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Abstract—The design of modulation schemes for the physical
layer network-coded two-way MIMO relaying scenario is con-
sidered, with nr antennas at the relay R,n4 and np antennas
respectively at the end nodes A and B. We consider the denoise
and-forward (DNF) protocol which employs two phases: Multple
access (MA) phase and Broadcast (BC) phase. It is known for ¢h
network-coded SISO two-way relaying that adaptively chaning
the networking coding map used at the relay, also known as
the denoising map, according to the channel conditions grely
reduces the impact of multiple access interference which ears
at the relay during the MA phase and all these network coding
maps should satisfy a requirement called theexclusive law The
network coding maps which satisfy exclusive law can be viewle
equivalently as Latin Rectangles. In this paper, it is showrthat for
MIMO two-way relaying, deep fade occurs at the relay when the
row space of the channel fade coefficient matrix is a subspace
of a finite number of vector subspaces ofC™AT"E which are
referred to as the singular fade subspaces. It is shown that
proper choice of network coding map can remove most of the
singular fade subspaces, referred to as the removable sinigu
fade subspaces. All these network coding maps are obtainabby
the completion of partially filled Latin Rectangles. For 2*-PSK
signal set, the number of removable and non-removable sindar
fade subspaces are obtained analytically and it is shown tha
the number of non-removable singular fade subspaces is a stha
fraction of the total number of singular fade subspaces. The
Latin Rectangles for the case when the end nodes use differen
number of antennas are shown to be obtainable from the Latin
Squares for the case when they use the same number of antenpas . .
irrespective of the value ofnr. For 2*-PSK signal set, the singular ~ 1he concept of_phyS|caI Ia}yer nEtWOV.k coding has_ attracted
fade subspaces which are removed by the conventional XOR a lot of attention in recent times. The idea of physical layer
network code are identified. Also, using the notions of isofsic  network coding for the two way relay channel was first intro-
and transposed Latin Squares, the network coding maps which q,ceq in [2], where the multiple access interference ogugirr
remove all the removable singular singular fade subspacesre t th | loited that th ication bet
shown to be obtainable from a small set of Latin Squares. at (ne relay was exploited so that the communication between

the end nodes can be done using a two phase protocol. Infor-
mation theoretic studies for the physical layer networkicgd
scenario were reported inl[3],][4]. A differential modutati

We consider the two-way wireless relaying scenario shoveecheme with analog network coding for two-way relaying was
in Fig[ with multiple antennas at the nodes, where dapsoposed in[[b]. The design principles governing the choice
transfer takes place between the nodes A and B with the hefpmodulation schemes to be used at the nodes for uncoded
of the relay R. It is assumed that all the three nodes operét@nsmission were studied ial[6]. An extension for the case
in half-duplex mode, i.e., they cannot transmit and receivehen the nodes use convolutional codes was donglin [7]. A
simultaneously in the same frequency band. We consider thelti-level coding scheme for the two-way relaying sceoari
denoise-and-forward (DNF) protocol originally introddc was proposed in[[8]. Power allocation strategies and &attic
[1], which consists of the following two phases: thamiltiple based coding schemes for two-way relaying were proposed in
access(MA) phase, during which A and B simultaneously9].
transmit to R and thdéroadcast(BC) phase during which R It was observed in[[6] that for uncoded transmission, the
transmits to A and B. Network coding map, which is alsoaetwork coding map used at the relay needs to be changed
referred to as the denoising map, is chosen at R in such a vemaptively according to the channel fade coefficient, ineord
that A (B) can decode the messages of B (A), given that & minimize the impact of the Multiple Access Interference
(B) knows its own messages. (MAI). For the single antenna two-way relaying scenario,

(b) BC Phase

Fig. 1. The Two Way Relay Channel
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a computer search algorithm called ti@osest-Neighbour  Multiple Access (MA) phase:Throughout, we assume

Clustering(CNC) algorithm was proposed inl[6] to obtain thea block fading scenario with the Channel State In-

adaptive network coding maps resulting in the best distanfmgmation (CSI) available only at the receivers. Let

profile at R. An extension to MIMO two-way relaying usingra = [u(sa,), 1(84,), ---,M(SAHA)]T € S", zp =

the CNC algorithm was made in_[10]. With a single antenna(sg, ), u(ss,), .- pi(ss, ,)]" € S"? denote the com-

at the nodes, the MAI becomes severe for channel fade stgisx vectors transmitted by A and B respectively, where

referred to as the singular fade states|[12]. An alternative,, sa,, ..., 54, ,,5B,,5Bys - 5B, € 5. The received sig-

procedure to obtain the network coding maps, based on e at R is given by,

removal of singular fade states using Latin Squares was

proposed in[[I2]. A quantization of the set of all possible

channel realizations based on the network code used Wgsere i, of size ngp x na and Hp of size ng x np are

obtained analytically in[[13]. the channel matrices associated with the A-R and B-R links
In this paper, it is shown that for the MIMO two-wayrespectively. The additive noise vectdl; is assumed to be

relaying scenario, the MAI becomes severe when the rQw (0, 021,,,).

