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Abstract—This paper investigates the construction of deter-
ministic matrices preserving the entropy of random vectors with
a given probability distribution. In particular, it is shown that for
random vectors having i.i.d. discrete components, this is achieved
by selecting a subset of rows of a Hadamard matrix such that (i)
the selection is deterministic (ii) the fraction of selected rows is
vanishing. In contrast, it is shown that for random vectors with
i.i.d. continuous components, no partial Hadamard matrix of
reduced dimension allows to preserve the entropy. These results
are in agreement with the results of Wu-Verdu on almost lossless
analog compression. This paper is however motivated by the
complexity attribute of Hadamard matrices, which allows the
use of efficient and stable reconstruction algorithms. The proof
technique is based on a polar code martingale argument and
on a new entropy power inequality for integer-valued random
variables.

Index Terms—Entropy-preserving matrices, Analog compres-
sion, Compressed sensing, Entropy power inequality.

I. INTRODUCTION

Information theory has extensively studied the lossless
and lossy compression of discrete time signals into digi-
tal sequences. These problems are motivated by the model
of Shannon, where an analog signal is first acquired, by
sampling it at a high enough rate to preserve all of its
information (Nyquist-Shannon sampling theorem), and then
compressed. More recently, it was realized that proceeding
to “joint sensing-compression” schemes can be beneficial. In
particular, compressed sensing introduces the perspective that
sparse signals can be compressively sensed to decrease mea-
surement rate. As for joint source-channel coding schemes,
one may wonder why this would be useful? Eventually, the
signal is represented with the same amount of bits, so why
would it be preferable to proceed jointly or separately? In a
nutshell, if measurements are expensive (such as for example
in certain bio-medial applications), then compressed sensing
is beneficial.

From an information-theoretic perspective, compressed
sensing can be viewed as a form of analog to analog compres-
sion. Namely, transforming a discrete time signal into a lower-
dimensional discrete time signal over the reals, without “losing
information”. The key point being that, since measurements
are analog, one may as well pack as much information in each
measurement (whereas in the compression of discrete signals,
a measurement on a larger alphabet is more expensive than a
measurement in bits). However, compressing a vector in Rn
into a vector in Rm, m < n, without regularity constraints

is not an interesting problem, since Rn and Rm have the
same cardinality1. Hence, analog compression without any
regulating conditions is trivial (as opposed to compression over
finite fields).

Recently, [1] introduced a more reasonable framework to
study analog compression from an information-theoretic per-
spective. By requiring the encoder to be linear and the decoder
to be Lipschitz continuous, the fundamental compression limit
is shown to be the Rényi information dimension. The setting
of [1] also raises a new interesting problem: how to reach
this limit with low-complexity schemes? In the same way
that coding theory aims at approaching the Shannon limit
with low-complexity schemes, it is a challenging problem to
devise efficient schemes to reach the Rényi dimension. Indeed,
in this analog framework, realizing measurements in a low
complexity manner is at the heart of the problem: it is rather
natural that the Rényi dimension is the fundamental limit
irrespective of complexity considerations, but without a low-
complexity scheme, one may not have any gain in proceeding
with a joint compression-sensing approach. For example in
the compressed sensing, with O(k log(n/k)) instead of O(k)
measurements, k-sparse signals can be reconstructed using l1
minimization, which is a convex optimization problem, rather
than l0 minimization, which is intractable [5], [6]. Hence, in
general, complexity requirements may raise the measurement
rate.

The scope of this paper is precisely to investigate what
measurement rates can be achieved by taking into account the
complexity of the sensing matrix, which in turn, influences
the complexity of the reconstruction algorithm. Our goal is
to consider signals that are memoryless and drawn from a
distribution on R, which may be purely atomic, purely contin-
uous or mixed. This paper focuses on the purely atomic and
purely continuous cases. It is legitimate to attempt reaching
this goal by borrowing tools from coding theory, in particular
from codes achieving least compression rates in the discrete
setting. Our approach is based on using Hadamard matrices
for the encoding and developing a counter-part of the polar
technique [2], [3] with arithmetic over R (or Z for atomic
distributions) rather than F2 or Fq . The proof technique uses
the martingale approach of polar codes and a new form of
entropy power inequality for discrete distributions. Rigorous

1Of course, such an approach is not practical in many regards: the approach
would dramatically fail in the presence of noise, it would be problematic to
implement nonlinear measurement, and it would be highly complex.
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results are obtained and sensing matrix construction is deter-
ministic. A nested property is also investigated which allows
one to adapt the measurement rate to the sparsity level of the
signal.

