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Abstract—We introduce a new family of Fountain codes that
are systematic and also have sparse parities. Given an input of
k symbols, our codes produce an unbounded number of output
symbols, generating each parity independently by linearly com-
bining a logarithmic number of randomly selected input symbols.
The construction guarantees that for any ε > 0 accessing a
random subset of (1 + ε)k encoded symbols, asymptotically
suffices to recover the k input symbols with high probability.

Our codes have the additional benefit of logarithmic locality:
a single lost symbol can be repaired by accessing a subset of
O(log k) of the remaining encoded symbols. This is a desired
property for distributed storage systems where symbols are
spread over a network of storage nodes. Beyond recovery upon
loss, local reconstruction provides an efficient alternative for
reading symbols that cannot be accessed directly. In our code,
a logarithmic number of disjoint local groups is associated with
each systematic symbol, allowing multiple parallel reads.

Our main mathematical contribution involves analyzing the
rank of sparse random matrices with specific structure over finite
fields. We rely on establishing that a new family of sparse random
bipartite graphs have perfect matchings with high probability.

Index Terms—Systematic Fountain code, Logarithmic locality,
Availability.

I. INTRODUCTION

Fountain codes [2], [3], [4] form a new family of linear
erasure codes with several attractive properties. For a given
set of k input symbols, a Fountain code produces a potentially
limitless stream of output symbols, each created independently
of others as a random combination of input symbols according
to a given distribution. Ideally, given a randomly selected
subset of (1 + ε)k encoded symbols, a decoder should be able
to recover the original k input symbols with high probability
(w.h.p.) for some small overhead ε. Further, Fountain codes
typically emphasize on efficient encoding and decoding algo-
rithms.

In this work, we design a new family of Fountain codes that
combine multiple properties appealing to distributed storage.
One property that is highly desired for distributed storage
codes is systematic form: the original information symbols
must appear in the encoded sequence. Their presence enables
the reading of source data without decoding and is a practical
requirement for most storage applications. Another important
property of distributed storage codes is efficient repair [5],
[6], [7]: when a single encoded symbol is lost it should be
possible to reconstruct it without communicating too much
information from other encoded symbols. A related property
is that of locality of each symbol: the number of encoded
symbols that need to be accessed to reconstruct that particular
symbol [8], [9], [10], [11].
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A key observation is that in a systematic linear code, locality
is strongly connected to the sparsity of parity symbols [11],
i.e., the maximum number of input symbols combined in a
parity symbol. A parity symbol along with the systematic
symbols covered by it form a local group. Any symbol in
this group can be reconstructed via an appropriate linear
combination of the remaining member symbols. The smaller
the size of the local group, the lower the locality of the
symbols in it.

In existing Fountain codes, such as LT or Raptor codes, each
encoded symbol is a linear combination of O(log k) or even
constant number of input symbols on average. However, these
codes are not systematic and the low degree of the encoded
symbols does not imply low locality. Certain classes, such as
Raptor codes, can be transformed into a systematic form [4]
via a preprocessing of the input. Unfortunately, due to the
additional step, parity symbols are no longer sparse in the
original input symbols.

Standard Fountain codes support computationally efficient
encoding and decoding algorithms as a result of a meticulously
designed encoded symbol degree distribution. Fast decoding
algorithms, however, do not translate to efficient repair: these
algorithms aim at retrieving the entire source message from a
set of available symbols, and are not tailored to the needs of a
single symbol reconstruction. On the contrary, single erasures
– the most frequent scenario in a distributed storage setting –
can be efficiently repaired by an erasure code featuring low
locality. If additionally the code is in systematic form, full
scale decoding is invoked only in the unlikely event of multiple
erasures that cannot be locally repaired. In other words, the
presence of the source data in the encoded sequence in
conjunction with low locality renders decoding an infrequently
used operation, downgrading the need for efficient decoding
algorithms.

The significance of locality is not limited to the repair
problem, i.e., the reconstruction of a symbol upon its loss. It
extends to the closely related use case of degraded reads. In a
distributed setup each symbol is stored on a different storage
node, which may be temporarily unavailable due to a variety of
reasons. Although not permanently lost, a systematic symbol
may not be directly accessible, and its local group provides
an efficient alternative for reading it. The availability of a
systematic symbol naturally extends the notion of locality,
measuring the number of disjoint local groups the symbol
belongs to. We define the availability of a systematic symbol
as the number of disjoint sets of encoded symbols which
can be used to reconstruct that particular symbol. In effect,
it characterizes the number of read requests for a particular
systematic symbol that can be simultaneously served.

Our Contribution: We introduce a new family of Fountain
codes that are systematic and also have parity symbols with
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logarithmic sparsity. We show that this is impossible if we
require the code to be MDS, but is possible if we require
a near-MDS property similar to the probabilistic guarantees
provided by LT and Raptor codes.

More concretely, for any ε > 0 we construct codes that
guarantee that a random subset of (1+ε)k symbols suffices to
recover the original k input symbols w.h.p. Our codes produce
an unbounded number of output symbols, creating each parity
independently by linearly combining a logarithmic number of
randomly chosen input symbols.

We show that this structure also provides logarithmic local-
ity: each symbol in our codes is repairable by accessing only
O(log k) other coded symbols. We further define the notion
of symbol availability and show that the systematic sym-
bols in our codes feature logarithmic availability: with high
probability, for each systematic symbol there exist O(log k)
disjoint sets of symbols that can be used to reconstruct it.
This means that multiple parallel jobs can read this symbol
concurrently, each by accessing one disjoint set. This new
property is motivated by the straggler performance bottlenecks
observed recently in distributed storage systems [12].

One disadvantage of our construction is higher decoding
complexity. Our codes can be decoded by solving a system of
linear equations over Fq , which corresponds to maximum like-
lihood decoding for the erasure channel. This naive decoding
can be implemented using Gaussian elimination and requires
O(k3) steps. Fortunately, the matrices we construct are sparse,
allowing faster decoding: Wiedemann’s algorithm [13] can be
used to decode in O(k2polylogk) time. Standard Fountain
codes create linear equations that can be solved just by
back-substitution which amounts to decoding complexities of
O(k log k) for LT [3] and O(k) for Raptor [4] but offer no
locality. It remains open to construct Fountain codes that have
locality and near-linear decoding complexity.

