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Abstract—We consider some computationally efficient and
provably correct algorithms with near-optimal sample-complexity
for the problem of noisy non-adaptive group testing. Group
testing involves grouping arbitrary subsets of items into pools.
Each pool is then tested to identify the defective items, which
are usually assumed to be “sparse”. We consider non-adaptive
randomly pooling measurements, where pools are selected ran-
domly and independently of the test outcomes. We also consider
a model where noisy measurements allow for both some false
negative and some false positive test outcomes (and also allow
for asymmetric noise, and activation noise). We consider three
classes of algorithms for the group testing problem (we call them
specifically the “Coupon Collector Algorithm”, the “Column
Matching Algorithms”, and the “LP Decoding Algorithms” –
the last two classes of algorithms (versions of some of which
had been considered before in the literature) were inspired by
corresponding algorithms in the Compressive Sensing literature.
The second and third of these algorithms have several flavours,
dealing separately with the noiseless and noisy measurement
scenarios. Our contribution is novel analysis to derive explicit
sample-complexity bounds – with all constants expressly com-
puted – for these algorithms as a function of the desired error
probability; the noise parameters; the number of items; and the
size of the defective set (or an upper bound on it). We also
compare the bounds to information-theoretic lower bounds for
sample complexity based on Fano’s inequality and show that the
upper and lower bounds are equal up to an explicitly computable
universal constant factor (independent of problem parameters).

Index Terms—Non-adaptive group testing, Noisy measure-
ments, Coupon Collector’s Problem, Compressive sensing, LP-
decoding.

I. INTRODUCTION

The goal of group testing is to identify a small unknown
subset D of defective items embedded in a much larger set N
(usually in the setting where d = |D| is much smaller than
n = |N |, i.e., d is o(n)). This problem was first considered by
Dorfman [3] in scenarios where multiple items in a group can
be simultaneously tested, with a positive or negative output
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depending on whether or not a “defective” item is present
in the group being tested. In general, the goal of group
testing algorithms is to identify the defective set with as few
measurements as possible. As demonstrated in [3] and later
work (see [4] for a comprehensive survey of many group-
testing algorithms and bounds), with judicious grouping and
testing, far fewer than the trivial upper bound of n tests may
be required to identify the set of defective items.

We consider the problem of non-adaptive group testing in
this paper (see, for example, [4]). In non-adaptive group test-
ing, the set of items being tested in each test is required to be
independent of the outcome of every other test. This restriction
is often useful in practice, since this enables parallelization of
the testing process. It also allows for an automated testing
process using “off-the-shelf” components. In contrast, the
procedures and hardware required for adaptive group testing
may be significantly more complex.

In this paper we describe computationally efficient algo-
rithms with near-optimal performance for “noiseless” and
“noisy” non-adaptive group testing problems. We now describe
different aspects of this work in some detail.

“Noisy” measurements: In addition to the noiseless group-
testing problem (i.e. wherein each test outcome is “true”), we
consider the noisy variant of the problem. In this noisy variant
the result of each test may differ from the true result (in an
independent and identically distributed manner) with a certain
pre-specified probability q. This leads to both false positive
test outcomes and false negative test outcomes.

Much of the existing work either considers one-sided noise,
namely false positive tests but no false negative tests or
vice-versa (e.g. [5]), or an activation noise model wherein
a defective item in a test may behave as a non-defective
item with a certain probability (leading to a false negative
test) (e.g. [5]), or a “worst-case” noise model [6] wherein the
total number of false positive and negative test outcomes are
assumed to be bounded from above.1 Since the measurements
are noisy, the problem of estimating the set of defective items

1For instance [6] considers group-testing algorithms that are resilient to all
noise patterns wherein at most a fraction q of the results differ from their true
values, rather than the probabilistic guarantee we give against most fraction-q
errors. This is analogous to the difference between combinatorial coding-
theoretic error-correcting codes (for instance Gilbert-Varshamov codes [7])
and probabilistic information-theoretic codes (for instance [8]). In this work
we concern ourselves only with the latter, though it is possible that some of
our techniques can also be used to analyzed the former.
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is more challenging.2 In this work we focus primarily on noise
models wherein a positive test outcome is a false positive
with the same probability as a negative test outcome being
a noisy positive. We do this primarily for ease of analysis
(as, for instance, the Binary Symmetric Channel noise model
is much more extensively studied in the literature than other
less symmetric models), though our techniques also work for
asymmetric error probabilities, and for activation noise. We
briefly show in Theorems 7 and 8 that our LP decoding
algorithms also have order-optimal sample complexity for
these noise models.
Computationally efficient and near-optimal algorithms:
Most algorithms in the literature focus on optimizing the
number of measurements required – in some cases, this leads
to algorithms that may not be computationally efficient to
implement (for e.g. [5]). In this paper we consider algorithms
that are not only computationally efficient but are also near-
optimal in the number of measurements required. Variants of
some of these algorithms have been considered before in the
rich and vast literature on group testing. When we later discuss
the specific algorithms considered in this work we also cite
related algorithms from the existing literature.

We reprise lower bounds on group-testing algorithms based
on information-theoretic analysis (similar bounds were known
in the literature, for instance [9], [10] – we reproduce short
proofs here for completeness, since they help us compare
upper and lower bounds and show that they match up to a
universal constant factor).

For the upper bounds we analyze three different types of
algorithms. Some of these algorithms also have structural
relationships to those described in the compressive sensing
literature (see Section II-B, and our descriptions of the algo-
rithms in Section II-C).

The first algorithm is based on the classical Coupon Collec-
tor’s Problem [11]. The second is based on an iterative “Col-
umn Matching” algorithm. Hence we call these two algorithms
respectively the CoCo algorithm (for Coupon Collector), and
the CoMa algorithms (for Column Matching algorithms).
Neither CoCo nor CoMa are entirely new – variants of both
have also been previously considered in the group-testing
literature (under different names) for both noiseless and noisy
scenarios (see, for instance [12] for algorithms based on the
idea of identifying all the non-defectives, as in the Coupon
Collector’s algorithm, and [13], [14], [15] for examples of
Column Matching algorithms).

Our third class of algorithms are related to linear program-
ming relaxations used in the compressive sensing literature. In
compressive sensing the `0 norm minimization is relaxed to
an `1 norm minimization. In the noise-free case this relaxation
results in a linear program since the measurements are linear.
In contrast, in group testing, the measurements are non-linear
and boolean. Nonetheless, our contribution here is to show

2We wish to highlight the difference between noise and errors. We
use the former term to refer to noise in the outcomes of the group-test,
regardless of the group-testing algorithm used. The latter term is used
to refer to the error due to the estimation process of the group-testing
algorithm. Our models allow for noise to occur in measurements, and
also allow for (arbitrarily small) probability of error – indeed, the latter
is a design parameter of our algorithms.

(via novel “perturbation analysis” that) a variety of relaxations
result in a class of LP decoding algorithms that also have
information-theoretically order-optimal sample complexity.

In our LP relaxation, in the noise-free case the measure-
ments take the value one if some defective item is in the pool
and zero if no defective item is part of the pool. Furthermore,
noise in the group testing scenario is also boolean unlike the
additive noise usually considered in the compressive sensing
literature. For these reasons we also need to relax our boolean
measurement equations. We do so by using a novel combi-
nation of inequality and positivity constraints, resulting in a
class of Linear Programs.

We first consider the case when the number of defectives
d is known exactly (and later relax this constraint). Our LP
formulation and analysis is related to error-correction [16]
where one uses a “minimum distance” decoding criteria based
on perturbation analysis. The idea is to decode to a vector pair
consisting defective items, x, and the error vector, η, such
that the error-vector η is as “small” as possible. We call this
algorithm the No-LiPo- algorithm (for Noisy LP). Using novel
“perturbation analysis”, certain structural properties of our LP,
convexity arguments, and standard concentration results we
show that the solution to our LP decoding algorithm recovers
the true defective items with high probability. Based on this
analysis, we can directly derive the performance of two other
LP-based decoding algorithms. In particular, LiPo considers
the noiseless measurement scenario. Also, for the case when
only an upper bound D on d is known (rather than the explicit
value of d) we have a decoding algorithm No-Un-LiPo- (for
Noisy Universal LiPo). This comprises of a sequence of LPs,
one for each positive integer less than D, and we show that
with high probability only the LP corresponding to the correct
value d outputs a “meaningful” answer.

Furthermore, we demonstrate that each of these three
types of algorithms achieve near-optimal performance in the
sense that the sample complexity of our algorithms match
information-theoretic lower bounds within a constant factor,
where the constant is independent of the number of items n
and the defective set size d (and at the cost of additional slack-
ness, can even be made independent of the noise parameter
q and the error probability ε). Our sample-complexity bounds
here are expressly calculated, and all of the constants involved
are made precise.

“Small-error” probability ε: Existing work for the non-
adaptive group testing problem has considered both determin-
istic and random pooling designs [4]. In this context both
deterministic and probabilistic sample complexity bounds for
the number of measurements T that lead to exact identification
of the defective items (with high probability (e.g., [5], [17]),
or with probability 1 (e.g., [18], [19]) have been derived.
These sample complexity bounds in the literature are often
asymptotic in nature, and describe the scaling of the number
of measurements T with respect to the number of items n
and the number of defectives d, so as to ensure that the error
probability approaches zero. To gain new insights into the
constants involved in the sample-complexity bounds we admit
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a small but fixed error probability, ε.3 With this perspective
we can compare upper and lower bounds for computationally
efficient algorithms that hold not only in an order-wise sense,
but also where the constants involved in these order-wise
bounds can be made explicit, for all values of d and n.
Explicit Sample Complexity Bounds: Our sample complexity
bounds are of the form T ≥ β(q, ε)d log(n). The function
β(q, ε) is an explicitly computed function of the noise pa-
rameter q and admissible error probability ε. In the literature,
order-optimal upper and lower bounds on the number of
tests required are known for the problems we consider (for
instance [5], [22]). In both the noiseless and noisy variants,
the number of measurements required to identify the set of
defective items is known to be T = Θ(d log(n)) – here
n = |N | is the total number of items and d = |D| is the size of
the defective subset. In fact, if only D, an upper bound on d, is
known, then T = Θ(D log(n)) measurements are also known
to be necessary and sufficient. In most of our algorithms we
explicitly demonstrate that we require only a knowledge of D
rather than the exact value of d (in the LP-based algorithms,
for ease of exposition we first consider the case when d
is known, and then demonstrate in the algorithm No-LiPo-
that this knowledge is not needed). Furthermore, in the noisy
variant, we show that the number of tests required is in general
a constant factor larger than in the noiseless case (where this
constant β is independent of both n and d, but may depend
on the noise parameter q and the allowable error-probability
ε of the algorithm – at the cost of additional slackness in the
constant even these dependencies can be removed).4

A. Our contributions
We summarize our contributions in this work as follows:
• Our contribution for the CoCo algorithm is that the

analysis draws a simple but interesting connection to
the classical coupon-collector problem. As far as we are
aware this connection is novel, and hence interesting in
its own right.