Recently, spatially-coupled LDPC codes have recently al-
lowed to achieve rigorous results in coding theory. This
approach has been exploited by [4], which proposes the use of
spatially coupled matrices for sensing. In [4], the mixture case
is covered and further analysis on the reconstruction algorithm
is provided. However, the sensing matrix is still random. It
is known that Hadamard matrices truncated randomly afford
desirable properties for compressed sensing. In this paper,
we show that by knowing the signal distribution, Hadamard
matrices can be truncated deterministically and yet reach lower
measurement rates.

II. RELATED WORK

Let X1, X2, . . . , XN , be i.i.d discrete random variables
taking values in X = {0, 1, . . . , q − 1} with probability
distribution pX , where q ∈ Z+ and N = 2n for some
positive integer n. We use the notation aji for the column
vector (ai, ai+1, . . . , aj)

t and set aji to null if j < i. We also
define [r] = {i ∈ Z : 1 ≤ i ≤ r}.

In Arikan’s source coding [3], q is a prime number and

the arithmetic is over Fq . Defining G =

(
1 1
0 1

)⊗n
, where

⊗ denotes the Kronecker product, Y N1 = GXN
1 over Fq , and

Hi = H(Yi|Y i−11 ), i ∈ [N ], as the conditional entropy of Yi
given Y i−1, one obtains

N∑
i=1

Hi = H(Y N1 ) = H(XN
1 ) = NH(X).

The polarization phenomenon states that for any δ > 0 and as
n goes to infinity

#{i ∈ [N ] : Hi ∈ (δ, 1− δ)}
N

→ 0,

where H(X) denotes the entropy of X in base q. This implies
that for large n, the values Hi, i ∈ [N ], have polarized to 0
or 1. This provides a compression scheme achieving the least
compression rate, since for every δ ∈ (0, 1)

#{i ∈ [N ] : Hi ∈ (1− δ, 1]}
N

→ H(X). (1)

From another point of view, every Yi is associated with the
i-th row of the matrix G and (1) indicates that the “measure-
ment” rate required to extract the informative components is
close to the entropy of the source H(X) for large N . This
gives a good “measurement matrix” for a given distribution
over Fq .

In signal acquisition, measurements are analog. Hence, one
can consider Y N1 = GXN

1 with arithmetic over the real field
and investigate if any “polarization phenomenon” occurs. The
difference is that, in this case, the measurement alphabet is
unbounded. In particular, the Hi values are not bounded above.
We will show in Theorem 1 that instead of a polarization

phenomenon, where two extremal states survive, an absorption
phenomenon occurs where

#{i ∈ [N ] : Hi > δ}
N

→ 0,

as N becomes larger, i.e., the measurement rate tends to 0.

III. PROBLEM STATEMENT

Definition 1 (Restricted iso-entropy property). Let XN
1 be

discrete i.i.d. random variables with a marginal distribution pX
supported on a finite set. The family {ΦN} of measurement
matrices, where ΦN has dimension mN × N , is ε-REP(pX)
with measurement rate ρ if

H(XN
1 |ΦNXN

1 )

N
< ε (2)

and
lim sup
N→∞

mN

N
= ρ.

In general, the labeling N can be any subsequence of Z+.
We will consider N = 2n, n ∈ Z+. Also note that (2) is
equivalent to

H(ΦXN
1 ) ≤ H(XN

1 ) < H(ΦXN
1 ) +Nε, when XN

1
iid∼ pX ,

which is similar in form to the RIP condition [5], [6], replacing
energy (l2 norm) with entropy, and sparsity with a probabilistic
characterization (which may or may not relate to sparsity).

Definition 2. Let XN
1 be continuous (or mixture) random

variables with probability distribution pX . The family of
measurement matrices {ΦN} of dimension mN ×N is (ε, γ)-
REP(pX) with measurement rate ρ if

1) there exists a single letter quantizer Q : R → Z such
that M.M.S.E. of X given Q(X) is less that γ,

2) for any N ,

H(Q(XN
1 )|ΦNXN

1 )

N
< ε,

where Q(XN
1 ) = (Q(X1), Q(X2), . . . , Q(XN ))t,

3)
lim sup
N→∞

mN

N
= ρ.