space of the channel fade coefficient matrix is a subspace of et Sr(H4,Hp) C C"= denote the effective constellation

a finite number of vector subspaces @f4 "= referred to seen at the relay during the MA phase, i.e.,

as the singular fade subspaces. The notion of singular fade

subspaces subsumes in it as a special case the notion f(Ha, Hp) ={Haza + Hprplra € 8" 2p € S"7}.

singular fade states introduced [n [12] for the single anéen | 4 domin(H 4, Hp) denote the minimum distance between

two-way relaying scenario. It is shown that the network ogdi i, points in the effective constellaticy (H 4, Hz), i.e.,
maps totally avoiding the removable singular fade subspace

can be obtained by the completion of partially filled Latirgl

Yr = Hpaxa + Hprp + Zg,

min(Ha, Hg) = min Hy(xa—2"4) +Hp (zp — 2 .
Rectangles. (Ha B%wA,wB),@;,,w;B)esubﬂéug A=) z (o5 =) |
Notations: Let CA(0,021,,) denote the circularly symmet- (@a,2p)#(@,p)

ric complex Gaussian random vector of lengtlwith covari- @
ance matrixs21,,, wherel,, is the identity matrix of order,. ~ From (1), it is clear that there exists values i8f, [/ for
The binary field is denoted b¥.. All the vector spaces and Which dmin(Ha, Hg) = 0.

vector subspaces considered in this paper are over the ermj|
field C. Let sparicy, co,...cr) denote the vector space ovel
C spanned by the complex vectars, ¢z, ...cr, € C". For a
matrix A, AT denotes its transpose. For a vector subspacé 3
C", V* denotes the vector subspage: 27v = 0Vv € V}. 2+ x x X x
For a matrixH € C™*™, R(H) denotes the row space &f.
The all zero vector of length is denoted by,,. For a vector
z of lengthn, z;,1 < i < n denotes thaé’” component of
x. For vector subspacel;, andV, of C*, V; < V5, means a4 i
that V; is a subspace of, and V; £ V5, means thatl;
is not a subspace of;. By na x np system, we refer to
the two-way relaying system withy and np antennas at -3 ]
the nodes A and B respectively, with no restriction place
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on the number of antennas at the refay. For a vectorz, - In-Phase

Llizg] Il<i<js<mn denotes the vector obtained by tal(mgFig. 2. Diagram showing the effective constellation at teky for Hr ~
only thei*" to j*» components of:. 1+ 2 3 4+47T

A. Signal Model Example 1:Consider the case wheny, = np = 2

Consider the MIMO two-way relaying system withy, ng  and np = 1 and BPSK signal sef{+1} is used at the
and np antennas at the nodes A, R and B respectively aad nodes. WhefiH 4 Hg] ~ [1+j 2 3 4+ j]7, the
shown in Fig.[dl. It is assumed that the complex numbeeffective constellationS is as shown in Figld2. It is clear
transmitted in each one of the antennas at the end nodesgoelivsam Fig. [2 that for[Ha Hp] = [1+5 2 3 4+ j]7,
to the signal setS of size M = 2* where\ is an integer. dpi,(Ha, Hg) = 0.

Assume that A (B) wants to transmit J&n 4-bit (Ang-bit) Let AS denote the difference constellation of the signal set
binary tuple to B (A). At node A (B), the\n, (Ang) bits S, i.e., AS = {s; — si|s;, s} € S}.

are spatially multiplexed inta4 (ng) streams with each one Let us defineAzr = [(za — 2/4)T (zp — 25)T])T €

of the streams consisting of bits. The\ bits in each one of AS"4*"5 whereAzy = z4 — 2/y € AS™ and Azp =

the streams are mapped on to the signalsesing the map zp — 2z’ € AS"2, and Hg = [H4 Hp|. Also let Hp =
w:Fy — S and are transmitted. [h1 ha ...hn,]", where the row vectoh],1 < k < ng of



lengthny + np is the k™ row of Hr. From 1), it follows the BPSK signal seAS = {—2,0,2}. The vector subspace
that, f=Ilspan([2222]T)]* = [span([-2 —2 —2 —2]T)]* isa
singular fade subspace for this case.

