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Abstract—The algebraic formulation for linear network coding
in acyclic networks with the links having integer delay is wd
known. Based on this formulation, for a given set of conneatins
over an arbitrary acyclic network with integer delay assumad for
the links, the output symbols at the sink nodes, at any givenime
instant, is a F,-linear combination of the input symbols across
different generations, wherelF, denotes the field over which the
network operates. We use finite-field discrete fourier tranform
(DFT) to convert the output symbols at the sink nodes, at any
given time instant, into a Fy-linear combination of the input
symbols generated during the same generation. We call thissa
transforming the acyclic network with delay into n-instantaneous
networks (n is sufficiently large). We show that under certain
conditions, there exists a network code satisfying sink deamds
in the usual (non-transform) approach if and only if there exsts a
network code satisfying sink demands in the transform apprach.
Furthermore, we show that the transform method (along with the
use of alignment strategies) can be employed to achieve halfe
rate corresponding to the individual source-destination nn-cut
(which are assumed to be equal td) for some classes of three-
source three-destination unicast network with delays, whe the
zero-interference conditions are not satisfied.

|I. INTRODUCTION

combination of the input symbols across different geneneitj
whereF, denotes the field over which the network operates.
We convert the output symbols at the sink nodes, at any
given time instant, into & ,-linear combination of the input
symbols generated during the same generation, by using tech
nigues similar to Multiple Input Multiple Output-Orthogah
Frequency Division Multiplexing (MIMO-OFDM) [8]. We
call this technique as th&#ansform techniquesince we use
DFTs over finite fields towards achieving this instantaneous
behaviour in the network. As a first step towards guarangeein
a minimum throughput when the zero-interference condition
cannot be satisfied in an acyclic network with delay, we
consider a three-source three-destination unicast nktwibhn

the source-destination pair denoted$sD; (i € {1,2,3}).

We also assume a min-cut of one between soufceand
destination D;. Under this set-up, we apply the transform
techniques and network-alignment to find conditions under
which the network can guarantee a throughput close to half
for every source-destination paf;-D; (i € {1,2,3}). This
method does not make use of memory at the intermediate
nodes.

Network coding was introduced in [1] as a means to improve The contributions of this paper are as follows.

the rate of transmission in networks. Linear network coding
was introduced in [2] and it was found to be sufficient ®
to achieve the maxflow-mincut capacity in certain scenarios
such as multicast. The existence problem of network coding
for networks without delay was converted into an algebraic
problem in [3]. The case of acyclic networks with delays was
abstracted in [3] as acyclic networks where each link in the
network has an integer delay associated with it. .
The problem of network coding for multiple unicast sessions
was considered in [4], [5]. In [6], the concept interference
alignmentfrom interference channels [7] was extended to
instantaneous unicast networks with three source-déistma
pairs for the case where, each source-destination pair has &
min-cut of 1. This was callednetwork alignmentand it is
useful in guaranteeing a mininum throughput when the zero-
interference conditions in Theoresrof [3] cannot be satisfied.
The motivation behind this work is striving to provide a
minimum throughput guarantee when the zero-interference
conditions cannot be satisfied in an acyclic network witlagel
while not making use of any memory at the intermediate nodes
(i.e., nodes other than the sources and sinks). The setBj-all
symbols generated by the sources at any particular timarihst
are said to constitute the sameneration The output symbols
at the sink nodes, at any given time instant, i alinear

We convert the output symbols at the sink nodes, at any
given time instant, into &,-linear combination of the
input symbols generated during the same generation using
finite-field Discrete Fourier Transform (DFT). We call
this as transforming the acyclic network with delay into
n-instantaneous networksvhere,n is sufficiently large.
Using a constructive proof, we show that there exists a
network code (satisfying a certain property) that achieves
the sink demands in the usual (non-transform) approach
if and only if there exists a network code satisfying sink
demands in the transform approach .

For a three source-three destination unicast network with
delays, which do not satisfy the zero-interference con-
ditions, we extend the transform techniques to achieve
atleast half the rate corresponding to the individual
source-destination min-cut (which are assumed to be
equal tol), along with the use of alignment strategies.
In particular, the contributions for the three source-¢hre
destination unicast network with delays are as follows.

1) When the min-cut betweef;-D; is greater than
or equal oneV (i,j5) € {1,2,3} (i # j), we
derive sufficient conditions under which network
alignment can achieve half the rate corresponding
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to the individual source-destination min-cut, withof the random process iA’(v) at some different node’. A
time-invariant Local Encoding Kernels (LEKs).  connectionc is defined as a triplév,v’, X(v,v')) € V X
2) The network alignment procedure with timed x Py (,), wherePy,) denotes the power-set df (v). For
invariant LEKs is then generalized with the use othe connectiorr, v is called the source and is called the
time-varying LEKSs. sink of ¢, i.e., v = sourcéc) and v’ = sink(c) (sourcéc)
3) When the min-cut betwees};-D; is zero for some # sink(c)). The collection ofv,, random processe¥(v') =
(i,7) € {1,2,3} (i # j), we derive sufficient con- {Y (v/,1),Y (v, 2),....,Y(v',1,s)} denotes the output at sink
ditions under which network alignment can achieve’. Let Y,y = [Y(v/,1) Y (v/,2) ... Y (v, )T
atleast half the rate corresponding to the individual The input random processes(v,), output random pro-
source-destination min-cut. cessesY (u,j) and random processeB(e) transmitted on

The organization of this paper is as follows. In Section Ithe link e are considered as a power series in a delay
we review the system model for acyclic networks with delaygarameterD, i.e., X (v,i) = 3272, X (v, i)D", Y (u,j) =
presented in [3]. Section Il presents the central contidou Y s Y (u,j) D', and Z(e) = >_;2 Z)(e) D".
of this work, i.e., the transform technique using which we Let G = (V, E) be an acyclic network with arbitrary finite
convert the usual convolutional behaviour of the networkteger delay on its linksg is alF-linear network [3], if for
into instantaneous behaviour. In Section Ill, we also prowl links the random procesg(e) on a linke = (v,u,i) € E
the interchangeability of solving the usual (non-transfpr satisfies
network code existence problem and the counterpart in the o
transform technigue. In Section IV, we combine our transZ(t“)(e) = Zaj,eX(t)(v’j) + Z ﬁe/,ez(t)(e’)
form technique with the alignment techniques for acyclic j=1 e’:heade’)=tail(e)

instantaneous networks given in [6] to achieve an asympto\t,ilhere aj.. and . belong toF,, whereq = p™, for some

throughput ofl /2 for certain classes of acyclic networks Withprime numbep and positive integem > 0.The output at any
delays, even when the zero-interference conditions calumotsink nodev’, is taken to be

satisfied in such networks. We conclude our paper in Section

V with a discussion and directions for further research. YD ) = Z e ;2D () 1)
Notations: The cardinality of a sefr is denoted by|E|. er:heade’)=uv’

A superscript oft accompanying any variable (for example, i

¢™®) or any matrix (for example)/®)) denotes that they are awherece ; € Fy. The coefficientsa; ., fer,c andee:,; are also

function of timet. Thei™ row, /1 column element of a matrix calledlocal encoding kerneld_EKSs). The vector consisting of

A is denoted byA];;. The notationP C @ denotes that the all LEKs is denoted by. the tha}t in [3]’ the definition forthe
columns of the matrixP are a subset of the columns of the?UtPut Processes at any given time instant at any sink igeolv
matrix (). SparfP) indicates the sub-space spanned by t pear combinations_ of the rec-eived.proc.esses and output
columns of the matrixP. The determinant of a square matriPfOCESSEs across dlffer_ent previous time |n_star_1ts, andehen
A is denoted bydet(A). An identity matrix of sizeu x the variables mvolv_ed in such I_mear combl_natlons togethe
is denoted byl,,. For three-source three-destination unicaffrformed the function of decoding the received processes a

networks we shall use the term destination to denote sink.tIAe sinks Fokthe derr;arcljdid Input Processes. H(;wr?ver, n (121’
Galois Field of cardinality™ is denoted byG'F(p™) where, at e\l;erly SIink, we Og.y € '?}e a preprocessing o ¢ el rice'_\ll_e
p is a prime number andh is a positive integer. symbols corresponding to the previous time instant alohe.

outputsY ¢+1) (', 5) ast varies, will then be used by sink-
Il. SYSTEM MODEL to decode the demanded input processes using sufficiert dela

First, we shall briefly review the system model from [3]. welements for feed-forward and feedback operations. These
consider a network represented by a Directed Acyclic GrapiFKs are time-invariant unless mentioned otherwise.
(DAG) G = (V,E), whereV is the set of nodes an&l is We assume some ordering among the sources so that the
the set of directed links. We assume that every directed lifghdom process generated by the sources can be denoted,
between a pair of nodes represents an error-free link and haiithout loss of generality, ast, (D), X»(D), ..., Xs(D),
capacity of oné, symbol per link-use. Multiple links betweenWheres denotes the number of sources akig{ D) is ap; x 1
two nodes are allowed and tii# directed link fromy; € V' column vector given by
to vy € V is denoted byv, va, 7). The head and tail of a link _ iy _ _ T
e = (v1,v9,1) are denoted by, = heade) andv; = tail(e). Xi(D) = [Xa(D) Xiz(D) - Xu (D)
A link between a pair of nodes can have an arbitrary fini®imilarly, we assume some ordering among the sinks so that
integer delay. Lef’(v) = {X (v, 1), X (v,2),..., X (v, 1tv) } b€ the output random process at the sinks can be denoted, withou
the collection of discrete random processes that are gerdoss of generality, as; (D), Y»2(D), ..., Y,.(D), wherer
at the nodev. Let X, = [X(v,1) X(v,2) ... X(v,,)]". denotes the number of sinks an@(D) is ar; x 1 column
The random process transmitted through linls denoted by vector given by
Z(e). Communication is to be established between selected T
nodes in the network, i.e., we are required to replicate aetub Yi(D) = [Yi(D) Yia(D) ... Yi, (D)]".