• Our contribution for CoMa algorithms is an explicit
analysis of the sample complexity, in comparison to the
previous literature for such algorithms, which typically
focused on order-optimal analysis. Some elegant work in
the Russian literature also has information-theoretically
optimal analysis for high-complexity decoding for related
algorithms [17], [10], and good bounds [14], [15] for
lower-complexity variants (called the “Separate Testing of
Inputs” algorithm) of these CoMa algorithms. However
the types of statistical decoding rules used therein are
structurally different than the ones we analyze, which can
be implemented as dot-products of vectors of real num-
bers, and hence are particularly computationally efficient
in modern computer architectures.

3As shown in [18], [20], [21], the number of measurements required to
guarantee zero-error reconstruction even in the noiseless non-adaptive group-
testing setting scales as Ω(d2 log(n)/ log(d)). Hence our relaxation to the
“small-error” setting, where it is known in the literature that a number of tests
that scales as O(d log(n)) suffices.

4In fact, while our analysis can be done for all values of d and n, in
situations where preserving such generality makes the bounds excessively
unwieldy we sometimes use the fact that D = o(n), or that d = ω(1).

• Our contribution for our suite of novel5 LP algorithms
is a novel perturbation analysis demonstrating that they
are indeed order-optimal in sample-complexity. We
also demonstrate the versatility of these algorithms and
our techniques for analyzing them, by demonstrating that:

• There are multiple LP relaxations for the underlying non-
linear group-testing problem, each demonstrating inter-
esting properties. For instance, we demonstrate via the
No-LiPo- decoding algorithm that just the negative test
outcomes alone carry enough information to be able
to reconstruct (with high probability) the input x with
order-optimal sample-complexity, even in the presence
of measurement noise. In the scenario with no noise,
the LiPo- decoding algorithm takes a particularly sim-
ple form, where it reduces to solving just a feasibility
problem. These different relaxations might be of interest
in different scenarios. In addition, our analytical tech-
niques directly generalize to other noise models, such as
asymmetric noise, and activation noise.

• The upper bounds we present differ from information-
theoretic lower bounds by a constant factor that is inde-
pendent of problem parameters.

• Also, many of the outer bounds we present are in the main
universal. That is, most of the classes of algorithms we
consider (except for those based on Linear Programming
– universal versions of these algorithms is a subject of
ongoing research) do not need to know the exact values of
d – as long as an outer bound D is known, this suffices.6

• We consciously draw connections between the compres-
sive sensing and the group-testing literature, to show
that despite the differences in models (linear versus non-
linear, real measurements versus real measurements, etc.)
algorithms that work for one setting may well work in
another. Such a connection has indeed been noted before
– for instance, [27] used group-testing ideas to con-
struct compressive sensing algorithms. Also, [23], [24],
[25] were motivated by CS-type LP-decoding algorithms
to consider corresponding decoding algorithms for the
group-testing problem.

This paper is organized as follows. In Section II, we intro-
duce the model and corresponding notation (frequently used
notation is summarized in Table I). In separate subsections
of this section we give background on some compressive
sensing algorithms, describe the algorithms analyzed in this
work, and the relationships between these algorithms for these
two disparate problems. We also reprise known information-
theoretic lower bounds on the number of tests required by
any group-testing algorithm (with short proof sketches in the
Appendix). In Section III, we describe the main results of this

5In the noiseless setting prior work by [23], [24] had considered a similar
LP approach (though no detailed analysis was presented). For the scenario
with noisy measurements, in parallel with the conference version of our work
presented at [2], a similar algorithm was considered in [25] – however, the
proof sketch presented therein requires disjunct measurement matrices, which
are known not to be order-optimal in sample-complexity in the “small-error”
case [9], [10].

6Prior work, for instance by [26], had also considered group testing that
was similarly universal in D.
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Fig. 1. An example demonstrating a typical non-adaptive group-testing setup.
The T × n binary group-testing matrix represents the items being tested in
each test, the length-n binary input vector x is a weight d vector encoding
the locations of the d defective items in D, the length-T binary vector y
denotes the outcomes of the group tests in the absence of noise, the length-T
binary noisy result vector ŷ denotes the actually observed noisy outcomes of
the group tests, as the result of the noiseless result vector being perturbed by
the length-T binary noise vector ν. The length-n binary estimate vector x̂
represents the estimated locations of the defective items.

work. Section IV contains the analysis of the group-testing
algorithms considered.

II. BACKGROUND

A. Model and Notation

A set N contains n items, of which an unknown subset D
are said to be “defective”. The size of D is denoted by d.
We assume that D, an upper bound on the true value of d, is
known a priori. 7 The goal of group-testing is to correctly
identify the set of defective items via a minimal number of
“group tests”, as defined below (see Figure 1 for a graphical
representation).

Each row of a T × n binary group-testing matrix M
corresponds to a distinct test, and each column corresponds
to a distinct item. Hence the items that comprise the group
being tested in the ith test are exactly those corresponding to
columns containing a 1 in the ith location. The method of
generating such a matrix M is part of the design of the group
test – this and the other part, that of estimating the set D, is
described in Section II-C.

The length-n binary input vector x represents the set N ,
and contains 1s exactly in the locations corresponding to the
items of D. The locations with ones are said to be defective –
the other locations are said to be non-defective. We use these
terms interchangeably.

The outcomes of the noiseless tests correspond to the length-
T binary noiseless result vector y, with a 1 in the ith location
if and only if the ith test contains at least one defective item.

7It is common (see for example [28]) to assume that the number d of
defective items in D is known, or at least a good upper bound D on d, is
known a priori. If not, other work (for example [29]) considers non-adaptive
algorithms with low query complexity that help estimate d. However, in this
work we explicitly consider algorithms that do not require such foreknowledge
of d – rather, our algorithms have “good” performance with O(D log(n))
measurements.

The observed vector of test outcomes in the noisy scenario
is denoted by the length-T binary noisy result vector ŷ – the
probability that each entry yi of y differs from the corre-
sponding entry ŷi in ŷ is q, where q is the noise parameter.
The locations where the noiseless and the noisy result vectors
differ is denoted by the length-T binary noise vector ν, with
1s in the locations where they differ. Tests (if any) in which
the noise perturbs a negative to a positive outcome are called
false positives, and tests (if any) in which the noise perturbs
a positive to a negative outcome are called false negatives.

Two alternate noise models are also briefly considered in
Theorems 7 and 8. Firstly, the asymmetric bit-flip model gener-
alized the BSC(q) model described in the previous paragraph,
by allowing the probabilities of false positive test outcomes
and false negative test outcomes (denoted respectively by q0

and q1) to be different. Secondly, in the activation noise
model individual defective items in tests have a non-activation
probability u. That is, defective items in a test have an
i.i.d. probability of behaving like non-defectives in that test.
This leads to false negative test outcomes. In addition, in
the activation noise model we also allow false positive test
outcomes to occur in an i.i.d. manner (with probability q0).
This is a generalization of the “usual” activation noise model
(for instance [5]).

The estimate of the locations of the defective items is
encoded in the length-n binary estimate vector x̂, with 1s
in the locations where the group-testing algorithms described
in Section II-C estimate the defective items to be. Items (if
any) in which non-defective items are (incorrectly) decoded as
defective items are called false defective estimates, and items
(if any) in which defective items are (incorrectly) decoded as
non-defective items are called a false non-defective estimate.

The probability of error of any group-testing algorithm is
defined as the probability (over the input vector x and noise
vector ν) that the estimated vector differs from the input vector
at all.8

B. Compressive Sensing

Compressive sensing has received significant attention over
the last decade. We describe the version most related to the
topic of this paper [30], [31]. This version considers the
following problem. Let x be an exactly d-sparse vector in Rn,
i.e., a vector with at most d non-zero components (in general
in the situations of interest d = o(n)).9

8However, as is common in information-theoretic proofs, we instead
calculate the probability of error for any fixed x averaged over the randomness
in the noise vector ν and over the choice of measurement matrices M (which
are chosen from a random ensemble). Standard averaging arguments then
allow us to transition to the definition of probability of error stated above.
Since this step is common to each of our proofs, we do not explicitly state
this henceforth.

9As opposed to an approximately d-sparse vector, i.e., a vector such that
“most” of its energy is confined to d indices of x. One way of characterizing
such vectors is to say that ||x − xd||1 ≤ c1||x||1 for some suitably small
0 < c1 < 1. Here xd is defined as the vector matching x on the d components
that are largest in absolute value, and zero elsewhere. The results of [30],
[31] also apply in this more general setting. However, in this work we are
primarily concerned with the problem of group testing rather than that of
compressive sensing, and present the work of compressive sensing merely by
way of analogy. Hence we focus on the simplest scenarios in which we can
draw appropriate correspondences between the two problems.
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N The set of all items being tested.
n The total number of items, n = |N |.
D The unknown set of all defective items.
d The total number of defective items, d = |D|.
D The upper-bound on d.
T The number of measurements required to identify the set of defective items.
M The T × n binary group-testing matrix.
p Probability with which each element in M is chosen as 1.
x The length-n binary input vector (x1, . . . , xn) that is a weight d vector encoding the locations of the d defective items in D.
y The length-T binary vector (y1, . . . , yn) denoting the outcomes of the group tests in the absence of noise.
q The pre-specified probability that the result of a test differs from the true result.
q1 In the asymmetric noise model, the probability of a false negative test outcome.
q0 In the asymmetric and activation noise models, the probability of a false positive test outcome.
u In the activation noise model, the probability of the activation noise of a defective item in a test
ν The length-T binary noise vector (ν1, . . . , νn).
ŷ The length-T binary noisy result vector that denotes the actually observed noisy outcomes of the group tests, equaling ŷ = y + ν.
x̂ The length-n binary estimate vector that represents the estimated locations of the defective items.

