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Abstract—Group testing is the combinatorial problem of iden-
tifying the defective items in a population by grouping items
into test pools. Recently, nonadaptive group testing – where all
the test pools must be decided on at the start – has been studied
from an information theory point of view. Using techniques from
channel coding, upper and lower bounds have been given on the
number of tests required to accurately recover the defective set,
even when the test outcomes can be noisy.

In this paper, we give the first information theoretic result
on adaptive group testing – where the outcome of previous tests
can influence the makeup of future tests. We show that adaptive
testing does not help much, as the number of tests required obeys
the same lower bound as nonadaptive testing. Our proof uses
similar techniques to the proof that feedback does not improve
channel capacity.

I. INTRODUCTION

The problem of group testing concerns detecting the de-
fective members of a set of items through the means of
pooled tests. Group testing as a subject dates back to the work
of Dorfman [1] in 1940s studying practical ways of testing
soldiers’ blood for syphilis, and has received much attention
from combinatorialists and probabilists since.

The setup is as follows: Suppose we have a number of items,
of which some are defective. To identify the defective items
we could test each of the items individually for defectiveness.
However, when the proportion of defective items is small, most
of the tests will give negative results. A less wasteful method
is to test pools of many items together at the same time. In
the noise-free model, a pool gives a negative test outcome if
it contains no defective items, and gives a positive outcome
if it contains at least one defective item. (In Section II of this
paper we consider models with noise.) After a number T of
such pooled tests, it should be possible to deduce which items
were defective.

Traditionally, group testing has been seen as a combinatorial
problem. One aims to find a pooling strategy such that each
possible defective set gives a different sequence of outcomes.
This gives a zero error probability, and one is interested in
how small T can be made. (See, for example, the textbook
of Du and Hwang [2] for more details on the combinatorial
approach to group testing.)

Group testing splits into two main types:
• Nonadaptive group testing, where the entire pooling

strategy is decided on beforehand;

• Adaptive (or sequential) group testing, where the
outcomes of previous tests can be used to influence the
makeup of future pools.

Recently, new results on nonadaptive group testing with
arbitrarily small probability of error have been derived using
information theoretic techniques. A recent paper of Atia and
Saligrama [3] proves bounds on T using techniques similar to
the proof of Shannon’s channel coding theorem [4].

In this paper, we study adaptive group testing using informa-
tion theoretic techniques. Clearly adaptive group testing cannot
be more difficult than nonadaptive testing. We show that it is
not much easier either.

Specifically, Theorem 2 shows that the number of tests re-
quired for adaptive group testing is no more than that required
for nonadaptive testing, but is still greater than the Atia–
Saligrama lower bound. The result is obtained by techniques
similar to Shannon’s proof that feedback does not improve
capacity for channel coding [5]. As far as we are aware, this is
the first information theoretic result for adaptive group testing.

In combinatorial zero-error group testing using the noise-
free model, adaptive testing certainly is an improvement. Only
O(K logN) are needed for adaptive testing, whereas at least
Ω(K2 logN/ logK) are required for nonadaptive testing [2].
We note that this is similar to the case of zero-error channel
coding, where feedback may improve the zero-error capacity
[5].

The structure of this paper is as follows. In Section II
we outline the information theoretic approach to nonadaptive
group testing, fixing notation, and reviewing the work of
Atia and Saligrama [3] and others. In Section III we briefly
review Shannon’s result on channel coding with feedback
before stating and proving our main theorem (Theorem 2).
We conclude with Section IV.

II. THE INFORMATION THEORETIC APPROACH
TO NONADAPTIVE GROUP TESTING

First we fix some notation. We have N items, of which
a subset K of size K is defective. We wish to accurately
estimate the defective set from T tests. A pooling strategy
can be defined by a testing matrix X = (xit) ∈ {0, 1}N×T ,
where xit = 1 denotes that item i is in the pool for test t, and
xit = 0 denotes that it is not. Test t gives an output Yt in some
output alphabet Y (which is usually {0, 1} also). Then, given
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Fig. 1. A diagram illustrating the similarities between channel coding and group testing.

the test outcomes Y = (Yt) ∈ YT , we make an estimate
K̂ = K̂(Y) of the defective set. The average probability of
error is ε.

