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Abstract

A coding scheme for write once memory (WOM) using polar codesis presented. It is shown that the scheme

achieves the capacity region of noiseless WOMs when an arbitrary number of multiple writes is permitted. The

encoding and decoding complexities scale as O(N log N) whereN is the blocklength. For N sufficiently large,

the error probability decreases sub-exponentially in N. The results can be generalized from binary to generalized

WOMs, described by an arbitrary directed acyclic graph, using nonbinary polar codes. In the derivation we also

obtain results on the typical distortion of polar codes for lossy source coding. Some simulation results with finite

length codes are presented.

Index Terms

Polar codes, write once memory codes (WOMs).

I. INTRODUCTION

The model of a write once memory (WOM) was proposed by Rivest and Shamir in [1]. In write once memories

writing may be irreversible in the sense that once a memory cell is in some state it cannot easily convert to

a preceding state. Flash memory is an important example since the charge level of each memory cell can only

increase, and it is not possible to erase a single memory cell. It is possible to erase together a complete block of

cells which comprises a large number of cells, but this is a costly operation and it reduces the life cycle of the

device.

Consider a binary write-once memory (WOM) which is comprised of N memory cells. Suppose that we write

on the devicet times, and denote the number of possible messages in theith write by Mi (1 ≤ i ≤ t). The

number of bits that are written in theith write is ki = log2Mi and the corresponding code rate isRi = ki/N .

Let sl denote theN dimensional state vector of the WOM at time (generation)l for 0 ≤ l ≤ t, and suppose that

s0 = 0. For l = 1, 2, . . . , t, the binary message vector isal (NRl bits). Givenal and the memory statesl−1, the

encoder computessl = El(sl−1,al) using an encoding functionEl and writes the resultsl on the WOM. The WOM

constraints can be expressed bysl ≥ sl−1 where the vector inequality applies componentwise. Since the WOM is

binary,sl−1 andsl are binary vectors, so that ifsl−1,j = 1 for some componentj, thensl,j = 1. The decoder uses

a decoding functionDl to compute the decoded messageâl = Dl(sl). The goal is to design a low complexity
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read-write scheme that satisfies the WOM constraints and achievesâl = al for l = 1, 2, . . . , t with high probability

for any set oft messagesal, l = 1, 2, . . . , t. As is commonly assumed in the literature (see e.g. [2] whereit is

explained why this assumption does not affect the WOM rate),we also assume that the generation number on each

write and read is known.

The capacity region of the WOM is [3]

Ct =
{

(R1, . . . , Rt) ∈ R
t
+ |R1 < h(ǫ1),

R2 < (1− ǫ1)h(ǫ2), . . . , Rt−1 <





t−2
∏

j=1

(1− ǫj)



h(ǫt−1),

Rt <

t−1
∏

j=1

(1− ǫj),where0 ≤ ǫ1, ǫ2, . . . , ǫt−1 ≤ 1/2







(1)

(Rt
+ denotes at-dimensional vector with positive elements;h(x) = −x log2 x− (1 − x) log2(1 − x) is the binary

entropy function). Note that this is both the zero-error capacity region and theǫ-error capacity region (see the

comment after the statement of Theorem 4 in [3]). We also define the maximum average rate,

Ct = sup
(R1,...,Rt)∈Ct

1

t

t
∑

j=1

Rj

The maximum average rate was shown to be [3]Ct = log2(t+1)/t. This means that the total number of bits that

can be stored onN WOM cells in t writes isN log2(t+ 1) which is significantly higher thanN . The maximum

fixed rate was also obtained [3]. WOM codes were proposed in the past by various authors, e.g. [1], [4], [5], [6],

[7], [8], [2], [9] and references therein. For the case wherethere are two writes,t = 2, the method in [9] can

approach capacity in polynomial in the blocklength computational complexity. To the best of our knowledge, this

was the first solution with this property.

In this work, which is an expanded version of [10], we proposea new family of WOM codes based on polar

codes [11]. The method relies on the fact that polar codes areasymptotically optimal for lossy source coding [12]

and can be encoded and decoded efficiently (O(N logN) operations whereN is the blocklength). We show that

our method can achieve any point in the capacity region of noiseless WOMs when an arbitrary number of multiple

writes is permitted. The encoding and decoding complexities scale asO(N logN). For N sufficiently large, the

error probability is at most2−Nβ

for any 0 < β < 1/2. We demonstrate that this method can be used to construct

actual practical WOM codes. We also show that our results also apply to generalized WOMs, described by an

arbitrary directed acyclic graph (DAG), using nonbinary polar codes. In the derivation we also obtain results on

the typical distortion of polar codes for lossy source coding.

Recently, another WOM code was proposed [13], that can approach any point in the capacity region of noiseless

WOMs in computational complexity that scales polynomiallywith the blocklength. On the one hand, the method

in [13] is deterministic and guarantees zero error, while our method is probabilistic and only guarantees a vanishing

with the blocklength error probability. On the other hand, the method in [13] requires a very long blocklength to
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closely approach capacity, and it is not clear whether it canbe used in practice. In an actual WOM (e.g., flash

memory) there is also some channel noise. Hence, there is some small inevitable error.

The rest of this paper is organized as follows. In Section II we provide some background on polar codes for

channel and lossy source coding. In Section III we provide extended results on polar codes for lossy source coding

that will be required later. In Section IV we present the new proposed polar WOM code for the binary case and

analyze its performance. In Section V we present a generalization of our solution to generalized WOMs, described

by an arbitrary DAG, using nonbinary polar codes. In SectionVI we present some simulation results. Finally,

Section VII concludes the paper.

II. BACKGROUND ON POLAR CODES

In his seminal work [11], Arikan has introduced Polar codes for channel coding and showed that they can

achieve the symmetric capacity (i.e. the capacity under uniform input distribution) of an arbitrary binary-input

channel. In [14] it was shown that the results can be generalized to arbitrary discrete memoryless channels. We will

follow the notation in [12]. LetG2 =





1 0

1 1



 and let itsnth Kronecker product beG⊗n
2 . Also denoteN = 2n.

Let u be anN -dimensional binary{0, 1} message vector, and letx = uG⊗n
2 where the matrix multiplication is over

GF(2). Suppose that we transmitx over a memoryless binary-input channel with transition probability W (y | x)

and channel output vectory. If u is chosen at random with uniform probability then the resulting probability

distributionP (u,x,y) is given by

P (u,x,y) =
1

2N
1{x=uG⊗n

2 }

N−1
∏

i=0

W (yi | xi) (2)

Define the followingN sub-channels,

W
(i)
N (y,ui−1

0 | ui) = P (y,ui−1
0 | ui) =

1

2N−1

∑

u
N−1
i+1

P (y | u)

Denote byI(W ) the symmetric capacity of the channelW (it is the channel capacity when the channel is memoryless

binary-input output symmetric (MBIOS)) and byZ(W
(i)
N ) the Bhattacharyya parameters of the sub-channelsW

(i)
N .

In [11], [15] it was shown that asymptotically inN , a fractionI(W ) of the sub-channels satisfyZ(W
(i)
N ) < 2−2nβ

for any 0 < β < 1/2. Based on this result the following communication scheme was proposed. LetR be the code

rate. Denote byF the set ofN(1 − R) sub-channels with the highest values ofZ(W
(i)
N ) (denoted in the sequel

as thefrozen set), and byF c the remainingN · R sub-channels. Fix the input to the sub-channels inF to some

arbitrary frozen vectoruF (known both to the encoder and to the decoder) and use the channels inF c to transmit

information. The encoder then transmitsx = uG⊗n
2 over the channel. The decoder applies the following successive

cancelation (SC) scheme. Fori = 0, 1, 2, . . . , N − 1, if i ∈ F then ûi = ui (uF is common knowledge), otherwise

ûi =







0 if L
(i)
N > 1

1 if L
(i)
N ≤ 1
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where

L
(i)
N (y,ui−1

0 ) =
W

(i)
N (y, ûi−1

0 | ui = 0)

W
(i)
N (y, ûi−1

0 | ui = 1)

Asymptotically, reliable communication under SC decodingis possible for anyR < I(W ). The error probability

is upper bounded by2−Nβ

for anyβ < 1/2, and the SC decoder can be implemented in complexityO(N logN).