Let Lemma 1 ( [3]): An acyclic network with delay is solvable
iff there exists an assignment to the LEKssuch that the
following conditions are satisfied.
1) Zero- InterferenceM(d)(l ) = 0, for all pairs (source;
sink-j) of nodes such that (souréesink-j, _l )(D))
Also, let ¢ C;forall 0 <d < dnaas whereMi(jd)( ;) denotes
th (d) (l:) th
X(D) = [X,(D)" Xa(D)" ... Xo(D)T)T e peonn of My and Xy (D) denotes the
= [z1(D) 22(D) ... x#(D)]T, 2) Invertibility: For every sinkj, the square submatrix
wherep = 3%y andv = .7, v;. Henceforth, the tail Mj(D) of M;(D) formed by juxtaposition of the
of an edge originating from a source will be identified by the columns Owa( ) (Vi; 1 <i < s) other than those
source number and the head of an edge terminating at a sink involved in the zero-interference conditions is invertibl

will be identified by the sink number. From [3], we have overF, (D), the field of rationals oveF,.
A network code fo(G, C) is defined to be &easible network
Y(D) = M(D)X (D) ¥

codeif it achieves the given set of demands at the sinks
where, M (D) denotes thenetwork transfer matrixof size i.e., if the zero-interference and the invertibility cotialis are

v x o with elements froni,[D], the ring of polynomials in satisfied.

variable D with coefficients fromF,. Now, M (D) can also A. System Model for time-varying LEKs

be written as When the LEKs are time-varying, we can't express the

M (D) Mx(D) -+ Ma(D) input-output relation as in (2). Hence, first, we need towderi
| Mi2(D) Mxn(D) - Myp(D) 4 (e input-output relation involving transfer matrices ufhiare
M(D) = : : : : G dependent on varying LEKs. Retaining the notations asdyrea
er.(D) MgT'(D) o Msr.(D) ir?etrr(;duced, we only point out the changes in the system model

where)M;;(D) denote the network transfer matrix from source without loss of generality, we assume that a link between a
i to sinkj and is of sizev; x ;. Letd;,,, anddy,,;, denote the pair of nodes has a unit delay (if the link has any other non-

max

maximum and the minimum of all path delays from souicezero integer delay, we could introduce an appropriate numbe

to sink, V (4, ), between which a path exists. Let of dummy nodes in between the pair of nodes which are then
door=d.  —d connected by links of unit delays). For a given DAGwith
k. min integer delay on its links, define the adjacency matrix;ait

Hence,M (D) can be written as time t as the|E| x | E| matrix K (), whose elements are given

A dmaz by

Z MDD <Z M(d)Dd> D¥min, (KO, _{ ét)ej heade;) = tail(e;)

d=d’,,, d=0 Y 0 otherwise
where M@ ¢ ngu represents the matrix-coefficients bt et the entries of: x | E| matrix A® | at timet, be given by
of the polgpqmial elements a¥/ (D). N A0), = sz(,te)j i = Xai(e,)1
Since D*min just adds a constant additional delay to all the AR otherwise

outputs, we can take, without loss of generality(D) as
d Also, let the entries of x | E| matrix B(*), at timet, be given

ZM(d @ 1o
BOW], ={ Yi = Yheade; )
’ 0

Hence,M;;(D) can be alternauvely written as otherwise
dmaz Let the set of vectors denoted b{*-*2) be the denote the set
Z M(d . (5) of LEKs from time instant; to time instanty (t2 > t1), i.e
e -

For each sink;, we also deflneM( ) to be thev; x p

submatrix ofM (D) that captures the transfer function betweelyherez" denotes the LEKs at timg. Since the LEKs are
all the sources and the sinki.e., time varying, the network transfer matrix is given by

M(D, 1) :(A“ D1 p+ A®=2) gr(t=1) p2 A(t=3) [ (t1=2) g (t=1) 3

M;(D) = [My;(D) My;(D) ... My;(D)]. 6
J( ) [ IJ( ) 2J( ) J( )] ( ) + __+A(t7d7naz)K(t*(dmamfl))__K(t*2)K(t*1)Dd7naz) B(t)T
In the networkg, let C; denote the set of all connections to .,
sink-j. LetC = Uj_,C;. The following lemma from [3] states a i” MOT ((t=d.0)

the conditions for solvability of acylic networks with dgla =0



where M©7 — 0, i.e., the zero matrix, as each link in thewhere, A is given by
network is assumed to have a unit delay. A

Since acyclic networks with delay are analogous to multiple A%’l i 0 8 o 8

transmitter-multiple receiver linear channel with timarying A= n—2 o
impulse response between every transmitter and everywezcei : : oL
the output symbols for the acyclic network with delay, ateim 0 0 o0 Ag
instantt, at sink4, is given b L . .

7159 y Proof: Proof is given in Appendix A. [ ]

s dmaz Now, consider an arbitrary acyclic network with delay. From
— (d)_(t—d, —d '
V=2 2 MPETXTY (M) (2)and (3),
i=1 d=0 s
[Il. TRANSFORMTECHNIQUES FORACYCLIC NETWORKS Y;(D) = ZMZ-J-(D)&(D). 9)
WITH DELAY i=1

In this section, we show that the output symbols at all the Now, consider a transmission scheme, where we take
sinks which was originally & ,-linear combination of the (>> di.2) generations of input symbols at each source and
input symbols across the different generations, at anyngivérst transmit lastd, ., generations (which we call theyclic
time instant, can be transformed intd@g-linear combination prefix) followed by then generations of input symbols. Hence,

of the input symbols across the same generation. n + dma, time slots at each source are used for transmitting
Consider a matrix4 of sizenv x nu given by n generations. Then, (9) can be written as (10) using (4).
Now, after discarding first,,,,, outputs at sinkj, (10) can be
Ay A o Ay AL 0 0 - 0 g p ki, (10)

re-written as (11) (given at the top of the next page). Using

0 Ao -+ Ap—2 Ap1 AL 0 -+ 0 Theorem 1, (11) can be re-written as
A Ay - A 0 0 0 --- A V"= Qu, M@, X" (12)
1=1
where, A;s (0 < ¢ < L) are matrices of size x u, whose where
elements belong t&, andn >> L. Note that the(i + 1) '
row of matrices is a circular shift of thé' row of matrices in E("*” X, (=17
A. We assume that dividesq— 1. Sinceq = p™, p andn are yj("*2> x,(n=2)
coprime. The choice of; is such that, there exists anc F, yit=17". N ;
such thatn is the smallest integer for which™ = 1. This is : :
indeed possible [9]. Define matrices; (0 < j < n — 1), of E(O) &(0) _
sizev x p, as Mi(;,l) 0 0 ... 0]
L Sr(n—2)
N o . 0 M. 0o -- 0
A; = Z a=1=0)i 4, M;; = ) Y . .
i=0 : : S :
Let I be the finite-field DFT matrix given by 0 0 0 - Mi(f)_
. . . . Now, at each sourceé, transmit &’” = Q,,X;" instead
L o gt of X;". Then, at each sink, we receiveY;". Let Y;" =
a1 @ R Q,jjlY_j’”. Then, from (12), o
i anﬁl a2<7.“1) a<n71')<n71) Yj/n ZZQVjMijQ;ilﬁn

=1

V" =Q,' Y QuMiQ,Qu X"

Also, define the matrix,, as

L Iu Iy T o i=1
I, ol oI, Q" 1, s
— n n
Q. = Lo a’l, a'ly T "V, . (8) E - Z Mi; X; (13)
. . . . . i=1
fu anillu agmll)IM a(n,l){n,l)h Now, (13) can be re-written as (for< ¢ <n — 1)
S
Similarly we can define matrix),. The following theorem yj(t) — ZM(?)Xi(t). (14)
L 1) —

will be useful in establishing the results subsequently.
Theorem 1:The matrix A can be block diagonalized as

i=1

K Hence, each element &f;!) is a F,-linear combination of
A= QVAQ;H the input symbols across the same generation. We now say