Our main technical contribution is a novel random matrix
result: we show that a family of random matrices with non
independent entries have full rank with high probability. The
analysis builds on the connections of matrix determinants
to flows on random bipartite graphs, using techniques from
[14], [15]. Our key result is showing that a new family of
sparse random graphs have matchings w.h.p. Our random
graph contribution is explained in Section V.

II. PROBLEM DESCRIPTION

Given k input symbols, elements of a finite field Fq , we want
to encode them into n symbols using a linear code. Linear
codes are described by a k × n generator matrix G over Fq ,
which when multiplied by an input vector u ∈ F1×k

q produces
a codeword v = uG ∈ F1×n

q . Ideally, we would like G to
have the following properties:
• Systematic form, i.e., a subset of the columns of G

forms the identity matrix, I, which implies that the input
symbols are reproduced in the encoded sequence.

• Rateless property, i.e., each column is created indepen-
dently. The number n of columns does not have to be
specified for the encoder a priori. Equivalently, encoded
symbols can be created or removed dynamically upon
request, without recreating the entire encoded sequence.

• MDS property, i.e., any k columns of G have rank k,
implying that any subset of k encoded symbols suffices
to retrieve the input.

• Low locality. G has locality l if each column can be writ-
ten as a linear combination of at most l other columns.
If the code is systematic, then sparse parities suffice to
obtain good locality [11].

• High Availability. A systematic symbol has availability t
if it can be written as a linear combination of t disjoint
sets of symbols, of cardinality l. The code has availability
t′, equal to that of the least available systematic symbol.

For any code, any sufficiently large subset of encoded
symbols should allow recovery of the original data. The size
of such a set is tightly related to the reliability of the code. For
optimal reliability, i.e., in the case of MDS codes, an infor-
mation theoretically minimum subset of k encoded symbols
suffices to decode. When equipped with systematic form, the
generator matrix of an MDS code affords no zero coefficient in
the parity generating columns. To verify that, consider a parity
column with a zero coefficient in the i-th position: that parity
column along with any k − 1 systematic columns excluding
the one corresponding to the i-th systematic symbol form a
singular matrix.

If parities are deliberately sparse in the input symbols,
seeking to improve the code’s locality, the property that any
k encoded symbols suffice to retrieve the original data has to
be relaxed. In this work, we require that for ε > 0, a set of
k′ = (1 + ε)k randomly selected encoded symbols suffice to
decode with high probability; the decoder may fail, but with
a probability vanishing polynomially in k. We refer to a code
with this property as near-MDS.

Under this constraint, we seek codes that achieve optimal
locality, which translates into determining how sparse the
parities can be without violating the decoding guarantee. We
will show that it is impossible to recover the original message
with high probability if the parities are linear combinations
of fewer than Ω(log k) input symbols. Furthermore, we will
design codes that achieve logarithmic sparsity in the parities
and hence, order optimal locality. We conclude the paper
investigating the availability of our construction, showing that
with high probability every systematic symbol belongs to a
logarithmic number of disjoint local groups.

III. PRIOR WORK

In LT codes, the first practical realizations of Fountain
codes invented by Luby [3], the average degree of the output
symbols, i.e., the number of input symbols combined into an
output symbol, is O (log k). Note, however, that sparsity in
this case does not imply good locality, since LT codes lack
systematic form.

Building on LT, Shokrollahi in [4] introduced Raptor codes,
a different class of Fountain codes. The core idea is to precode
the input symbols prior to the application of an appropriate LT
code. By virtue of the two layer encoding, the per symbol
encoding cost – which corresponds to average degree of
encoded symbols – is reduced to a constant, while the k input
symbols can be retrieved in linear time by a set of (1 + ε)k
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encoded symbols, with probability of failure at most inversely
polynomial in k. However, the original Raptor design does not
feature the highly desirable systematic form. Further, similar
to the LT codes, the constant average degree of the encoded
symbols does not imply good locality.

In the same work [4], Shokrollahi provided a construction
that yields a systematic flavor of Raptor codes. The Raptor
encoding is not applied directly on the input symbols, rather
on the output of a preprocessing step of complexity O(k2).
The source symbols appear in the encoded stream, but due to
the preprocessing step the parity symbols are no longer sparse
in the original input symbols, despite their constant average
degree.

Gummadi in his thesis [16] was the first to consider the
design of Fountain codes explicitly oriented for storage appli-
cations, i.e., codes that feature systematic form and efficient
repair. The latter is quantified by repair complexity: the
average number of symbol operations performed to repair a
set of erased symbols. Gummadi proposes systematic variants
of LT and Raptor codes that feature low (even constant)
expected repair complexity. However, the overhead ε required
for decoding is suboptimal: it cannot be made arbitrarily small.

Our main result is the analysis of the rank of a new family of
sparse random matrices over Fq . In particular, we investigate
the probability that a k × (1 + ε)k matrix comprising any
number 0 ≤ s ≤ k of systematic columns and (1 + ε)k − s
random O(log k)-sparse columns has full rank. There is a
long line of work on the distribution of the rank of sparse
random matrices over a finite field (e.g., work by Karp [17],
Kovalenko [18], Balakin [19], Cooper [20] and references
therein). That line of work, however, typically focuses on
random matrices whose entries are independently distributed.
In our case, systematic columns carry exactly one nonzero
entry, while the number of nonzero entries in the remaining
columns is strictly upper bounded, rendering column entries
dependent.

IV. REPAIRABLE FOUNTAIN CODES

We introduce a new family of Fountain codes that are
systematic and also have sparse parities. Each parity symbol
is a random linear combination of up to d randomly chosen
input symbols. Due to their randomized nature, our codes
provide a probabilistic guarantee on successful decoding. In
particular, we require that a set of k′ = (1 + ε)k randomly
selected encoded symbols, for arbitrarily small ε > 0 can be
decoded successfully with high probability, i.e., with proba-
bility of failure vanishing like 1/poly(k). We show that under
this constraint, d must be of at least logarithmic order in
k, i.e., d = Ω (log k). Surprisingly, however, a logarithmic
sparsity level for the parity symbols is also achievable, hence
d = Θ (log k). The sparsity of the parity columns corresponds
to the locality of the code family. Our main result, which
is asymptotic in k, is established in Theorem 1, at the end
of this section. We conclude the section with a study of the
availability of our construction.