Polar codes can also be used for lossy source coding [12]. Consider a binary symmetric source (BSS), i.e. a

random binary vectorY uniformly distributed over allN -dimensional binary vectors. Letd(x,y) be a distance

measure between two binary vectors,x andy, such thatd(x,y) =
∑N

i=1 d(xi, yi) whered(0, 0) = d(1, 1) = 0 and

d(0, 1) = d(1, 0) = 1. Define a binary symmetric channel (BSC)W (y |x) with crossover parameterD and construct

a polar code with frozen setF that consists of the(1−R) ·N sub-channels with the largest values ofZ(W
(i)
N ). This

code uses some arbitrary frozen vectoruF which is known both to the encoder and to the decoder (e.g.uF = 0)

and has rateR = |F c|/N . GivenY = y the SC encoder applies the following scheme. Fori = 0, 1, . . . , N − 1,

if i ∈ F then ûi = ui, otherwise

ûi =







0 w.p. L(i)
N /(L

(i)
N + 1)

1 w.p. 1/(L(i)
N + 1)

(3)

(w.p. denotes with probability) The complexity of this scheme is O(N logN). Since ûF = uF is common

knowledge, the decoder only needs to obtainûF c from the encoder (|F c| bits). It can then reconstruct the

approximating source codewordx usingx = ûG⊗n
2 . Let Ed(X(Y),Y)/N be the average distortion of this polar

code (the averaging is over both the source vector,Y, and over the approximating source codeword,X(Y), which

is determined at random fromY). Also denote byR(D) = 1 − h(D) the rate distortion function. In [12] it was

shown, given any0 < D < 1/2, 0 < δ < 1 − R(D) and 0 < β < 1/2, that for N (i.e., n) sufficiently large,

R = |F c|/N = R(D) + δ, and any frozen vectoruF , the polar code with rateR under SC encoding satisfies

Ed(X(Y),Y)/N ≤ D +O(2−Nβ

) (4)

In fact, as noted in [12], the proof of (4) is not restricted toa BSS and extends to general sources, e.g. a binary

erasure source [12].

III. E XTENDED RESULTS FORPOLAR SOURCE CODES

Although the result in [12] is concerned only with the average distortion, one may strengthen it by combining

it with the strong converse result of the rate distortion theorem in [16, p. 127]. The strong converse asserts that

for any δ1 > 0, if δ > 0 is chosen sufficiently small andR < R(D) + δ thenP (d(X(Y),Y)/N < D − δ1) can

be made arbitrarily small by choosingN sufficiently large. Combining this with (4), we can conclude, for a polar

code designed for a BSC(D), with R = |F c|/N ≤ R(D) + δ andδ > 0 sufficiently small, that

lim
N=2n,n→∞

P (d(X(Y),Y)/N > D + δ2) = 0 (5)

for any δ2 > 0.
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We now extend the result in (5) in order to obtain an improved upper bound estimate (as a function ofN ) on

the considered probability. The following discussion is valid for an arbitrary discrete MBIOS,W (y | x), in (2). As

in [12] we construct a source polar code with frozen set defined by,

F =
{

i ∈ {0, ..., N − 1} : Z
(

W
(i)
N

)

≥ 1− 2δ2N

}

(6)

(note thatF depends onN , however for simplicity our notation does not show this dependence explicitly) and

δN = 2−Nβ

/(2N) (7)

By [12, Theorem 19 and Equation (22)] (see also [12, Equation(12)]),

lim
N=2n,n→∞

|F |/N = 1− I(W )

Hence, for anyǫ > 0, if N is large enough then the rateR of the code satisfies,

R = 1− |F |/N ≤ I(W ) + ǫ

Let y be a source vector produced by a sequence of independent identically distributed (i.i.d.) realizations ofY .

If uF is chosen at random with uniform probability then the vectoru produced by the SC encoder (that utilizes (3))

has a conditional probability distribution given by [12]

Q(u | y) =
N−1
∏

i=0

Q(ui | u
i−1
0 ,y) (8)

where

Q(ui | u
i−1
0 ,y) =







1/2 if i ∈ F

P (ui | u
i−1
0 ,y) if i ∈ F c

(9)

On the other hand, the conditional probability ofu giveny corresponding to (2) is,

P (u | y) =
N−1
∏

i=0

P (ui | u
i−1
0 ,y)

In the sequel we employ standard strong typicality arguments. Similarly to the notation in [17, Section 10.6, pp.

325-326], we define anǫ-strongly typical sequencex ∈ XN with respect to a distributionp(x) on the finite set

X , and denote it byA∗(N)
ǫ (X) (or A∗(N)

ǫ for short) as follows. LetC(a | x) denote the number of occurrences of

the symbola in the sequencex. Thenx ∈ A
∗(N)
ǫ (X) if the following two conditions hold. First, for alla ∈ X

with p(a) > 0, |C(a | x)/N − p(a)| < ǫ. Second, for alla ∈ X with p(a) = 0, C(a | x) = 0. Similarly we define

ǫ-strongly typical sequencesx,y ∈ XN × YN with respect to a distributionp(x, y) on the finite setX × Y, and

denote it byA∗(N)
ǫ (X,Y ) (or A∗(N)

ǫ for short). We denote byC(a, b | x,y) the number of occurrences ofa, b in

x,y, and require the following. First, for alla, b ∈ X ×Y with p(a, b) > 0, |C(a, b |x,y)/N −p(a, b)| < ǫ. Second,

for all a, b ∈ X × Y with p(a, b) = 0, C(a, b | x,y) = 0. The definition ofǫ-strong typicality can be extended to

more than two sequences in the obvious way.
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In our casex = x(u)
∆

= uG⊗n
2 . Note thatG⊗n

2 is a full rank matrix. Therefore each vectoru corresponds to

exactly one vectorx. We say thatu,y ∈ A
∗(N)
ǫ (U, Y ) if x(u),y ∈ A

∗(N)
ǫ (X,Y ) with respect to the probability

distributionp(x, y) = W (y | x)/2 (see (2)).

Theorem 1: Consider a discrete MBIOS,W (y |x). Suppose that the input binary random variableX is uniformly

distributed (i.e.,X ∈ {0, 1} w.p. (1/2, 1/2)), and denote the channel output random variable byY . Let the source

vector random variableY be created by a sequence ofN i.i.d. realizations ofY . Consider a polar code for

source coding [12] with block lengthN = 2n and a frozen set defined by (6)-(7) (whose rate approachesI(W )

asymptotically) as described above. LetU be the random variable denoting the output of the SC encoder.Then for

any 0 < β < 1/2, ǫ > 0 andN (i.e., n) sufficiently large,U,Y ∈ A
∗(N)
ǫ (U, Y ) w.p. at least1− 2−Nβ

.

Recall that the SC encoder’s outputu has conditional probability distributionQ(u | y) given by (8)-(9). Hence,

Theorem 1 asserts that, forN sufficiently large,Q
(

A
∗(N)
ǫ (U, Y )

)

> 1− 2−Nβ

.

Proof: To prove the theorem we use the following result of [12, Lemma5 and Lemma 7],
∑

u,y

|Q(u,y) − P (u,y)| ≤ 2|F |δN (10)

Hence,
∣

∣

∣

∣

∣

∣

∑

u,y∈A∗(N)
ǫ

Q(u,y) −
∑

u,y∈A∗(N)
ǫ

P (u,y)

∣

∣

∣

∣

∣

∣

≤
∑

u,y∈A∗(N)
ǫ

|Q(u,y) − P (u,y)| ≤ 2|F |δN

(11)

In addition we claim the following,
∑

u,y∈A∗(N)
ǫ

P (u,y) = P
(

A∗(N)
ǫ

)

≥ 1− e−Nγ (12)

for some constantγ (that can depend onǫ). We now prove (12).