- _ - r 0 1 d 3 T
y; (D MY 1\4{%; 1\(4; m‘”)l) (do : 0o - 0 0 rox, D
EM*?) 0 M;; cee M Mjmes 0 e 0 0 X, (2
3 K K . . : :
© — [(© ® . dmaz—D (dmaz) o
L( X = Z 0 M My M A(Idij ) X(i 1(31) (10)
v; 0 =11 9 0o - 0 0 MO ydmas=) gy fmaz—1 Xi
maz : (n—dmaz)
y; (- dmaz) | L o 0 0 0 o 0 0 AVIC [ B
y;(m D M MP o pmfmas=D o pyldman) 0 -0 0 0 ] rx,mD
ﬁ("*Q) s 0 M1(J6) . I\l’f‘:@rnamfz) M;;Mnar*l) M;;Mnaz) .. 0 0 0 &(n—2)
=> | . : : : : . S : (1)
: i=1| : : : : : oo : :
(0) L @ (dmax) (0) (0
Y; My M MG 0 0 e 00 My Xi

that we have transformed the ayclic network with delay into The network code which satisfies the invertibility and the
n-instantaneous networks zero-interference conditions fgig,C) in the transform ap-

Remark 1:Note that the linear processing of multiplyingproach using a suitable choice offor the DFT operations is
by matrices@,,, at sourcer and Q;jl at sink4 are done in defined as arfieasible transform network coder (G, C).

a distributed fashion which is necessary because the urge
and sinks are distributed in the actual network. '
Remark 2:0ne can observe that transmitting,” =
Q. X,;" implies taking DFT across: generations of eac
of the u; random-processes generated at sourcgimilarly,
the pre-multiplication b)Q;jl at sink4 simply implies taking
IDFT across: generations of each of thg random-processes

Existence of a network code in the transform approach

In this section, we prove that under certain conditionseher
h €Xists a feasible network code for a given C) if and only if
there exists a feasible transform network code. Towards tha
end, we prove a lemma. We first define the polynonfigD)
which will be used henceforth throughout this paper.

received. The entire processing, including addition oflicyc r
prefix at source-and removal of cyclic prefix at sink-is f(D) = Hdet (MJ/'(D))- (15)
shown in a block diagram in Fig. 1 (given at the top of the 7=l
next page). where, M}(D) is the square submatrix a¥/;(D) indicating
Now, let us re-write (14) as the source processes that are demanded byjsink-
Lemma 2: Suppose there exists a feasible network code for
s M (G,C) over some fieldF,. For somea € F,. (for some
YO =33 M )X 1), ’ ; “

positive integer), the local encoding kernels defined by the
feasible network code fiG, C) (viewed in the extension field

where]\?[.(‘?)(l-) denotes thé" column of A7 and X, ® ) [F,.) along with the DFT operations defined usiagesult in
1 i 17 e 3 g

ij . . .
ih ‘) a feasible transform network code f6g,C) if and only if
denotes the}" element ofX;'". Flah) £0forall 0<t<n—1.

Similar to the zero-interference and invertibility coriolits Proof: Proof is given in Appendix C -
in Lemma 1, we have the following theorem for solvability of v« 0w prove the following theorem which concerns with

(14). ) . ) the relationship between the existence of a feasible n&twor
Theorem 2:An acylic network(g, C) with delay, incorpo- coqge and a feasible transform network code (i8rC)
rating the transform techniques, is solvable iff there tsxin

assignment to variablessuch that:

i=11;=1

Theorem 3:Let (G, C) be the given acyclic delay network
with the set of connection§ demanded by the sinks. There
1) Zero-InterferenceMi(;)(li) = 0 for all pairs (source; exists a feasible transform network code (G C) if and only

sink-j) of nodes such that (sourgesink-j, X;®(1,)) if there exists a feasible network code f6¥,C) such that

geiforo<t<n-—1 L-Dtfo). _
2) Invertibility: If C; contains the connections (sourge- Proof: Proof is given in Append|?< D. u
sink-j, X;, D (1;,)), (sourcety, sink=j, X;,® (1,,)), - -, Remark 3:Based on the constructive proof of Theorem 3,

a large field might be required for the existence of a suitable
- () - (1) - () _ ] value for « that defin_e_s the necessary transform for the net-
[M;, (1) M;5(l;) -~ M J5(li,,)] is @ nonsingular work, under the condition that the rate-logkz2= ) due to the

vj X v; matrix for0 <¢ <n—1. transform approach be less. The transformed network would

(sources,, sink-j, X; ,(l;,)), then, the sub-matrix
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(b) Linear Processing at Sink-
Fig. 1. Block Diagram to illustrate linear processing at ®e4d and Sinkj.

then have to be operated over this large field, i.e., the oestri mials (again with complexity) (n(logn)(loglogn))). There-

Mij(t) have elements from this large field (which is at leadere, the total complexity involved in recovering the infor
a degreen extension over the base field over which the noApation sequences would then 0&(v$n(log n)(loglogn)) +
transform network code is defined). It is known that (see [11] (v;n(logn)(loglogn)) + O(vdma.) cOMputations.
for example) inverting a; x v; matrix (at some sink?) takes Thus, we see that there is an advantage in the complexity
O(v?) computations, however over the extension field. In thef decoding in the non-transform network compared to the
process of computing these inverses, the information sygnbtransform network (inspite of using the least possible &ize
corresponding to then generations are obtained by Gausghe extension field). Therefore, complexity reduction i$ &
Jordan elimination. In terms of base field computational coradvantage of the transform process.
plexity, the complexity of computing the inverse of the 88T We now present an example acyclic network in which there
matrix becomes) (v?n(logn)(loglogn)), as each multipli- exists a feasible network code, using which we obtain a
cation in the extension field involve8 (n(logn)(loglogn)) feasible transform network code for some choiceof 7.
computations over the base field [12] (it is equivalent to-mul gyample 1:Consider the networ shown in Fig. 2. This
tiplying two polynomials of degree at least-1 over the base s g unit-delay network (where each edges have a delay of one
field). The total co_mple_xny of recovering the input symbol$it associated with it) taken from [13]. Far< i < 3, each
at all then generations is the® (n”v} (logn)(loglogn)).  sources; has an information sequenag(D). This network

On the other hand, if the non-transform network cod@ds non-multicast demands, with sinks : 1 < j < 3
is used as such, the transfer matrick&(D) consist of requiring all three information sequences, while sinkre-
polynomials of degree uptd,,., in D over the base field. quires {z1(D),z3(D)} and us demands{zz(D),z3(D)} .
Again, it is known (see [11], for example) that finding thd-et C denote these set of demands. A feasible network code
inverse of such a matrix has complexiy(v?dn,). To doa for (G,C) over ', as obtained in [13] can be obtained by
fair comparison with the transform case, we consider dexpdiusing! as the local encoding kernel coefficient at all non-sink
of n-generations( being large as in the transform case) ofodes. The transfer matrik/,,, (D), the invertible submatrix
information. Note that inversion of the matrix//(D) does My, (D) of M,;(D), and their determinants for the sinks
not give us the information polynomials directly. A naiver; : 1 < j <5 are tabulated in Table 1.
method of obtaining the each information polynomial would We therefore havef(D) = D?°. Note thatf(1) # 0 and
then requireuf multiplications of polynomials over the based,,., = 4 for this network. Therefore, witm = 2™ — 1 for
field (each of which has complexit® (n(logn)(loglogn)), any positive integem > 3, i.e., « being the primitive element
assuming that;d,,., < n.) and one division between polyno-of Fa=, we will then havef(a!) # 0 for any0 <t <n — 1.



TABLE |

Sink Network transfer Invertible submatrix | Determinant of M{Lj (D),
matrix M, (D) M, (D) of M, (D) det(M, (D))
D 0 0
Uy 0 D 0 M,, (D) D?
D3 D® D3
D 0 0
Us 0 0 D M,,(D) D5
D3 D® D3
0 D O
us 0 0 D? M,,(D) Db
D3 D3 D3
D* 0 D'+ D° DY D'+ Dd DS
“4 0 0 D 0 D
0 D3 DF D3 DT .
1 (o 0 D > ( 0 D > D

destination unicast network with delays, with each source-
destination pair having a min-cut af We employ the results
from the previous section and show that, even when the
zero-interference conditions of Lemma 1 cannot be satisfied
for a class of three source-three destination unicast rmgsvo
with arbitrary integer delays on its links, we can achieve a
throughput close td /2 for every source-destination pair by
making use of network alignment. We take two approaches
in achieving this - using time-invariant LEKs and using time
varying LEKSs.

Let the random process injected into the network by source
S; (1 € (1,2,3)) be X;(D). SourceS; needs to communicate
only with destinationD; (i € (1,2,3)). Here,u; = 1 and
v; =1((i,§) €1,2,3).

We shall consider the following two cases separately.

{ X1, X2, X3}

1) The min-cut between souréeand sinky is greater than
or equal tol, for all i # j.

2) The min-cut between souréeand sinks is equal to0,
for somei # ;.

Fig. 2. A unit-delay network witl8 sources and sinks

By Lemma 2, we then have a feasible transform network code
for (G,C).

In the next section we shall apply these transform techsiq
to three-source three-destination unicast network withyde

Case 1:The min-cut between sourdeand sink4 is greater
Yhan or equal tal, for all ¢ # j.

