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Abstract—In this paper, we derive lower bounds on the
distortion of scalar fixed-rate codes for lossy compression with
side information available at the receiver. These bounds are
derived by presenting the relevant random variables as a Markov
chain and applying generalized data processing inequalities a la
Ziv and Zakai.

I. INTRODUCTION

The Wyner–Ziv (WZ) problem has received very much
attention during the last three decades. There were several
attempts to develop practical schemes for lossy coding in
the WZ setting, by using codes with certain structures that
facilitate the encoding and the decoding. Most notably, these
studies include nested structures of linear coset codes (in the
role of bins) for discrete sources, and nested lattice structures
for continuous valued sources, see e.g., [2], [3]. Other direc-
tions of introducing structure into WZ coding are associated
with trellis/turbo/LDPC designs ([4] and references therein)
and with progressive coding, i.e., successive refinement with
layered code design [5], [6]. The case of scalar source codes
for the WZ problem was also handled in several papers, e.g.
[7] and [8]. Zero-delay coding strategies for the WZ problem
were also introduced in [9]. In [10] and [11] it was shown that
under high-resolution assumptions, the optimal quantization
level density is conjectured to be periodic. In addition, zero-
delay schemes for specific source-side information correlation
were presented in [10], [11] and [12].

In this paper, we develop lower bounds for the distortion
in the scalar WZ setting. We generalize the results of [13]
and [14], concerning functionals satisfying a data-processing
theorem, to this setting. In [13] it was shown that the rate-
distortion (RD) bound (R(d) ≤ C) remains true when
− log x, in the definition of mutual information, is replaced
by an arbitrary convex, non–increasing function satisfying
some technical conditions. For certain choices of the convex
function, the bounds obtained were better than the classical
RD bounds. These results were substantially generalized in
[14] to apply to even more general information measures. The
methods of [13] were used in [15], [16] and [17]. In these
papers, lower bounds for the distortion of delay constrained
joint source-channel coding were given. These bounds were
obtained by combining the Rényi information measure [18]
with the generalized data processing theorem of [13], and
under high-resolution and high SNR approximations. Another

related work is [19], where certain degrees of freedom of the
Ziv-Zakai generalized mutual information were exploited in
order to get better bounds.

We start by presenting the relevant random variables of the
WZ problem as a Markov chain. Then, using a data processing
theorem, we get lower bounds on the distortion in this case.
We show that replacing the logarithmic function with other
functions, may give better bounds for the distortion of delay–
limited coding (in particular, for scalar coding) in the WZ
setting. Examples of non-trivial lower bounds for scalar coding
in this setting, were obtained using the convex function Q(t) =
t−s, s > 0, which is equivalent to using the Rényi information
measure. These results will be given in detail in Section II. The
importance of such bounds stems from the fact that finding
the optimal scalar code in the WZ setting is in general an
hard problem. In fact, it is a problem of finding an optimal
partition of the source alphabet and this partition does not
necessarily correspond to intervals. A main objective will be
to use these bounds for studying the performance of concrete
coding schemes. In the next step, a possible direction will be
to extend our setting to more general scenarios, for example,
to scenarios where the output of the encoder is transmitted
over a noisy channel (instead of the noiseless one in the WZ
setting), and to scenarios of coding with memory.

II. PROBLEM FORMULATION AND RESULTS

In this section, we present the relevant random variables
of the WZ problem as a Markov chain and establish a
generalized Data Processing Theorem (DPT) for this setting,
using the method of [13]. We begin with notation conventions.
Capital letters represent scalar random variables (RV), specific
realization of them are denoted by the corresponding lower
case letters and their alphabets - by calligraphic letters. For
k ≥ 1 (k is a positive integer), xk will denote the vector
(x1, . . . , xk). We consider a memoryless source producing a
random sequence X1, X2, . . . , Xn, Xi ∈ X , i = 1, 2, . . . , n,
where X is a finite alphabet with cardinality |X |. Without
loss of generality, we define this alphabet to be the set
{1, 2, . . . , |X |}. The probability mass function of X , PX(x),
is known. The encoder maps Xn into a channel symbol Z
which takes on values in the set {1, 2, . . . ,M}, M ≤ |X |n.
The decoder, in addition to Z, has access to a sequence
Y n, dependent on Xn via a known DMC, defined by the



single-letter transition probability matrix
{
PY |X(y|x)