We address the following questions in this paper:
1) Given a probability distribution pX over a finite set, and

ε > 0, is there a family of measurement matrices that
is ε-REP and has measurement rate ρ? What is the set
of all possible (ε, ρ) pairs? Is it possible to construct
a near optimal family of truncated Hadamard matrices
with a minimal measurement rate? How is the truncation
adapted to the distribution pX?

2) Is it possible to obtain an asymptotic measurement rate
below 1 for continuous distributions?

Remark 1. The RIP notion introduced in [5], [6] is useful in
compressed sensing, since it guarantees a stable l2-recovery.
We will consider truncated Hadamard matrices satisfying REP
condition and since they have a Kronecker structure, we will
obtain a low-complexity reconstruction algorithm. This part is



however not emphasized in this paper, and we mainly focus on
the construction of the truncated Hadamard matrices. Section
VI provides numerical simulations of a divide and conquer
ML decoding algorithm and illustrates the robustness of the
recovery to noise. In a future work, we will investigate the use
of a recovery algorithm à la [4].

IV. MAIN RESULTS

The main results of this paper are summarized here.

Definition 3. Let {JN =

(
1 1
−1 1

)⊗n
, N = 2n, n ∈ Z+}

be the family of Hadamard matrices. Suppose XN
1 are i.i.d.

random variables with distribution pX over a finite subset of Z.
Let Y N1 = JNX

N
1 and define Hi = H(Yi|Y i−11 ) and mN =

#{i ∈ [N ] : Hi > ε}. The (ε, pX)-truncated Hadamard family
{J̄N}, is the set of matrices of dimension mN ×N obtained
by selecting those rows of JN with Hi > ε.

Theorem 1 (Absorption phenomenon). Let X be a discrete
random variable with a probability distribution pX supported
on a finite subset of Z. For a fixed ε > 0, the family of
(ε, pX)-truncated Hadamard matrices {J̄N , N = 2n, n ∈ Z+}
(defined above) are ε-REP(pX) with measurement rate 0. In
other words,

lim sup
N→∞

mN

N
= 0.

Remark 2. Although all of the measurement matrices J̄N
are constructed by truncating the matrices JN , the order and
number of the selected rows, mN , to construct J̄N depends
on the distribution pX .

The proof idea is to construct a conditional entropy martin-
gale process similar to [3] which is bounded from below and
hence converges almost surely. Then, the following “entropy
power inequality” result which we prove in Subsection V-A is
used to show the convergence to 0.

Theorem 2 (An EPI over Z). For every probability distribu-
tion p over Z,

H(p ? p)−H(p) ≥ g(H(p)). (3)

where g : R+ → R+ is strictly increasing, limx→∞ g(x) =
1

8 log(2) and g(x) = 0 if and only if x = 0.

Remark 3. This theorem complements the work in [7] to ob-
tain an entropy power inequality for discrete random variables.

For continuous distributions, and for any fixed distortion γ,
the measurement rate approaches 1 as ε tends to 0. This result
has been shown in [1] in a more general context. We recover
this result in our setting for the case of a uniform distribution
over [−1, 1] which is proved in the Appendix.

Lemma 1. Let pU be the uniform distribution over [−1, 1] and
let Q : [−1, 1]→ {0, 1, . . . , q− 1} be a uniform quantizer for
X with M.M.S.E. less than γ. Assume that {ΦN} is a family
of full rank measurement matrices of dimension mN ×N . If
{ΦN} is (ε, γ)-REP(pU ), then the measurement rate, ρ, goes
to 1 as ε tends to 0.

V. PROOF OVERVIEW

A. An EPI for discrete random variables

In this section we prove the EPI result stated in Theo-
rem 2. If p is a probability distribution over a finite set
{0, 1, 2, . . . , q − 1}, then from the continuity and strict con-
cavity of the entropy function, there is always a guaranteed
gap between H(p ? p) and H(p) and the gap is 0 if and only
if H(p) = 0. Theorem 2 shows that this gap is uniformly
bounded away from 0.