IV. THREE SOURCE THREE DESTINATION UNICAST A. Achieving a Throughput df/2 with Time-Invariant LEKs
NETWORK WITH DELAYS

In [6], the concept ofinterference alignmentrom inter- Now, consider a transmission scheme, where we 2ake1

ference channels [7], was extended to instantaneous acy P~ dmax) .generatlons of input §ymbq|s at each source and
unicast networks with three source-destination pairs figr t irst transmit the lastl.., generations (i.e., the cyclic prefix)

case where, each source-destination pair has a min-cit ofP”OVgSElby the2n + 1 generations of input symbols. Let
X; be the input symbols transmitted by souicehere,

and where, the zero-interference conditions in Theo6eaf Q1
[3] cannot be satisfied. This was callegtwork alignment

. o n 2n 2n—1 0
It was shown, in [6], that for a class of such networks, it is Xt = [Xi( : Xi( e Xi( )]T
possible to achieve a throughput closd @ for every source-
destination pair via network alignment. Also, let X1 = y x"* X2l — y1,X)", and

In this section, we deal with acyclic three source—threﬁf??”+1 = V3X.", where,Vj is a(2n+1) x (n+ 1) matrix,



Vais a(2n+1) x n matrix, V3 is a(2n + 1) x n matrix, and Proof: Proof is given in Appendix G [ |

X{nH = [X{(O) X{(l) X{(n)]T When the conditions of the above Theorem are satisfied,
X" = [XQ(O) Xé(l) Xé("—l)]:r we say that network alignment is feaii{))le. W7rl1en network

n 0 1 n—1
The quantitiesX{"™", X" and X}" denote the(n + 1), n,
and n independent input symbols generated by souices-
and3 respectively. Now, from (13), foy € {1,2, 3},

alignment is feasible, throughputs

and

n+1)' (2n+41)?

are achieved for the source-destination pairs- D,
5> — Do, and S3 — D3 respectively. Hence, as — oo, a
throughput ofl /2 is achieved for every source-destination pair.

Remark 4:To satisfy (22)-(24), we have to first ensure

ijQn+1 _ M1jV1X{n+l i MQJ»VQXQ" +J\Z/37-V3X§,", that V7 is full-rank. Note that

where,Y;*"*! denotes thg2n + 1) output symbols at sink-
j. The objective is to recover th@: + 1) independent input
symbols of sourcé; n independent input symbols of sourge-

andn independent input symbols of sour8ext sinksd, 2 and a®m)
3 from Y"1, Y2t and Y2 respectively. b%")
For ayclic networks without delay, the network alignment T =
conceptin [6] involved varying LEKSs at every time instantutB :
with delays it is possible, in some cases, to achieve network 0

alignment even with time-invariant LEKs. This is what we
show in this sub-section.
First, note that the elements Mijs are functions of.
Lemma 3:Determinant of the matrixM;; ¥V (i,j) €
{1,2,3} is a non-zero polynomial ia.

0 0
(2n—1)
Z(27171) o O
(0)
a
0 b(0)

Now, any collection of(n + 1) rows of V; is a Vander-

L Proof: Proof is given in Appendix E ®  monde matrix whose determinant is a non-zero polynomial
et iff ‘Z((,C—lli #+ % is satisfied for every;, ko € {0, 1,.., 2n}
a® = NV NP NIE (k€ {0, 1,., 2n}) andk, # ko. But, for all the columns of/; to be independent,

b® = N N v (k€ {0, 1,.., 2n})

it is enough if there exists atlea@t + 1) linearly independent
rows. This condition is satisfied if there are atle&st+ 1)

T = Moy Mo Mys My, My M (16) distinct %s (ky € {0, 1,.., 2n}). If V; is full-rank, then,
R = My3My' (17) by the choice ofl;, and V3 in (20) and (21) respectively,
fe M Moy Vo, Myt Moo Vs and M;! M3V are also full-rank
S = MM, . (18) . . (k1)
matrices. Hence, when there are atlgast- 1) distinct {55's
Now, choose (ky € {0, 1,.., 2n}), the choice ofV;, V, and V5 atleast
) ensures that;, V, and Vs are individually full-rank matrices.
VW=WTW TW --- T"W] (19)

Vo = [RW RTW RT*W --. RT"'W] (20) Remark 5:Note that, for three-source three-destination uni-
Vi = [STW ST*W .- ST"W] (1) cast_network thhout delay, c_0n5|dered in [6], it was not
possible to achieve network alignment without changing the
where,W = [1 1 --- 1]T (all ones vector of siz€2n+1)x1). LEKs with time. When there is no delay, the matriEsR,
Since the transform approach requires that- 1|p™ — 1, we and.S, given in (16)-(18), would simply be equal fde) I, +1
shall find it useful in stating the exact relationship betwegwhere,f(g) is some polynomial iz) and hence, the matrices
2n + 1 andp which will be used in the result that follows. V3, V, and V3 as given in (19)-(21) are themselves not full-
Lemma 4:The positive integeBn + 1 dividesp™ — 1 for rank matrices. Hence,was varied with time in [6]. However,
some positive integem iff pf2n + 1. in the case of delay it is easy to see from the structure of the
Proof: Proof is given in Appendix F. m matrix M;; that the matriced’, R, andS are not necessarily

Theorem 4:The input symboIsX{"“, X4" ;andX}" can scaled identity matrices.

be exactly recovered %, T3, andT; from the output symbols

Y2+l y2ntl and Y2 ! respectively subject tp f 2n + 1, The following example, taken from [6] (but with delays),
if the following conditions hold. illustrates the existence of a network where network aligntn
o is feasible with time-invariant LEKSs.
RanKV; M ' My Va] = 2n + 1 (22)
Rank{MleMQQVQ Vil =2n+1 (23) Example 2:Consider the network shown in Fig. 3 (at the

N top of the next page). Each link is taken to have unit-delay.
RanKM 3 M33Vs Vi] =2n+1 (24) In accordance with the LEKs denoted as in the figure, the



3
(ax +bx +cx )D

(apD®)x, +(bpD®)x, +(cpD*+qD?)x

3

s, D,
(atD*+uD?)x +(btD%)x, +(ctD%)x,
S —»0 D
2 2
(arD®)x +(brD*+sD?)x_+(crD°)x,
S 5 D3

Fig. 3. A three-source three-destination unicast netwadnkere network alignment with time-invariant LEKs is feasibl

transfer matriced\;;(D) are as given below. belong to the algebraic closure of the fi#lgwhich is denoted
) 15 5 by F,. Clearly, once an assignment to the LEKs and variables
M (D) = My,"D° = apD”, are made, they belong to a finite extensiorFgf
Mya(D) = M D? + M3 D5 = uD? + atD?, In this case of time-varying LEKs, the network cannot be
o B) s 5 decomposed int§2n + 1) instantaneous networks using the
Mys(D) = Mys D° = arD transform method. This is explained below.
My (D) = MQ(‘;’)D5 = bpD?, Consider a transmission scheme, where we fake1 (>>
Mas(D) = MQ(S)DE’ — bD? dmaz) generatlons of mp_ut symbols at ea_ch source and first
3) ®) transmit lastl,,,.,. generations (i.e., the cyclic prefix) followed
Ma3(D) = Myy D* + My, D® = sD? + brDP by the2n + 1 generations of input symbols. L&E>" ! be the
Mz (D) = Méi’)D?’ + MS)D5 — ¢D® + epD® input symbol transmitted by souréewhere,
= n 2n 2n—1 0
May(D) = MY D5 = ¢tD?, Xzt =[x xED L xO)T
Ms3(D) = M} D® = erD®. Also, let X2"*! = vix{""', X3! = 1,X}", and

X3 = WX4", where,V; is a(2n+ 1) x (n+ 1) matrix,
Note that the network does not satisfy the zero- mterfe&enf, is a(2n+ 1) x n matrix, Vs is a (2n + 1) x n matrix, and

conditions of Lemma 1. Herd,,,.., = 2. It can be verified that

network alignment is feasible withn + 1 = 7. Specifically, X’nJr1 [X’(O) X’(l) X{(")]T
Egtlzv;)rk alignment works with the following assignment te th x4 [X/(o) X/(l) Xé(nfl)]T

X/ _ [XI(O) Xé(l) Xé(n_l)]T.
a:b:c:p:’]":t:l +1
s=14 B4 B gty The quantitiesX|"™", X4" and X}" denote the(n + 1), n

andn independent |nput symbols generated by soui¢es-

g=1+8+p" and3 respectively. Now, from (7) and following the same steps
u=1+p* involved in writing (10) and (11), foj € {1, 2, 3}, we get (25)
o= (given at the top of the next page). In brief, fpe {1, 2,3},
we have
. N 6y
where, s is the primitive element o&F(2°), i.e., root of the y; 2 = MlelX’"J“l + My Va XL + My Va X3"

minimal polynomial(1 + x + %).
o o _ where,Y;?" ! denotes thé2n + 1) output symbols at sink-
B. Achieving a Throughput df/2 with Time-Varying LEKs = 54 M;; is as given in (25). The objective is to recover the
In this section, we shall generalize the selection of masric(n+ 1) independent input symbols of sourter independent
V1, Vo andVs and hence Theorem 4 along with the use of timeaput symbols of source-andn independent input symbols of
varying LEKs. Throughout the sub-section we shall assunseurce3 at sinksi, 2 and3 from Y+, Y"1 andy;" !
that the LEKs and the other variables that we shall encountespectively.