P
(

A∗(N)
ǫ

)

= (13)

P

(

∀a, b :

∣

∣

∣

∣

1

N
C(a, b |X(U),Y) − p(a, b)

∣

∣

∣

∣

< ǫ

)

=

1− P

(

∃a, b :

∣

∣

∣

∣

1

N
C(a, b |X(U),Y) − p(a, b)

∣

∣

∣

∣

≥ ǫ

)

In the first equality we have used the fact thatp(a, b) = 0 impliesC(a, b |X(U),Y) = 0. Let Z be a binary{0, 1}

random variable such thatZi = 1 if (Xi(U), Yi) = (a, b) andZi = 0 otherwise. Then,

P (Zi = 1) = p(a, b) , C(a, b |X(U),Y) =

N
∑

i=1

Zi

Therefore,

P

{∣

∣

∣

∣

1

N
C(a, b |X(U),Y)− p(a, b)

∣

∣

∣

∣

≥ ǫ

}

=

P

{∣

∣

∣

∣

∣

1

N

N
∑

i=1

Zi − p(a, b)

∣

∣

∣

∣

∣

≥ ǫ

}

≤ 2e−2ǫ2N (14)
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where the inequality is due to Hoeffding’s inequality (using the fact0 ≤ Zi ≤ 1). Hence,

P

{

∃a, b :

∣

∣

∣

∣

1

N
C(a, b |X(U),Y) − p(a, b)

∣

∣

∣

∣

≥ ǫ

}

≤

2|X ||Y|e−2ǫ2N

which, together with (13), proves (12). From (11)

P
(

A∗(N)
ǫ

)

≤ Q
(

A∗(N)
ǫ

)

+ 2|F |δN

Combining this with (12) we get

Q
(

A∗(N)
ǫ

)

≥ 1− e−Nγ − 2|F |δN

Recalling the definition ofδN , (7), the theorem follows immediately.�

Although not needed in the rest of the paper, we can now improve the inequality (5) using the following Theorem.

Theorem 2: Let Y be a random vector, uniformly distributed over allN -dimensional binary{0, 1} vectors.

Consider a polar code for source coding [12] designed for a BSC with crossover parameterD. Let X(Y) be the

reconstructed source codeword givenY. Then for anyδ > 0, 0 < β < 1/2 andN sufficiently large,

Q (d(X(Y),Y)/N ≥ D + δ) < 2−Nβ

(15)

The code rate approaches the rate distortion function,R(D) = 1− h(D), for N sufficiently large.

Proof: Sinced(X(Y),Y) =
∑N

i=0 d(Xi, Yi) then,

Q (d(X(Y),Y)/N ≥ D + δ) =

Q ([C(0, 1 |X(Y),Y) +C(1, 0 |X(Y),Y)] /N ≥ D + δ)

Denote byA, B andE the events

A = {C(0, 1 |X(Y),Y)/N < D/2 + δ/2}

B = {C(1, 0 |X(Y),Y)/N < D/2 + δ/2}

E = {[C(0, 1 |X(Y),Y) + C(1, 0 |X(Y),Y)] /N < D + δ}

Then forN sufficiently large,

Q (E) > Q (A ∩ B) = 1−Q
(

Ā ∪ B̄
)

≥ 1−Q
(

Ā
)

−Q
(

B̄
)

> 1− 2 · 2−Nβ

(16)

The last inequality is due to Theorem 1. This proves (15) (since (16) holds for any0 < β < 1/2) �
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IV. T HE PROPOSED POLARWOM CODE

Consider the binary WOM problem that was defined in Section I.Given some set of parameters0 ≤

ǫ1, ǫ2, . . . , ǫt−1 ≤ 1/2, ǫ0 ≡ 0 and ǫt ≡ 1/2, we wish to show that we can construct a reliable polar coding

scheme for any set of WOM rates(R1, . . . , Rt) ∈ R
t
+ in the capacity region (1). That is, the rates satisfy

Rl < αl−1h(ǫl) ∀l = 1, 2, . . . , t

where

αl−1 =

l−1
∏

j=0

(1− ǫj) (17)

For that purpose we consider the followingt test channels. The input set of each channel is{0, 1}. The output set

is {(0, 0), (0, 1), (1, 0), (1, 1)}. Denote the input random variable byX and the output by(S, V ). The probability

transition function of thelth channel is defined by,

Pl ((S, V ) = (s, v) |X = x) = fl(s, x⊕ v) (18)

where

fl(s, b) =































αl−1(1− ǫl) if s = 0, b = 0

αl−1ǫl if s = 0, b = 1

(1− αl−1) if s = 1, b = 0

0 if s = 1, b = 1

(19)

This channel is also shown in Figure 1. It is easy to verify that the capacity of this channel is1− αl−1h(ǫl) and

that the capacity achieving input distribution is symmetric, i.e.,P (X = 0) = P (X = 1) = 1/2.

(S, V )X

0

1

(1, 0)

(0, 0)

(0, 1)

(1, 1)

αl−1(1− ǫl)

αl−1(1− ǫl)

αl−1ǫl αl−1ǫl

1− αl−1

1− αl−1

Fig. 1. The probability transition function of thelth channel

For each channell we design a polar code with blocklengthN and frozen set of sub-channelsFl defined by (6).

The rate is

R′
l = 1− αl−1h(ǫl) + δl (20)

whereδl > 0 is arbitrarily small forN sufficiently large. This code will be used as a source code.
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Denote the information sequence bya1, . . . ,at and the sequence of WOM states bys0 ≡ 0, s1, . . . , st. Hencesl =

El(sl−1,al) and âl = Dl(sl), whereEl(s,a) andDl(s) are thelth encoding and decoding functions, respectively,

and â1, . . . , âl is the retrieved information sequence. We defineEl(s,a) andDl(s) as follows.

Encoding function, ŝ = El(s,a):

1) Letv = s⊕g where⊕ denotes bitwise XOR andg is a sample from anN dimensional uniformly distributed

random binary{0, 1} vector. The vectorg is a common randomness source (dither), known both to the

encoder and to the decoder.

2) Let yj = (sj , vj) andy = (y1, y2, . . . , yN ). Compress the vectory using thelth polar code withuFl
= al.

This results in a vectoru and a vectorx = uG⊗n
2 .

3) Finally ŝ = x⊕ g.

Decoding function, â = Dl(ŝ):

1) Let x = ŝ⊕ g.

2) â =
(

x
(

G⊗n
2

)−1
)

Fl

where(z)Fl
denotes the elements of the vectorz in the setFl.

Note that the information is embedded within the setFl. Hence, when considered as a WOM code, our code has

rateRl = |Fl|/N = (N − |F c
l |)/N = 1−R′

l, whereR′
l is the rate of the polar source code.

For the sake of the proof we slightly modify the coding schemeas follows:

(M1) The definition of thelth channel is modified such that in (19) we useǫl − ζ instead ofǫl whereζ > 0 will

be chosen sufficiently small. We will show that any set of rates (R1, . . . , Rt) ∈ R
t
+ that satisfy

Rl < αl−1h(ǫl − ζ) ∀l = 1, 2, . . . , t

is achievable in our scheme. Settingζ sufficiently small then shows that any point in the capacity region (1)

is achievable using polar WOM codes.

(M2) The encoder setsuFl
= al ⊕ g′

l instead ofuFl
= al, whereg′

l is |Fl| dimensional uniformly distributed

binary (dither) vector known both at the encoder and decoder. In this way, the assumption thatuFl
is uniformly

distributed holds. Similarly, the decoder modifies its operation to â =
(

x
(

G⊗n
2

)−1
)

Fl

⊕ g′
l.