If X and Y are two real valued, continuous and independent
random variables, then

22h(X+Y ) ≥ 22h(X) + 22h(Y ), (4)

where h denotes the differential entropy. Equality holds if and
only if X and Y are Gaussian random variables. If X and Y
have the same density p, then (4) becomes

h(p ? p) ≥ h(p) +
1

2
,

which implies a guaranteed increase of the differential entropy
for i.i.d. random variables. For this reason we call (3) an EPI
for discrete random variables.

Lemma 2. Let c > 0 and suppose p is a probability measure
over Z such that H(p) = c. Then, for any i ∈ Z,

H(p ? p)− c ≥ cpi − (1 + pi)h2(pi),

where h2(x) = −x log2(x)− (1−x) log2(1−x) is the binary
entropy function and pi denotes the probability of i.

Proof: For a finite positive measure v on Z, define
H(v) = −∑i∈Z vi log vi. Note that for γ > 0, we have

H(γv) = L(γ) + γH(v),

where L(γ) = −γ log γ. Let i ∈ Z, x = pi and let us write

p = xδi + (1− x)ν,

where ν is a probability measure on Z \ {i}. Note that

H(p) = h2(x) + (1− x)H(ν) = c,

where h2 denotes the binary entropy function. We also have

p ? p = x2δ2i + 2x(1− x)νi + (1− x)2ν ? ν,

where for k ∈ Z, νi(k) = ν(k − i). By concavity of the
entropy,

H(p ? p) ≥ 2x(1− x)H(ν) + (1− x)2H(ν ? ν)

≥ (1− x2)H(ν)

= (1 + x)(c− h2(x)).

Hence, H(p ? p)− c ≥ cx− (1 + x)h2(x).

Lemma 3. Let c > 0, 0 < α < 1
2 and n ∈ Z. Assume that p is

a probability measure on Z such that α ≤ p((−∞, n]) ≤ 1−α
and H(p) = c, then

‖p ? p1 − p ? p2‖1 ≥ 2α,



where p1 = 1
p((−∞,n])p|(−∞,n] and p2 = 1

p([n+1,∞))p|[n+1,∞)

are scaled restrictions of p to (−∞, n] and [n + 1,∞)
respectively.

Proof: Let α1 = p((−∞, n]) and α2 = p([n+ 1,∞)) =
1−α1. Note that p = α1p1 +α2p2. We distinguish two cases
α1 ≤ 1

2 and α1 >
1
2 . If α1 ≤ 1

2 then we have

‖p ? p1 − p ? p2‖
= ‖α1p1 ? p1 − (1− α1)p2 ? p2 + (1− 2α1)p1 ? p2‖1
≥ ‖α1p1 ? p1 − (1− α1)p2 ? p2‖1 − (1− 2α1)‖p1 ? p2‖1
= α1 + (1− α1)− (1− 2α1) = 2α1 ≥ 2α,

whereas if α1 >
1
2 we have

‖p ? p1 − p ? p2‖
= ‖α1p1 ? p1 − (1− α1)p2 ? p2 + (1− 2α1)p1 ? p2‖1
≥ ‖α1p1 ? p1 − (1− α1)p2 ? p2‖1 − (2α1 − 1)‖p1 ? p2‖1
= α1 + (1− α1)− (2α1 − 1) = 2(1− α1) ≥ 2α,

where we used the triangle inequality, 1 − α1 > α and the
fact that p1 ?p1 and p2 ?p2 have non-overlapping supports, so
the `1-norm of the sum is equal to sum of the corresponding
`1-norms.

Lemma 4. Assuming the hypotheses of Lemma 3,

H(p ? p)− c ≥ α2

2 log(2)
‖p ? p1 − p ? p2‖21.

Proof: Let α1 and α2 be the same as in Lemma 3. Let
ν1 = p1 ? p, ν2 = p2 ? p, and for x ∈ [0, 1], define µx =
xν1 + (1− x)ν2 and f(x) = H(µx). One obtains

f ′(x) = −
∑

(ν1i − ν2i) log2(µxi),

f ′′(x) = − 1

log(2)

∑ (ν1i − ν2i)2
µxi

≤ 0.

Hence f(x) is a concave function of x. Moreover,

f ′(0) = D(ν1‖ν2) +H(ν1)−H(ν2),

f ′(1) = −D(ν2‖ν1) +H(ν1)−H(ν2).

