈమ
ൌ ට௉భ

௉మ
  and ܩሺΛଵሻ ՜ ଵ

ଶగ௘
 as ݊ ՜ ∞  (good 

lattice), and by using the optimal MMSE factor, we have 
ଵߙ

כ ൌ ඥ௉భ൫ඥ௉భାඥ௉మ൯
௉భା௉మାሺாభାாమାேሻ. Therefore the rate region is achieved. 

Now the second case is considered i.e, ଶܲ ൑ ଵܲ ൑

ଶܲ ቀ௉మାேାாభାாమ

ேାாభାாమ
ቁ

ଶ
. Again we show achievability for the rate pair 

ሺܴଵ, 0ሻ . By the use of the lattice transmission scheme, we 
consider  ݇ଶ ൌ ݇௥ ൌ ߛ ൌ ఈమ

ఈభ
 , ݇ଵ ൌ ߚ ൌ 1 ଶߙ ,  ൌ ௥ߙ   , ଶܸ ൌ ૙ 

and ߪଶ
ଶ ൌ ଶܲ , ଵߪ

ଶ ൌ ఈభ
మ

ఈమ
మ ଶܲ. The encoder1 and encoder2 send ܆ଵ  

and  ܆ଶ ,respectively which are generated as follows 

ଵ܆ ൌ ଵ܄ൣ െ ෨ଵ܁ଵߙ ൅ ۲ଵ൧݉݀݋Λଵ , ଶ܆  ൌ ൣെߙଶ܁෨ଶ ൅ ۲ଶ൧݉݀݋Λଶ     (49) 
and the receiver calculates Ԣ܇   ൌ ܇2ߙൣ െ ۲1ߛ െ ۲2൧݉݀݋Λ2.  
Similar to first case ,we achieve 

ܴଵ ൌ ଵ
ଶ

݃݋݈ ቆ ௉భା௉మାாభାாమାே

ଶሺாభାாమାேሻା൫ඥ௉భିඥ௉మ൯
మቇ.                                              (50) 

Therefore, the achievable rate of the point  ሺܴଵ, 0ሻ for ܧଵ ൅ ଶܧ ൅
ܰ ൒ ඥ ଵܲ ଶܲ െ ݉݅݊ሺ ଵܲ, ଶܲሻ is given by  

ሺܴଵ, 0ሻ  ൌ ቆቈଵ
ଶ

݃݋݈ ቆ ௉భା௉మାாభାாమାே

ଶሺாభାாమାேሻା൫ඥ௉భିඥ௉మ൯
మቇ቉

ା

, 0ቇ.                       (51)                 

Due to the symmetry, it can be shown that the achievable rate 
of the point ሺ0, ܴଶሻ  for ܧଵ ൅ ଶܧ ൅ ܰ ൒ ඥ ଵܲ ଶܲ െ ݉݅݊ሺ ଵܲ, ଶܲሻ  is 
given by  

  ሺ0, ܴଶሻ  ൌ ቆ0, ቈଵ
ଶ

݃݋݈ ቆ ௉భା௉మାாభାாమାே

ଶሺாభାாమାேሻା൫ඥ௉భିඥ௉మ൯
మቇ቉

ା

ቇ.                         (52) 

By using a time sharing between the achievable rate pairs in 
(51) and (52), the proof of Theorem 3 is completed. 

 We can see that the result of Theorem 2 is achieved by 
considering ଵܲ ൌ ଶܲ ൌ ܲ. 
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