(M3) We assume a random permutation of the input vectory prior to quantization in each polar code. These

random permutations are known both at the encoder and decoder. More precisely, in step 2 the encoder applies

the permutation,π, on y. Then it compresses the permutedy and obtains some polar codeword. Finally it

applies the inverse permutation,π−1, on this codeword to producex and proceeds to step 3. The decoder, in

the end of step 1, uses the permutation,π, to permutex, and then uses this permutedx (instead ofx) in step

2.

(M4) Denote the Hamming weight of the WOM statesl after l writes byγl = wH(sl). Also denote the binomial

distribution withN trials and success probability1 − α by B(N, 1 − α), such thatΥ ∼ B(N, 1 − α) if for

k = 0, 1, . . . , N , Pr (Υ = k) =
(

N
k

)

(1 − α)kαN−k. After the lth write we draw at random a numberη from

the distributionB(N, 1− αl). If γl < η then we flipη − γl elements insl from 0 to 1.
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Theorem 3: Consider an arbitrary information sequencea1, . . . ,at with ratesR1, R2, . . . , Rt that are inside the

capacity region (1) of the binary WOM. For any0 < β < 1/2 andN sufficiently large, the coding scheme described

above can be used to write this sequence reliably over the WOMw.p. at least1− 2−Nβ

in encoding and decoding

complexitiesO(N logN).

To prove the theorem we need the following lemma1. Consider an i.i.d. source(S, V ) with the following

probability distribution,

P ((S, V ) = (s, v)) =































(1− αl−1)/2 if s = 1, v = 0

αl−1/2 if s = 0, v = 0

αl−1/2 if s = 0, v = 1

(1− αl−1)/2 if s = 1, v = 1

(21)

Note that this source has the marginal distribution of the output of the lth channel defined by (18)-(17) under a

symmetric input distribution.

Lemma 1: Consider a polar code designed for thelth channel defined by (18)-(17) as described above. The code

has rateR′
l defined in (20), a frozen set of sub-channels,Fl, and some frozen vectorUFl

which is uniformly

distributed over all|Fl| dimensional binary vectors. The code is used to encode a random vector(S,V) drawn by

i.i.d. sampling from the distribution (21) using the SC encoder. Denote byX the encoded codeword. Then for any

δ > 0, 0 < β < 1/2 andN sufficiently large, the following holds w.p. at least1− 2−Nβ

,

|{k : Sk = 0 andXk ⊕ Vk = 1}| < (αl−1ǫl + δ)N (22)

{k : Sk = 1 andXk ⊕ Vk = 1} = ∅ (23)

Proof: According to Theorem 1, forN (i.e., n) large enough,

(X(U), (S,V)) ∈ A
∗(N)
δ/2

(X, (S, V ))

w.p. at least1− 2−Nβ

. Consider all possible triplesχ, ξ, ν, whereχ ∈ {0, 1}, ξ ∈ {0, 1} andν ∈ {0, 1}. From the

definition ofA∗(N)
δ/2 , if p(χ, (ξ, ν)) > 0 then (w.p. at least1− 2−Nβ

),

|C (χ, (ξ, ν) |X(U), (S,V)) /N − p(χ, (ξ, ν))| < δ/2 (24)

and if p(χ, (ξ, ν)) = 0 then

C (χ, (ξ, ν) |X(U), (S,V)) = 0 (25)

In addition, usingP (X = 0) = P (X = 1) = 1/2 and the channel definition (18)-(17) we have,

p(0, (0, 1)) = p(1, (0, 0)) = αl−1ǫl/2

1This Lemma is formulated for the original channel with parameter ǫl, and not for the (M1) modified channel with parameterǫl − ζ.
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Combining this with (24) we obtain

C (0, (0, 1) |X(U), (S,V)) < (αl−1ǫl/2 + δ/2)N

C (1, (0, 0) |X(U), (S,V)) < (αl−1ǫl/2 + δ/2)N

Hence,

|{k : Sk = 0 andXk ⊕ Vk = 1}| =

C (0, (0, 1) |X(U), (S,V)) +

C (1, (0, 0) |X(U), (S,V)) < (αl−1ǫl + δ)N

This proves (22). Similarly (23) is due to (25) sincep(0, (1, 1)) = p(1, (1, 0)) = 0 from the definition of the

channel.�

We proceed to the proof of Theorem 3. We denote bySl,S, Ŝ,V,G,X andΓl the random variables corresponding

to sl, s, ŝ,v,g,x andγl = wH(sl).

Proof of Theorem 3: Note that we only need to prove successful encoding since theWOM is noiseless.

Recall our definitionΓl = wH(Sl). Suppose thatΓl−1 ∼ B(N, 1 − αl−1). Our first claim is that under this

assumption, forρ > 0 sufficiently small andN sufficiently large, w.p. at least1 − 2−Nβ

, the encoding will be

successful andΓl/N < 1 − αl − ρ. For notational simplicity we useS instead ofSl−1, and Ŝ instead ofSl.

Considering step 1 of the encoding we see thatY = (S,V), after the random permutation described in (M3), can

be considered as i.i.d. sampling of the source(S, V ) defined in (21) (by the fact thatwH(S) ∼ B(N, 1 − αl−1),

and sinceG is uniformly distributed). Hence, by Lemma 1 and (M1), the compression of this vector in step 2

satisfies the following for anyδ > 0 andN sufficiently large w.p. at least1− 2−Nβ

.

1) If Sk = 1 thenXk = Vk = Sk ⊕Gk = Gk ⊕ 1.

2) For at most[(ǫl − ζ)αl−1 + δ]N componentsk we haveSk = 0 andXk = Vk ⊕ 1 = Sk ⊕Gk ⊕ 1 = Gk ⊕ 1.

Hence, in step 3 of the encoding, ifSk = 1 then Ŝk = Xk ⊕Gk = 1 (i.e. the WOM constraints are satisfied). In

addition there are at most[(ǫl − ζ)αl−1 + δ]N componentsk for which Sk = 0 and Ŝk = 1. Therefore, w.p. at

least1− 2−Nβ

, the vectorsS and Ŝ satisfy the WOM constraints and

Γl = wH(Ŝ) < [1− αl−1 + (ǫl − ζ)αl−1 + 2δ]N

= [1− αl − ζαl−1 + 2δ]N
(26)

(in the first inequality we have used the fact that forN sufficiently large,Γl−1 < (1 − αl−1 + δ)N w.p. at least

1− e−Nǫ for someǫ > 0 independent ofN ). Settingρ = ζαl−1 − 2δ yields our first claim.

From (26) we know thatη in (M4) will indeed satisfy the conditionη > Γl w.p. at least1 − 2−Nβ

. The proof

of the theorem now follows by using induction onl to conclude that (w.p. at least1 − 2−Nβ

) the lth encoding is

successful andΓl ∼ B(N, 1− αl). The complexity claim is due to the results in [11].�

Notes:
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1) The test channel in the first write is actually a BSC (sinceαl−1 = 1 in Figure 1). Similarly, in the last (t)

write we can merge together the source symbols(0, 0) and (0, 1) (note thatǫt = 1/2 so thatX andV are

statistically independent givenS = 0), thus obtaining a test channel which is a binary erasure channel (BEC).

2) Consider for example a flash memory device. In practice, the dither,g, can be determined from the address

of the word (e.g. the address is used as a seed value to a randomnumber generator).

3) In the rare event where an encoding error has occurred, theencoder may re-apply the encoding using another

dither vector value. Furthermore, the decoder can realize which value of dither vector should be used in

various ways. One possibility is that this information is communicated, similarly to the assumption that the

generation number is known. Another possibility is that thedecoder will switch to the next value of the

dither value upon detecting decoding failure, e.g. by usingCRC information. By repeating this procedure of

re-encoding upon a failure event at the encoder several times, one can reduce the error probability as much

as required.