Since p1 and p2 have separate supports, there is i, j such that
ν1i = 0, ν2i > 0 and ν1j > 0, ν2j = 0. Hence D(ν1‖ν2) and
D(ν2‖ν1) are both equal to infinity. In other words,

f ′(0) = +∞,
f ′(1) = −∞.

Hence the unique maximum of the function must happen
between 0 and 1. Assume that for fixed ν1 and ν2, x? is the
maximizer. If 0 < α1 ≤ x? then

α1f
′
(α1) =

∑
α1(ν2i − ν1i) log2(µα1i) ≥ 0,

which implies that

f(α1) = −
∑

µα1i log2(µα1i)

= −
∑

(ν2i + α1(ν1i − ν2i)) log2(µα1i)

≥ −
∑

ν2i log2(µα1i)

= H(ν2) +D(ν2‖µα1)

≥ H(p) +
1

2 log(2)
‖ν2 − µα1

‖21

= H(p) +
α2
1

2 log(2)
‖ν1 − ν2‖21,

where we used Pinsker’s inequality

D(r‖s) ≥ 1

2 log(2)
‖r − s‖21.

Similarly, we can show that if x? ≤ α1 ≤ 1 then

f(α1) ≥ H(p) +
(1− α1)2

2 log(2)
‖ν1 − ν2‖21.

As α ≤ α1 ≤ 1− α and α ≤ 1
2 it results that

H(p ? p) = H(α1p ? p1 + (1− α1)p ? p2)

= f(α1)

≥ H(p) +
α2

2 log(2)
‖ν1 − ν2‖21

≥ c+
α2

2 log(2)
‖ν1 − ν2‖21.

Lemma 5. Assuming the hypotheses of Lemma 3,

H(p ? p)− c ≥ 2α4

log(2)
.

Proof: Combine Lemma 3 and 4.

Proof of Theorem 2: Suppose that p is a distribution
over Z with H(p) = c. Set y = ‖p‖∞. It is easy to see that
y ≥ 2−c. Also there is an α ≥ 1−y

2 and an integer n such that
α ≤ p((−∞, n]) ≤ 1 − α. Using Lemma 2 and Lemma 5, it
results that H(p ? p)− c ≥ t(c) where

t(c) = min
y∈[2−c,1]

max(
(1− y)4

8 log(2)
, cy − (1 + y)h2(y)).

For simplicity we consider

g(c) = min
y∈[0,1]

max(
(1− y)4

8 log(2)
, cy − (1 + y)h2(y)),

which is less than or equal to t(c). It is easy to check that g(c)
is a continuous function of c. The monotonicity of g follows
from the fact that cy− (1 + y)h2(y) is an increasing function
of c for every y ∈ [0, 1]. For strict positivity, note that (1−y)4

is strictly positive for y ∈ [0, 1) and it is 0 when y = 1, but
limy→1 cy − (1 + y)h2(y) = c. Hence for c > 0, g(c) > 0. If
c = 0 then

max(
(1− y)4

8 log(2)
, cy − (1 + y)h2(y)) =

(1− y)4

8 log(2)



and its minimum over [0, 1] is 0.
For asymptotic behavior, note that at y = 0, cy − (1 +

y)h2(y) = 0 and (1−y)4
8 log(2) = 1

8 log(2) . Hence, from continuity, it
results that g(c) ≤ 1

8 log(2) for any c ≥ 0. Also for any ε > 0

there exists a c0 such that for any ε < y ≤ 1, cy − (1 +
y)h2(y) ≥ 1

8 log(2) . Thus for any ε > 0 there is a c0 such that
for c > c0, the outer minimum over y in g(c) is achieved on
[0, ε]. Hence, for any c > c0, g(c) ≥ (1−ε)4

8 log(2) . This implies that
for every ε > 0,

1

8 log(2)
≥ lim sup

c→∞
g(c) ≥ lim inf

c→∞
g(c) ≥ (1− ε)4

8 log(2)
,

and limc→∞ g(c) = 1
8 log(2) .