}
, whose

entries are the conditional probabilities of the different channel
output symbols given the channel input symbols. Based on
Z and Y n, the decoder produces the reconstructed sequence
X̂n. This setting is depicted in Figure 1. For simplicity, we
assume that Xi, Yi and X̂i, all take on values in the same finite
alphabet X . Let Q(t), 0 ≤ t < ∞, be a real-valued convex
function, where lim t ·Q(1/t) = 0 as t→ 0. This requirement
implies that Q(t) is non-increasing, as was shown in [13]. We
define 0 · Q(r/0) = 0, for all 0 ≤ r < ∞. The generalized
mutual information relative to the function Q(t) is defined by:

IQ(X;Y ) =
∑
x,y

p(x, y)Q
(
p(x)
p(x|y)

)
(1)

We apply the generalized DPT [13, Theorem 3] in the

Fig. 1. The WZ Setting

following way:

IQ(Xn, X̂n) ≤ IQ(Xn;Y n, Z) (2)

where we used the fact that Xn ↔ (Y n, Z) ↔ X̂n is a
Markov chain. Since Z ↔ Xn ↔ Y n is also a Markov chain,
we have:

p(xn, yn, z) = p(x)p(yn|xn)p(z|xn) (3)

and IQ(Xn;Y n, Z) is given by:

IQ(Xn;Y n, Z) =
∑

xn,yn,z

p(xn, yn)p(z|xn)

Q

(
p(yn)p(z|yn)
p(y|xn)p(z|xn)

)
=

∑
xn,yn,z

p(xn, yn)p(z|xn)

Q


p(yn)

∑
x̃n∈Xn

p(x̃n|yn)p(z|x̃n)

p(y|xn)p(z|xn)


(4)

Assuming the encoder is given by a deterministic function
f : Xn → {1, . . . ,M}, we get:

IQ(Xn;Y n, Z) =
∑
xn,yn

p(xn, yn)

Q


p(yn)

∑
x̃n∈Az

p(x̃n|yn)

p(yn|xn)

 (5)

where z = f(xn) and Az ≡ {x̃n : f(x̃n) = z}. Using Q(t) =
− log(t) in (5), thus turning back to the classical DPT, we get
the following result:

n (R(d)− I(X;Y )) ≤ sup {H(Z|Y n)} (6)

where the supremum is taken over all partitions of Xn into
M disjoint subsets. The proof is given in [21]. This inequality
stems from the specific Markovity of the WZ problem. We
see that given some fixed-rate R = logM , we should find
the encoder that maximizes H(Z|Y n). In Subsection II.C, we
show some examples of scalar coding, i.e., n = 1, where
this result gives us lower bounds for the distortion, which
are better than the bounds obtained from the trivial inequality
RWZ(d) ≤ logM , where RWZ(d) is the WZ RD function.

A. Generalized DPT for scalar coding

A fixed-rate scalar source code with rate R = logM ,
partitions X into M disjoint subsets (A1, A2, . . . , AM ). The
encoder f is given by a function f : X →{1, 2, . . . ,M},
that is, zi = f(xi). The decoder g receives zi, together with
the side information yi, and generates x̂i, using a decoding
function g : {1, 2, . . . ,M} × X → X , i.e., x̂i = g(zi, yi).
This is the setting described in Figure 1, with block length
n = 1. We define the following vectors {~pz}Mz=1:

~pz = [11∈Az , 12∈Az , . . . , 1|X |∈Az ] (7)

where 1B is the indicator function for the event B. The jth
coordinate of ~pz is 1 if j ∈ Az and 0 else. By definition of
{~pz}Mz=1, we have the following property:

M∑
z=1

~pz = [1, 1, . . . , 1] (8)

Using these vectors, we can rewrite (5) in the following way:

IQ(X;Y,Z) =
∑
x,y

p(x, y)Q
(
p(y) · [~pz(x) · ~px̃|y]

p(y|x)

)
=

∑
y

p(y)
∑
z

∑
x∈Az

p(x|y)

Q

(
p(y) · [~pz · ~px̃|y]

p(y|x)

)
=

∑
y

p(y)
∑
z

~pz · ~qz,y

=
∑
y

p(y)
∑
z

Gy(~pz)

(9)



where we have defined the following |X |-vectors:

~px̃|y = [p(x1|y), p(x2|y), . . .]