Let kt = |{i ∈ K : xit = 1}| denote the number of defective
items in test t. In the main noise-free case, Yt = 0 (denoting
a negative test outcome) if kt = 0, and Yt = 1 (denoting a
positive test outcome) if kt ≥ 1.

We can also consider group testing with noise. Atia and
Saligrama [3] consider two noise models:

• Addition model, where false positives occur with prob-
ability q. That is,

if kt = 0, Yt =

{
0 with probability 1− q,
1 with probability q;

if kt ≥ 1, Yt = 1.

• Dilution model, where false negatives occur with prob-
ability ukt . That is,

if kt = 0, Yt = 0;

if kt ≥ 1, Yt =

{
0 with probability ukt ,
1 with probability 1− ukt .

Sejdinovic and Johnson [6] considered a model where both
addition and dilution errors can occur. Aldridge [7, Chapter
6] considered a class of models where only defects matter, in
that the distribution of Yt depends only on kt (and not on how
many nondefective items are in a test pool).

Group testing can be considered as being similar to channel
coding. Here, the defective set takes the place of the message,
the testing matrix is like the codebook, the test outcomes
like the received signal. Then, like channel coding, we want
to estimate the message/defective set using as few channel
uses/tests as possible while keeping the error probability low.
Figure 1 illustrates this.

Atia and Saligrama’s main result was the following bounds
on the number of tests required to accurately detect the
defective set [3].

Theorem 1: Consider a group testing model where only
defects matter. Let T ∗NA = T ∗NA(N,K, ε) be the minimum

number of tests necessary to identify K defects among N
items with error probability at most ε 6= 0, 1. Then

T + o(logN) ≤ T ∗NA ≤ T + o(logN)

as N →∞, where

T = min
p

max
L⊂K

log
(
N−K
|L|
)(

K
|L|
)

I(XK\L : XL, Y )
, (1)

T = min
p

max
L⊂K

log
(
N−|L|
K−|L|

)
I(XK\L : XL, Y )

. (2)

Here, the Xi are IID Bern(p), Y is related to X through the
channel model, and I denotes mutual information. We have
used the notation XL := (Xi : i ∈ L) and similar.

Atia and Saligrama [3] proved the theorem for the noise-
free, addition and dilution models. Aldridge [7, Chapter 6.4]
pointed out that their analysis extends to any model where
only defects matter. Atia and Saligrama [3] also extended their
result to the K = o(N) asymptotic regime.

The proof of the upper bound is similar to Gallager’s proof
[8] of the direct part Shannon’s channel coding theorem [4].
Test pools designed at random, with Xit = 1 with probability
p and Xit = 0 with probability 1− p, IID over i and t. Esti-
mation of the defective set is done on a maximum likelihood
basis, in that K̂ is chosen to maximise the probabilty of the
outcome Y given the testing matrix X.

The proof of the lower bound resembles the converse part of
Shannon’s theorem (see for example [9, Section 7.9]), where
Fano’s inequality bounds the error probability. Unfortunately,
unlike in Shannon’s theorem, we are not so lucky that the
upper and lower bounds asymptotically coincide, although
they are close up to a logarithmic factor in N .

There has been other recent work on nonadaptive infor-
mation theoretic group testing. Sejdinovic and Johnson [6]
gave accurate asymptotic expressions for T for the noise-free,
addition and dilution models. Cheraghchi et al [10] considered
group testing when the makeup of the pools is constrained by
a graphical structure. Numerous authors [6], [11], [12], [13]
have used modern decoding algorithms on nonadaptive group
testing simulations.