Broadcast (BC) phasetet (¢ 4,%5) € S*4T"= denote the

d?. (Ha,Hp) = min HpAzx ||?. . - ;
min(Ha, Hp) ATEASTATE AatOp 4, I HrAz | Maximum Likelihood (ML) estimate ofz4,z5) at R based
nR on the received complex vectdiz, i.e.,
= min hE Ax|?. I .
Az€AS™ AT AwtOn 4 4ny ; i | (B4, 2) = arg (2!, ! I)IélgnA+nB Y — HA:E;‘ B HBCC/BL
A" B
) (3)

From [2) it follows thatd?,,, (Ha, Hg) = 0 if Hg is such Depending onf{ z, R chooses a many-to-one mag 7= :
that hl Az = 0,V1 < k < ng, for someAz € AS"atne, S"atns - & whereS” ¢ C"* is the signal set (of
Equivalently, ford?,,, (Ha, Hg) = 0, the vectorshy,1 < size betweenmax {M"+, M"5} and M"+7"#) used by R
k < ng should belong to the vector subspdepan(Az)]*- during the BC' phase. Note thatS’| should be at least
for someAz € AS™4*"5 . In other words, the row space ofmax {M™4, M"?}, to transmitmax{An4, Ang} information
the matrix Hz should be a subspace of the vector subspabis. The elements "4 "5 which are mapped on to the
[span(Az)]*, for someAx € AS™A*"& ford?, (Ha,Hg) Same complex vector s’ by the mapM*# are said to form
to become zero. a cluster. Let{Ly, Lo,...,L;—1} denote the set of all such
The channel fade coefficient matriXy is said to be aleep clusters. The formation of clusters féfy is called clustering,
fade matrix if d,..,(Ha, Hg) = 0. The row space of the and is denoted by’*%. For simplicity, in the rest of the
deep fade matrices are referred to as deep fade spaces paper, the cluste, is denoted by the subscrigt, where
The deep fade spaces are subspaces of the vector subspaceg < ¢ — 1.
[span(Az)]*, Ax € ASm4a*+mz which are referred to as the Example 3:For the2 x 2 system with BPSK signal set,
singular fade subspaceket F denote the set of all singular
fade subspaces, i.€F, = {[span(Az)]* : Ax € ASmatns}, {l0000)7,[0101]7,[1010]T,[1111)7}
Note 1: Note that singular fade subspaces depend only on [0001]7,[01007,[1011)7,[1110]T
the set{ Az : Az € AS"+*"5}, i.e., they are independent of 00107, j0111)7,[1000T,[1101]7} (" (4)
[ 17 I 17

) )

nR- 0011701107, (10017, 11007}
SISO two-way relaying as a special case: represents a clustering with four clusters. For two decoded
Consider the case whem, = np = nr = 1. Pairs(za,zp) and (z)y,2%), the relay transmits the same
The row space ofHgp, R(Hp) = k[H4 Hp]? = Vector from the signal s&’ if [x4 2] and[z/, 2’5] belong to
K1 H2]T where k, k' € C. For this casespan(Az) = the same cluster. For example, if R uses the clustering given
A Y Y N

c[Azs Azp]T, wherec € C and Az, Az € AS. Hence in (@), the vector transmitted during the BC phase will be the
the singular fade subspacepan(Az)-, Az € AS? are of SaMe if the decoded pair during MA phasé€([is0]%, [0 0]7)

the form ¢/[1 ﬂ]T, where ¢ € C. Note that for this ©' ([0 1]%, 0 1]%), since[0 00 0] and[0 1 0 1" belong to
Azp he same cluster.

) . t

case,R(Hg) and [span(Az)]+ are both one dimensional . . .

subspaces of the two dimensional vector sp&@éeover C. The r_ecelve_d signals at A and B during the BC phase are
respectively given by,

Hence forR(Hg) to be a subspace dfpan(Ax)]*t, it is

necessary thaR(Hg) = [span(Az)]t. It can be verified Ya=H\Xp+Za, Yp=HpXr+ Zp, (5)
that R(Hz) = [span(Az)]*- if and only if 42 — —8oa

. e _

Hence, the effect of the MAI is totally captured by thevhere Xr = MTr(is,ip) € S is the complex vector

ratio of the channel fade coefficientg2, consistent with transmitted by R. The fading matrices of siag x nr and

the results in[[6], [12]. Also, when the ratigf referred to gB ;{TLR cg;&c&/spondlng.to lthe R(’j-,‘i[\hand d?j?ta links aée dendoted
he fad “STLo1 b ot f y H', and H/, respectively and the additive nois&s, an

as the fade state in [12] gcomes_equa%@z? or Some 7 e eA(0, o).