~qz,y =
[
p(x1|y)Q

(
p(y) · [~pz · ~px̃|y]

p(y|x1)

)
,

p(x2|y)Q
(
p(y) · [~pz · ~px̃|y]

p(y|x2)

)
, . . .

] (10)

and the set of functions {Gy}|X |y=1, Gy : R|X | → R:

Gy(~pz) = ~pz · ~qz,y (11)

Notice that the vector ~px̃|y depends only on y and that the dot
product [~pz · ~px̃|y] is a function of z and y. Applying the RD
bound [13, Theorem 4], we get:

RQ(d) ≤ IQ(X, X̂) ≤ IQ(X;Y, Z) ≤ CQ (12)

where:

RQ(d) = inf IQ(X, X̂)
CQ = sup IQ(X;Y,Z)

= sup
∑
y

p(y)
∑
z

Gy(~pz)
(13)

The infimum is taken over all conditional distributions P (x̂|x)
that satisfy the distortion constraint Ed(X, X̂) ≤ d, where
d(x, x̂) is a distortion measure. The supremum should be
taken over all scalar encoders with a fixed-rate R = logM .
Alternatively, we can carry out a continuous optimization by
taking the supremum over all sets of positive vectors {~pz}Mz=1

that satisfy (8), i.e., over all conditional distributions P (z|x).
The result will be of course greater than or equal to CQ. We
end this subsection with an upper bound on CQ for a specific
convex function Q(t).

Lemma 1: For the convex function Q(t) = t1−α, 1 < α <
2, we have the following upper bound:

CQ ≤Mα−1 ·
∑
y

(∑
x′

p(x′) · p(y|x′)
1

2−α

)2−α

(14)

The proof is given in [21]. The usefulness of this result stems
from its generality. It holds for any source distribution and any
transition probability matrix {PY |X(y|x)}. This result is used
in Subsection II.C, along with tighter bounds on the capacity
that can be achieved in several special cases.

B. The generalized rate-distortion function for uniform source
distribution

In this subsection, we introduce the generalized rate-
distortion function of uniformly distributed sources w.r.t gen-
eral weakly symmetric distortion measures. We refer to a
distortion measure d(x, x̂) as weakly symmetric if the rows
of the distortion matrix, {d(x, x̂)}, are permutations of each
other. A uniformly distributed source is a source for which

PX(x) =
1
|X |

, ∀x ∈ X .

Lemma 2: Consider a discrete source X , uniformly dis-
tributed over a finite alphabet X , and let Q(t), 0 ≤ t < ∞

be any real-valued convex function. Then, RQ(d) w.r.t to any
weakly symmetric distortion measure is given by:

RQ(d) =
|X |∑
k=1

pk ·Q
(

1
|X |pk

)
(15)

where {pk}|X |k=1 is a probability measure which is given by the
following equations (k = 1, . . . , |X |):

Q

(
1
pk

)
− 1
pk
Q′
(

1
pk

)
+ λ1 + λ2dk − µk = 0 (16)

where {dk}|X |k=1 are the elements of each row of the matrix
{d(x, x̂)} (the same elements appear in each row) and λ1, λ2,
{µk}|X |k=1 are constants that are chosen such that:

|X |∑
k=1

pk = 1

|X |∑
k=1

pkdk = d

µk =
{

0, if pk > 0
1, if pk = 0

(17)

For the Hamming distortion measure, defined by:

d(x, x̂) =
{

0 x = x̂
1 x 6= x̂

(18)

we get the following result:
Corollary 1: Consider a discrete source X , uniformly dis-

tributed over a finite alphabet X , and let Q(t), 0 ≤ t < ∞
be any real-valued convex function. Then, RQ(d) w.r.t to the
Hamming distortion measure is given by:

RQ(d) = (1−d) ·Q
(

1
|X |

(
1

1− d

))
+d ·Q

(
(|X | − 1)
|X |

1
d

)
(19)

The proof is given in [21]. The general form of RQ(d) enables
the use of any convex function Q(t). These results make the
Ziv-Zakai mechanism much more useful, at least for the case
of uniform sources.