Figure 1 shows the EPI gap. As expected, for large values of
H(p), the gap approaches the asymptotic value 1

8 log(2) . This is
very similar to the EPI bound obtained for continuous random
variables an we believe that one can improve this asymptotic
bound to achieve 1

2 .
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Fig. 1: EPI gap for discrete random variables

B. Conditional Entropy Martingale

Assume that XN
1 , N = 2n, n ∈ Z+, is a set of i.i.d.

random variables with probability distribution pX over a finite

subset of Z. Let Y N1 = JNX
N
1 , where JN =

(
1 1
−1 1

)⊗n
is the Hadamard matrix of dimension N and let Hi =
H(Yi|Y i−11 ), i ∈ [N ], be the conditional entropy values.

Lemma 6. Let XN
1 be as in the previous part and let

ZN1 = GNX
N
1 , where GN =

(
1 1
0 1

)⊗n
. Assume that

H̃i = H(Zi|Zi−11 ), then Hi = H̃i, i ∈ [N ].

Remark 4. The only point of Lemma 6 is that in application,
it is preferred to use J because the rows of J are orthogonal
to one another. For simplicity of the proof, we use G matrices
and relate to the polar code notations [2], [3].

Proof: We prove by induction over n and consider the
fact that JN and GN have similar recursive structure as a
function of JN

2
and GN

2
. For simplicity, we prove the lemma

in a more general case. Assume that Zi, Yi, i ∈ [N ], are
as introduced before. Suppose O is a random element and
redefine Hi = H(Yi|Y i−11 ,O) and H̃i = H(Zi|Zi−11 ,O). We

prove that Hi = H̃i. By putting O equal to null, we obtain
the proof for the lemma. For n = 1 we have

H1 = H(Y1|O)

= H(X1 +X2|O)

= H(Z1|O)

= H̃1.

We also have

H(Y1, Y2|O) = H(X1, X2|O)

= H(Z1, Z2|O).

Hence, from the chain rule for conditional entropy we obtain
that H2 = H̃2. Now assume that we have the result for all
n ≤ m and we prove it for n = m+ 1. For simplicity, let us
define the following notations

V
(m)
1 = X2m

1 , V
(m)
2 = X2m+1

2m+1,
Am = J2m , Bm = G2m ,

R = BmV
(m)
2 , S = AmV

(m)
2 ,

T = Am(V
(m)
2 − V (m)

1 ).

From the recursive structure of J and G matrices, the first 2m

components of Z2m+1

1 and Y 2m+1

1 are equal to Am(V
(m)
1 +

V
(m)
2 ) and Bm(V

(m)
1 + V

(m)
2 ) respectively. The components

of V (m)
1 + V

(m)
2 are i.i.d. random variables. Hence, using the

induction hypothesis we obtain that the first 2m components
of Hi and H̃i are equal. Now we prove that for i = 2m +
1, . . . , 2m+1, they are also equal. For 2m + 1 ≤ i ≤ 2m+1,
setting j = i− 2m we have

Hi = H(Rj |Bm(V
(m)
1 + V

(m)
2 ), Rj−11 ,O)

= H(Rj |V (m)
1 + V

(m)
2 , Rj−11 ,O),

and

H̃i = H(Tj |Am(V
(m)
1 + V

(m)
2 ), T j−11 ,O)

= H(Tj |V (m)
1 + V

(m)
2 , T j−11 ,O)

= H(Sj |V (m)
1 + V

(m)
2 , Sj−11 ,O),

where we used the invertibility of Am and Bm. Setting O′ =

{V (m)
1 + V

(m)
2 ,O} and using the induction hypothesis, we

obtain that for 2m + 1 ≤ i ≤ 2m+1, Hi = H̃i. Hence the
induction proof is complete. Now setting O equal to null, we
obtain the proof for Lemma 6.

Notice that we can represent GN in a recursive way. Let us
define two binary operation ⊕ and 	 as follows

	(a, b) = a+ b

⊕(a, b) = b,

where + is the usual integer addition. It is easy to see that we
can do the multiplication by GN in a recursive way. Figure
2 shows a simple case for G4. The − or + sign on an arrow
shows that the result for that arrow is obtained by applying a
	 or ⊕ operation to two input operands.
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Fig. 2: Recursive structure for multiplication by G4

If we consider a special output Ym, there are a sequence
of ⊕ and 	 operations on the input random variables which
result in Ym. An easy way to find this sequence of operations
is to write the binary expansion of m − 1. Then each 0
in this expansion corresponds to a 	 operation and each 1
corresponds to a ⊕ operation. Using this binary labeling, we
define a binary stochastic process. Assume that Ω = {0, 1}∞,
and F is the σ-algebra generated by the cylindrical sets

S(i1,i2,...,is) = {ω ∈ Ω such that ωi1 = 1, . . . , ωis = 1}

for every integer s and i1, i2, . . . , is. We also define Fn as the
σ-algebra generated by the first n coordinates of ω. In other
words, Fn is the σ-algebra generated by sets of the form

{ω ∈ Ω such that ω1 = 1, . . . , ωn = 1}.