— T
[Y}(?n) Y}(?n 1. yj(U)]

s
i=1
M(O) (E(Zn,Zn)) M(l) (6(27171,271)) L M(fﬂnar*” (E(2nfdmam+1,2n)) M(dnlar)( (2n—dmax ,2n))
ij \= ij \& ij =
0 A,{i(;’ (£(2n71,2n71)) M;fmaz*2)(£(27l7dmam+l,2n71)) M(dmaz 1)( (2nfdmam,2n71))
(25
D (- ), (- I dmazx - :
Mi(j>(§( 1,0)) ]Mi(j)(g( 2,0)) ]Mi(j )(é( d'm,azxo)) 0
0 o .- 0
Ali(]“imaa:)(§(2n717dmaz,2n71)) 0o ... 0
0 0 ... M(o)( (0,0))
My
X [Xi(2n) Xi(2"*1) Xi(o)}T

Note that)/;; is not a circulant matrix and cannot be diagoSimilar notation is used for the numerator and denominator
nalized in general. Let' = {g(~%mes), g("dmast) | cCGn)} - of f(0,¢',a,b). Denotef(6,¢',a,b) and g;;(0,€’, a,b,c) by
Lemma 5:Determinant of the matrixM;; V (i,5) € f andg,; for short. Similar notatlon is used for the numerator

{1,2,3} is a non-zero polynomial ig’. and denominator of the respective rational polynomials.
Proof: Proof is given in Appendix H u Theorem 5:For an acyclic three-source three-destination
Hence, the inverse af/;; exists. Now, let the elements ofunicast network with delays, the input symbols|" "',
V1 be given by X4", and X4" can be exactly recovered at the sinks-

2, and 3 from the output symbolsy*"*!, v;"*!, and
Y2"+1 respectively, if the ideal generated by the polyno-
whered;; is a variable that takes values frdfy. Also, let ~ mials g("r) (ie{1,2,...,2n+1} andj € {1,2,..,n}), and

nr dr (dr) H H
Vo = My MisVid andVs = Mg MoviB  (27) (1= 0707 )H (. 94;") does not includa., wheres is
a variable that takes value froffy,.
Proof: Proof is given in Appendix | [ |
When the conditions of the above Theorem are satisfied,
we say that network alignment is feasible. When network
Ty = My Msa My, Moy Mg M. alignment is feasible, throughputs 7:;11)), @ and
Also, letd = {0i,)i € {1,2,...2n+1}, j € {1,2, .n+1}}, @ +1) are achieved for the source-destination pairs- D,
. : : 2 — Do, and S3 — D3 respectively. Hence, as — oo, a
a = {agli € {1,2,..,n+ 1}, j € {1,2,...,n}} andb = .
_ _ throughput ofl /2 is achieved for every source-destination pair.
{bijli €{1,2,..,n+1}, j €{1,2,..,n}}. Let ; :
Remark 6:1f f(8,¢',a,b) has to be a non-zero polynomial

[‘/l]z] = Oij; 1€ {1,2, 2n+ 1},] S {1,2, on+ 1}, (26)

where, the elements of the matricdsand B, of size (n +
1) x n, are given by[A];; = a;; and [B];; = b;; respectively
(a;; andb,; are variables that take values frdfp). Let

f1(0,€,a) = det([Vl M Moy Va]) firstly, V1 has to be a full-rank matrix. This is true from the
F2(0,€, a) = det([Mi3 MasVa Vi) choice ofV1. Also, My Ma1 Va, My Moo Va andMyg! MssVs
, should also be full-rank. Sincé/;;s are invertible, it is
Fs(0,€',b) = det([ My MysVy V1)) equivalent to checking it> and V3 are full-rank. This is also
fae) = H det(M;;) true becausé/ is a full-rank matrix and by choosing and
(i,5)€{1,2,3} B as matrices that select the firstcolumns ofV; and the
f0, € a,b) = f1(8,€,a)f2(0,,a) f3(8, €, b) fale'). lastn columns ofV; respectively); andVs become full-rank.

Hence, the determinants of all thex n sub-matrices ol;
Denote the elements of a matrik, of size n x n, by andv; are non-zero polynomials. So, we have atleast ensured
[Clij = cij, wherec;; is a variable that takes values fromhat by proper choice of4, Vo and Vs, they are full-rank
F, (i € {1,2,.., n} j € {1,2,...,n}). Let ¢ = {cijli € matrices.
{1,2,.,n}, j € {1,2,.,n}}. Fori € {1,2,..2n+ 1} and  pomark 7:Note that the network alignment matrices in
J & {1’ 2,..,n}, let Section IV-A can be derived as a special case of the network

9i(8,€',a,b,¢) = [T\Vi Aly; — [Vi BC)y;. alignment matrices in Section IV-B. Hence, Theorem 4 can
_____ be derived as a special case of Theorem 5. This is explained
Let g("r)(Q ¢,a,b,c) andg; dr)(Q ¢,a,b,c) respectively de- below. Chooses(~¢mez) = g(=dmatl) — = — c(27) — ¢

note the numerator and denomlnatorofthe rational- polyabmAIso choose the variable;; such thatV; in (26) takes
gi(0,€',a,b,¢) (1 € {1,2,..,2n+ 1} andj € {1,2,..,n}). the form of V4 in (19). ChooseA and B, respectively, to



be selection matrices which select the firstcolumns and

Category 2 (Min-Cut betweefs-Dq, S3-D; and Si-Do

last n columns of the matrices pre-multiplying them. Le@ire equal to0): This implies thatMs; = 0, Ms; = 0 and

C = I,. Now, it is easy to see thdf, 1, A — V1 B is equal to

M5 = 0. Let the choice of; and Vs be the same as in (28)

Q:1(TV1A—ViB) = 0. Now, it can also be easily seen thaand (29) respectively, and choose the elementBs;ods

the full-rank conditions in Theorem 4 are the same as sayi

should not includd.

ng

[Vg]ij = (52']‘, xS {1, 2,..,2n+ 1}7 jE {1727 ..7TL}), (30)

Case 2:The min-cut between sourdgeand sinks is equal whered;; is a variable that takes values frofy. The fol-

to 0, for somei # j.

In this case, we have totally 63 possibilities in which on
of them is a zero-interference possibility (i.e. min-cutvibeen
S;-D; is equal to zero for ali # j). Clearly, we need not
consider the zero-interference possibility.

lowing theorem provides the conditions under which network
glignment can be achieved.

Theorem 7:For an acyclic three-source three-destination
unicast network with delays, when the min-cut betwegn
D4, S3-D;1 and S1-D- are equal td) and the min-cut between

We broadly classify the different possibilities into fouthe other sources and destinations are not zero, the input
categories as given in Table II. All the other possibilitiesymbolsX? "™ X/™ andX}" can be exactly recovered at
involve either permutations of the sources or require mindre sinkst, 2, and3 from the output symbol¥;>" !, Y"1,
modifications in the network alignment procedure for one @ndY;"** respectively, if

these categories. For all these categories, network atghm

can be done with time-varying LEKs too. But, the only dif-

ference with respect to network alignment with time-ingati

LEKs would be that the network transfer matrices cannot be Proof: Proof is given in Appendix K.

diagonalized.

We shall present network alignment for the categories givéiroughputs of(

Ranl{MgglMgng Vg] = 2n, RanI{M;;,lMlg,Vl Vg] =2n + 1.

| ]
When the conditions of the above Theorem is satisfied,

n+1 n n .
(%H)), @ and 4y are achieved for

in Table 1l with time-invariant LEKs only. We assume the samthe source-destination pais — D1, Sz — D3, andSs — Ds

set-up as in Section IV-A. We shall also assume thig?n + 1
for the same reason as that in Theorem 4.

Category 1 (Min-Cut betweeRfs-D; is equal to0): This
implies thatMs,; = 0. Let the elements of; be given by

[Vl]ij = 92']‘, xS {1,27..7271/—"- 1}7 jE {1727 L+ 1}, (28)

where,§;; is a variable that takes values frdf. Also, let

Vo = My  Mi3ViA and Vi = My, MysVi B, (29)

where, the elements of the matrices and B, of size
(n + 1) x n, are given by[A];; = a;; and [B];; = by
respectively ¢;; and b;; are variables that take values fro
F,). The following theorem provides the conditions und
which network alignment can be achieved.

Theorem 6:For an acyclic three-source three-destinati
unicast network with delays, when the min-cut betwéenD,

(0)

respectively. Hence, as — oo, a throughput ofl/2 is
achieved for every source-destination pair.

Category 3 (Min-Cut betweefs3-D4, Si-Ds and Ss-Ds
are equal to0): This implies thatMs; = 0, My, = 0 and
Mss = 0. Let the choice of/; be the same as in (28) and
define the elements df; and Vs as

[Vg]i]:’yij, [Vg]ij:(Sij7 xS {1, 2..,2n 4+ 1}7j S {172..,77,} (31)

where,v;; andJ;; are variables that take values frdry.

Theorem 8:For an acyclic three-source three-destination
unicast network with delays, when the min-cut betwegn

le, S1-D2 andS,-Ds are equal td) and the min-cut between

e other sources and destinations are not zero, the input
symbolsX}"™!, X4", and X}" can be exactly recovered at
the sinkst, 2, and3 from the output symbols7*"*!, Y7+,
andY;" ! respectively, if

is equal to0 and the min-cut between the other sources and

destinations are not zero, the input symbals’ ™', X/", and
X4" can be exactly recovered at the sinks2, and3 from
the output symbol&?" !, V2"t and V7" *! respectively,
if
RanKVy My;' Ms V] = RanKM ' Moo Vo Vi] = 2n + 1,
Ranl{MfglMgng, Vl] =2n + 1.