Azy,Azp € AS, the minimum distance of the effective ) " 4o 1o ensure that A (B) is able to decode B's (As)

constellation at the relay becomes zero. The complex nusnb

Hessa es, the clusterigg'# should satisfy the exclusive law
—=Za whereAz,, Az € AS, were referred to as the[Eﬂ ieg ad’ y

sﬁ'lnguIar fade states in_[12].

From above, it is clt_aar. that the notjon of singular fgdeMHR(xAva) £ MHR(, op), Vo £ 2y € S ap € S78,
subspaces subsumes in it as a special case the notion @{#r(z,,2p) # MHR (24, 2),),Vap # ah € S"B w4 € S™A. }
singular fade states used for two-way relaying with single (6)
antenna at the nodes.

Example 2:Consider the2 x 2 system with BPSK signal  Definition 1: The cluster distance between a pair of clusters
set used at nodes A and B, with the Bitmapped onto+1 £, and£; is the minimum among all the distances calculated

and the bitl mapped onto-1. The difference constellation of between the pointdlaz4 + Hgxp and Haz!y, + Hpa'ly €




Sr(Ha,Hp), where (za,zp) € L; and (2/y,2’3) € L;. subspaces correspond to the singular fade states infinity an
The minimum cluster distancef the clusteringC#% is the zero respectively. Alternatively, the fact that these slagfade

minimum among all the cluster distances, i.e., states are non-removable has been stated in [6] as folthes:
distance shortening afiz/H4 ~ 0 (or Ha/Hp =~ 0) is
dimin (CHR) = min | Ha (za —a'y) + Hp (x5 —23) || - inevitable For SISO two-way relaying, the number of non-
(Ta,2p),(aly,a)p) €S ATIE, trivial non-removable singular fade subspaces remains two

MHUR (¢ ,T MHUR (2! 't . . . .
(rarrn)? (wa-75) irrespective of the size of the signal set used at A and B. In

The minimum cluster distance determines the performan%%mr,ast it will be seen in Sec'ugn_ Il that for MIMO twc_)-way
during the MA phase of relaying. The performance during tfglaying, the number of nonftnv_lal non_—remc_)vable smgu_la
BC phase is determined by the minimum distance of the sigrﬁﬁpe subspaces increases with increasing size of the signal
set &’. Throughout, we restrict ourselves to optimizing th&€t used at A and B.

. _iof. ;
performance during the MA phase. For valueghf such that -6t CF = {¢/: f € F} denote the set of all clusterings,
\hT Az| is small,¥1 < k < np, for someAz € AS"a+nz which remove a removable singular fade subspace.

k L f— f— b )

dmin(Hp) is greatly reduced, a phenomenon referred asNote 3: For every removable singular fade subspace, the set
distance shorteningTo avoid distance shortening, for evenf” cOntains exactly one clustering which removes that singula
removable singular fade subspace, a clustering needs to #if Subspace. The clusterings which belong to theCget
chosen such that the minimum cluster distance at ev&sy need not be distinct, since a single clustering can remove mo
whose rows belong to that singular fade subspace is non-zdfgn one singular fade subspace, as shown in the following

: oS example.
For a singular fade subspagec F, let dp.;,(C/, Hg) be Example 4:Consider the2 x 2 system with BPSK signal

defined as, set used at nodes A and B, with the bitmapped onto+1
; . , , and the bitl mapped onto-1. The difference constellation
Amin(€ ’Iiﬂj};),(wgﬂli;)esning{xA_xA)JFHB (@5 =7B)| of the BPSK signal set isAS = {-2,0,2}. Consider
M (@ a,25)£ M (2ly,2l) the singular fade subspacg, = [span([2 2 2 2]7)]* =

a _ _ _ _ Ty1L i
where M/ is the many-one map associated with the cIusterir{?pan([ 2 2 - ,2 , 2], ) A Ihe 2|nary vectors
cf Ay SA, 5By, SBy] (8, 0, B, sB,]" € F5 which result