Given a vector u of k input symbols in Fq , the code is
a linear mapping of u to a vector v of higher dimension n

through a k × n matrix G. The encoded sequence comprises
an un-encoded copy of the k input symbols augmented by
parity symbols, hence the systematic form. Without loss of
generality, we may assume that u lies in the first indices of
v followed by the parity symbols. A single parity symbol
is constructed in a two step process. First, d input symbols
are successively selected uniformly at random, independently,
with replacement. Then, a coefficient is uniformly drawn
from Fq for each symbol previously selected. The parity is
the linear combination of the symbols selected in the first
step, weighted with the coefficients drawn in the second step.
The same procedure is repeated independently for subsequent
parity symbols. The independent construction of parities is the
hallmark of a Fountain code.

u1

...

ui

...

uk

v1

...

vi

...

vj

...

vn

wij

...d(
k
)

Fig. 1. Bipartite graph G = (U, V,E) corresponding to our randomized
code construction: U is the set of k input symbols and V is the set of n
encoded symbols. The first k vertices in V have degree one and correspond
to the systematic part of the encoded sequence. Each one of the remaining
vertices independently and uniformly throws d(k) edges, with two or more
edges possibly landing on the same vertices in U .

It is useful to describe our randomized construction through
a correspondence to a bipartite graph G = (U, V,E), depicted
in Figure 1. The set U of vertices on the left side corresponds
to the k input symbols, and the set V on the right corre-
sponds to the n symbols of the encoded sequence. An edge
(ui, vj) ∈ E if the input symbol ui ∈ U is one of the symbols
participating in the formation of the encoded symbol vj ∈ V .
Each of the k first vertices in V has degree equal to one
and is connected to a distinct input symbol. These k vertices
correspond to the deterministically constructed systematic part
of the encoded sequence. Each one of the remaining vertices
corresponds to a parity symbol and forms its neighborhood
through the following randomized procedure. Node vj throws
an edge to a vertex in U selected uniformly at random. This
step is repeated a total number of d times, independently. At
the end of this process, vertex vj has selected a subset N (vj)
of vertices in U , the neighborhood of vj .

The parity symbol corresponding to vertex vj is a random
linear combination of the input symbols in its neighborhood.
Slightly abusing notation, vj is used to denote both the vertex
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and the corresponding entry in the encoded sequence v. The
j-th encoded symbol can be written as

vj =
∑

i∈N (vj)

wijui, (1)

where wij’s are randomly selected uniformly and indepen-
dently from Fq . The coefficients wij’s can be embedded in the
graph representation as weights on the corresponding edges.
The edges of the systematic part have unit weights.

The degree of vj ∈ V , i.e., the size of its neighborhood
|N (vj)| can be at most equal to d, the number of edges thrown.
It can be strictly smaller if a vertex in U is selected multiple
times. However, when d is much smaller than k, |N (vj)| will
be equal to d with high probability, and a parity symbol will
be a linear combination of d input symbols. To emphasize
that d is allowed to grow as a function of k, we will hereafter
denote it by d(k).

Returning to the matrix representation, the code construction
corresponds to a family of generator matrices G of the form
G = [ Ik×k | P ]. Every encoded symbol corresponds to a
column of G. The identity part confers the systematic form.
P, the part responsible for the construction of the parity
symbols, is a random matrix whose columns are sparse,
each bearing at most d(k) nonzero entries. Any k encoded
symbols corresponding to linearly independent columns of G
suffice to retrieve the input u. Conversely, reconstructing u
from a randomly chosen set of k′ > k encoded symbols is
possible only if k symbols among them correspond to linearly
independent columns. Therefore, the key property required
for successful decoding of a set S of k′ randomly selected
encoded symbols is that GS , the k× k′ matrix formed by the
corresponding columns of G, including any combination of
systematic and parity parts, has full rank w.h.p.

The probability that the input can be recovered from k′

randomly selected encoded symbols increases with d(k).
Equivalently, fewer encoded symbols suffice to attain a certain
probability of successful decoding. We have highlighted the
extreme case of systematic MDS codes: for the optimal
guarantee that any k symbols suffice to recover the input, d(k)
can be no less than k. To gain further insight, note that for
a set of k′ encoded symbols to be successfully decoded, it is
necessary that all input symbols are covered by that set. As
d(k) decreases, so does the probability that a particular symbol
is covered by the parities in a set of k′ encoded symbols,
impacting the decoding guarantees.

On the other hand, as noted Section II, a systematic code
with sparse parities has good locality. The relation between
d(k) and locality is straightforwardly quantifiable: any parity
symbol v is a linear combination of at most d(k) systematic
symbols. Also rearranging the terms, any systematic symbol u
covered by a parity v can be written as a linear combination of
v and the remaining systematic symbols covered by v. Under
the assumption that there exist at least one parity symbol
covering every systematic symbol u, the code has locality at
most d(k).

In summary, decreasing d(k) improves the locality of the
code, with a toll on the probability of successful decoding
of a random set of k′ = (1 + ε)k encoded symbols, where

ε is a positive constant denoting the decoding overhead. Our
primary contribution, portrayed in Theorem 1, is identifying
how small d(k) can be to ensure that a randomly selected set
of k′ = (1 + ε)k symbols is decodable, or equivalently that a
k× k′ submatrix GS of G is full rank, with high probability.

Theorem 1. Consider a matrix G = [ Ik×k | P ], where
each column of P is independently constructed as follows: (i)
d(k) = c · log k out of the k entries are selected uniformly at
random with replacement, and (ii) a value drawn uniformly
at random over Fq is independently assigned to each entry
selected in step (i). Then, for constant c = (8+ρ+2ε)/ε > 0,
and q > k, a randomly selected k× (1+ ε)k submatrix GS of
G containing any number of systematic columns is full rank
with probability at least 1− (k/q)− k−ρ.

Theorem 2 establishes a converse result stating that the
sufficient value of d(k) of Theorem 1 is order-optimal for our
construction.

Theorem 2. (Converse) If each column of P is generated
independently as described with at most d(k) nonzero entries,
then d(k) = Ω(log (k)) is necessary for a random k × k′

submatrix GS of G = [ Ik×k | P ] to be full rank w.h.p.

From the two theorems, it follows that our codes achieve
optimal locality with a logarithmic degree for every parity
symbol. Original data is reconstructed in O(k3) using Maxi-
mum Likelihood (ML) decoding, which corresponds to solving
a linear system of k′ equations over Fq . Note, however,
that the Wiedemann algorithm [13] can reduce complexity to
O
(
k2polylog(k)

)
on average, exploiting the sparsity of the

linear equations, with negligible extra memory requirement.
Finally, we note a drawback of our analysis: in order to
achieve vanishingly small probability of failure as k grows, the
size of the field must grow accordingly. It suffices, however,
that the number of bits per symbol grows logarithmically in
k: a symbol size of (t + 1) log k bits, t > 0, implies that
k/q = 1/kt.