V. GENERALIZATION TO NONBINARY POLAR WOM CODES

A. Nonbinary polar codes

Nonbinary polar codes over aq-ary alphabet (q > 2) for channel coding over arbitrary discrete memoryless

channels were proposed in [14]. Nonbinary polar codes over aq-ary alphabet for lossy source coding of a memoryless

source were proposed in [18]. First suppose thatq is prime. Similarly to the binary case, the codewordx of a

q-ary polar code is related to theN -dimensional (N = 2n) message vectoru by the relationx = uG⊗n
2 , where

the matrixG⊗n
2 is the same as in the binary case. However, nowu ∈ XN , x ∈ XN whereX = {0, 1, . . . , q − 1}.

Suppose that we transmitx over a memoryless channel with transition probabilityW (y | x) and channel output

vectory. If u is chosen at random with uniform probability overXN then the resulting probability distribution

P (u,x,y) is given by

P (u,x,y) =
1

qN
1{x=uG⊗n

2 }

N−1
∏

i=0

W (yi | xi) (27)

Define the followingN sub-channels,

W
(i)
N (y,ui−1

0 | ui) = P (y,ui−1
0 | ui) =

1

qN−1

∑

u
N−1
i+1

P (y | u)

We denote byI(W ) andI(W (i)
N ), respectively, the symmetric capacity parameters ofW andW (i)

N . In [14] it was

shown that the sub-channelsW (i)
N polarize as in the binary case with the same asymptotic polarization rate. The

frozen set is chosen similarly to the binary case. Asymptotically, reliable communication under SC decoding is

possible for any rateR < I(W ). The error probability is upper bounded by2−Nβ

for anyβ < 1/2, and the decoder

can be implemented in complexityO(N logN).

Nonbinary polar codes were also proposed for lossy source coding [18]. Consider some random variableY ∈ Y.

For simplicity we assume thatY is finite. Also denoteX = {0, 1, . . . , q−1}. Let the source vector random variable
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Y be created by a sequence ofN i.i.d. realizations ofY . Let d(x, y) be some (finite) distance measure between

x ∈ X and y ∈ Y. Furthermore, forx ∈ XN and y ∈ YN , we defined(x,y) =
∑N

i=1 d(xi, yi). Given some

distortion level,D > 0, let W (y | x) be the test channel that achieves the symmetric rate distortion bound,Rs(D),

(i.e., the rate distortion bound under the constraint thatX is uniformly distributed overX ) for the sourceY at

distortion levelD. Using that channel,W (y | x), we construct a polar code with frozen set defined by [18]

F =
{

i ∈ {0, ..., N − 1} : I
(

W
(i)
N

)

≤ δ′N

}

(28)

whereδ′N = 2−Nβ

. GivenY = y the SC encoder applies the following scheme. Fori = 0, 1, . . . , N − 1, if i ∈ F

then ûi = ui, otherwise

ûi = m w.p.
W

(i)
N (y, ûi−1

0 |m)
∑q−1

m′=0W
(i)
N (y, ûi−1

0 |m′)

The complexity of this scheme isO(N logN). It was shown [18] that

lim
N→∞

|F |/N = 1− I(W )

Hence, forN sufficiently large, the rate of the code,R = |F c|/N , approachesI(W ) = Rs(D). Furthermore, for

any frozen vector,uF ,

Ed(X(Y),Y)/N ≤ D +O(2−Nβ

)

under SC encoding, whereEd(X(Y),Y)/N is the average distortion.

In fact, using the results in [18], the statements in SectionIII immediately extend to the nonbinary case. Consider

a polar code constructed using some discrete channelW (y | x) with frozen set defined in (28). Suppose thatuF is

chosen at random with uniform probability. Then, similarlyto (8)-(9), the vectoru produced by the SC encoder

has a conditional probability distribution given by

Q(u | y) =
N−1
∏

i=0

Q(ui | u
i−1
0 ,y) (29)

where

Q(ui | u
i−1
0 ,y) =







1/q if i ∈ F

P (ui | u
i−1
0 ,y) if i ∈ F c

(30)

On the other hand, the conditional probability ofu giveny corresponding to (27) is

P (u | y) =
N−1
∏

i=0

P (ui | u
i−1
0 ,y)

Similarly to (10) above, it was shown in [18, Lemma 2 and Lemma5] that

∑

u,y

|Q(u,y) − P (u,y)| ≤ |F | ·
√

2 logq e · δ
′
N (31)

Combining (31) with exactly the same arguments that were presented in Theorem 1, yields the following

generalization to Theorem 1.

Theorem 4: Consider a discrete channel,W (y | x) wherex ∈ X = {0, 1, . . . , q − 1} and whereq is prime.

Suppose that the input random variableX is uniformly distributed overX , and denote the channel output random
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variable byY . Let the source vector random variableY be created by a sequence ofN i.i.d. realizations ofY .

Consider a polar code for source coding [18] with block length N = 2n and a frozen set defined by (28) (whose

rate approachesI(W ) asymptotically). LetU be the random variable denoting the output of the SC encoder.Then

for any 0 < β < 1/2, ǫ > 0 andN sufficiently large,U,Y ∈ A
∗(N)
ǫ (U, Y ) w.p. at least1− 2−Nβ

.

Although not needed in the sequel, Theorem 2 also generalizes to theq-ary case:

Theorem 5: Consider some random variableY ∈ Y and letX = {0, 1, . . . , q − 1} whereq is prime. Let the

source vector random variableY be created by a sequence ofN i.i.d. realizations ofY . Let d(x, y) be some

(finite) distance measure betweenx ∈ X andy ∈ Y. Let W (y | x) be the test channel that achieves the symmetric

rate distortion bound for distance measured() and some distortion level,D > 0. Consider a polar code for source

coding [18] designed forW (y | x) as described above. LetX(Y) be the reconstructed source codeword givenY.

Then for anyδ > 0, 0 < β < 1/2 andN sufficiently large,

Q (d(X(Y),Y)/N ≥ D + δ) < 2−Nβ

(32)

The code rate approaches the symmetric rate distortion function, Rs(D), for N sufficiently large.

Proof: Given someδ > 0, we setǫ > 0 sufficiently small andN sufficiently large, thus obtaining

Q (d(X(Y),Y)/N ≥ D + δ) ≤ Q
(

d(X(Y),Y)/N ≥ D + δ
⋂

(X(Y),Y) ∈ A∗(N)
ǫ

)

+Q
(

(X(Y),Y) 6∈ A∗(N)
ǫ

)

< 2−Nβ

where the last inequality is due to Theorem 4, and the fact that if (X(Y),Y) ∈ A
∗(N)
ǫ , for ǫ sufficiently small and

N sufficiently large, thend(X(Y),Y)/N < D + δ. �

Whenq is not prime, the results in this section still apply provided that the polarization transformation is modified

as described in [14]. In each step of the transformation, instead of

x1 = u1 + u2 , x2 = u2

we use

x1 = u1 + u2 , x2 = π(u2)

whereπ is a permutation, chosen at random with uniform probabilityoverX .

B. The generalized WOM problem

Following [19], the generalized WOM is described by a rootedDAG, represented by its set of states (vertices)V

and by its set of edgesE . The setV = {0, 1, . . . , q − 1} represents theq possible states of each memory cell. We

say that there exists a path from stateθ to stateθ′ in the WOM, and denote it byθ ⇒ θ′, if, for somek > 0, there

exist vertices{θ = θ1, θ2, . . . , θk−1, θk = θ′} ∈ V such that fori = 1, 2, . . . , k − 1, θi is connected toθi+1 by an
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edge inE (in particularθ ⇒ θ). The root of the DAG, which represents the initial state of the WOM, is vertex 0.

While updating the WOM, only transitions from stateθ to stateθ′ whereθ ⇒ θ′ are possible. As an example [19]

consider the case whereV = {0, 1, 2, 3} andE = {0 → 1, 1 → 2, 2 → 3}. In this case, we can update a memory

cell from state 0 to any other state. We can update from state 1to either 1, 2, or 3. We can update from state 2 to

either 2 or 3. A memory cell in state 3 will remain in this stateforever. For two vectorsθ,θ′ ∈ VN , we denote

by θ ⇒ θ′ if and only if θi ⇒ θ′i for i = 1, 2, . . . , N . Furthermore, for two random variablesX andY that take

values inV, we denoteX ⇒ Y if Pr (X = x, Y = y) 6= 0 only if x ⇒ y.