Let F0 = {∅,Ω} be the trivial σ-algebra. We also define the
uniform probability measure µ over the cylindrical sets by

µ(S(i1,i2,...,in)) =
1

2n
,

which by uniformity assumption, is independent of the values
taken by i1, i2, . . . , in. This measure can be uniquely extended
to F . Let [ω]n = ω1ω2 . . . ωn denote the first n coordinates of
ω = ω1ω2 . . . and Y[ω]n denote the random variable Yi, where
the binary expansion of i− 1 is [ω]n, and let Y [ω]n denote

Y [ω]n = {Y[η]n : η < ω}.

We also define the random variable In by

In(ω) = H(Y[ω]n |Y [ω]n). (5)

As an example, if ω = 0.10 . . . then

I2(ω) = H(Y10|Y01, Y00) = H(Y3|Y1, Y2).

It is also important to note that

In+1([ω]n, 0) =H(Y[ω]n + Ỹ[ω]n |Y [ω]n , Ỹ [ω]n) (6)

where ˜ denotes an independent copy of the corresponding
random element.

Theorem 3. (In,Fn) is a martingale.

Proof: In is adapted to Fn by definition. Hence it is
sufficient to show that E{In+1|Fn} = In. For simplicity, we

prove the case n = 1. The general case is similar. Using Figure
2, we have

T (ω1) = E{I2(ω)|F1}
= E{Iω1ω2

|F1}

=
1

2
(Iω10 + Iω11),

which is a function of ω1.

T (0) =
1

2
(I00 + I01)

=
1

2
(H(Y00) +H(Y01|Y00))

=
1

2
H(Y00, Y01) =

1

2
H(Y0, Ỹ0) = H(Y0).

We can also show that T (1) = H(Y1|Y0). Hence, T (ω1) =
I1(ω) and E{I2|F1} = I1. Similarly, we can show that
E{In+1|Fn} = In.

C. Main Theorem

In this section, we prove the main theorem of the paper.

Proof of Theorem 1: Assume that Y N1 = GNX
N
1 , for

N = 2n, n ∈ Z+, and Hi = H(Yi|Y i−11 ), i ∈ [N ]. Also fix
ε > 0. Let us define

Kn = {i : i ∈ [N ], Hi > ε},
Y[Kn] = {Yj : j ∈ [Kn]}.

Hence, by Definition 3, |Kn| = mN and J̄N is obtained from
JN by selecting the rows with index Kn. We have

H(XN
1 |J̄NXN

1 ) = H(XN
1 )− I(XN

1 ; J̄NX
N
1 )

= H(Y N1 )−H(Y[Kn])

= H(Y[Kc
n]
|Y[Kn])

≤
∑
i∈Kc

n

H(Yi|Y i−11 )

≤ |Kc
n|ε = (N −mN )ε,

which implies that

H(XN
1 |J̄NXN

1 )

N
≤ (N −mN )ε

N
≤ ε.

This shows that the family {J̄N} is ε-REP. Now it remains
to show that the measurement rate of this family is 0. To
prove this, we construct the martingale In by (5). In is a
positive martingale and converges to a random variable I∞
almost surely. Our aim is to show that for any two positive
numbers a and b where a < b, µ(I∞ ∈ (a, b)) = 0. which
implies that µ(I∞ ∈ {0,∞}) = 1. Since In is a martingale,
E{In} = E{I0} = H(X) < ∞. Using Fatou’s lemma we
obtain

E{I∞} ≤ lim inf E{In} = H(X1) <∞,

which implies that µ(I∞ = ∞) = 0. Hence, In converges
almost surely to 0 and it also converges to 0 in probability. In



other words, given ε > 0,

lim sup
n→∞

µ(In > ε) = lim sup
n→∞

|Kn|
2n

= lim sup
N→∞

mN

N
= 0.