Thus far, we have seen that our randomized construction
achieves logarithmic locality: every encoded symbol belongs
to at least one local group of cardinality d(k) + 1. There is a
one-to-one correspondence between the local groups u belongs
to and the parity symbols that cover u. Let Pu = {vj : k+1 ≤
j ≤ n, u ∈ N (vj)} be the subset of parities that cover u. Its
cardinality is a binomial random variable since every generated
parity independently covers u with some probability. If the
total number of parities generated is rk for some constant
r > 0, i.e., proportional to the length of the input, then for
d(k) = c log(k) of Theorem 1 every systematic symbol is in
fact covered by a logarithmic number of parities w.h.p.

Theorem 3. Let rk be the total number of parities generated,
for a constant r > 0, with each parity symbol constructed as a
linear combination of d(k) = c log(k) independently selected
symbols uniformly at random with replacement. The expected
number of parities covering a systematic symbol u is

rc log(k)− rc log2(k)

k
≤ E [|Pu|] ≤ rc log(k). (2)
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u1

v1

v2

v3

...

vM

u2

u3

u4

u5

u6

...

uk

Fv1: The
footprint of
v1 ∈ Pu1 .

Fv3 and FvM
are disjoint.
v3 and vM are
isolated.

v1, v3 and vM are
pairwise isolated. The
availability of u1 is at
least 3.

Fig. 2. The systematic symbol u1 is covered by M parities, v1, . . . , vM .
The footprint of such a parity vi (with respect to u1) is the set of symbols
it covers excluding u1, e.g., the footprint of v1 is Fv1 = {u2, u3, u4}.
Symbol u1 can be reconstructed using any of the above parity symbols and
its footprint. In this example, u1 has availability at least 3 since the footprints
of parities v1, v3, and vM are disjoint.

Further,

Pr (∃u : |Pu| ≤ (1− ε)E[|Pu|])

≤ 1

k
rcε2

2 −1
exp

(
ε2

2

rc log2(k)

k

)
. (3)

For any ε, an appropriate choice of r, and c achieves a
vanishing bound in (3). The above result states that with
high probability all input symbols are covered by at least
(1−ε)rc log(k) symbols for some ε > 0. In the following, we
will omit the constant 1 − ε for simplicity, and assume that
every systematic symbol is covered by at least m = rc log(k).

The availability of the input symbol u is the cardinality of
the largest subset of local groups containing u whose only
common element is u. More formally, consider a parity vi
that covers the systematic symbol u, i.e., vi ∈ Pu. Then vi
is a linear combination of the symbols in {u} ∪ Fvi , where
Fvi contains the remaining symbols covered by vi. The set
Fvi is referred to as the footprint of vi with respect to u.
Note that the footprint of a parity symbol vi is a concept
relative to the systematic symbol u under consideration. Two
parities vi, vj ∈ Pu are isolated if their footprints are disjoint.
An example is depicted in Figure 2. The cardinality of the
largest subset of Pu such that parities are pairwise isolated
corresponds to the availability of the symbol u.

Under the assumption that every systematic symbol is
covered by at least a logarithmic number of parities, Theo-
rem 4 states that every systematic symbol has a logarithmic
availability with high probability.

Theorem 4. Assuming that every input symbol u is covered
by at least m = rc log k parity symbols created independently
as described in Section IV, for sufficiently large k, λ > 0 and

α > 1−
√
λ/rc− log4 k

k ,

Pr (∃u not (αm)-available) ≤ 1

kλ
. (4)

V. A GRAPH PERSPECTIVE

The randomized construction of our erasure code is nat-
urally mapped to a family of random bipartite graphs G =
(U, V,E) depicted in Figure 1. The correspondence, estab-
lished early in Section IV, lays the foundation for all sub-
sequent analysis, but also provides an alternative viewpoint
for our results as purely structural properties of the random
graphs, setting the coding background aside.

Under the graph perspective, Theorem 1 states that a ran-
domly chosen subgraph of G has a perfect matching. First,
consider a balanced random bipartite graph where |U | =
|V | = k and each vertex of V is randomly connected to
d(k) = c log k nodes in U . A classical result by Erdős and
Renyi [14] shows that these graphs will have perfect matchings
with high probability. However, the graphs we consider are
unbalanced, with |U | = k and |V | = k′ = (1+ε)k vertices, for
ε ≥ 0, like the one depicted in Figure 6. Out of the k′ vertices
in V , s vertices are special with degree 1, corresponding to
systematic symbols, and k′−s are connected to d(k) = c log k
vertices in U . In that sense, if we set s = 0 and ε = 0 we
recover the classical result of [14]. Our additional analysis is
required because our proof needs to hold for all values of s
ranging from 0 up to k− 1. This corresponds to s vertices in
U being trivially matched with those vertices in V that have
degree 1, and the remaining k − s vertices being matched
via the random edges. More formally, let GS = (U, VS , ES)
be a subgraph of G, where VS ⊆ V is a subset of k′

vertices, and ES ⊆ E is the subset of edges incident to VS .
Theorem 1 states that GS has a perfect matching, which for
the unbalanced bipartite graph is a matching that saturates all
k vertices in U . In fact, this observation is a key component
in the proof of Theorem 1. The transition from the perfect
matching of a subgraph to the rank of a submatrix which
finalizes the proof requires only that the random coefficients
are drawn from a large enough field. Along the same lines,
Theorem 2 states that randomly throwing d(k) = Ω(log k)
edges on the parity symbols are necessary to guarantee that a
vertex in U is connected in GS with high probability.

The vertices in V , the right hand side of G, have by
construction degree either equal to one or approximately equal
to d(k) = c log(k) for some c > 0. Theorem 3 states that when
|V | increases linearly in |U |, the degree of the vertices in U
is concentrated around its expectation, which is proportional
to d(k).

Finally, the availability of a symbol u can be mapped to
the independence number of a random graph Hu = (Pu, Eu).
Pu denotes the set of parities covering u, or equivalently the
vertices of V in the neighborhood of u. The set of edges Eu
is constructed as follows: for vi, vj ∈ Pu, (vi, vj) ∈ Eu if and
only if the footprints of vi and vj overlap. The availability of
u is the cardinality of the maximum independent set in Hu,
which is shown to be at least a constant fraction of |Pu|, and
hence logarithmic in k, with high probability. Theorem 4 states
that this property holds simultaneously for all u ∈ U .
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v1

v2

v3

+

vM

+

Fig. 3. Graph Hu with vertices corresponding to the parities covering
u. Two parities are connected if their footprints overlap. This example is in
accordance with that of Figure 2.