The capacity region of the WOM is [3], [19],

Ct =
{

(R1, . . . , Rt) ∈ R
t
+ | Rl < H(Θl|Θl−1),

l = 1, 2, . . . , t for some random variables

0 = Θ0 ⇒ Θ1 ⇒ Θ2 . . . ⇒ Θt}

(33)

whereH(· | ·) denotes conditional entropy.

Consider some set of random variables such that

0 ≡ Θ0 ⇒ Θ1 ⇒ Θ2 . . . ⇒ Θt (34)

Define

ǫl(θ, θ
′)

∆

= Pr
(

Θl = θ′ |Θl−1 = θ
)

(35)

and

αl(θ)
∆
= Pr (Θl = θ) (36)

It follows that

αl(θ
′) =

q−1
∑

θ=0

αl−1(θ)ǫl(θ, θ
′) (37)

and

H(Θl |Θl−1) =

q−1
∑

θ=0

αl−1(θ)h
(

{

ǫl(θ, θ
′)
}q−1

θ′=0

)

(38)

where for aq-dimensional probability vectorx = (x0, . . . , xq−1) (i.e. xi ≥ 0 and
∑q−1

i=0 xi = 1), the entropy

function is defined by

h(x)
∆

= −

q−1
∑

i=0

xi logq xi

(in this section the base of all the logarithms isq so that code rate is measured with respect toq-ary information

symbols).
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C. The proposed nonbinary polar WOM code

Given a set of random variables{Θl}
t
l=0 satisfying (34), with parameters defined in (35)-(36), we wish to show

that we can construct a reliable polar WOM coding scheme withWOM rates (R1, . . . , Rt) ∈ R
t
+ that satisfy

Rl < H(Θl|Θl−1) for l = 1, 2, . . . , t, corresponding to the capacity region (33). For that purpose we consider the

following t test channels. The input set of each channel is{0, 1, . . . , q−1}. The output set is{(s, v)}q−1
s,v=0. Denote

the input random variable byX and the output by(S, V ). The probability transition function of thelth channel is

defined by,

Pl ((S, V ) = (s, v) |X = x) = αl−1(s)ǫl(s, s+ x+ v) (39)

where the additions are moduloq.

This channel is symmetric in the following sense [20, p. 94].The set of outputs can be partitioned into subsets

(the outputs(s, v) with equal value ofs) such that in the matrix of transition probabilities of eachsubset, each row

(column, respectively) is a permutation of any other row (column). Hence, by [20, Theorem 4.5.2], the capacity

achieving distribution is the uniform distribution, and the symmetric capacity of this channel is in fact the capacity.

For X uniformly distributed over{0, 1, . . . , q − 1} we obtain (see Appendix A),

Cl = 1−H(Θl |Θl−1) (40)

For each channell we design a polar code with blocklengthN and frozen set of sub-channelsFl defined by (28).

The rate is

R′
l = 1−H(Θl |Θl−1) + δl (41)

whereδl > 0 is arbitrarily small forN sufficiently large. This code will be used as a source code.

Denote the information sequence bya1, . . . ,at and the sequence of WOM states bys0 ≡ 0, s1, . . . , st. Hencesl =

El(sl−1,al) and âl = Dl(sl), whereEl(s,a) andDl(s) are thelth encoding and decoding functions, respectively,

and â1, . . . , âl is the retrieved information sequence. We defineEl(s,a) andDl(s) as follows. All the additions

(and subtractions) are performed moduloq.

Encoding function, ŝ = El(s,a):

1) Letv = g−s whereg is a sample from anN dimensional uniformly distributed randomq-ary{0, 1, . . . , q−1}

vector. The vectorg is a common randomness source (dither), known both to the encoder and to the decoder.

2) Let yj = (sj , vj) andy = (y1, y2, . . . , yN ). Compress the vectory using thelth polar code withuFl
= al.

This results in a vectoru and a vectorx = uG⊗n
2 .

3) Finally ŝ = x+ g.

Decoding function, â = Dl(ŝ):

1) Let x = ŝ− g.

2) â =
(

x
(

G⊗n
2

)−1
)

Fl

.
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As in the binary case, the information is embedded within thesetFl. Hence, when considered as a WOM code,

our code has rateRl = |Fl|/N = (N − |F c
l |)/N = 1−R′

l, whereR′
l is the rate of the source code.

For the sake of the proof we slightly modify the coding schemeas was done above for the binary case

(modifications (M1)-(M4)). More precisely,

(M’1) The definition of thelth channel is modified such that in (39) we useǫ′l(s, s+x+v) instead ofǫl(s, s+x+v).

The parameters{ǫ′l(θ, θ
′)}q−1

θ,θ′=0, l = 1, 2, . . . , t, are defined as follows:

ǫ′l(θ, θ
′) =



















ǫl(θ, θ
′), if θ 6= 0

ǫl(θ, θ
′) + ζ, if θ = θ′ = 0

ǫl(θ, θ
′)− ζ/(q − 1), if θ = 0 andθ′ 6= 0.

(42)

for some ζ > 0 which will be chosen arbitrarily small. In order to obtain a valid set of parameters,

{ǫ′l(θ, θ
′)}q−1

θ,θ′=0, we first argue that we can assume, without loss of generality, that

ǫl(0, θ
′) > 0, ∀θ′ (43)

Since vertex0 is the root of our DAG then0 ⇒ θ′, ∀θ′. If the required condition (43) is not satisfied then

we can slightly shift the probabilitiesǫl(0, θ′) such that (43) does hold (all the other transition probabilities,

ǫl(θ, θ
′) for θ 6= 0, remain the same). Suppose we can prove the theorem for the shifted parameters. That

is, we assume that we can prove the theorem forR1, . . . , Rt inside the capacity region (33) defined with the

shifted parameters. Then, by continuity arguments, if we make the difference between the original and shifted

parameters sufficiently small, this will also prove the theorem for ratesR1, . . . , Rt inside the capacity region

defined with the original parameters{ǫl(θ, θ′)}.

(M’2) The encoder setsuFl
= al + g′

l ( mod q) instead ofuFl
= al, whereg′

l is |Fl| dimensional uniformly

distributedq-ary (dither) vector known both at the encoder and decoder. In this way, the assumption thatuFl

is uniformly distributed holds. Similarly, the decoder modifies its operation tôa =
(

x
(

G⊗n
2

)−1
)

Fl

− g′
l (

mod q).

(M’3) This modification is identical to modification (M3) above.

(M’4) Denote by γl,m = |{j : sl,j = m}|, where sl,j is the jth element of the WOM state afterl writes, sl.

Also denote byγ l = (γl,0, . . . , γl,q−1). Let the multinomial distribution withN trials and probabilities

α(0), . . . , α(q − 1), 0 ≤ α(s) ≤ 1 and
∑q−1

s=0 α(s) = 1, be denoted byM(N,α(0), . . . , α(q − 1)).

Then Υ ∼ M(N,α(0), . . . , α(q − 1)) if for k0, . . . , kq−1 ∈ [0, N ] such thatk0 + . . . + kq−1 = N ,

Pr (Υ = (k0, . . . , kq−1)) =
(

N
k0,...,kq−1

)
∏q−1

s=0 α(s)
ki . After the lth write we draw at random a vector

(η0, . . . , ηq−1) from the distributionM(N,αl(0), . . . , αl(q − 1)). If γl,m < ηm, ∀m = 1, 2, . . . , q − 1, then,

∀m = 1, 2, . . . , q − 1, we flip ηm − γl,m elements insl from 0 to m.