C. Applications
In this subsection, we use the results of the previous

subsections to get lower bounds on the distortion in several
cases. Non-trivial bounds were obtained using the convex
function Q(t) = t1−α, α > 1, which is equivalent to using
the Rényi information measure. Taking t → 1, we turn back
to the logarithmic function, thus to the classical DPT. We
assume that the source is uniformly distributed, and that the
DMC is symmetric. A channel is said to be symmetric if
the rows of the channel transition matrix,

{
PY |X(y|x)

}
, are

permutations of each other, and the columns are permutations
of each other. Since the source is uniformly distributed and the
channel is symmetric, Y is also uniformly distributed. Under
these conditions, Eq. (11) becomes:

Gy(~pz) = |X |α−1
~pz · ~pαy|x̃

(~pz · ~py|x̃)α−1
(20)



where we have defined the following |X |-vectors:

~py|x̃ = [p(y|x1), p(y|x2), . . .]

~pαy|x̃ = [p(y|x1)α, p(y|x2)α, . . .]
(21)

Applying (19) and (20) in (12), we get:

|X |α−1

(
(1− d)α +

dα

(|X | − 1)α−1

)
≤

|X |α−2 sup

{∑
y,z

~pz · ~pαy|x̃
(~pz · ~py|x̃)α−1

}
= CQ

(22)

where the supremum is taken over all sets of positive vectors
{~pz}Mz=1 that satisfy (8). Notice that optimizing over α will
produce the best lower bound for the distortion. Generally, the
functions {Gy(~pz)} in this case are neither convex nor con-
cave. However, at least for some cases, CQ can be calculated
directly, as shown in the following examples. We can also
upper bound CQ as was done in (14). This upper bound may
give us non-trivial bounds, as shown in example 2. Additional
examples, with more general distortion measures, will be given
in [21].

1) Example 1: The symmetric DMC is defined by:

p(y|x) =
{
µ y = x
ε else

(23)

where µ, ε ∈ [0, 1], µ > ε, and µ + (|X | − 1)ε = 1. The
distortion measure we use, is the Hamming distortion, defined
in (18).

Lemma 3: Consider the WZ setting with uniformly dis-
tributed source and the DMC defined in (27). Then, the
minimal achievable distortion w.r.t to the Hamming distortion
measure, of a scalar source code with a fixed-rate R = logM ,
is:

d(M) = ε(|X | −M) (24)

The proof is given in [21]. Having the exact solution in this
case, we can compare it to our bound to examine its quality.
The generalized capacity (13) for this channel is given by:

CQ = |X |α−2 · sup

{∑
y,z

~pz · ~pαy|x̃
(~pz · ~py|x̃)α−1

}

= |X |α−2ε · sup

{∑
z

Mz ·
(Mz + µα/εα − 1)
(Mz + µ/ε− 1)α−1

+ (|X | −Mz)M2−α
z

}
= |X |α−2ε · sup

{∑
z

qα(Mz)

}
(25)

where Mz , Mz ∈ {1, . . . , |X | −M + 1}, is the cardinality of
Az , i.e., the number of source symbols that are encoded to z.
Obviously,

∑
zMz = |X |. Notice that the supremum is taken

over all feasible encoders, where each encoder is represented

by a specific set {~pz}Mz=1 as defined in (7). The second equality
is explained in [21]. The function qα(Mz) is concave for 1 <
α ≤ 2, as shown in [21], and may be concave also out of
this range, with dependence on the channel parameters. When
qα(Mz) is concave, we can bound the supremum by taking
equal Mz’s, i.e., Mz = |X |/M , ∀z, and we get:

CQ ≤ |X |α−1ε

(
(|X |/M + µα/εα − 1)
(|X |/M + µ/ε− 1)α−1 +

(M − 1)
(
|X |
M

)2−α
) (26)

If M divides |X |, this bound is achieved by any feasible
encoder that partitions the source alphabet into equally-sized
subsets, thus the optimization is exact. An example for specific
values of µ and ε is presented in Figure 2. The bound is
compared with the bound obtained from the classical DPT
(6), the bound obtained from the trivial inequality RWZ(d) ≤
logM , the bound obtained by using (14) and the exact
solution of Theorem 3. RWZ(d) was calculated using the
Blahut-Arimoto-type algorithm presented in [20]. Eq. (22) was
optimized over α, for each M ≤ |X |, as to get the best
lower bound on the distortion. We see that even the classical

Fig. 2. |X | = 4, µ = 0.7. Plus - the lower bound obtained from (26),
Circle - the lower bound obtained from the classical DPT (6), Star - the exact
solution, Solid line - the lower bound obtained from RWZ(d), Square - the
lower bound obtained from (14).

DPT gives us non-trivial lower bounds and that the lower
bound obtained from (26) is much better than the trivial bound
obtained from RWZ(d). The lower bound obtained from (14)
is not useful in this case. There is a gap between the exact
solution and the best bound, even for M = 2, where the
optimization (13) is exact.

2) Example 2: The symmetric DMC is defined by:

p(y|x) =
{

1/l y ∈ {x mod |X |, . . . , (x+ l − 1) mod |X |}
0 else

(27)
where l is an integer, 0 < l < |X |, and |X | mod |X | is defined
to be |X |. Given an input x, the channel produces one of l
values with equal probability. The generalized capacity (13)



for this channel is given by:

CQ = |X |α−2 · sup

{∑
y,z

~pz · ~pαy|x̃
(~pz · ~py|x̃)α−1

}

= |X |α−2 · sup

{∑
y,z

My,z(1/l)α

(My,z(1/l))
α−1

}

= |X |α−2 · l−1 · sup

{∑
y,z

M2−α
y,z

} (28)

where My,z = l · [~pz ·~py|x̃]. It is easy to see that
∑
zMy,z = l.

For 1 < α < 2, the function M2−α
y,z is concave in Mz . Thus,

the supremum is achieved by setting My,z = l/M , ∀{y, z}:

CQ = |X |α−2 · l−1 · |X | ·M · (l/M)2−α = |X |α−1 · (M/l)α−1

(29)
If M divides l, equal My,z’s can be obtained by the following
feasible encoder:

z = f(x) = 1 + x mod M (30)

Therefore, in this case, the optimization is exact. For α > 2,
CQ is infinite, because we can always set some of the My,z’s
to 0 by appropriate choice of encoder. Thus, this range of α
does not lead to a useful bound. An example for specific values
of |X | and l is presented in Figure 3. The lower bound for the
distortion, which coincides with the bound obtained from (14),
is compared with the bound obtained from the classical DPT
(6) and the bound obtained by the trivial inequality RWZ(d) ≤
logM . Eq. (22) was optimized over α, for each M ≤ |X |, as
to get the best lower bound on the distortion. We see that in
this case, the generalized DPT leads to bounds that are better
than the trivial bound, whereas the classical DPT does not
lead to a useful bound. We also present the exact distortion
of the encoder defined in (30), which is of course an upper
bound on the distortion. Thus, the distortion of the optimal
encoder must be in the range between this upper bound and our
highest lower bound. For M = l, zero distortion can indeed
be achieved using the encoder defined in (30), thus our lower
bound in this point is tight.

Fig. 3. |X | = 4, l = 3. Square - the lower bound obtained from (26) and
(14), Circle - the lower bound obtained from the classical DPT (6), Solid line
- the lower bound obtained from RWZ(d), Star - the exact distortion of the
encoder (30).
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