VI. SIMULATIONS
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k = 100, q = 28

k = 100, q = 24

k = 100, q = 216

k = 300, q = 28

k = 500, q = 28

Fig. 4. Probability of decoding failure versus the probability of symbol era-
sure, Pe. The probability is estimated over multiple 103 randomly generated
code instances with k input symbols and rate 1/2, and 103 independent trials
per instance . The degree of parity symbols is equal to d(k) = dc log(k)e,
with c = 6. A fixed value of Pe, corresponds to an expected decoding
overhead ε = 1− 2Pe.

In this section we experimentally evaluate the probability
that decoding fails when a randomly selected subset of en-
coded symbols is available at the decoder. Since our codes
are rateless, we can set any target desired rate and examine
the performance under random erasures. In this experiment
we set the rate equal to 1/2; the generator matrix comprises
the k columns of the identity matrix and k parity gener-
ating columns, constructed randomly and independently as
described in Section IV. The degree of the parities is upper
bounded by d(k) = dc log(k)e, where the pre-log factor is
arbitrarily set to a small constant value. Decoding fails exactly
when the columns corresponding to the encoded symbols
available to the decoder form a matrix whose rank is strictly
less than k.

A first series of experiments considers a sequence of random
trials in which individual encoded symbol are erased in
independently with probability Pe. The ensemble of surviving
symbols is available to the decoder. This corresponds to the

transmission through an erasure channel with erasure proba-
bility Pe. The cardinality of the decoding set is a binomial
random variable with expected value equal to (1 − Pe)2k,
which amounts to an expected decoding overhead ε = 1−2Pe.
A total of 103 code instances are generated and each is
subjected to 103 trials per value of Pe. Fig. 4 depicts the
probability of decoding failure versus the channel erasure
probability, Pe. The experiment is repeated for three values
of k: k = 100, 300, and 500. The field size is set to q = 28,
i.e., a single byte per symbol, for all values of k.

In a second series of experiments, the decoding set of
cardinality equal to k′ = d(1 + ε)ke is selected uniformly
at random in each trial from the set of 2k encoded symbols.
Fig. 5 depicts the estimated probability of decoding failure
versus the decoding overhead ε.
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Fig. 5. Probability of decoding failure versus the decoding overhead ε. The
probability is evaluated over multiple 103 randomly generated code instances
with k input symbols and rate 1/2, and 103 independent trials per instance.
The degree of parity symbols is equal to d(k) = dc log(k)e, with c = 4.

VII. ANALYSIS AND PROOFS

A. Proof of Theorem 1

Theorem 1 states that when G is constructed as described
in section IV, a randomly selected k×k′ submatrix GS is full
rank w.h.p. Equivalently, there exists a set of indices K ⊂ S
with |K| = k such that k × k submatrix GK is nonsingular.
More formally,

Pr (∃ K ⊆ S : det(GK) 6= 0) = 1−
(
k

q
+ o(1)

)
. (5)

In the following, we exploit a connection between deter-
minants and perfect matchings (P.M.’s) in bipartite graphs.
In section IV, we showed the correspondence of the ran-
domly constructed matrix G to an unbalanced bipartite graph
G = (U, V,E). The submatrix GS corresponds to a subgraph
GS = (U, VS , ES), depicted in Figure 6, where VS is a
subset of k′ vertices of V , and ES is a subset of the edges
incident to vertices in VS . Similarly, a k × k submatrix GK
of GS corresponds to a smaller, balanced bipartite graph,
GK = (U, VK, EK), with k vertices on each side.
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VS ⊆ V ,
|VS | = k′.

Fig. 6. Bipartite Graph GS = (U, VS , ES) corresponding to GS . VS ⊆ V
consists of k′ = (1 + ε)k vertices. Out of them s correspond systematic
symbols, and k′ − s to parities. The graph has a perfect matching, i.e. a
matching saturating all k vertices in U , with high probability, for any value
of s.

GK is closely related to the Edmond’s matrix AK of the
corresponding bipartite graph GK. By definition, the (i, j)-th
entry of AK is

AK(i, j) =

{
ai,j , if (ui, vj) ∈ EK
0, if (ui, vj) /∈ EK

, (6)

where ui ∈ U, vj ∈ VK, and ai,j’s are indeterminates.

Lemma 1. The determinant of AK is nonzero if and only if
there exists a perfect matching in GK, i.e.,

det(AK) 6= 0 ⇔ ∃ P.M. in GK. (7)

However, GK is not an actual Edmond’s matrix; it is obtained
from AK substituting the indeterminates with randomly drawn
elements of a finite field Fq . There are two substantially
different cases in which det(GK) = 0:

• The determinant polynomial det(AK) is identically zero,
which by Lemma 1 occurs if and only if GK has no
perfect matching, or

• it is not identically zero, i.e., GK has a perfect matching,
but the selected coefficients correspond to a root of the
polynomial.

The equivalence property in (7) is not inherited by GK. In
contrast to the use of indeterminates, an unfortunate selection
of the random coefficients in GK can lead to zero determinant
even when GK has a perfect matching. However, if the coeffi-
cients are drawn from a sufficiently large field, the probability
of this event can be driven arbitrarily low. More concretely, if
GK has a perfect matching M , then the determinant of AK
is a nonzero polynomial of degree exactly k. The probability
that a random assignment of coefficients from Fq yields a zero
determinant can be upper bounded by k/q, using the Schwartz-
Zippel Lemma [21]. In summary,

Pr (det(GK) = 0 | ∃ P.M. in GK) ≤ k

q
. (8)

The k × k′ matrix GS has
(
k′

k

)
square submatrices. For

successful decoding it suffices that at least one such submatrix
ĜK is nonsingular, i.e., has nonzero determinant. In light of
(8), we ask instead whether there exists a subgraph ĜK that
has a P.M.. Observe that a P.M. in a subgraph ĜK is also a
P.M. in the larger graph GS . Conversely, if GS has a perfect
matching M , i.e., a matching saturating all vertices in U , then
such a k×k subgraph ĜK exists: its vertices are the endpoints
of the edges in M . According to the following Lemma, GS
has a perfect matching M with high probability.