Some similar work has occured in the compressed sensing
community; see the survey of Malyutov [14].

III. ADAPTIVE GROUP TESTING

In adaptive group testing, the makeup of a testing pool can
depend on the outcomes of earlier tests, so

xit = xit(Y1, . . . , Yt−1).

This is similar to channel coding with feedback, where
future inputs to the channel can depend on past outputs.
Shannon proved that (perhaps surprisingly) feedback does not
improve the capacity of a single-user channel [5]. Since a
transmitter could choose not to use the feedback, it’s clear
that the capacity with feedback is at least as high as the
capacity without. However by being more careful with Fano’s
inequality in the proof of the converse, it can apply to the
case of feedback also. See [9, Section 7.12], for example, for
a detailed proof.

Our result proceeds similarly. Due to the non-tightness of
the bounds on testing in the nonadaptive case, we will not
be able to show that adaptive group testing requires the same
number of tests as nonadaptive testing, but we will be able
to show that it obeys the same lower bound and requires no
more tests than the nonadaptive case.

The lack of much improvement due to adaptive testing may
initially seem surprising. However, the analogy with Shannon’s
feedback result explains why we should in fact expect this.

We emphasise that our theorem holds not only for the noise-
free model, but also for the dilution and addition models, and
any model where only defects matter.

Theorem 2: Consider a group testing model where only
defects matter. Let T ∗NA and T ∗A (dependent on N , K and ε) be
the minimum number of tests necessary to identify K defects
among N items with error probability at most ε 6= 0, 1 for
nonadaptive and adaptive group testing respectively. Then, as
N →∞, we have the inequalities

T − o(logN) ≤ T ∗A ≤ T ∗NA ≤ T + o(logN)

where T and T are as in (1) and (2).
Proof: The third inequality is part of Theorem 1. The

second inequality is trivial, as nonadaptive group testing is
merely a special case of adaptive group testing where the tester
chooses to ignore the information of previous test results.

To prove the first inequality, we adapt Atia and Saligrama’s
proof of converse part of Theorem 1 [3], and Shannon’s
proof that feedback fails to improve channel capacity [5], as
exposited by Cover and Thomas [9, Theorem 7.12.1].

Choose a set of items L of size |L| uniformly at random
from {1, 2, . . . , N}, and choose K of size K uniformly at
random from sets containing L.

Suppose a genie reveals to us the |L| defective items L ⊂
K, leaving us to work out the remaining K − |L| defective
items. Given L, there are

(
N−|L|
K−|L|

)
equally likely choices of

the random K, so

H(K | L) = log

(
N − |L|
K − |L|

)
. (3)

Using a standard identity we can rewrite (3) as

log

(
N − |L|
K − |L|

)
= H(K | K̂,L) + I(K : K̂ | L). (4)

We can now use Fano’s inequality (see for example [9,
Theorem 2.10.1]) to bound the conditional entropy term in
(4) in terms of the error probability ε. Specifically, we have

H(K | K̂,L) ≤ 1 + ε log

(
N − |L|
K − |L|

)
, (5)

since there are again
(
N−|L|
K−|L|

)
choices for K. Substituting (5)

into (4) gives

log

(
N − |L|
K − |L|

)
≤ 1 + ε log

(
N − |L|
K − |L|

)
+ I(K : K̂ | L). (6)

A series of standard information theory inequalities and
identities show that the mutual information term in (6) can
be bounded by

I(K : K̂ | L) ≤ TI(XK\L : XL, Y ). (7)

We relegate the elementary (but slightly long-winded) verifi-
cation of (7) to the Appendix. Substituting (7) into (6) gives

log

(
N − |L|
K − |L|

)
≤ 1+ε log

(
N − |L|
K − |L|

)
+TI(XK\L : XL, Y ).