ε = n−δ The pre-specified small but fixed error probability of the algorithm.
τ A decoding threshold for the NCOMP algorithm.

Γ = lnD
lnn

A measure of how much smaller D is than N . Takes values between 0 and 1

γ = Γ+δ
1+δ

An internal parameter defining the performance of many of our algorithms.
g The number of items selected to form a group in CBP.
ηi In our LP-based algorithms, the “slack variable” to account for errors in the ith test outcome, i ∈ {1, . . . , T}.
φ′ In our LP-based algorithms, a perturbation vector.
Φ′ In our LP-based algorithms, the set of perturbation vectors.

∆′0,i In our LP-based algorithms, the expected change in the objective value of the LP when x is perturbed to x + φ′.

TABLE I. Notation used frequently in the paper. The asymmetric noise and activation noise models are only briefly considered in Theorems 7 and 8. Of the last
five items, last four are internal variables specifically in our LP-based algorithms, and the other (g) is an internal variable specifically in our Coupon-Collector
model. All other notation is “universal” (applies to the entirety of the paper).

Let z corresponds to a noise vector added to the mea-
surement Mx. One is given a set of “compressed noisy
measurements” of x as

y = Mx + z (1)
||z||2 ≤ c2 (2)
||x||0 ≤ d (3)

Here the constraint (2) corresponds to a guarantee that the
noise is not “too large”, and the (non-linear) constraint (3)
corresponds to the prior knowledge that x is d-sparse. The
T × n matrix M is designed by choosing each entry i.i.d.
from a suitable probability distribution (for instance, the set
of zero-mean, 1/n variance Gaussian random variables). The
decoder must use the resulting noisy measurement vector y ∈
RT and the matrix M to computationally efficiently estimate
the underlying vector x. The challenge is to do so with as few
measurements as possible, i.e., with the number of rows T of
M being as small as possible.

We now outline two well-studied decoding algorithms for
this problem, each of which motivated one class of algorithms
we analyze in this work.

1) Orthogonal Matching Pursuit: We note that it is enough
for the decoder to computationally efficiently estimate the
support D of x, the set of indices on which x is non-zero,
correctly. This is because the decoder can then estimate x as
(M t
DMD)−1M t

Dy, which is the minimum mean-square error
estimate of x. (Here MD equals the T × d sub-matrix of M
whose columns numbers correspond to the indices in D, and
T is a design parameter chosen to optimize performance.)

One popular method of efficient estimation of D is that of

Orthogonal matching pursuit (OMP) [32]10. The intuition is
that if the columns of the matrix M are “almost orthogonal”
(every pair of columns have “relatively small” dot-product)
then decoding can proceed in a greedy manner. In particular,
the OMP algorithm computes the dot-product between y and
each column mi of M , and declares D to be the set of d
indices for which this dot-product has largest absolute value.

One can show [32] that there exists a universal constant c3
such that if z = 0 then with probability at least 1 − d−c3

(over the choice of M , which is assumed to be independent
of the vector x) this procedure correctly reconstructs x with
T ≤ c3d log(n) measurements. Similar results can also be
shown with z 6= 0, though the form of the result is more
intricate.

2) Basis Pursuit: An alternate decoding procedure proceeds
by relaxing the compressive sensing problem (in particular the
non-linear constraint (3)) into the convex optimization problem
called Basis Pursuit (BP).

x = arg min ||x||1 (4)
subject to ||y −Mx||2 ≤ c2 (5)

It can be shown (for instance [30], [31]) that there exist
constants c4, c5 and c6 such that with T = c4d log(n), with
probability at least 1 − 2c5n, the solution x∗ to BP satisfies
||x∗ − x||2 ≤ c6||z||2.

C. Group-Testing Algorithms in this work
We now describe three classes of algorithms (in the latter

two cases, in both the noiseless and noisy settings). The algo-
rithms are specified by the choices of encoding matrices and

10In fact, there are many techniques that have a similar “column matching”
flavour – see, for instance [33], [34], [35]. We focus on OMP just for its
simplicity.
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Fig. 2. An example demonstrating the CBP algorithm. Based on only on the
outcome of the negative tests (those with output zero), the decoder estimates
the set of non-defective items, and “guesses” that the remaining items are
defective.

decoding algorithms. Their performance is stated in Section III
and the corresponding proofs of the algorithms are presented
in Section IV.

1) Coupon collector algorithm (CoCo ):
We first consider an algorithm that consider rows of the
measurement matrix M , and try to correlate these with the
observations y.

The T ×n group-testing matrix M is defined as follows. A
group sampling parameter g is chosen (the exact values of T
and g are code-design parameters to be specified later). Then,
the ith row of M is specified by sampling with replacement11

from the set [1, . . . , n] exactly g times, and setting the (i, j)
location to be one if j is sampled at least once during this
process, and zero otherwise.12

The decoding algorithm proceeds by using only the tests
which have a negative outcome, to identify all the non-
defective items, and declaring all other items to be defective.
If M is chosen to have enough rows (tests), each non-defective
item should, with significant probability, appear in at least one
negative test, and hence will be appropriately accounted for.
Errors (false defective estimates) occur when at least one non-
defective item is not tested, or only occurs in positive tests
(i.e., every test it occurs in has at least one defective item).
The analysis of this type of algorithm comprises of estimating
the trade-off between the number of tests and the probability
of error.

More formally, for all tests i whose measurement outcome
yi is a zero, let mi denote the corresponding ith row of M .
The decoder outputs x̂ as the length-n binary vector which
has 0s in exactly those locations where there is a 1 in at least
one such mi.

2) “Column Matching” Algorithms: We next consider al-
gorithms that try to correlate columns of the measurement
matrix M with the vector of observations ŷ. We consider two
scenarios – the first when the observations are noiseless, and
the second when they are noisy. In both cases we draw the

11Sampling without replacement is a more natural way to build tests, but
the analysis is trickier. However, the performance of such a group-testing
scheme can be shown to be no worse than the one analyzed here [36]. Also
see Footnote 12.

12Note that this process of sampling each item in each test with replacement
results in a slightly different distribution than if the group-size of each test
was fixed a priori and hence the sampling was “without replacement” in
each test. (For instance, in the process we define, each test may, with some
probability, test fewer than g items.) The primary advantage of analyzing the
“with replacement” sampling is that in the resulting group-testing matrix every
entry is then chosen i.i.d..
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Fig. 3. An example demonstrating the CoMa algorithm. The algorithm
matches columns of M to the result vector. As in (b) in the figure, since the
result vector “contains” the 7th column, then the decoder declares that item to
be defective. Conversely, as in (c), since there is no such containment of the
last column, then the decoder declares that item to be non-defective. However,
sometimes, as in (a), an item that is truly non-defective, is “hidden” by some
other columns corresponding to defective items, leading to a false defective
estimate.

analogy with a corresponding compressive sensing algorithm.
Column Matching algorithm (CoMa ):

The T ×n group-testing matrix M is defined as follows. A
group selection parameter p is chosen (the exact values of T
and p are code-design parameters to be specified later). Then,
i.i.d. for each (i, j), mi,j (the (i, j)th element of M ) is set to
be one with probability p, and zero otherwise.

The decoding algorithm works “column-wise” on M – it
attempts to match the columns of M with the result vector y.
That is, if a particular column j of M has the property that
all locations i where it has ones also corresponds to ones in
yi in the result vector, then the jth item (xj) is declared to be
defective. All other items are declared to be non-defective. 13

Note that this decoding algorithm never outputs false non-
defective estimates, only false defective estimates. A false
defective estimate occurs when all locations with ones in the
jth column of M (corresponding to a non-defective item j)

13 Note the similarity between this algorithm and OMP. Just as OMP tries
to select columns of the measurement matrix that have “small angle” (large
dot-product) with the vector of observations, similarly this algorithm tries
to detect columns of M with maximal “overlap” with the result vector y.
Indeed, even though the measurement process in the group-testing problem
is fundamentally non-linear, in current computer architectures where linear
algebraic operations often have low computational complexities, a computa-
tionally efficient means of implementing such a test is to check whether the
dot-product between y and each column of M equals the number of ones in
that column. Hence the name CoMa .
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Fig. 4. An example demonstrating the No-CoMa algorithm. The algorithm
matches columns of M to the result vector up to a certain number of
mismatches governed by a threshold. In this example, the threshold is set so
that the number mismatches be less than the number of matches. For instance,
in (b) above, the 1s in the third column of the matrix match the 1s in the
result vector in two locations (the 5th and 7th rows), but do not match only
in one location in the 4th row (locations wherein there are 0s in the matrix
columns but 1s in the result vector do not count as mismatches). Hence the
decoder declares that item to be defective, which is the correct decision.
However, consider the false non-defective estimate generated for the item in
(c). This corresponds to the 7th item. The noise in the 2nd, 3rd and 4th rows
of ν means that there is only one match (in the 7th row) and two mismatches
(2nd and 4th rows) – hence the decoder declares that item to be non-defective.
Also, sometimes, as in (a), an item that is truly non-defective estimate, has
a sufficient number of measurement errors that the number of mismatches is
reduced to be below the threshold, leading to a false defective estimate.

are “hidden” by the ones of other columns corresponding to
defectives items. That is, let column j and some other columns
j1, . . . , jk of matrix M be such that for each i such that
mi,j = 1, there exists an index j′ in {j1, . . . , jk} for which
mi,j′ also equals 1. Then if each of the {j1, . . . , jk}th items
are defective, then the jth item will also always be declared as
defective by the CoMa decoder, regardless of whether or not
it actually is. The probability of this event happening becomes
smaller as the number of tests T become larger.