Theorem 6: Consider an arbitrary information sequencea1, . . . ,at with ratesR1, R2, . . . , Rt that are inside the

capacity region (33) of theq-ary WOM. For any0 < β < 1/2 andN sufficiently large, the coding scheme described
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above can be used to write this sequence reliably over the WOMw.p. at least1− 2−Nβ

in encoding and decoding

complexitiesO(N logN).

To prove the theorem we need the following lemma2. Consider an i.i.d. source(S, V ) with the following

probability distribution,

P ((S, V ) = (s, v)) =
1

q
αl−1(s) . (44)

Note that this source has the marginal distribution of the output of thelth channel defined by (39) under a symmetric

input distribution.

Lemma 2: Consider aq-ary polar code designed for thelth channel defined by (39) as described above. The

code has rateR′
l defined in (41), a frozen set of sub-channels,Fl, and some frozen vectorUFl

which is uniformly

distributed over all|Fl| dimensionalq-ary vectors. The code is used to encode a random vector(S,V) drawn by

i.i.d. sampling from the distribution (44) using the SC encoder. Denote byX the encoded codeword. Then for

any δ > 0, 0 < β < 1/2 andN sufficiently large, the following holds w.p. at least1 − 2−Nβ

(in the following

expressions, additions are moduloq),

|{k : Sk = ξ andXk + Vk = ν}| < [αl−1(ξ)ǫl(ξ, ξ + ν) + δ]N (45)

Furthermore, ifξ 6⇒ ξ + ν then

{k : Sk = ξ andXk + Vk = ν} = ∅ (46)

Proof: According to Theorem 4, forN large enough,

(X(U), (S,V)) ∈ A
∗(N)
δ/q (X, (S, V ))

w.p. at least1 − 2−Nβ

. Consider all possible triplesχ, ξ, ν, whereχ ∈ {0, 1..., q − 1}, ξ ∈ {0, 1..., q − 1} and

ν ∈ {0, 1..., q − 1}. From the definition ofA∗(N)
δ/q we have (w.p. at least1− 2−Nβ

),

|C (χ, (ξ, ν) |X(U), (S,V)) /N − p(χ, (ξ, ν))| < δ/q (47)

Furthermore, ifp(χ, (ξ, ν)) = 0 then (47) can be strengthened to

C (χ, (ξ, ν) |X(U), (S,V)) = 0 (48)

In addition, usingP (X = χ) = 1/q and the channel definition (39), we have

p (χ, (ξ, ν − χ)) =
1

q
αl−1(ξ)ǫl(ξ, ξ + ν)

where here, and in the following expressions,ν − χ andξ + ν are calculated moduloq. Combining this with (47)

we obtain

C (χ, (ξ, ν − χ) |X(U), (S,V)) < (αl−1(ξ)ǫl(ξ, ξ + ν)/q + δ/q)N

2This lemma is formulated for the original channel with parametersǫl(θ, θ′) (and not for the (M’1) modified channel with parameters

ǫ′l(θ, θ
′)).
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Hence,

|{k : Sk = ξ andXk + Vk = ν}| =

q−1
∑

χ=0

C (χ, (ξ, ν − χ) |X(U), (S,V))

< (αl−1(ξ)ǫl(ξ, ξ + ν) + δ)N

(Xk + Vk is also calculated moduloq). This proves (45). Similarly, (46) is due to (48) sinceξ 6⇒ ξ + ν implies

ǫl(ξ, ξ + ν) = 0, and therefore, from the definition of the channel, we havep (χ, (ξ, ν − χ)) = 0 for all χ. �

We proceed to the proof of Theorem 6. We denote bySl,S, Ŝ,V,G,X andΓl the random variables corresponding

to sl, s, ŝ,v,g,x andγ l.

Proof of Theorem 6: Note that we only need to prove successful encoding since theWOM is noiseless.

Recall our definitionΓl,m = |{j : Sl,j = m}|. Suppose thatΓl−1 ∼ M(N,αl−1(0), . . . , αl−1(q − 1)). Our first

claim is that under this assumption, forρ > 0 sufficiently small andN sufficiently large, w.p. at least1 − 2−Nβ

,

the encoding will be successful andΓl,m/N < αl(m) − ρ for m = 1, 2, . . . , q − 1. For notational simplicity we

useS instead ofSl−1, andŜ instead ofSl. Considering step 1 of the encoding we see thatY = (S,V), after the

random permutation described in (M’3), can be considered asi.i.d. sampling of the source(S, V ) defined in (44).

Hence, by Lemma 2 and (M’1), the compression of this vector instep 2 satisfies the following for anyδ > 0 and

N sufficiently large w.p. at least1− 2−Nβ

.

1) Suppose thatξ 6⇒ ξ + ν. Then {k : Sk = ξ andXk + Vk = ν} = ∅. In addition, Vk = Gk − Sk and

Ŝk = Xk + Gk = Xk + Vk + Sk. Hence we conclude, under the above assumption, that ifSk = ξ then

Ŝk 6= ξ + ν.

2) For at most[αl−1(ξ)ǫ
′
l(ξ, ξ + ν) + δ]N componentsk we haveSk = ξ andXk + Vk = ν, i.e., Ŝk = ξ + ν.

Hence, the WOM constraints are satisfied, and there are at most [αl−1(ξ)ǫ
′
l(ξ, ξ + ν) + δ]N componentsk for

which Sk = ξ andŜk = ξ+ ν. Therefore, w.p. at least1− 2−Nβ

, the vectorsS andŜ satisfy the WOM constraints

and

Γl,m <
∑

ξ

[

αl−1(ξ)ǫ
′
l(ξ,m) + δ

]

N

Now, recalling (42), we obtain form 6= 0

Γl,m <
∑

ξ 6=0

[αl−1(ξ) (ǫl(ξ,m)) + δ]N

+

[

αl−1(0)

(

ǫl(0,m)−
ζ

q − 1

)

+ δ

]

N

=

[

αl(m)−
ζαl−1(0)

q − 1
+ qδ

]

N (49)

where the equality is due to (37). Settingρ = ζαl−1(0)/(q − 1) − qδ (note thatαl(0) > 0 ∀l due to (43)) yields

our first claim.
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n M ∆R1 ∆R2 ∆R3 R1 R2 R3

12 10000 .035 .05 .185 .776 .639 .315

14 10000 .02 .04 .175 .7913 .6487 .325

16 1000 .02 .02 .16 .7913 .6687 .34

TABLE I

THE PERFORMANCE OFt = 3 WRITE POLAR WOMS WITH n = 12, 14, 16.

From (49) we know thatη1, . . . , ηq−1 in (M’4) will indeed satisfy the conditionηm > Γl,m ∀m = 1, . . . , q − 1,

w.p. at least1 − 2−Nβ

. The proof of the theorem now follows by using induction onl to conclude that (w.p. at

least1− 2−Nβ

) the lth encoding is successful andΓl ∼ M(N,αl(0), . . . , αl(q − 1)). �

VI. SIMULATION RESULTS

To demonstrate the performance of our coding scheme for finite length codes we performed experiments with

polar WOM codes withn = 10, 12, 14, 16. Each polar code was constructed using the test channel in Figure 1

with the appropriate parametersǫl andαl−1. To learn the frozen setFl of each code we used the Monte-Carlo

approach that was described in [21] (which is a variant of themethod proposed by Arikan [11]). Figure 2 describes

our experiments witht = 2 write WOMs designed to maximize the average rate. Using the results in [3] we set

ǫ1 = 1/3. Henceα1 = 2/3. Each point in each graph was determined by averaging the results of 1000 Monte-Carlo

experiments. Figure 2 (left) shows the success rate of the first write as a function of the rate loss∆R1 compared

to the optimum (R1 = h(1/3) = 0.9183) for each value ofn. Here success is defined aswH(s1)/N ≤ ǫ1. Figure 2

(right) shows the success rate of the second write as a function of the rate loss∆R2 compared to the optimum

(R2 = 2/3). Here we declare a success if the WOM constraints are satisfied. Each experiment in the second write

was performed by using a first write with rate loss of∆R1 = 0.01. Forn = 10, 12, 14, ∆R1 should be higher, but

this is compensated by using higher values of∆R2. As an alternative we could have used a higher rate loss∆R1

for n = 10, 12, 14, in which case∆R2 decreases. In terms of total rate loss both options yielded similar results.