Lemma 2. Consider the bipartite graph GS = (U, VS , ES)
corresponding to the submatrix GS of G. VS contains any
number s of vertices with degree 1 connected to distinct
vertices in U , and (1 + ε)k − s vertices that have randomly
thrown d(k) = c log(k) edges as described in Section IV. For
appropriate constant c ∝ ρ/ε,

Pr (@ P.M. in GS) ≤ 1/kρ, (9)

for ρ > 0.

The probability of equation (5) can be written as

Pr(∃ K ⊆ S : det(GK) 6= 0)

= 1− Pr(@ K ⊆ S : det(GK) 6= 0)

= 1−

Pr(@ K ⊆ S : det(GK) 6= 0|∃M)︸ ︷︷ ︸
α

·Pr(∃M)

+ Pr(@ K ⊆ S : det(GK) 6= 0|@M)︸ ︷︷ ︸
β

·Pr(@M)

 . (10)

As argued in the previous paragraph, the existence of M
implies the existence of a subgraph ĜK that has a perfect
matching. The probability Pr(@ GK : det(GK) 6= 0 | ∃M),
that all submatrices GK are singular despite the existence of
M , is upper bounded by the probability that det(ĜK) = 0,
which was in turn upper bounded in (8) by k/q. Hence,
α ≤ k/q. On the other hand, nonexistence of a perfect
matching in GS , implies that no submatrix GK can have
nonzero determinant, hence, β = 1. Continuing from (10),
we have:

Pr (∃ K ⊆ S : det (GK) 6= 0)

≥ 1−
[
k

q
Pr (∃M) + Pr (@M)

]
= 1− k

q
(1− Pr (@M))− Pr (@M)

= 1− k

q
−
(

1− k

q

)
Pr(@M). (11)

Finally, satisfying the conditions in Lemma 2, we can guar-
antee that Pr(@M) ≤ k−ρ, for ρ > 1. Applying the bound on
the right hand side of (11), we obtain the desired result in (5).
To complete the proof, it remains to prove Lemmata 1 and 2.

1) Proof of Lemma 1 - Connection between determinants
and perfect matchings: We use the following expression for
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the determinant:

det(AK) =
∑
π∈Sn

sgn(π)

n∏
i=1

AK(i, π(i)), (12)

where Sn is the set of all permutations on {1, . . . , n}, and
sgn(π) is the sign of permutation π. There is a one-to-one
correspondence between a permutation π ∈ Sn and a candidate
perfect matching

{
(u1, vπ(1)), . . . , (un, vπ(n))

}
in GK. Note

that if the candidate P.M. does not exist in GK, i.e., some
edge (ui, vπ(i)) /∈ EK then the term corresponding to π in the
summation is 0. Therefore,

det(AK) =
∑
π∈P

sgn(π)

n∏
i=1

ai,π(i), (13)

where P is the set of perfect matchings in GK. If P = ∅, i.e.,
if GK has no P.M., every term in the sum is equal to zero. If on
the contrary GK has a P.M., there exists a π̂ ∈ P , and hence
the term corresponding to π̂ is

∏n
i=1 ai,π̂(i) 6= 0. Additionally,

there is no other term in the summation containing the exact
same set of variables and this term cannot be canceled out.
In this case, det(AK) 6= 0, which concludes the proof of the
lemma.

2) Proof of Lemma 2: Existence of Perfect Matching in the
random subgraph: We want to establish an upper bound on the
probability that there is no perfect matching (P.M.) between
U and VS in the random k × k′ bipartite graph GS . In fact,
we want to show that d(k) = O(log k) in the construction
of the bipartite graph, suffices to achieve an upper bound
asymptotically decaying with a rate 1/poly(k).

Let Vs, 0 ≤ |Vs| ≤ k, denote the subset of VS corresponding
to systematic encoded symbols. If a P.M. exists, we may
assume that all symbols in Vs participate in it. To see that,
consider a vertex vi ∈ Vs, connected to a symbol ui ∈ U ,
and assume that (vi, ui) is not included in the P.M. Then, ui
must be paired with some vertex vj /∈ Vs, since vi was the
only systematic symbol connected to ui. In addition, ui is the
only symbol adjacent to vi, hence vi does not participate in
the P.M. Given such a P.M., we can construct another one
substituting (ui, vj) with (ui, vi). Therefore, without loss of
generality, we may assume that all vertices in Vs participate
in the P.M.

Since k′ = (1 + ε)k > k, VS contains a nonempty subset
corresponding to parity symbols, denoted by V s = VS\Vs.
Let Us denote the subsets of U matched with vertices in Vs,
and Us = U\Us the remaining vertices. A P.M. between U
and VS exists if and only if a P.M. exists between Us and V s.

The probability that a P.M. does not exist equals the
probability that there exists a contracting set of vertices in Us,
i.e., a subset of Us with a joint neighborhood smaller than its
cardinality. Let |Vs| = s and |V s| = k′− s. Denote by Ei the
event that there exists a set of i vertices in Us that contracts,
i.e., has at most i − 1 neighbors in V s. This is equivalent to
at least k′ − s− (i− 1) vertices in V s being only adjacent to

vertices in Us other than the i vertices of interest. Then,

Pr (@P.M. in GS) = Pr(
|Us|⋃
i=1

Ei) ≤
|Us|∑
i=1

Pr(Ei)

≤
|Us|∑
i=1

(
|Us|
i

)(
|V s|

|V s| − (i− 1)

)(
k − i
k

)d(k)(|V s|−(i−1))
=

k−s∑
i=1

(
k − s
i

)(
k′ − s

k′ − s− i+ 1

)(
k − i
k

)d(k)(k′−s−i+1)

=
k−s∑
i=1

(
k − s

k − s− i

)(
k′ − s

k′ − s− i+ 1

)(
k − i
k

)d(k)(k′−s−i+1)

︸ ︷︷ ︸
A

.

Lemma 3. The binomial coefficient satisfies the well-known
bound (

n

k

)
≤ 2nH( kn ), (14)

where H(p) = p log2 p + (1 − p) log2(1 − p) is the binary
entropy function.

Proof: From the probability mass function of the binomial
distribution with n trials and probability of success p = k

n < 1,
we have

1 =

n∑
m=0

(
n

m

)
pm(1− p)n−m ≥

(
n

k

)
pk(1− p)n−k

=

(
n

k

)
2n[p log2 p+(1−p) log2 (1−p)] =

(
n

k

)
2−nH(p).