The rough correspondence between this algorithm and Or-
thogonal Matching Pursuit ([32]) arises from the fact that, as
in Orthogonal Matching Pursuit, the decoder attempts to match
the columns of the group-testing matrix with the result vector.
Noisy Column Matching algorithm (No-CoMa )

In the No-CoMa algorithm, we relax the sharp-threshold
requirement in the original CoMa algorithm that the set of
locations of ones in any column of M corresponding to a
defective item be entirely contained in the set of locations of
ones in the result vector. Instead, we allow for a certain number
of “mismatches” – this number of mismatches depends on

(x̂, η̂) = arg min
x,η

∑
i

ηi (6)

such that
−ηi +

∑
j:mij=1

xj = 0, if ŷi = 0, (7)

∑
∀j

xj = d, (8)

0 ≤ xj ≤ 1, (9)
0 ≤ ηi ≤ d (10)

Fig. 5. No-LiPo- : Constraint (9) relaxes the constraint that each xj ∈ {0, 1},
and constraint (8) indicates that there are exactly d̄ defective items in the d̄th
iteration of the LP. The variables ηi are “slack variables” in the equations (7).
For instance, if test i is truly negative, then all the variables in an equation of
the form (7) are zero. However, if the test is a false negative, then the variable
ηi is then set to equal the number of defective items in test i. Note that ηi
is bounded above by d in the case of (false) negatives. Note that this linear
program only uses negative test outcomes. In principle, one could also have
defined constraints corresponding to positive test outcomes. However, we are
unable to analyze the performance of the resulting LP (though simulations
indicate that such an LP does index perform well).

both the number of ones in each column, and also the noise
parameter q.

Let p and τ be design parameters to be specified later. To
generate the M for the No-CoMa algorithm, each element of
M is selected i.i.d. with probability p to be 1.

The decoder proceeds as follows, For each column j, we
define the indicator set Tj as the set of indices i in that column
where mi,j = 1. We also define the matching set Sj as the set
of indices j where both ŷi = 1 (corresponding to the noisy
result vector) and mi,j = 1.

Then the decoder uses the following “relaxed” thresholding
rule. If |Sj | ≥ |Tj |(1 − q(1 + τ)), then the decoder declares
the jth item to be defective, else it declares it to be non-
defective.14

3) LP-decoding Algorithms: We now consider LP-decoding
algorithms in both the noiseless and noisy settings. The
algorithms are specified by the choices of encoding matrices
and decoding algorithms. The T × n group-testing matrix M
is defined by randomly selecting each entry in it in an i.i.d.
manner to equal 1 with probability p = 1/D, and 0 otherwise.
Noisy Linear Programming decoding (No-LiPo- ):

A linear relaxation of the group testing problem with
noisy measurements leads “naturally” to No-LiPo- (6)-(10).
In particular, each xi is relaxed to satisfy 0 ≤ xi ≤ 1, and
the non-linear measurements are linearized in (7). Also, we
define “slack” variables ηi for all i ∈ {1, . . . , T} to account
for errors in the test outcome. For a particular test i this
ηi is defined to be zero if a particular test result is correct,
and positive (and at least 1) if the test result is incorrect. Of
course, the decoder does not know a priori which scenario
a particular test outcome falls under, and hence has to also
decode η. Nonetheless, as is common in the field of error-

14As in Footnote 13, this “relaxed” thresholding rule can be viewed as
analogous to corresponding relaxations in OMP-type algorithms when the
observations are noisy.
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x̂ = feasible point in∑
j:mij=1

xj = 0, if yi = 0, (11)

∑
∀j

xj = d (12)

0 ≤ xj ≤ 1 (13)

Fig. 6. LiPo : This LP simply attempts to find any feasible solution for any
value of d̄ ∈ {0, . . . , D}

correction [16], often using a “minimum distance” decoding
criteria (decoding to a vector pair (x, η) such that the error-
vector η is as “small” as possible) leads to good decoding
performance. Our LP decoder attempts to do so. To be precise,
the No-LiPo- decoder outputs the (x̂, η̂) that minimize the LP
given in (6)-(10). Note that we assume that the value of d is
known precisely in this algorithm .
Linear Programming decoding (LiPo ):

LiPo , which analyzes the scenario with noiseless measure-
ments, is a special case of No-LiPo- with each ηi variable
set to zero. Hence it reduces to the problem of finding any
feasible point in the constraint set (11-13)

D. Lower bounds on the number of tests required

We first reprise statements of information-theoretic lower
bounds (versions of which were considered by [9], [10]) on the
number of tests required by any group-testing algorithm. For
the sake of completeness, so we can benchmark our analysis
of the algorithms we present later, we state these lower bounds
here and prove them in the Appendix.

Theorem 1: [[9], [10]] Any group-testing algorithm with
noiseless measurements that has a probability of error of at
most ε requires at least (1−n−δ)D log

(
n
D

)
= (1−n−δ)(1−

Γ)D log(n) tests.
In fact, the corresponding lower bounds can be extended to

the scenario with noisy measurements as well.
Theorem 2: [[9], [10]] Any group-testing algorithm that

has measurements that are noisy i.i.d. with probability q and
that has a probability of error of at most ε requires at least
(1−n−δ)D log( nD )

1−H(q) = (1−n−δ)(1−Γ)D log(n)
1−H(q) tests.15

Note: Our assumption that D = o(n) implies that the
bounds in Theorem 1 and 2 are Ω(D log(n)).

III. MAIN RESULTS

All logarithms in this work are assumed to be binary, except
where explicitly identified as otherwise (in some cases we
explicitly denote the natural logarithm as ln(.)). We define Γ
as ln(D)/ ln(n).

15Here H(.) denotes the binary entropy function.

A. Upper Bounds on the number of tests required

The main contributions of this work are explicit compu-
tations of the number of tests required to give a desired
probability of error via computationally efficient algorithms.
Some of these algorithms are essentially new (LP-based
decoding algorithms in Theorems 6-9) (though versions of
these algorithms were stated with minimal analysis in [23],
[24], [25]). Others have tighter analysis than previously in
the literature (CoMa and No-CoMa ) novel analysis (coupon-
collector based analysis for CoCo , perturbation analysis for
the LP-based algorithms). In each case, to the best of our
knowledge ours is the first work to explicitly compute the
tradeoff between the number of tests required to give a desired
probability of error, rather than giving order of magnitude
estimates of the number of tests required for a “reasonable”
probability of success.

First, the CoCo algorithm has a novel connection to the
Coupon Collector’s problem.

Theorem 3: CoCo with error probability at most n−δ re-
quires no more than 2eD(1 + δ) ln(n) tests.

Next, we consider the “column matching” algorithms.
Theorem 4: CoMa with error probability at most n−δ re-

quires no more than eD(1 + δ) ln(n) tests.
Translating CoMa into the noisy observation scenario is

non-trivial. A more careful analysis for the thresholded scheme
in No-CoMa leads to the following result. We define γ as Γ+δ

1+δ
(recall that Γ was defined as ln(D)/ ln(n), and note that Γ lies
in the interval [0, 1) and γ in the interval (δ/(δ + 1), 1]. Let
the internal parameters τ and p for the remaining algorithms
be defined as τ = 1−2q

q(1+γ−1/2)
and p = 1

D .
Theorem 5: No-CoMa with error probability at most n−δ

requires no more than 16(1+
√
γ)2(1+δ) ln 2

(1−e−2)(1−2q)2 D log n tests.
Finally, we consider our LP-based algorithms. The main

LP-based algorithm, whose analysis dominates the latter half
of this work, is No-LiPo- , which considers the same noisy-
measurement scenario that No-CoMa considers.16

Theorem 6: No-LiPo- with error probability at most n−δ

requires no more than βLPD log n tests, with βLP defined as

(δ + 1 + Γ) ln(2)2e2w(w + (1− 2q)/3)

(1− 2q)2
,

with w = 1 + (1−2q)
D .

In fact, this algorithm is robust to other types of measure-
ment noise as well. For instance, in the asymmetric noise
model, we can make the following statement.

Theorem 7: In the asymmetric noise model, No-LiPo-
with error probability at most n−δ requires no more than
βASY−LPD log n tests, with βASY−LP defined as

(δ + 1 + Γ) ln(2)2e2w(w + (1− q0 − q1)/3)

(1− q0 − q1)2
,

with w = 1 + (1−q0−q1)
D .

Similarly, in the activation noise model, we can make the
following statement.

16The analysis of the constants in the LP-based algorithms are not optimized
(doing so is analytically very cumbersome), but are given to demonstrate the
functional dependence on δ and q.
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Theorem 8: In the activation noise model, No-LiPo- with
error probability at most n−δ requires no more than
βACT−LPD log n tests, with βACT−LP defined as

(δ + 1 + Γ)2 ln(2)e2w (3w(1 + u− q0)− (1− u− q0))

3(1− u− q0)2
,

with w = 1 + 1−u−q0
D .

For the same noiseless observation scenario as CBP, the
LP-based decoding algorithm CBP-LP (and which is implied
by the stronger analysis (for the noisy observations scenario)
for NCBP-LP in Theorem 6) has the following performance
guarantees.

Theorem 9: LiPo with error probability at most n−δ re-
quires no more than βD log n tests, with β set as

(δ + 1 + Γ) ln(2)2e2w′(w′ + 1/3), with w′ = 1 +
1

D
.