Proof: Proof is given in Appendix J. ]

Rank{Vl Mﬁ1M21VQ] = RanI{MgglMlg,Vl Vg] =2n+1,
RanHM;,ElMgng Vg] = 2n.

Proof: Proof is given in Appendix L. ]
When the ccgndit)ions of the above Theorem is satisfied,
n+1 n n H
throughputs of(2n+1_), ETEsVE and Gy are achieved for
the source-destination paifgy — D1, So — Do, andS3 — Ds
respectively. Hence, as — oo, a throughput ofl/2 is

achieved for every source-destination pair.

When the conditions of the above Theorem are satisfied,Category 4 (Min-Cut betweefs-D1, S3-Ds, S1-D3 and

throughputs of(g::l)), (27:.;1)* and (27:11) are achieved for

the source-destination paifg — D1, So — Do, andS3 — Ds
respectively. Hence, as — oo, a throughput ofl/2 is
achieved for every source-destination pair.

S»-Dy are equal to0): This implies thathfs; = 0, Msy =
0, Mi3 = 0 and M3 = 0. Here, we can achieve a sum-
throughput of2. Since, D3 is not facing any interference, we

can take independent input symbols of souscee., X}



TABLE Il

VARIOUS POSSIBILITIES OFRMIN-CUTS BETWEENSOURCE-4 AND DESTINATION-j5 ((¢,5) € {1,2,3}|3 # j)

Min-Cut between Sourcé-and Destinationy
Category No. So — Dy S3 — D1 S1 — D2 S3 — Do S1 — D3 Sy — D3
1. 0 >1 >1 >1 >1 >1
2. 0 0 0 >1 >1 >1
3. >1 0 0 >1 >1 0
4, >1 0 >1 0 0 0
to be of size(2n+1) x (2n+1) andV; to be an identity matrix ACKNOWLEDGEMENT

of size(2n+1) x (2n.+1). The independent symbolx;;"**
and X" are column vectors of sizgs + 1) x 1 andn x 1
respectively. Let the choice df; and V> be the same as in
(28) and (31) respectively. The following theorem provittes

Theorem 9:For an acyclic three-source three-destinati
unicast network with delays, when the min-cut betwegn
Dy, S3-Dsy, S1-D3, and S;-D3 are equal to) and the min-
cut between the other sources and destinations are not zero,
the input symbolsx|"™", X/", and X};*"*" can be exactly
recovered at the sinks-2 and 3 from the output symbols

Y2 vt and Yt respectively, if

Rank{Vl Mﬁ1M21VQ] = RanI{MleMgng Vl] =2n + 1. [1]

Proof: Proof is given in Appendix M. ]
When the conditions of the above Theorem is satisfied,2]

throughputs of((;:rll.)), ey and EZZIB are achieved for 3
the source-destination paif§ — D1, So — Do, andS3 — D3
respectively. Hence, as — oo, a throughput ofl/2 is
achieved forS; — D1, So — Do and a throughput ofl is [4]

easily achieved fo53 — Ds.

Remark 8:In all the above four categories, the choices of
Vi, V5 and Vs were such that we could atleast ensure tat
V5 and V3 were full-rank, which were necessary to satisfy the
network-alignment conditions.

(5]

Remark 9:In Category4, a sum-throughput of close t» (6]
is achieved as — oo. For acyclic networks without delays,
this can be easily achieved by time-sharing the networklggua
between sourcé-and source. But it is not clear how such a -

sum-throughput can be achieved for arbitrary acyclic neta/o
with delays whereas, our method provides a scheme that can
achieve it. 8]

V. DISCUSSION

Though the transform method was originally claimed to be!®]
applicable for ayclic networks haviny/ (D) whose elements [10]
are only polynomial functions iD, it can also be applied to
networks havingV/ (D) whose elements are rational functionsj11]
in D by multiplying by the LCM of all the denominators of
the rational functions, at all the sinks. This gives a finitg, ;.
The same applies to cylic networks too.

Network alignment for the three source-three destinatiop s
unicast network with delays, discussed in this paper, can be
extended to the case where each source-destination pair has
a min-cut greater than one. We are currently working on it{14]
An interesting dierction of future research is extending th .
network alignment to the case of arbitary number of sources
and destinations with arbitrary message demands.

(12]

This work was supported partly by the DRDO-1ISc program

~ . X X on Advanced Research in Mathematical Engineering through
conditions under which network alignment can be achleveda research
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APPENDIXA
PROOF OFTHEOREM 1

Proof:
Ojl} [ ZiL:O a'l A
L i i
A aQJf; | X ol i A;
(n_:l)jj Z_Lio a(i.-i—n—l)j A,
«@ bl npxp = nv X
oL
a-jfy L
_| o%I, <Z az‘in>
=0
a(n_l)jIV
- nvXxXv
(32)
The inverse of the matri¥’ is given by
1 1 1 e 1
1 a_l a_2 “e a_(n_l)
Ffl :’I’L71 1 0172 0674 oo 0[72(7171)
1 o-(-D g=20-1) ... 4—(-1)(n-1)

Note that F—! exists [9]. Now,Q,, can also be written as

Q. = F®1, (i.e. Kronecker product of” and/,). Similarly
Q, = F®I,. From (32), we have

AQ,u = QVA
Now, det(Q.) = [det(F)]*[det(I,)]" # 0 andQ,* = F'®

1, C. Q#le = (F®Iﬂ)(F*1®IH) = (FF*1)®IH = nu)-
So,

A=Q,AQ;".

Hence the theorem is proved. ]

APPENDIXB
PROOF OFTHEOREM 2

Proof: If both the conditions are satisfied after
the assignment of values te, then sinkj can invert
(1;.,)] matrix and decode the

~(k ~(k ~(k
M) () M) (1) - M)

required input symbols without any interference.

APPENDIXC
PROOF OFLEMMA 2

Proof: Following the terminology developed so far, for
somen >> dyq, and for each) <t <n —1, let

X, (t)

PAG)
xX® = Xo

X.®

Then, by (6), (14) and the structure of tlzléi(;) matrices,
we have for0 <t <n —1,

dmax
ﬁ(t) — (Z ad(nlt)M;d)> K(t)7 (33)

d=0

WhereM;d) is av; x u matrix overlF, (considered as a subfield
of Fg. such that

dmax

M;(D) =Y MPD?. (34)
d=0

We define a collection of ring homomorphisnis
Fy(D) — Fg for 0 <t < n —1, given by ¢,(D) = o'
For some matrixP (D) overF,(D), we also definey, (P(D))
to be equal to the matri¥’ with elements inF,. that are
the ¢,-images of the corresponding elementsR{fD). Then,
from (33) and (34), we have

Y = gy (M (D)) XY, (35)

for 0 <t < n — 1. Clearly, the zero-interference conditions
satisfied in theM,;(D) matrices continue to hold in the
¢ (M; (D)) matrices, for any) < ¢ <n—1 and for any sink-
j. Having satisfied the zero-interference conditions, to veco
the source processes demanded by each satkiime instant
n — 1 —t, the invertibility conditions also have to be satisfied,
ie.,

[ 1 det (& (a1 (D)) #0, (36)

where M(D) is the square submatrix af/;(D) indicating
the source processes that are demanded by jsiBk# then,
we have

det (¢ (Mj(D))) = é:(det(M;(D))) 37)

and thus

[ det (¢ (a5(D))) = T &0 (det(25(D)))

If Condition 1) is not satisfied, then sink receives supeirpos = ¢y H det(M(D))

tion of required information and interference from othguun

symbols, which it cannot distinguish.