Applying (14) on the coefficients of A, we obtain

A ≤
k−s∑
i=1

2[B1(i)+B2(i)+B3(i)]

≤ (k − s) max
i

(
2[B1(i)+B2(i)+B3(i)]

)
, (15)

where
• B1(i) = (k − s)H

(
k−s−i
k−s

)
,

• B2(i) = (k′ − s) H
(
k′−s−i+1
k′−s

)
, and

• B3(i) = d(k) (k′ − s− i+ 1) log2

(
k−i
k

)
.

Towards our objective, it suffices to require the right hand side
of (15) to vanish asymptotically faster than 1/kρ, ρ > 0, for
each value of s ∈ {0, . . . , k}. Equivalently, it suffices

log2 (k − s) +

3∑
l=1

Bl(i) ≤ −ρ log2 (k), (16)

for all 0 ≤ s ≤ k and 1 ≤ i ≤ k − s. Expanding and
rearranging terms we find that in order for (16) to hold, it
suffices

d(k) ≥

[
ρ log2 (k) + 2 log2(k − s) + log2 (k′ − s)
+(k − s)H

(
k−s−i
k−s

)
+ (k′ − s)H

(
k′−s−i+1
k′−s

) ]
− (k′ − s− i+ 1) log2

(
k−i
k

) . (17)

Our objective is now to show that the right hand side of
(17) is O(log k). Let N and D denote the numerator and
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denominator of the right hand side of inequality (17). For the
numerator N , we have the following upper bound:

N ≤ (3 + ρ) log2 (k) + log2 (1 + ε)︸ ︷︷ ︸
N1

+ kH

(
k − i
k

)
︸ ︷︷ ︸

N2

+ (1 + ε)kH

(
(1 + ε)k − i+ 1

(1 + ε)k

)
︸ ︷︷ ︸

N3

,

where the inequality is due to the monotonicity of the loga-
rithm and the fact that g(x) = xH

(
x−y
x

)
is increasing with

respect to x for 0 ≤ y ≤ x. For the denominator D, we have:

D = (k − s− i︸ ︷︷ ︸
≥0

+ εk + 1) log2

(
k

k − i

)
︸ ︷︷ ︸

≥0

≥ εk log2

(
k
k−i

)
.

Recall that log(1 + x) > x/(x + 1) for x > −1, x 6= 0.
Applying the inequality for x = i

k−i > 0, we find that D can
be further lower bounded as follows

D ≥ εk i

k log 2
≤ ε

log 2
i. (18)

We examine the ratio N/D in parts.
(i) For the first part, and for k ≥ (1 + ε) we have

N1

D
≤ (3 + ρ+ 1) log2 (k)

εk log2

(
k
k−i

) ≤ (4 + ρ)

ε
log(k), (19)

where for the second inequality we have used (18) and
the fact that i ≥ 1.

(ii) For the second part, expanding the entropy we have

N2

D
≤

kH
(
k−i
k

)
εk log2

(
k
k−i

) =
k − i
εk
−

i
k log2

(
i
k

)
ε log2

(
k
k−i

)
(18)
≤ 1

ε
+

1

ε

i log2

(
k
i

)
i/ log 2

≤ 2

ε
log (k) , (20)

where the last inequality holds for k ≥ 2.
(iii) For the third part, for i = 1, N3/D = 0. For i ≥ 2,

first observe that h(k) = log
(

k
k−i

)
is decreasing in k

for 0 ≤ i ≤ k. Since (1 + ε)k > k and 2 ≤ i ≤ k − s,
exploiting the monotonicity of h(k), we have

N3

D
≤

(1 + ε)kH
(

(1+ε)k−i+1
(1+ε)k

)
εk log2

(
(1+ε)k

(1+ε)k−i

)
(18)
≤ (1 + ε)

ε

1 +
i− 1

(1 + ε)k

log2
(1+ε)k
i−1
i

(1 + ε)k log 2


≤ 2(1 + ε)

ε
log (k) , (21)

where the last inequality holds when k > e(1 + ε).
Combining (19), (20) and (21), we conclude that using
d(k) = c log(k), where c = (8 + ρ + 2ε)/ε, suffices to force
Pr(@P.M. in GS) ≤ 1/kρ, which completes the proof.

B. Proof of Theorem 2

Consider the decoding graph GS corresponding to the k×k′
submatrix GS of G. GS is a random bipartite graph between
k input and k′ encoded nodes, such that each encoded node
has degree at most d(k).

An input symbol is covered by the set of k′ encoded
symbols, if and only if it participates with a nonzero coefficient
in the formation of at least one symbol in the set. In terms of
the decoding graph, an input node is covered if and only if it
is adjacent to at least one encoded node.

The probability of decoding failure is lower bounded by the
probability that an uncovered input node exists in GS : all input
nodes being covered is a prerequisite for the k input symbols
to be retrievable from a set of k′ encoded symbols.

The problem is equivalent to throwing k′ · d(k) balls into k
bins and requiring that no bin is empty with high probability.
It is a standard result in balls and bins analysis that throwing
Ω (k log k) balls is necessary to that end. It is hence imperative
that k′ · d(k) = Ω (k log k). Taking into account that k′ =
(1 + ε)k, we obtain the desired result.

C. Proof of Theorem 3

Let Cv ⊆ [k] be the subset of systematic symbols covered by
a parity v. Also, let Pu be the set of parity symbols covering a
systematic symbol u, and M = |Pu|. Note that u ∈ Cv ⇔ v ∈
Pu. The total number of generated parities is rk. Hence, M
is a binomial random variable with rk trials and probability
of success equal to Pr (u ∈ Cv), the probability that a parity v
covers the systematic symbol u.

Every parity v throws its d(k) edges uniformly at random
over [k], independently, with replacement. A simple union
bound yields

Pr (u ∈ Cv) ≤
d(k)∑
l=1

1

k
=
d(k)

k
. (22)

Similarly, we can obtain a lower bound:

Pr (u ∈ Cv) = 1− Pr (u /∈ Cv) = 1−
(

1− 1

k

)d(k)
≥ 1− exp

(
−d(k)

k

)
. (23)

Using the fact that exp(x) ≤ 1+x+x2/2 for x ≥ 0, inequality
(23) is simplified into

Pr (u ∈ Pv) ≥
d(k)

k
− d(k)2

k2
. (24)

The probability of that parity v covers u lies in the range
described by (22) and (24). Based on these bounds, we can
calculate a range for the expected value of M . Taking into
account that d(k) = c log k, we have

rc log(k)− rc log2(k)

k
≤ E [M ] ≤ rc log(k). (25)

Since each parity is created independently, the following
Chernoff bound on the lower tail of the distribution of M
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holds:

Pr (M ≤ (1− ε)E[M ]) ≤ exp

(
−ε

2

2
E[M ]

)
. (26)

The right hand side of (26) can be further bounded as follows

Pr (M ≤ (1− ε)E[M ])

≤ exp

(
−ε

2

2

[
rc log(k)− rc log2(k)

k

])
= exp

(
− log(krcε

2/2)
)

exp

(
ε2

2

rc log2(k)

k

)
≤ 1

krcε2/2
exp

(
ε2rc log2(k)

2k

)
, (27)

which is the desired result.