We see that forn = 16 the total rate loss required for successful (with very high probability) first and second

write is about0.08. As was noted earlier, the success rate can be increased if, upon detecting an encoding error,

the encoder repeats the encoding with another dither value.

We have also experimented with at = 3 write WOM. We used polar codes withn = 12, 14, 16 and setǫ1 = 1/4,

ǫ2 = 1/3 and ǫ3 = 1/2 (α1 = 3/4 andα2 = 1/2) to maximize the average rate in accordance with [3]. To find

the frozen setFl of each code we used density evolution as described in [22] with quantization stepq = 0.25.

The maximum average rate is obtained forR1 = .8113, R2 = .6887 andR3 = 1/2. The actual information rates

are presented in Table I, where inM read/write experiments all information triples were encoded (and decoded)

successfully.
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Fig. 2. The success probabilities of the first (left) and second (right) writes to the binary WOM as a function of the rates loss,∆R1 and

∆R2.

Finally, we performed experiments with generalized WOMs for the case where the DAG representing the WOM

is the following. The vertices areV = {0, 1, 2} and the edges areE = {0 → 1, 1 → 2}. We consider the case where

there are two writes, i.e.,t = 2. By [19, Proof of Theorem 3.2] the maximum total number of3-ary information

symbols,R1 + R2, that can be stored in one storage cell of the WOM is1.6309. Furthermore, by [19, Proof of

Theorem 3.2], the maximum value ofR1 + R2 is achieved forR1 = 0.9206 andR2 = 0.7103, and the following

parameters,{αl(θ)}
2
θ=0 and{ǫl(θ, θ′)}

2
θ,θ′=0 for l = 0, 1, need to be used in (33).

α0(0) = 1, α0(1) = 0, α0(2) = 0

ǫ0(0, 0) = 1/2, ǫ0(0, 1) = 1/3, ǫ0(0, 2) = 1/6

ǫ0(1, 0) = 0, ǫ0(1, 1) = 2/3, ǫ0(1, 2) = 1/3

ǫ0(2, 0) = 0, ǫ0(2, 1) = 0, ǫ0(2, 2) = 1

α1(0) = 1/2, α1(1) = 1/3, α1(2) = 1/6

ǫ1(0, 0) = 1/3, ǫ1(0, 1) = 1/3, ǫ1(0, 2) = 1/3

ǫ1(1, 0) = 0, ǫ1(1, 1) = 1/2, ǫ1(1, 2) = 1/2

ǫ1(2, 0) = 0, ǫ1(2, 1) = 0, ǫ1(2, 2) = 1

Our scheme uses polar codes withq = 3 and n = 10, 12, 14. Using the above parameters,{α0(θ)}
2
θ=0 and
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{ǫ0(θ, θ
′)}2θ,θ′=0, in (39), we obtain the following definition of the first test channel

P1((S, V ) = (s, v) |X = 0) =



















1/2 if (s, v) = (0, 0)

1/3 if (s, v) = (0, 1)

1/6 if (s, v) = (0, 2)

P1((S, V ) = (s, v) |X = 1) =



















1/3 if (s, v) = (0, 0)

1/6 if (s, v) = (0, 1)

1/2 if (s, v) = (0, 2)

P1((S, V ) = (s, v) |X = 2) =



















1/6 if (s, v) = (0, 0)

1/2 if (s, v) = (0, 1)

1/3 if (s, v) = (0, 2)

Similarly, the second test channel is given by

P2((S, V ) = (s, v) |X = x) =































1/6 if s = 0

1/6 if s = 1 andx+ v mod 3 6= 2

1/6 if s = 2 andx+ v mod 3 = 0

0 otherwise.

We see that givenS = 0, V andX are statistically independent. Hence we can simplify this channel by merging

the three output symbols,(0, 0), (0, 1) and(0, 2), into one symbol. To learn the frozen setFl of each code we used

the Monte-Carlo approach that was described in [21].

Figure 3 presents the success rate of the first and second writes as a function of the rates loss∆R1 and∆R2

compared to the optimal rates,R1 = 0.9206 andR2 = 0.7103. This is shown for polar codes withn = 10, n = 12

andn = 14. Each point in the graph was obtained by averaging the results of 10,000 Monte-Carlo experiments. In

the first write we declare a success if the fraction of ’1’ (’2’respectively) ins1 is less than or equal toα1(1) (α1(2),

respectively). In the second write we declare a success if all the WOM constraints are satisfied. Each experiment

in the second write was preformed by usingR1 = 0.9206 (i.e., ∆R1 = 0).

VII. C ONCLUSION

We have presented a new family of WOM codes based on the recently proposed polar codes. These codes

achieve the capacity region of noiseless WOMs when an arbitrary number of multiple writes is permitted. The

encoding and decoding complexities scale asO(N logN) whereN is the blocklength. ForN sufficiently large the

error probability decreases sub-exponentially inN . The results apply both for binary and for generalized WOMs,

described by an arbitrary DAG.

There are various directions in which our work can be generalized. The first is the design of codes for noisy

WOMs. It should be noted that there are various models for noisy WOMs. The capacity region of the most general

model, proposed in [3], is yet unknown. However, for certainspecial cases [3], [23], the maximum average rate,
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Fig. 3. The success probabilities of the first (left) and second (right) writes to theq-ary WOM for q = 3 as a function of the rates loss,

∆R1 and∆R2.

and in some cases even the capacity region are known. The achievable rate region of some noisy WOM models,

presented in [3], [23], are based on coding for Gelfand-Pinsker (GP) side information channels. Hence, in this case

one may wish to consider the results in [12] for polar coding over a binary side information channel, and combine

them with our method.

Another possibility for further research is the consideration of other codes or decoding methods in our scheme.

For example, instead of polar source codes, one may considerlow-density generating-matrix (LDGM) codes that

were shown in the past to be useful for lossy source coding. Even if polar codes are kept in our scheme, it may be

possible to improve performance by using iterative encoding combined with decimation instead of SC encoding.

This is due to the fact that iterative decoding usually yields better results compared to SC decoding of polar

codes [11], [21]. One may also consider using list decoding of polar codes as proposed in [24].

APPENDIX A

DERIVATION OF (40)

For X uniformly distributed over{0, 1, . . . , q − 1} we haveH(X) = logq q = 1. In addition,

H(X | (S, V )) =
∑

s,v

P ((S, V ) = (s, v))H(X | (S, V ) = (s, v))
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where

H(X | (S, V ) = (s, v)) = −
∑

x

P (X = x | (S, V ) = (s, v)) log (P (X = x | (S, V ) = (s, v)))

Now,

P (X = x | (S, V ) = (s, v)) =
P ((S, V ) = (s, v) |X = x)P (X = x)

P ((S, V ) = (s, v))

=

1
qαl−1(s)ǫl(s, s + v + x)

∑q−1
x′=0

1
qαl−1(s)ǫl(s, s+ v + x′)

= ǫl(s, s+ v + x)

Hence,

H(X | (S, V ) = (s, v)) = h
(

{

ǫl(s, s
′)
}q−1

s′=0

)

In addition,

P ((S, V ) = (s, v)) =
1

q
αl−1(s)

Hence,

H(X | (S, V )) =

q−1
∑

s=0

q−1
∑

v=0

1

q
αl−1(s)H (X | (S, V ) = (s, v))

=

q−1
∑

s=0

αl−1(s)h
(

{

ǫl(s, s
′)
}q−1

s′=0

)

= H (Θl |Θl−1)

where the last equality is due to (38). Thus we conclude that

Cl = H(X)−H(X | (S, V )) = 1−H (Θl |Θl−1)

and we have obtained (40).
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