Note: Our achievability schemes in Theorems 4-9 are
commensurate (equal up to a constant factor) with the lower
bounds in Theorems 1 and 2. For instance, the bound on the
number of tests in Theorem 5 differs from the corresponding
lower bound in Theorem 2 by a factor that is at most
12.83(1+

√
γ)2(1+ δ)(1−2q)−2, which is a function only of

δ (which is any positive number for a polynomially decaying
probability of error), γ (which depends on the scaling between
D and n and lies between δ and 1), and q. However, taking
the Taylor series expansion of 1 − H(q) about 1/2, for all
q ∈ (0, 1/2), 1 − H(q) is always between (1 − 2q)2 and
(1 − 2q)2/(2 ln(2)), taking those extreme values for extreme
values of q ∈ (0, 1/2). Hence for all values of q, there is a
finite (and explicitly computable) constant-factor gap between
our information-theoretic lower bounds, and the upper bounds
achieved by our algorithms.

IV. PROOF OF THE PERFORMANCE OF ALGORITHMS IN
THEOREMS 3-9

A. Coupon collector algorithm

We first consider CoCo , whose analysis is based on a novel
use of the Coupon Collector Problem [11].
Proof of Theorem 3:

The Coupon Collector’s Problem (CCP) is a classical prob-
lem that considers the following scenario. Suppose there are n
types of coupons, each of which is equiprobable. A collector
selects coupons (with replacement) until he has a coupon of
each type. What is the distribution on his stopping time?
It is well-known ([11]) that the expected stopping time is
n lnn + Θ(n). Also, reasonable bounds on the tail of the
distribution are also known – for instance, it is known that
the probability that the stopping time is more than χn lnn is
at most n−χ+1.

Analogously to the above, we view the group-testing pro-
cedure of CoCo as a Coupon Collector Problem. Consider
the following thought experiment. Suppose we consider any
test as a length-g test-vector17 whose entries index the items

17Note that this test-vector is different from the binary length-n vectors
that specify tests in the group testing-matrix, though there is indeed a natural
bijection between them.

being tested in that test (repeated entries are allowed in this
vector, hence there might be less than g distinct items in this
vector). Due to the design of our group-testing procedure in
CoCo , the probability that any item occurs in any location of
such a vector is uniform and independent. In fact this property
(uniformity and independence of the value of each entry of
each test) also holds across tests. Hence, the items in any
subsequence of k tests may be viewed as the outcome of a
process of selecting a single chain of gk coupons. This is still
true even if we restrict ourselves solely to the tests that have
a negative outcome. The goal of CoCo may now be viewed
as the task of collecting all the non-defective items. This can
be summarized in the following equation

Tg

(
n− d
n

)g
≥ (n− d) ln(n− d). (14)

The left-hand side of Equation (14) refers to the expected
number of (possibly repeated) items in negative tests (since
there are a total of T tests, each containing g (possibly
repeated) items, and the probability of a test being negative
equals ((n − d)/n)g). The right-hand side of (14) refers to
the expected stopping-time of the underlying CCP. We thus
optimize (14) w.r.t. g to obtain an optimal value of g equaling
1/ ln(n/(n − d)). However, since the exact value of d is not
known, but rather only D, an upper bound on it, we set g
to equal 1/ ln(n/(n−D)). Taking the appropriate limit of n
going to infinity, and noting D = o(n), enables us to determine
that, in expectation over the testing process and the location
of the defective items, (14) implies that T ≥ eD lnn.

However, (14) only holds in expectation. For us to design
a testing procedure for which we can demonstrate that the
number of tests decays to zero as n−δ , we need to modify
(14) to obtain the corresponding tail bound on T . This takes
a bit more work.

The right-hand side is then modified to χ(n− d) ln(n− d).
This corresponds to the event that all types of coupons have
not been collected if χ(n−d) ln(n−d) total coupons have been
collected. The probability of this event is at most (n−d)−χ+1).

The left-hand side is multiplied with (1 − ρ), where ρ is
a design parameter to be specified by the Chernoff bound on
the probability that the actual number of items in the negative
tests is smaller than (1−ρ) times the expected number. By the
Chernoff bound this is at most exp

(
−ρ2T

(
n−d
n

)g)
. Taking

the union bound over these two low-probability events gives
us that the probability that

(1− ρ)Tg

(
n− d
n

)g
≥ χ(n− d) ln(n− d) (15)

does not hold is at most

exp

(
−ρ2T

(
n− d
n

)g)
+ (n− d)−χ+1. (16)

So, we again optimize for g in (14) and substitute g∗ =

1/ ln
(

n
n−D

)
into (15). We note that since both D and d are
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o(n),
(
n−d
n

)g∗
converges to e−1. Hence we have, for large n,

T ≥ χ

1− ρ
(n− d) ln(n− d)

g∗
(
n−d
n

)g∗
≈ χ

1− ρ
(n− d) ln(n− d)

1

ln( n
n−D )

e−1

=
χ

1− ρ

(n− d) ln(n− d) ln
(

n
n−D

)
e−1

. (17)

Using the inequality ln(1+x) ≥ x−x2/2 with x as D/(n−
D) simplifies the RHS of (17) to

T ≥ χ

1− ρ
e

(
D − D2

2(n− d)

)
ln(n− d). (18)

Choosing T to be greater than the bound in (18) can only
reduce the probability of error, hence choosing

T ≥ χ

1− ρ
eD ln(n− d)

still implies a probability of error at most as large as in (16).
Choosing ρ = 1

2 , noting that D ≥ d, and substituting (19)
into (16) implies, for large enough d, the probability of error
Pe satisfies

Pe ≤ e−
δ2χ
1−δ d ln(n−d) + (n− d)−χ+1

= (n− d)−
δ2

1−δχd + (n− d)−χ+1

≤ 2(n− d)−χ+1.

Taking 2(n − d)−χ+1 = n−δ , we have χ = δ logn
log(n−d) +

1
log(n−d) + 1. For large n, χ approaches δ + 1.

Therefore, the probability of error is at most n−δ , with
sufficiently large n, the following number of tests suffice to
satisfy the probability of error condition stated in the theorem.

T ≥ 2(1 + δ)eD lnn.

�

B. Column Matching algorithms

We next consider Column Matching algorithms. The CoMa
and No-CoMa algorithms respectively deal with the noiseless
and noisy observation scenarios.
Proof of Theorem 4:
As noted in the discussion on CoMa in Section II-C, the
error-events for the algorithm correspond to false positives,
when a column of M corresponding to a non-defective item
is “hidden” by other columns corresponding to defective items.
To calculate this probability, recall that each entry of M
equals one with probability p, i.i.d. Let j index a column of
M corresponding to a non-defective item, and let j1, . . . , jd
index the columns of M corresponding to defective items.
Then the probability that mi,j equals one, and at least one of
mi,j1 , . . . ,mi,jd also equals one is p(1 − (1 − p)d). Hence
the probability that the jth column is hidden by a column
corresponding to a defective item is

(
1− p(1− p)d

)T
. Taking

the union bound over all n − d non-defective items gives us

that the probability of false positives is bounded from above
by

Pe = P+
e ≤ (n− d)

(
1− p(1− p)d

)T
. (19)

By differentiation, optimizing (19) with respect to p suggests
choosing p as 1/d. However, the precise value of d may not be
known, only D, an upper bound on it, might be. Substituting
the value p = 1/D back into (19), and setting T as βD lnn
gives us

Pe ≤ (n− d)

(
1− 1

D

(
1− 1

D

)d)βD lnn

≤ (n− d)

(
1− 1

De

)βD lnn

(20)

≤ (n− d)e−βe
−1 lnn

≤ n1−βe−1

. (21)

Inequality (20) follows from the previous since d ≤ D by
definition, and since (1−1/x)x ≥ e−1. Choosing β = (1+δ)e
thus ensures the required decay in the probability of error.
Hence choosing T to be at least (1 + δ)eD lnn suffices to
prove the theorem. �

Proof of Theorem 5:
Due to the presence of noise leading to both false positive
and false negative test outcomes, both false defective estimates
and false non-defective estimates may occur in the No-CoMa
algorithm – the overall probability of error is the sum of the
probability of false defective estimates and that of false non-
defective estimates. As in the previous algorithm, we set p =
1/D and T = βD log n. We first calculate the probability
of false non-defective estimates by computing the probability
that more than the expected number of ones get flipped to zero
in the result vector in locations corresponding to ones in the
column indexing the defective item. This can be computed as

P−e =

d⋃
i=1

P (|Tj | = t) Pr (|Sj | < |Tj |(1− q(1 + τ)))

≤ d

T∑
t=0

(
T

t

)
pt(1− p)T−t (22)

t∑
r=t−t(1−q(1+τ))

(
t

r

)
qr(1− q)t−r

≤ d

T∑
t=0

(
T

t

)
pt(1− p)T−te−2t(qτ)2 (23)

= d
(

1− p+ pe−2(qτ)2
)T

(24)

= d

(
1− 1

D
+

1

D
e−2(qτ)2

)βD logn

(25)

≤ d exp
[
−β log n

(
1− e−2(qτ)2

)]
(26)

≤ d exp
[
−β log n(1− e−2)(qτ)2

]
(27)

Here, as in Section II-C, Tj denotes the locations of ones
in the jth column of M . Inequality (22) follows from the
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union bound over the possible errors for each of the defective
items, with the first summation accounting for the different
possible sizes of Tj , and the second summation accounting
for the error events corresponding to the number of one-to-
zero flips exceeding the threshold chosen by the algorithm.
Inequality (23) follows from the Chernoff bound. Equality (24)
comes from the binomial theorem. Equality (25) comes from
substituting in the values of p and T . Inequality (26) follows
from the leading terms of the Taylor series of the exponential
function. Inequality (27) follows from bounding the concave
function 1−e−2x by the linear function (1−e−2)x for x > 0.

The requirement that the probability of false non-defective
estimates P−e to be at most n−δ implies that β− (the bound
on β due to this restriction) satisfies

ln
(
d exp

[
−β(1− e−2)(qτ)2 log n

])
< −δ lnn

⇒ ln d− β(1−e−2)(qτ)2

ln 2 lnn < −δ lnn

⇒ β− >
( ln d

lnn+δ) ln 2

(1−e−2)(qτ)2 (28)

We now focus on the probability of false defective estimates.
In the noiseless CoMa algorithm, the only way a false
defective estimate could occur was if all the ones in a column
are hidden by ones in columns corresponding to defective
items. In the No-CoMa algorithm this still happens, but in
addition noise could also lead to a similar masking effect.
That is, even in the 1 locations of a column corresponding to
a non-defective not hidden by other columns corresponding
to defective items, measurement noise may flip enough zeroes
to ones so that the decoding threshold is exceeded, and the
decoder hence incorrectly declares that particular item to be
defective. See Figure 4(a) for an example.