D. Proof of Theorem 4

Let Pu denote the set of parity symbols that cover sys-
tematic symbol u. We assume for simplicity that |Pu| =
m = rc log(k). Given that every parity was generated indepen-
dently, the footprints Fv for v ∈ Pu are independent random
variables. We are interested in the maximum cardinality subset
D ⊆ Pu such that any two parity symbols vi, vj ∈ D are
isolated.

Consider the graph Hu = (Pu, E), where edge (vi, vj) ∈ E
if and only if vi and vj are not isolated. Then, D corresponds
to the maximum independent set in Hu, I(Hu). Since Hu

is a random graph, its independence number α(Hu) is a
random variable Z = f (Fv1 , . . . ,Fvm), which is a function
of the m independently drawn Fvi ’s. Function f(·) satisfies
the bounded differences condition, i.e., for any configuration
Fv1 , . . . ,Fvm , substituting a single variable Fvi with another
variable F ′vi cannot impact the function value arbitrarily. In
the graph analogy, substituting Fvi with F ′vi for some i,
corresponds to removing a vertex from Hu along with its
incident edges, and inserting a new vertex arbitrarily connected
to other vertices.

Lemma 4. Consider an undirected graph H = (V,E) with
|V | = M and let α(H) denote its independence number, i.e.
the cardinality of the maximum independent set I(H) ⊆ V .
Construct a graph H ′ as follows: remove a node v from
H along with all incident edges and insert a new node
v′ connected to an arbitrary set of vertices in H . Then
|α(H)− α(H ′)| ≤ 1.

Proof: Regardless of whether v ∈ I(H) or not, the
set S = I(H)\{v} is common in H and H ′ and remains
an independent set in the latter. Therefore, α(H ′) ≥ |S| ≥
α(H)− 1, where equality in the second inequality holds only
if v ∈ I(H). Inversely, consider the maximum independent set
in H ′, I(H ′). Irrespectively of whether v′ ∈ I(H ′), the set
S ′ = I(H ′)\{v′} is an independent set in H too, implying that
α(H) ≥ α(H ′)−1. We conclude that −1 ≤ α(H)−α(H ′) ≤
1, which is the desired result.

Based on the previous lemma, we have

max
Fv1 ,...,Fvm ,F ′

vi

∣∣f (. . . ,Fvi , . . .)− f
(
. . . ,F ′vi , . . .

)∣∣ ≤ 1. (28)

Provided that Fvi ’s are independent and f(·) satisfies condi-
tion (28), McDiarmid’s inequality [22] yields

Pr (Z ≤ E[Z]− t) ≤ exp

(
−2t2

m

)
, (29)

for t > 0.
The concentration result of (29) holds, even if E[Z] remains

unknown. A trivial lower bound on E[Z] can be obtained using
those vertices in Hu that are disconnected components, i.e.,
that have degree equal to zero. Such vertices correspond to
parity symbols that are isolated from all other symbols in Pu,
not only those in D, and are always members of the maximum
independent set. The probability that a parity symbol v ∈ Pu
is isolated from all other symbols in Pu is

Pr (v is isolated) =

k −
∣∣∣∪m−1j=1,j 6=iFvj

∣∣∣
k

d(k)−1

≥
(

1− (m− 1)(d(k)− 1)

k

)d(k)−1
= exp

(
− (m− 1)(d(k)− 1)2

k

)
≥ 1− (m− 1)(d(k)− 1)2

k

≥ 1− md(k)2

k
. (30)

Multiplying with m, the number of symbols in Pu, we obtain
a lower bound on the expected number of completely isolated
parities in Pu, which in turn is a lower bound on E[Z]. In
other words,

m−m2 d(k)2

k
≤ E[Z], (31)

Therefore, we have

Pr

(
Z ≤ m− [md(k)]

2

k
− t

)
≤ Pr (Z ≤ E [Z]− t) .

Combining the above, with inequality (29), we conclude that

Pr

(
Z ≤ m− [md(k)]

2

k
− t

)
≤ exp

(
−2t2

m

)
. (32)

Let t = (1 − α)m − [md(k)]2

k for some α ∈ (0, 1). For
sufficiently large k, t will be nonnegative. Substituting t in
(32), we obtain

Pr (Z ≤ αm) ≤ exp

−2
[
(1− α)m− [md(k)]2

k

]2
m

 . (33)

We are interested in the value of α for which Pr (Z ≤ αm)
decreases faster than 1/k1+λ, for some λ > 0. It suffices to
require the right hand side of (33) is less than 1/k1+λ. Taking
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logarithms on both sides, it suffices to find α such that

−
2
[
(1− α)m− m2d(k)2

k

]2
m

≤ −(1 + λ) log(k)

⇔− 2

(1− α)︸ ︷︷ ︸
α

2
m− m2d(k)2

k

2

≤ −(1 + λ)m log(k)

⇔α2m2 − α2
m3d(k)2

k
+
m4d(k)4

k2
− 1 + λ

2
m log(k) ≥ 0.

The last inequality is a quadratic inequality on α, satisfied
when

α ≥
2m

3d2

k +
√

4m2 1+λ
2 m log(k)

2m2

=
md(k)2

k
+

√
1 + λ

2

log(k)

m

=
rc3 log3(k)

k
+

√
1 + λ

2rc
, (34)

which for appropriate choice of r and c, can be a solution that
asymptotically lies in (0, 1). Therefore, for

α ≤ 1−
√

1 + λ

2rc
− rc3 log3(k)

k
, (35)

we have

Pr (Z ≤ α ·m) ≤ k−(1+λ). (36)

The probability that there exists a systematic symbol with
availability lower than αm can be bounded with a union bound
over all systematic symbols:

Pr (∃u not (αm)-available) ≤ k · k−(1+λ) = k−λ, (37)

which completes the proof.
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