If Condition 2) is not satisfied, then sink cannot invert
(1i,,)] which is

. ~(k ~(k or(k
the matrix (M) (1;,) M (1) - Mi(sl)j

necessary for decoding the input symbols. [ ]



where f(D) is as defined in (15). Clearly;(a?) # 0 implies this leads to a contradiction as shares no common prime
that (36) is satisfied and the source processes demande¢h@lor with ngpl’fg, Thus noot, 1 <t <n-—1,canbe a
each sink can be recovered at time instant 1 — ¢ in the zero of f(D). This, coupled with the given fact tha(1) # 0,
transform approach. Similarly, if the sink demands aresBati proves the claim and hence the if part of the theorem.
at time instant, — 1 — ¢ in the transform approach, clearly Only If part:
we must havef(a') # 0. This holds for0 <t <n — 1, thus  Let[F, be the field over which a feasible transform network
proving the lemma. B code has been defined (@, C), i.e., there exists a choice of
LEKs and fora from F, using which the zero-interference
and the invertibility constraints have been satisfied in the
transform domain. Note that a choice for the LEKs implies
Proof: If part: that the matrices\/;(D) given by (6) are well defined. We
Let F,» be the field over which the feasible network cod@ill now prove that the invertibility and the zero-interéarce
has been obtained fqig, C). Consider the polynomiaf (D) constraints also hold in thes®/; (D) matrices for all sinks,
(given by (15)) with coefficients froni,~. Let Fpm be je. for1 <j<r
the splitting field of this polynomial, i.e., a suitable sfeat  \we first prove the invertibility conditions. Towards thaiden
extension field o, in which f(D) splits into linear factors. |gt Mj(n—l) be defined as the; x u transfer matrix at time

APPENDIXD
PROOF OFTHEOREM3

Let bk instantn — 1 from all the sources to sink-in the transform
pm' 1= Hpm{, approach, i.e.,
= R
— Sr(n—1 “r(n—1) yr(n—1 Sr(in—1
b=1 Nt = Oy i @9

where eacly, is some prime aneh; is some positive integer. R .
By Lemma 2, the choice af to be used for the DFT oper- By the structure of thé\/[i(f_l) matrices, we havé/[;"_l) =
ations should be such thgfa?) # 0, for any0 < ¢ <n — 1. Sd=dmas M@D M;(D)|p—1. Let ™1 pe the submatrix
J - J

We now show that such am exists and can be chosen oW
. . ) of M"Y which is known to be invertible, as it is given that
Let F,.» be an extension field ofF,. . Clearly,

; . the invertibility conditions for the transform network adre
[gpm 1) ({p™ — 1). However, we further demand thatg|| satisfied.

pm IS such that The invertibility conditions for sink: of the usual (non-
- y transform) network code fo(G,C) demand a suitable sub-
! = matrix M/ (D) of the matrix M;(D) to be invertible. Note
p" == 1Ie" [T re, (38) (D) , - /(i(_l))
el iy however that\/}(D)|p=1 = M; , by (39). Therefore, we

where eaclp, is some prime angh!/ andm” are some positive Navedet (Mj(n 1)) = det (Mj(D)|p=1) # 0. As in (37), we
integer such thapy, # p. for 1 <b < k and1 < ¢ < k’. Note havedet (M}(D)) |p=1 = det (M}(D)|p=1) # 0. Therefore,
thatmy > my, for 1 < b < k. Such extensions df .. can det (Mj(D)) # 0, i.e.,det (M}(D)) is a non-zero polynomial
indeed be obtained. For example,..» can be considered toin D. Because the choice of the sink was arbitrary, it is clear
be the smallest field which contaii#,.. andF,~, m being that the invertibility conditions hold for each sink in theual
some positive integer coprime with'. Then clearlyF ..~ is network code fo(G, C). By (15), we also haveD—1) { f(D).
such that (38) holds. We now prove the zero-interference conditions. The zero-
Following the notations of Section Ill, we now pick € interference conditions in the transform domain can berinte
F . (wherem' satisfies (38)) such that the following conpreted as follows. Having ordered the input processes at the
dition holds sources, suppose the sink-does not demand thi€" process
« The cyclic subgroug 1, a, ..., a"~'} of F .\ {0} with frorrj the source: Then the matrix\/;; is such thak!" column
ordern(n > 1) is such that and[]"="p;"" are coprime. °f A7) is an all-zero column for a < ¢ < n — 1. To prove
. ; that the zero-interference conditions continue to holdhe t
Such anx can t_’e obtalneg_gyngb003|mgfrom the subgrogp usual network code fofg,C), we must then prove that for
of [\ {0} with n = [T.—y pc© elements. We now claim g0 source; each particular sink-and each: (such that the

that using such am for the DFT will result in a feasible k' input process at sourdeis not demanded at sink-the
transform network code fofG, C). The proof is as follows.  ,.tv olumns ofA7Y matrices are all-zero fab < d < d
. . . { ij = = Ymax
We first note that the zero-interference conditions aressati

(d) ;
fied irrespective of the choice of in the DFT operations. As whereM;;”,0 < d < dmao are matrices such that

for the invertibility conditions, by Lemma 2, it is clear tha dmaz
as long asf(a') # 0 for 0 <t < n — 1, we have a feasible M;;(D) = Z Mi(f)Dd.
transform network code fo(G,C). Supposef(at) = 0 for d=0

somel <t <n-—1.Letn, be the order ob', i.e. the number  This is seen by observing the structure of thig; matrix,
of elementsin tr)/e cyclic group generatedddy Thenn;|n and which is defined by (11). Using Theorem 1 and with= o,
also ndHijprnb asal € F .. is a zero of f(D). However we have (40) (shown at the top of the next page). Comparing



Mi; = QVj MZJQ;}

_Iuj Iuj ij Iqu Mz’(;il) R 0 0 - 0 L, Iy, Iy, 3 Iityl
IVj /BlIVj B%IV;' ?7 IVj 0 Mi(jn72) o --- 0 ’[Hi ﬂ;llﬂi /B;2IHi ﬂl o )I i
Ly Bilyy Bralyy, oo BRTily 0 0 0o .- Mi(f) L Bltilu Byl - BTV,
1;:01 MZ(;) (t) Z;:Ol ;17117&])\%(;) N 1;:01 ﬁ;ﬁ?ii() 1\212(;) (t)
n— n—1—t 3’ n—1 2% n— n—1—t pg—(n— >
Zt:o 61 Mij t=0 Mij Zt:o 61 n—1—t Mij
= : . : : (40)
anl Bn.—l—tM(t) anl anlf.tﬁfl M(t) L n,{ M(t)
LLst=0 MPn—1 ij t=0 Mn—1 n—1—t+""ij t=0 ij
the submatrices of\/;; from (11) and (40), we see that if APPENDIXG
the k" column of theMi(f) matrices is all-zero for all) < PROOF OFTHEOREM4
t < n — 1, then thek*" columns ofMi(jd) matrices are all- Proof: To exactly recoverX;" ™", X}" and X}" at the

zero for0 < d < d,,q2- As the choice of sourcéand sinks sinksd, 2 and3 respectively, it is sufficient that the following
are arbitrary, it is clear that the zero-interference cthods network alignment conditions are satisfied.
continue to hold in thé\/;; (D) matrices for alll < i < s and

1 < j < r. This proves the only if part of the theorem and ]\f[?lvé = ]VA[31V3 (41)
hence the theorem is proved. [ | M32Vs C M1aVh (42)
APPENDIXE MasVa C M3V (43)

PROOF OFLEMMA 3 RanKM1,Vy Mo Va] = 2n+ 1
Proof: Consider M;; as defined in (11) which is a & RanKVi My Mo Vo] = 2n + 1 (44)

circulant matrix of size(2n + 1) x (2n + 1). Note that the
diagonal elements aff;;, i.e., Mi(f) (k€0,1,..,2n), are the o
eigen values of the matrix/;;. Also, note that the eigen values & RanKM; MyVa Vi) =2n+1 (45)
are equal to(2n + 1)-point finite-field DFT of the first row RanKMssVs MysVi] = 2n+ 1

of M;;. Since, the min-cut from sourceto sink- is equal to O .

1, by f\/lenger’s Theorem, there exists exactly one link-digjoi & RankMyy MasVs V] =2n+1 (46)
directed path from sourcéto sink+. Let such a directed path Note that from Lemma 3, inverse dfnj Y (i,5) € {1,2,3}
consist of linksey, ez, .., e;. Now, we can assign the valuess well-defined. It is easily seen that the choicel®f V» ,and
ey = 1, Bejeiy = 1 (0 € {1,2,.,t —1}) , ee,1 = 1 V5 in (19)-(21) satisfy the conditions (41)-(43). Supposet tha
and assign values df to all the other LEKs. By, such an (44)-(46) are satisfied. Let

assignment of values to the LEKs, exactly one ama#yg’,

Ranl{MQQ‘/Q M12V1] =2n+1

_ 1y
M), .., M) is equal tol. This implies that all the eigen hile) = det([V} fw}l M1 Vo))
values of M;; are non-zero. Hence, the diagonal elements of fa(g) = det([Myy MaaVa VA
M;; are non-zero polynomials in and so is its determinant. fale) = det([]\7[1—31Mggv3 1))
n
iy =[]  det(M))
APPENDIXF (i,5)€{1,2,3}
PROOF OFLEMMA 4 4
Proof: If part: Euler's theorem [14] states that if two fle) =] #ite)-
=1

positive integers, andb are coprime therj dividesa?(® — 1

where¢ represents the Euler’s totient function2lfi +1 < p  Since fi(g), f2(e) and f5(e) are non-zero polynomials ig,
then,2n 4+ 1 and p are coprime. If2n + 1 > p then,p and f(¢) is also a non-zero polynomial in. Hence, by Lemma
2n + 1 are coprime iffp does not divide2n + 1. Hence, by 1 in [3], for a sufficiently large field size, there exists an
Euler's theorem2n + 1[p?»*1) — 1 if p { 2n 4 1. Thus if assignment of values te such that the network alignment
p12n+1then2n+1|p™—1, for allm such thatp(2n+1)|m. conditions are satisfied. Singet 2n + 1, by Lemma 4, for a
Only If part: If 2n+1 dividesp™ —1 for some positive integer sufficiently largem (in particular,m such that(2n + 1)|m

m then,p™ — 1 = r(2n 4 1) for some positive integer. So, where ¢ represents the Euler’s totient function), there exists
p™ — (2n+ 1)r = 1 which means thap and2n + 1 must be an assignment of values tosuch that the network alignment
coprime. Sincep is prime,p { 2n + 1. B conditions are satisfied. Hence, the theorem is proved.m