Hence we define a new quantity a, which denotes the
probability for any (i, j)th location in M that a 1 in that
location is “hidden by other columns or by noise”. It equals

a = 1− [(1− q)(1− p)d + q(1− (1− p)d)]

=

(
1− q −

(
1− 1

D

)d
(1− 2q)

)
(29)

We set D ≥ 2 (the case D = 1 can be handled separately by
the same analysis, but setting p = 1/(D + 1) = 1/2 rather
than 1/D = 1), and note that by definition d ≤ D. We then
bound a from above as

max
D≥2,d≤D

a = max
D≥2,d≤D

(
1− q −

(
1− 1

D

)d
(1− 2q)

)

= 1− q − (1− 2q) min
D≥2,d≤D

((
1− 1

D

)d)
(30)

= 1− q − (1− 2q) min
D≥2

((
1− 1

D

)D)
(31)

= (1− q)− (1− 2q)/4. (32)

Equation (32) follows from the observations that (30) is
optimized when d = D and (31) is optimized when D = 2.
The probability of false defective estimates is then computed
in a similar manner to that of false non-defective estimates as

in (22)–(27).

P+
e =

n−d⋃
i=1

P (|Tj | = t)P (|Sj | ≥ |Tj |(1− q(1 + τ)))

≤ (n− d)

T∑
t=0

(
T

t

)
pt(1− p)T−t

t∑
r=t(1−q(1+τ))

(
t

r

)
ar(1− a)t−r

≤ (n− d)
(

1− p+ pe−2((1−q(1+τ))−a)2
)T

(33)

≤ (n− d)
(

1− p+ pe−2((1−2q)/4−qτ)2
)T

(34)

≤ (n− d) exp
[
−(1− e−2((1−2q)/4−qτ)2)β log n

]
(35)

≤(n− d) exp

[
−β log n(1− e−2)

(
(1− 2q)

4
− qτ

)2
]

(36)

Note that for the Chernoff bound to be applicable in (33), 1−
q(1+ τ) > a, which implies that τ < (1−2q)/(4q). Equation
(34) follows from substituting the bound derived on a in (32)
into (33), and (35) follows by substituting p = 1/D into the
previous equation. Inequality (36) follows from bounding the
concave function 1− e−2x by the linear function (1− e−2)x
for x > 0.

The requirement that the probability of false defective
estimates P+

e be at most n−δ implies that β+ (the bound on
β due to this restriction) be at least

β+ >

(
ln(n−d)

lnn + δ
)

ln 2

(1− e−2)((1− 2q)/4− qτ)2
. (37)

Note that β must be at least as large as max{β−, β+} so
that both (28) and (37) are satisfied.

When the threshold in the No-CoMa algorithm is high (i.e.,
τ is small) then the probability of false negatives increases;
conversely, the threshold being low (τ being large) increases
the probability of false defective estimates. Algebraically, this
expresses as the condition that τ > 0 (else the probability of
false non-defective estimates is significant), and conversely to
the condition that 1−q(1+τ) > a (so that the Chernoff bound
can be used in (33)) – combined with (32) this implies that
τ ≤ (1− 2q)/4q. Each of (28) and (37) as a function of τ is
a reciprocal of a parabola, with a pole at the corresponding
extremal value of τ . Furthermore, β− is strictly increasing
and β+ is strictly decreasing in the region of valid τ in
(0, (1 − 2q)/(4q)). Hence the corresponding curves on the
right-hand sides of (28) and (37) intersect within the region
of valid τ , and a good choice for β is at the τ where these two
curves intersect. To find this β, we make another simplifying
substitution. Let γ be defined as18

γ =
lnD + δ lnn

ln(n− d) + δ lnn
. (38)

18Note that we replace d with D in (28) and (37) since this still leaves
the inequalities true, but now converts β− and β+ into quantities that are
independent of d. This is necessary since β− and β+ are (internal) code
design parameters, and as such must be independent of the true value of d
(which might be unknown) and may depend only on the upper bound D.
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and Γ as
Γ =

lnD

lnn
.

Hence γ for large n essentially equals

Γ + δ

1 + δ
. (39)

(Note that since Γ lies in the interval [0, 1), hence γ lies in
the interval [δ/(δ + 1), 1).)

Then equating the RHS of (28) and (37) implies that the
optimal τ∗ satisfies

ln 2

(1− e−2)((1− 2q)/4− qτ∗)2
=

γ ln 2

(1− e−2)(qτ∗)2
(40)

Simplifying (40) gives us that

τ∗ =
1− 2q

4q(1 + γ−1/2)
. (41)

Substituting these values of γ and τ into (28) gives us the
explicit bound for large n

β∗ =
16(1 + γ−0.5)2(Γ + δ) ln 2

(1− e−2)(1− 2q)2
. (42)

Using (39) to simplify (42) gives

β∗ =
16(1 +

√
γ)2(1 + δ) ln 2

(1− e−2)(1− 2q)2
≈

12.83(1 +
√
γ)2(1 + δ)

(1− 2q)2
.

�

C. LP-decoding algorithms

For the LP-based algorithms, we first prove Theorem 6, and
then derive Theorems 7, 8 and 9 as direct corollaries.
Proof of Theorem 6:
Proof sketch: For the purpose of exposition we break the
main ideas into four steps below.
(1) Finite set of Perturbation Vectors: For the known d case
we define a finite set Φ′ (that depends on the true x)
containing so-called “perturbation vectors”.19 We demonstrate
in Claim 10 that any x̄ in the feasible set of the constraint
set of No-LiPo- can be written as the true x plus a non-
negative linear combination of perturbation vectors from this
set. The physical intuition behind the proof is that the vectors
from Φ′ correspond to a “mass-conserving” perturbation of
x. The property of non-negativity of the linear combinations
arises from a physical argument demonstrating that there is
a path from x to any point in the feasible set using these
perturbations, over which one never has to “back-track”. The
linear combination property is important, since this enables
us to characterize the directions in which a vector can be
perturbed from x to another vector that satisfies the constraints
of No-LiPo- , in a “finite” manner (instead of having to
consider the uncountably infinite number of directions that
x could be perturbed to). The non-negativity of the linear
combination is also crucial since, as we explain below, this
property ensures that the objective function of the LP can

19This set is defined just for the purpose of this proof – the encoder/decoder
do not need to know this set.

only increase when perturbed in a convex combination of the
directions in Φ′.
(2) Expected Perturbation Cost: The heart of our argument
then lies in Claims 11 and 12, where we characterize via an
exhaustive case-analysis the expected change (over random-
ness in the matrix M and noise ν) in the value of each slack
variable ηi when x is perturbed to some x′ by a vector in Φ′.
In particular, we demonstrate that for each such individual
perturbation vector, the expected change in the value of each
slack variable ηi is strictly positive with high probability.20

The actual proof follows from a case-analysis similar to the
one performed in the example in Table II.
(3) Concentration & Union Bounding: Next, in Claim 14 with
slightly careful use of standard concentration inequalities
(specifically, we need to use both the additive and multiplica-
tive forms of the Chernoff bound, reprised in Claim 13) we
show that the probability distributions derived in Claim 12 are
sufficiently concentrated. We then take the union bound over
all vectors in Φ′ (in fact, there are a total of d(n − d) such
vectors in Φ′) and show that with sufficiently high probability
the expected change in the value of the objective function
(which equals the weighted sum of the changes in the values
of the slack variables ηi) for each perturbation vector in Φ′ is
also strictly positive.
(4) Generalization Based on Convexity: We finally note in
Claim 14 that the set of feasible (x̄, η) of No-LiPo- for a fixed
value of d forms a convex set. Hence if the value of the LP
objective function strictly increases along every direction in
Φ′, then in fact the value of the LP objective function strictly
increases when the true x is perturbed in any direction (since,
as noted before, any vector in the feasible set can be written
as x plus a non-negative linear combination of vectors in Φ′).
Hence the true x must be the solution to No-LiPo- . This
completes our proof.
Proof details: We now proceed by proving the sequence

of claims that when strung together formalize the above
argument.

Without loss of generality, let x be the vector with 1s in the
first d locations, and 0s in the last n− d locations.21 Choose
Φ′ = {φ′}d(n−d)

k′=1 as the set of d(n− d) vectors with a single
−1 in the support of x, a single 1 outside the support of x,
and zeroes everywhere else. For instance, the first φ′ in the set
equals (−1, 0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the (d+1)th
location.

Then, Claim 10 below gives a “nice” characterization of the
set of x̄ in the feasible set of No-LiPo- .

Claim 10: Any vector x̄ with the same weight as x (i.e., if
d̄ = d) that satisfies the constraints (7–10) in NCBP-LP can

20Actually, for each fixed feasible x, due to equality (7) there may be a
range of ηi variables such that (x, η) are simultaneously feasible in No-LiPo-
. Here and in the rest of this paper we abuse notation by using ηi to denote
specifically those variables that meet all constraints in No-LiPo- with equality,
and hence correspond to the smallest possible value of the objective function
of No-LiPo- for that fixed x.

21As can be verified, our analysis is agnostic to the actual choice of x, as
long as it is a vector in {0, 1}n of weight any d ≤ D.
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be written as

x̄ = x +

d∑
k′=1

n∑
k′′=d+1

ck′,k′′φ
′
k′,k′′ , with all ck′,k′′ ≥ 0. (43)

Proof of Claim 10: The intuition behind this claim is by
“conservation of mass”, so to speak. A good analogy is the
following physical process.