(8)
Rearranging (8) to make ε the subject gives

ε ≥ 1− T
I(XK\L : XL, Y )

log
(
N−|L|
K−|L|

) − 1

log
(
N−|L|
K−|L|

) . (9)

Sending N →∞ in (9), it is clear that we require

T ≥
log
(
N−|L|
K−|L|

)
I(XK\L : XL, Y )

(
1 + o(1)

)
=

log
(
N−|L|
K−|L|

)
I(XK\L : XL, Y )

+ o(logN) (10)

to force the error probability to be arbitrarily small.
But (10) has to be true for all L ⊂ K, and we can optimise

over the test inclusion parameter p. This gives the result.

IV. CONCLUSION

In conclusion, we have considered adaptive group testing
for models where only defects matter with arbitrarily low
probability of error. We have shown that adaptive testing
requires no more tests than nonadaptive and, since it still obeys
the Atia–Saligrama lower bound, cannot reduce the number of
tests very much.

It remains an open question whether or not TA = TNA (either
exactly or in an asymptotic sense), or whether, as with zero-
error testing for the noise-free model, there is a gap between
TA and TNA.

A ‘halfway house’ between adaptive and nonadaptive testing
is S-stage testing, where S test pools are decided on at a time.
Clearly the number of tests required for S-stage testing lies
between T ∗NA and T ∗A and is nondecreasing in S. We are not
aware that this has received any attention from an information
theoretic point of view.



APPENDIX. AN INEQUALITY ABOUT MUTUAL
INFORMATION

In this appendix we verify the claim (7), that

I(K : K̂ | L) ≤ TI(XK\L : XL, Y ),

which is required in the proof of Theorem 2.
We use the data processing inequality left-hand side of (7),

to write

I(K : K̂ | L) ≤ I(K : Y | L) = H(Y | L)−H(Y | K) (11)

where the second equality in (11) is standard identity and we
have used that L ∪ K = K.

We now unwrap the conditional entropy terms in (11) using
the chain rule for entropy (see for example [9, Theorem 2.5.1])
and standard identities and inequalities. This gives

I(K : K̂ | L) ≤
T∑

t=1

(
H(Yt | Y1, . . . , Yt−1,L)

−H(Yt | Y1, . . . , Yt−1,K)
) (12)

=

T∑
t=1

(
H(Yt | Y1, . . . , Yt−1,L,XLt)

−H(Yt | Y1, . . . , Yt−1,K,XKt)
) (13)

≤
T∑

t=1

(
H(Yt | XLt)

−H(Yt | Y1, . . . , Yt−1,K,XKt)
) (14)

=

T∑
t=1

(
H(Yt | XLt)−H(Yt | XKt)

)
, (15)

where we have used the notation XLt := (Xit : i ∈ L) for
fixed t and similar. We justify the above steps as follows:

(12) is from applying the chain rule to the right hand side of
(11);

(13) is because XLt is a function of Y1, . . . , Yt−1 and L, and
the same for K;

(14) is because conditioning reduces entropy, so removing
conditioning increases it;

(15) is because, conditional on XKt, we know Yt is inde-
pendent of the previous outcomes Y1, . . . , Yt−1 and the
defective set K.

But the term in the summand of (15) is precisely the mutual
information

H(Yt | XLt)−H(Yt | XKt) = I(XK\L t : Yt | XLt), (16)

and this is independent of t. Hence substituting (16) into (15)
gives

I(K : K̂ | L) ≤
T∑

t=1

I(XK\L t : Yt | XLt)

= TI(XK\L : Y | XL). (17)

The mutual information term in (17) can alternatively be
written as

I(XK\L : Y | XL) = I(XK\L : XL, Y )− I(XK\L : XL)

= I(XK\L : XL, Y ), (18)

since XK\L and XL are independent.
Substituting (18) into (17) gives

I(K : K̂ | L) ≤ TI(XK\L : XL, Y ),

thus verifying the claim (7).
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