This implies that for a fixed ε > 0 the measurement rate ρ is
0. Now it remains to prove that for any two positive numbers
a and b, where a < b, µ(I∞ ∈ (a, b)) = 0. Fix a δ > 0 then
for every ω in the convergence set there is a n0 such that for
n > n0, |In+1(ω)− In(ω)| < δ. Using the martingale proprty

In(ω) =
1

2
(In+1([ω]n, 0) + In+1([ω]n, 1)),

we obtain that for n > n0,

|In+1(ω)− In(ω)| = |In+1([ω]n, 0)− In([ω]n)| < δ.

Using (6) and the entropy power inequality (3), it results that
0 ≤ In(ω) < ρ(δ) where ρ(δ) can be obtained from g. This
implies that In must converge to 0.

VI. NUMERICAL SIMULATIONS

For simulation, we use a binary random variable, where
pX(0) = 1− p for some 0 < p ≤ 1

2 .

A. Absorption Phenomenon

Figure 3 shows the absorption phenomenon for p = 0.05
and N = 64, 128, 256, 512.

B. Nested Property

Absorption phenomenon is shown in Figure 4 for N = 512
and different values of p. It is seen that the high entropy indices
for smaller p are included in the high entropy indices of the
larger one. We call this the “nested” property. The benefit of
the nested property is that it allows one to take measurements
adaptively if the sparsity level is unknown. In other words, one
takes some measurements corresponding to the high entropy
indices and if the recovery is not successful, refines them by
adding extra measurements that correspond to the indices with
lower entropy to improve the quality of recovery.

C. Robustness to Measurement Noise

Figure 5 shows the stability analysis of the reconstruction
algorithm to Gaussian measurement noise. For simulation, we
used N = 512, p = 0.05 and took all of the indices with
entropy greater than 0.01. In other words, the measurement
matrix was 0.01-REP for the binary distribution p. For recov-
ery, we use ML decoder which exploits the recursive structure
of the polar code. Let denote the input random variables by
XN

1 and assume that we keep all of the rows of the matrix
JN with indices in the set K. We define the SNR( signal to
noise ratio) at the input of the decoder as:

SNRin =
|K|σ2∑
i∈K E(Y 2

i )
,

and the SNR at the output of the decoder as

SNRout =
1

N

N∑
i=1

E(|Xi − X̂i|2),

where σ2 is the noise variance and X̂i is the output of the ML
decoder. The result shows approximately 4 dB loss in SNR for
high SNR regime. Notice that some part of this loss results
from the finite distortion 0.01 that we tolerate by removing
the measurements corresponding to low entropy indices.
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Fig. 5: Stability analysis

APPENDIX

PROOF OF LEMMA 1

Let XN
1 be a set of N i.i.d. random variables with a uniform

distribution over [−1, 1]. Let Di = Q(Xi), i ∈ [N ], be the
uniform quantizer output for Xi. It is easy to see that we
can write Xi = 2Di−q+1

q + Ci, i ∈ [N ], where Ci is the
quantization noise which is uniformly distributed over [− 1

q ,
1
q ].

Moreover, Ci is independent of Di. As ΦN is full rank, the
vector random variable ΦNX

N
1 has a well-defined density over

RmN . We have

H(DN
1 |ΦNXN

1 )

= H(DN
1 )− I(DN

1 ; ΦNX
N
1 )

= N log2(q)− h(ΦNX
N
1 ) + h(ΦNX

N
1 |DN

1 )

= N log2(q)− h(ΦNX
N
1 ) + h(ΦNC

N
1 )

= N log2(q)− h(ΦNX
N
1 ) + h(ΦNX

N
1 )−mN log2(q)

= (N −mN ) log2(q) < Nε,

where I denotes the mutual information between two random
variables and h is the differential entropy for continuous
distributions. This implies that

ρ = lim sup
N→∞

mN

N
≥ 1− ε

log2(q)
,

which gives the desired result as ε goes to 0. In the proof
we used the fact that ΦNX

N
1 has the same distribution as

q × ΦNC
N
1 .
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(a) N = 64
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(b) N = 128
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(c) N = 256
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(d) N = 512

Fig. 3: Absorption trace for p = 0.05
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