Imagine that x corresponds to n bottles of water each
with capacity one litre, with the first d bottles full, and the
remaining empty. Imagine x̄ as another state of these bottles
with d̄ = d litres of water. For each bottle j among the
first d bottles that has more water remaining than in the
corresponding bottle in the final state x̄i, we use its water to
increase the water level of bottles among the last n−d bottles
(taking care not to overshoot, i.e., not to put more than the
desired water level x̄i in any such bottle). The fact that this is
doable follows from conservation of mass. This corresponds to
using non-negative linear combinations of perturbation vectors
from the set Φ′ (non-negativity arises from the fact the we took
care not to overshoot).

In fact, amongst various ways to do this, the following spe-
cific choices of ck′,k′′ also work. Define C as

∑n
k′′=d+1 x̄k′′ ,

i.e., the amount of water transferred to the empty bottles. We
then set ck′,k′′ = (1 − x̄k′)x̄k′′/C. That is, first consider the
amount of water transferred out of the k′ bottle – this equals
(xk′−x̄k′), which equals 1−x̄k′ since xk′ = 1 by assumption.
We apportion this water in proportion to the water required in
each of the k′′th bottles. �

Next, Claim 12 below computes the expected change in the
value of the slack variable ηi as x is perturbed by φ′. A small
example in Table II (with n = 3, d = 2) demonstrates the
calculations in the proof of Claim 12 explicitly.

For any fixed x ∈ {0, 1}n of weight d ≤ D, let x′ = x+φ′.
Over the randomness in mi and the noise νi generating the
testing outcome ŷi = yi + νi, we define the cost perturbation
random variables

∆′0,i = (ηi(x
′)− ηi(x)), conditioned on ŷi = 0. (44)

Claim 11: The cost perturbation random variables defined
in (44) all take values only in {−1, 0, 1}.
Proof of Claim 11: We first analyze the case when if ŷi =
0. By (7), ηi(x) = mi.x. Hence ∆′0,i = ηi(x

′) − ηi(x) =
mi.(x

′ − x) = mi.φ
′. But φ′ has exactly one component

equaling −1 and one equaling 1. By definition, mi, is a 0/1
vector. Hence ∆′0,i takes values only in {−1, 0, 1}.

�
The next claim forms the heart of our proof. It does an

exhaustive22 case analysis that computes the probabilities that
the cost perturbation random variables take values 1 or −1 (the
case that they equal zero can be derived from these calculations
in a straightforward manner too, but since these values turn
out not to matter for our analysis, we omit these details).

We define the expected objective value perturbation ∆T as

∆T =

T∑
i=1

[
1(∆′0,i = 1)− 1(∆′0,i = −1)

]
, (45)

22And exhausting!

and the number of perturbed noise variables (#∆)T as

(#∆)T =

T∑
i=1

[
1(∆′0,i = 1) + 1(∆′0,i = −1)

]
. (46)

Here 1(.) is denotes the indicator function of an event.
Claim 12:

P (∆′0,i = 1) = p(1− p)
[
(1− 2q)(1− p)d−1 + q

]
, (47)

P (∆′0,i = −1) = p(1− p)q.

Hence the expected value of the objective value pertur-
bation ∆T equals Tp(1 − p)d(1 − 2q), and the expected
value of the number of perturbed variables (#∆)T equals
Tp
[
(1− p)d(1− 2q) + 2(1− p)q

]
.

Proof of Claim 12: The proof follows from a case-analysis
similar to the one performed in the example in Table II. The
reader is strongly encouraged to read that example before
looking at the following case analysis, which can appear quite
intricate.
• Equation (47) analyzes ∆′0,i = −1, the expected change

in ηi if x is perturbed by a vector from Φ′, and ŷi = 0. By
(7) ηi(x) = mi.x, hence ∆′0 = ηi(x

′)− ηi(x) = mi.φ
′.

We first analyze the case when ∆′0,i = −1. This occurs
only when mi = 1 where φ′ = −1 (hence there is non-
zero intersection with the support of x and so yi = 1),
and further that mi equals 0 in the location where φ′ = 1.
Thus, only 2 indices of mi matter for this scenario. These
scenarios occurs with probability q(1− p)p.
Analogously, the only scenarios when ∆′0,i = 1 occur
when mi equals 1 in the location where φ′ = 1 and
mi equals 0 in the location where φ′ = −1. This can
happen in two ways. It could be that if the support of mi

is entirely outside the support of x (hence yi = 0), and
further that mi equals 1 in the location where φ′ = 1
(this happens with probability (1 − q)(1 − p)dp). Or, it
could be that mi equals 0 where φ′ = −1, mi equals
1 in at least one of the other (d − 1) locations in the
support of x (which ensures that yi = 1), and further
that mi equals 1 where φ′ = 1 (the probability of such a
scenario is q(1−p)(1−(1−p)d−1)p). Adding together the
probabilities corresponding to these two scenarios gives
the desired result.

Substituting the four terms obtained in (47) into (45) and
(46) gives the required result for ∆T and (#∆)T . �

We now recall Bernstein’s inequality, a classical concen-
tration inequality that we use to make a statement about the
concentration about the expectation of the objective function
value of No-LiPo- .

Claim 13 (Bernstein inequality [11]): Let {Wi}Ti=1 be a
sequence of independent zero-mean random variables. Sup-
pose |Wi| ≤ w for all i. Then for all negative σ,

P

(
T∑
i=1

Wi < σ

)
≤ exp

(
− σ2/2∑T

i EW
2
i − wσ/3

)
.(48)

Next, Claim 14 below demonstrates that if x is perturbed
in any direction from the set Φ′, as long as it remains within
the feasible set for No-LiPo- , with high probability over M
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x x′ = x + φ′

(1,1,0) (0,1,1)
1. 2. 3. 4. 5. 6. 7. 8(a). 8(b).
ŷi η(x) yi mi P (ŷi,mi|x) ηi(mi,x) ηi(mi,x) ηi(mi,x

′) E(mi,∆
′
i)

0 mi.x

0 (0,0,0) (1− q)(1− p)3 0 0 0 0
(0,0,1) (1− q)(1− p)2p x3 0 1 (1− q)(1− p)2p

1

(0,1,0) q(1− p)2p x2 1 1 0
(0,1,1) q(1− p)p2 x2 + x3 1 2 q(1− p)p2

(1,0,0) q(1− p)2p x1 1 0 −q(1− p)2p
(1,0,1) q(1− p)p2 x1 + x3 1 0 0
(1,1,0) q(1− p)p2 x1 + x2 2 1 −q(1− p)p2

(1,1,1) qp3 x1 + x2 + x3 2 2 0

(1− 2q)(1− p)2p

TABLE II. Suppose x = (1, 1, 0). Choose some x′ 6= x (in this example, x′ = x + φ′, where φ′ = (−1, 0, 1) is a perturbation vector). This example
analyzes the expectation (over the randomness in the particular row mi of the measurement matrix M ) of the difference in value of the corresponding slack
variables ηi(x) and ηi(x′) in column 8(b). To compute these, we consider the columns of the table above sequentially from left to right. Column 1 considers
the two possible values of the observed vector ŷi. Column 2 gives the corresponding values of the slack variables corresponding to the ith test, as returned
by the constraints (7) of No-LiPo- – Column 3 indexes the possibilities of the (noiseless) test outcomes yi, and column 4 enumerates possible values for
mi, the i-th row of M , that could have generated the values of yi in column 3, given that x = (1, 1, 0). Column 5 computes the probability of a particular
observation ŷi and a row mi, given that the noiseless output yi equaled a particular value. Column 6 computes the function in column 2, given that mi

equals the value given in Column 4. Columns 7 and 8(a) respectively explicitly compute the value of the function in column 6 for the vectors x and x′ –
the red entries in column 8(a) index those locations where η(x′), the slack variable for the perturbed vector, is less than η(x), and the green cells indicate
those locations where the situation is reverse. Column 8(b) then computes the product of column 5 with the difference of the entries in column 7 from those
of column 8(a), i.e., the expected change in the value of the slack variable ηi(.). The value (1− 2q)(1− p)2p in blue at the bottom represents the expected
change (averaged over all possible tuples (yi,mi, ŷi)).

and the noise vector ν, the value of the objective function of
No-LiPo- increases.

Claim 14: Choose T as βLPD log(n), with βLP as given in
Theorem 6. Then with probability no more than n−δ the value
of the objective function of No-LiPo- has a unique optimum
at x̂ = x.
Proof of Claim 14: Since each of the mi vectors and the noise
vector ν are all chosen independently, the random variables
corresponding to each type of cost perturbation variable in
(44) are distributed i.i.d. according to (47).

We now use Claim 13 to concentrate around the expected
value given in Claim 12. In particular, for each i ∈ {1, . . . , T}
we set

Wi = (ηi(x
′)− ηi(x))− E(ηi(x

′)− ηi(x)), (49)

hence each Wi is zero-mean.
Hence w, the maximum value of |Wi|, can be bounded as

w = |ηi(x′)− ηi(x)− E(ηi(x
′)− ηi(x))|

≤ |ηi(x′)− ηi(x)|+ |E(ηi(x
′)− ηi(x))|

= 1 + p(1− p)d(1− 2q) (50)
< 1 + (1− 2q)/D. (51)

Here (50) follows by Claim 11 which demonstrates that
η(x′) − η(x) takes values only in {−1, 0, 1}, and from the
computation of E(ηi(x

′)−ηi(x)) in the last part of Claim 12.
Equation (51) uses the definition of p as 1/D and the bound
that (1− p)d < 1. 23

Next, we bound
∑T
i=1EW

2
i from above by

T∑
i=1

EW 2
i ≤ w2(#∆)T

= 2w2Tp
[
(1− p)d(1− 2q) + 2(1− p)q

]
(52)

< 2w2βLP log(n). (53)

23As always, the case of D = 1 is handled separately by choosing p = 1/2.

Here (52) follows from Claim 12, and (53) by using p = 1/D,
T = βLPD log(n), and (1− p)d < 1.

We then set

σ = −TE(ηi(x
′)− ηi(x)) = −βLP log(n)(1− p)d(1− 2q),

(54)

which is negative as required. We use p = 1/D, T =
βLPD log(n) and 1/e < (1− 1/D)d < 1 to give us that

βLP log(n)(1− 2q)/e < |σ| < βLP log(n)(1− 2q). (55)

(For the numerator of the exponent of Claim 13 we shall use
the lower bound, and for the denominator the upper bound.)