APPENDIXH APPENDIXJ
PROOF OFLEMMA 5 PROOF OFTHEOREM6

Proof: If we assigne(—dmas) = gl=dmeatl) — = = : o o
€™ — ¢, M;; in (25) becomes a circulant matrix and hence ~ Proof: Let@ = {6i; ¥ (i, j)}, anrl{aij X (,7)} ?lndl_) =
can be diagonalized as shown in Theorem 1. Further, in lemrdfa; ¥ (i,7)}. To exactly recoveX (™, X" and X3" at the
3 we proved that the determinant of the diagonalized mati${1ks, 2 and3 respectively, it is sufficient that the following
is a non-zero polynomial ire. So, the determinant of the Network alignment conditions are satisfied.

circulant matrix is also a non-zero polynomial én Hence, Span(Ms2Vs) C Span(MyzVh) (54)
the determinant ofl/;; is a non-zero polynomial ig’. ] g (M ) c s (M ) (55)
pan(MazVa) C Span(Mi3Vy
APPENDIX | RankMy, Vi Ms Vs] = 2n + 1
PROOF OFTHEOREMb5 & RankV; MﬂleVs] — o +1 (56)
Proof: To exactly recoverX]" ", X" and X." at the RanK My, Vo MioVi] = 2n+ 1
sinks-, 2 and3 respectively, it is sufficient that the following A B
network alignment conditions are satisfied. < Rank{]\?u MQQYQ Vil =2n+1 (57)
Ranl{M?,gV?, M13V1] =2n+1
Spar{M21V2) = SpariMs1 V3) (47) & RanKM5 MssVs Vi) =20 +1 (58)
SpariMssV3) C Spant M2V, 48
Sp ﬂiMsz‘;,) Sp niMuVl) (49) It is easily seen that the choice B and V3, in (29), satisfy
pariMasVz) C SpaiMisVi) (49 the conditions (54) and (55). Suppose, (56)-(58) are sadisfi
RanKM Vi My Vo] =2n 41 Now, let
< Ram{Vl Mﬂl]wmvz] =+l (50) file,8,a) = det([Ml_leQQVQ i)
RanKMa,Va MioVi] = 2n + 1 o N
aniMen Vo MiaVi] =2n + f2(e,0,b) = det([Vi NIy Ny Vi)
& RankM'MypVs Vi) =2n+1 (51) (e 0.8) = det{[N= NaaVs Val)
Ranl{Mgg‘/g M13V1] =2n+1 S 13
& RankMp MssVs Vi) =2n+1 (52) fale) = 11 det(Mi;)

(4,9)€{1,2,3}|(i,5) #(2,1)
The choice ofl}, V5 and V3 ensures that the conditions (48)

d (49 tisfied. To satisfy (47), h t that .
and (49) are satisfied. To satisfy (47), we have to ensure thal . 5\ 1) — fi(c,0.0) [T, fa()fi(c,6.b). Since,

Mg Moy Vy = Mgy My, Vi BC f1( (g,0,a) ,)fz (¢,8,b) andfs(e, 0, b) are non-zero polynomials,
1 1 a1 f(e,0,a,b) is also a non-zero polynomial in. Hence, by
& My Moy My MigVi A = My MoV BC Lemma 1 in [3] and Lemma 4, for a sufficiently large field
& TViA=ViBC (53) size, there exists an assignment of values to variahlesich
that the network alignment conditions are satisfied. Hetize,

is satisfied. In order to satisfy (53), every elementlpi; A

must be equal to every element BfBC, i.e., theorem is proved. -

_ _ APPENDIXK
gij = 0, Vie {1,2, . 2n + 1}, J € {1,2, ,TL} PROOF OFTHEOREM 7

Hence, to satisfy (50)-(53) we need to find an assignment to- o .
the variables 4, ¢/, a andb, such thatf # 0 and g;; = 0, Proof: Let§ = {di; V (i,)}. To exactly recovex;" ",
Vie{1,2,..2n+1}, j € {1,2,..,n}. This means that there X5~ and X;" at the sinkst, 2 and 3 respectively, it is
must exist an assignment such thfA¢™) £ 0 andggfr) _ . sufficient that the following network alignment conditioare

After the assignment to the variables, we require fi&t = 0 satisfied.
andggjr) #0as dividing by zerois pro_hibited. In order to fqr— Spar{M,3Vs) C Spar{My3Vi) (59)
mulate th|s_ as an algebra|c.pr0blem, mtrodduce a ne(\;vT)vmabl Rank{Muvl] il (60)
& and consider the polynomigll — 6 /") fl4r T, o g;¢ X R

Y RanKMay Ve MsoVs] = 2n

From Weak Nullstellensatz [15], an assignment to the véegab

-5, 0, €, a, bandc exist such thayg.”) =0, for all (i, 7), & RanKMag' My Ve V3] = 2n (61)
and (1 — S AT ggj”) = 0 iff 1 does not belong RanKM3Vy Ms3Vs] = 2n + 1

to the ideal generated by the polynomigfg” for all (i, j) & RanKMg'MisVi V3] =2n+1 (62)
and (1 = ofem FEDTT ggﬁ))- It is easily seen that the choice b as in (29), satisfies the

B condition in (59). Sincd/ is full-rank andM;; is invertible



(from Lemma 3), (60) is also satisfied. Suppose (61) am@twork alignment conditions are satisfied.
(62) are satisfied. Letf;(¢,8) denote the determinants of

all the n x n sub-matrices of\f1,V;. Also, let fs(e, 6,4, a) Ranl{]\f[%] = 27:‘+ 1 (66)
denote the determinants of all the x 2n sub-matrices of RanKM11 Vi M Vo] = 2n + 1
[Ma' M2 Vo V3], Now, define & RankVi N5!NoVa] = 2n+ 1 (67)
fa(e,8,8) = [Mg' NisVi V3 RankMo Vo MioVi] = 2n+ 1
fale) = H det(M;;). & RankM,' MaoVe Vi) =2n+1. (68)
(0.)€{1,2,3}(1.)#{(2,1),(3,1),(1.2)} Since Mss is invertible (from Lemma 3), (66) is satisfied.

Let f(g,0.9,a) = fi(e,0) (e, 0.8, a) f3(c,0,0) fa(c). Since, Suppose that (67) and (68) are satisfied. Let

f1(e.9), f2(e,0,0,a) and f5(c, 0,9, a) are non-zero polyno- ¢ .y — jet([Mas))

mials, f(e, 8,0, a) is also a non-zero polynomial. Hence, by N

Lemma 1 in [3] and Lemma 4, for a sufficiently large field falg, 8,7) = det([Vi My M Val)

size, there exists an assignment of values to variahlés § f3(g,0,7) = det([]\Z/leMgng )

andga such that the network alignment conditions are satisfied. _ N

Hence, the theorem is proved. [ ] fale) = H det(Mi;).
(4:5)€{1,2,3}(1,7)#{(3,1),(3,2),(1,3),(2,3)}

APPENDIX L With = {vij ¥ G,5)} let fleb,y) =
PROOF OFTHEOREM8 f1(e) f2(e.0,7) f3(e,0,7) fa(e). Since, fi(e), fa(e.0,7)
and f3(g, 0, ) are non-zero polynomialst(e, ¢, v) is also a
non-zero polynomial. Hence, by Lemma 1 in [3] and Lemma
4, for a sufficiently large field size, there exists an assignim
of values to the variables, § and v such that the network
alignment conditions are satisfied. Hence, the theorem is

1™

o=

Proof: To exactly recoverX]"*", X" and X}" at the

sinksd, 2 and3 respectively, it is sufficient that the following
network alignment conditions are satisfied.

RanKM1, Vi Mo V] =20+ 1 proved. u
& RanKVi My Moy Vo] = 2n + 1 (63)

RankMaoVa MaaVs] = 2n
& RanKMg,' MaoVe Vi3] = 2n (64)

RanKMsV; MssVs] = 2n + 1
& RanKMg' MisVi Vs] =20+ 1 (65)

Suppose that (63)-(65) are satisfied. With= {~;; ¥ (i,7)},
let fi(g,v,9) denote the product of determinants of all the
2n x 2n sub-matrices of Ma,' Moo Vo V3. Also, let

fole, 0,7) = det([Vi My, Mo Vo))
fa(e,0,0) = det([Ms5' MisVy V3))

f4( ) = H det(Mij).

(3,9)€{1,2,3} (4,5)#A{(3,1),(1,2),(2,3)}

Let f(g,0,7.0) = filg,7,0)f2(e,8,7)f3(,0,9) fale).
since. f1(g,7,9), f2(.8,7) and s (e, 8, 6) are non-zero poly-
nomials,f (e, 8, v, ) is also a non-zero polynomial. Hence, by
Lemma 1 in [3] and Lemma 4, for a sufficiently large field
size, there exists an assignment of values to the variabhles
6, v and § such that the network alignment conditions are
satisfied. Hence, the theorem is proved. ]

1™

APPENDIXM
PROOF OFTHEOREM9

Proof: To exactly recove& ;" ™", X3" andX4*"*" at the
sinks-, 2 and3 respectively, it is sufficient that the following