Substituting the value of σ from (54), Wi from (49), noting
that σ is negative, using Claim 13, and using bounds for w,∑T
i=1EW

2
i and σ respectively from (51), (53) and (55) gives

us that

P

(
T∑
i=1

(ηi(x
′)− ηi(x)) < 0

)
(56)

= P

(
T∑
i=1

((ηi(x
′)− ηi(x))− E(ηi(x

′)− ηi(x))) < σ

)

= P

(
T∑
i=1

Wi < σ

)

≤ exp

(
− σ2/2∑T

i EW
2
i − wσ/3

)

< exp

(
− (βLP log(n)(1− 2q)/e)2/2

w2βLP log(n) + wβLP log(n)(1− 2q)/3

)
= exp

(
− βLP log(n)(1− 2q)2

2e2w(w + (1− 2q)/3)

)
, (57)

with w = 1 + (1−2q)
D .

We now note that (57) gives an upper bound on the
probability that a single perturbation vector in Φ′ causes a
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non-positive perturbation in optimal value of the objective
function of No-LiPo- . But there are d(n−d) vectors in Φ′. We
take a union bound over all of these vectors by multiplying
the terms in (57) by d(n − d). Hence the overall bound on
the probability that any vector from the set Φ′ causes a non-
positive perturbation in optimal value of the objective function
of No-LiPo- is given by

d(n− d)

(
n
− βLP (1−2q)2

ln(2)2e2w(w+(1−2q)/3)

)
<n

1+Γ− βLP (1−2q)2

ln(2)2e2w(w+(1−2q)/3) ,

(58)

with w = 1 + (1−2q)
D , where we recall Γ is defined as

ln(D)/ ln(n).
The quantity in (58) bounds from above the probability that

No-LiPo- “behaves badly” (i.e., some vector from Φ′ causes
a non-positive perturbation in optimal value of the objective
function of No-LiPo- ).

We then choose βLP as

(δ + 1 + Γ) ln(2)2e2w(w + (1− 2q)/3)

(1− 2q)2
, (59)

with w = 1 + (1−2q)
D , as in the statement of Theorem 6. This

choice guarantees that the RHS of (58) is less than n−δ . This
shows that with probability at least 1− n−δ all vectors in Φ′

cause a strictly positive change in the optimal value of the
objective function of No-LiPo- .

Finally, we note that the set of feasible (x̄, η) of No-LiPo-
forms a convex set. Hence if η strictly increases along every
direction in Φ′, then by Claim 10 in fact η strictly increases
when the true x is perturbed in any direction (in particular,
when x is perturbed by a strictly positive linear combination
of the vectors in Φ′). Hence the true x must be the solution
to No-LiPo- . �

Proof of Theorem 7:

Recall that in the asymmetric noise model the probability
of false positive and negative test outcomes is denoted by q0

and q1 respectively. When q0 and q1 are not equal, Equations
(47) – (59) change as follows. Equation (47) becomes

P (∆′0,i = 1) = p(1− p)
[
(1− q0 − q1)(1− p)d−1 + q1

]
,

(60)
P (∆′0,i = −1) = p(1− p)q1.

Hence the expected value of the objective value perturbation
∆T equals Tp(1 − p)d(1 − q0 − q1), and the expected
value of the number of perturbed variables (#∆)T equals
Tp
[
(1− p)d(1− q0 − q1) + 2(1− p)q1

]
. These differences

lead to changes in the parameters we use in Bernstein’s
inequality. Specifically, (51) is now bounded as

|Wi| = w = |ηi(x′)− ηi(x)− E(ηi(x
′)− ηi(x))|

≤ |ηi(x′)− ηi(x)|+ |E(ηi(x
′)− ηi(x))|

= 1 + p(1− p)d(1− q0 − q1)

< 1 + (1− q0 − q1)/D. (61)

Next, we bound
∑T
i=1EW

2
i from above by

T∑
i=1

EW 2
i ≤ w2(#∆)T

= w2Tp
[
(1− p)d(1− q0 − q1) + 2(1− p)q1

]
< w2βASY−LP log(n). (62)

We then set

σ = −TE(ηi(x
′)− ηi(x))

= −βASY−LP log(n)(1− p)d(1− q0 − q1), (63)

which is bounded by

log(n)(1− q0 − q1)/e <
|σ|

βASY−LP
< log(n)(1− q0 − q1).

(64)

Substituting the value of σ from (63), Wi from (61), noting
that σ is negative, using Claim 13, and using bounds for w,∑T
i=1EW

2
i and σ respectively from (61), (62) and (64) gives

us that

P

(
T∑
i=1

(ηi(x
′)− ηi(x)) < 0

)

= P

(
T∑
i=1

((ηi(x
′)− ηi(x))− E(ηi(x

′)− ηi(x))) < σ

)

= P

(
T∑
i=1

Wi < σ

)

≤ exp

(
− σ2/2∑T

i EW
2
i − wσ/3

)

< exp

(
−βASY−LP (log(n)(1− q0 − q1)/e)2/2

w2 log(n) + w log(n)(1− q0 − q1)/3

)
= exp

(
−βASY−LP log(n)(1− q0 − q1)2

2e2w(w + (1− q0 − q1)/3)

)
,

with w = 1 + (1−q0−q1)
D .

Hence the overall bound on the probability that any vector
from the set Φ′ causes a non-positive perturbation in optimal
value of the objective function of No-LiPo- is given by

d(n− d)

(
n
−

βASY−LP (1−q0−q1)2

ln(2)2e2w(w+(1−q0−q1)/3)

)
<n

1+Γ−
βASY−LP (1−q0−q1)2

ln(2)2e2w(w+(1−q0−q1)/3) ,

(65)

with w = 1 + (1−q0−q1)
D , where we recall Γ is defined as

ln(D)/ ln(n).
The quantity in (65) bounds from above the probability that

No-LiPo- “behaves badly” (i.e., some vector from Φ′ causes
a non-positive perturbation in optimal value of the objective
function of No-LiPo- ).

We can thus bound βASY−LP as

(δ + 1 + Γ) ln(2)2e2w(w + (1− q0 − q1)/3)

(1− q0 − q1)2
(66)

with w = 1 + 2(1−q0−q1)
D . �
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Proof of Theorem 8:

Recall that in the activation noise model, we denote by u
the probability of activation noise, i.e., the probability that
a (single) defective item shows up as non-defective in a test.
Correspondingly, we denote by uv the probability of observing
a false negative test outcome, given that the test involves say
v defective items. Also, we use q0 to denote the probability
of a false positive test outcome.

In this noise model, No-LiPo- decoding still achieves good
performance – “small” probability of error with an order-
optimal number of measurements. Again, as in the asymmetric
noise model, the proof is essentially the same as the proof
for BSC(q) noise. Equations (47) – (59) change as follows.
Equation (47) becomes

P (∆′0,i = 1) = p(1− p)d(1− q0)

+ p(1− p)
d−1∑
i=1

(
d− 1

i

)
(1− p)d−1−i(pu)i

= p(1− p)
[
(1− p+ pu)d−1 − (1− p)d−1q0

]
,

P (∆′0,i = −1) = pu(1− p)
d−1∑
i=0

(
d− 1

i

)
(1− p)d−1−i(pu)i

= p(1− p)(1− p+ pu)d−1u.

Hence the expected value of the objective value perturbation
∆T equals

Tp(1− p)
[
(1− p+ pu)d−1(1− u)− (1− p)d−1q0

]
,

and the expected value of the number of perturbed variables
(#∆)T equals

Tp(1− p)
[
(1− p+ pu)d−1(1 + u)− (1− p)d−1q0

]
.

Substituting into Bernstein’s Inequality, we can bound
βACT−LP as

(δ + 1 + Γ)2 ln(2)2e2w (3w(1 + u− q0)− (1− u− q0))

3(1− u− q0)2
,

(67)

with w = 1 + 1−u−q0
D . �

Proof of Theorem 9:
We substitute q = 0 in (59) to obtain the corresponding β as

(δ + 1 + Γ) ln(2)2e2w′(w′ + 1/3), with w′ = 1 +
1

D
, (68)

�
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APPENDIX

Many “usual” proofs of lower bounds for group-testing
are combinatorial. Information-theoretic proofs are needed
to incorporate the allowed probability of error ε into our
lower bounds, we provide. Such proofs were provided in, for
instance [10]. For completeness, we reprise simple versions of
these proofs here.

We begin by noting that X → Y → Ŷ → X̂ (i.e.
the input vector, noiseless result vector, noisy result vector,
and the estimate vector) forms a Markov chain. By standard
information-theoretic definitions we have

H (X) = H (X|X̂) + I (X; X̂)

Since X is uniformly distributed over all length-n and D-
sparse data vectors (since d could be as large as D), H (X) =
log |X | = log

(
n
D

)
. By Fano’s inequality, H (X|X̂) ≤ 1 +

ε log
(
n
D

)
. Also, we have I (X; X̂) ≤ I (Y; Ŷ) by the data-

processing inequality. Finally, note that

I(Ŷ; Y) ≤
T∑
i=1

[
H(Ŷi)−H(Ŷi|Yi)

]
since the first term is maximized when each of the Ŷi are inde-
pendent, and because the measurement noise is memoryless.
For the BSC(q) noise we consider in this work, this summation
is at most T (1−H(q)) by standard arguments.24

Combining the above inequalities, we obtain

(1− ε) log

(
n

D

)
≤ 1 + T (1−H (q))

24This technique also holds for more general types of discrete memoryless
noise, such as, for instance, the asymmetric noise model considered in
Theorem 7 – for ease of presentation, in this work we focus on the simple
case of the Binary Symmetric Channel.

Also, by standard arguments via Stirling’s approximation [37],
log
(
n
D

)
is at least D log(n/D). Substituting this gives us the

desired result

T ≥ 1− ε
1−H (q)

log

(
n

D

)
≥ 1− ε

1−H (q)
D log

( n
D

)
.
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