: o , in the singular fade subspageare [0 0 0 0]7,[1 1 1 1]T.
s QC}ES? ”t?]?f;:iir‘?ﬂ?ﬂtc():llrjesrtg?vgi;:r:gguIér(fcidi;l';b?spa%e above tWQ vecto.rs need to be plaged in the same cluster
greater,than zero, for everfiy such thatg(z}l{R) ’<1} It by the clustermg whlch removes the singular fade subspace
there are more thém one clusterings which remove a.singufarThe clustering given in[{4) in Example 3 removes the
singular fade subspacg Since[0 01 1]7 and[1 1 0 0]7 are

fade_sgbspacé, choose any one 01_‘ th(_am. in the same cluster, the clustering given [ih (4) removes the
It is important to note that certain singular fade SUbSpacgﬁgular fade subspagl — [span([2 2 -2 —2|7)* —
cannot be removed. These are precisely the singular fﬁsSan([—Q _9 9 Q]T)]L I;S well

) 7 .
subspaces which are of the forfspan(Ax)]~, for which In general, the row space dfz need not be a subspace

Az =10,, Azg],Azp € AS™? or of a singular fade subspace. In such a scenario, among all the
Az = [Azs 0,,], Azy € AS™, clu§ter|ngs_wh|ch remoye_the singular fa(_je subspaces,rtee 0
which maximizes the minimum cluster distance is chosen. In

and are referred to as the non-removable singular fade sokher words, fofR(Hg) £ F, the clustering’# is chosen to
spaces. The reason for this is as follows: The gaif,z5z) beC/, which satisfieSlyi,(C/, Hg) > dmin(C!", Hg),Vf #
and (za,z’z) result in Az = [0, Azp]. But (z4,zp) and f’ ¢ F. Since the clusterings which remove the singular fade
(z4,2'3) cannot be placed in the same cluster since exclusiggbspaces are known to all the three nodes and are finite in
law given in [®) will be violated. Note thdt, , ., is also a number, the clustering used for a particular realizatiothef
non-removable singular fade subspace, referred to asitig tr channel fade coefficients can be indicated by R to A and B
non-removable singular fade subspace. using overhead bits.

Note 2: The non-trivial non-removable singular fade sub- In [6], a computer search algorithm called the Closest-
spaces for the SISO two-way relaying scenario are bleighbour Clustering (CNC) algorithm was proposed for two-
the form [sparf[Az 0]T)]* = spard[0 1)) and way relaying with single antenna at the nodes, which was
[sparf[0  Ax]T)]+ = spari[1 0]7), where Az € AS\ {0}. used to obtain the network coding map that results in the
Irrespective of the signal set used at A and B, the nobest distance profile. The CNC algorithm was extended to
trivial non-removable singular fade spaces are only two the multiple antenna scenario in [10]. The algorithm is run
number, since the vector subspadspar{[Axz 0]7)]+ are for a given Hg. The total number of network coding maps
the same for allAz € AS \ {0}. In terms of the notion which would result is known only after the algorithmis rum fo
of singular fade states [12], from the earlier discussion a@ll possible realizations offr which is uncountably infinite.
SISO two-way relaying as a special case of MIMO twoHence, the number of overhead bits required is not known
way relaying, it follows that the above two singular fadéeforehand.



In contrast, the scheme proposed in this paper is basedava assumed to be of the foreA?*+1m/M o <k < M —1
the removal of singular fade subspaces. Since the numberaofl M is of the form2*, where) is a positive integer.
singular fade subspaces is finite, the number of overhead bit For any A/-PSK signal set, the seiS is of the form,
required is upper bounded by the number of singular fade sub-
spaces, which is known beforehand. In other words, the tota| ¢
number of network coding maps required is known exactly,
which determines the number of overhead bits required. It is U {2sin(rn/M)el$27/ME7/AD |5 event, (7)
shown in Section Il that the problem of obtaining clustgen wherel < n < M/2 and0 < k < M — 1.

which remove all the singular fade subspaces reduces tcin other words, the non-zero points S lie on /2

completing a finite number of partially filled Latin Rectaeg] . S . :
which totally avoids the problem of performing exhaustivg'm[[e? (_)f r?g'ugbltn(ﬂ_ﬁ{M)’hl sns f\/[/2 :c/vg;éeach ::wcle
search for an uncountably infinite number of values. containing A% points. % e phase angies o points on

The contributions and organization of this paper are &&Ch circle is2kr /M, if n is odd andkr/M + m/M if n
follows. is even, wherd < k < M — 1. For example the difference

constellation for QPSK signal set is shown in . 3.
o The structure and the exact number of non-removable andn Q 9 i

removable singular fade subspaces fér— PSK signal
set (M any power of 2) are obtained analytically (Sectiol
I). It is shown that the fraction of the number of non-  2r T
removable singular fade subspaces to the total number
singular fade subspaces tends to zero for large values 1.5f x X “x
M (Section ).

« Itis shown that the requirement of satisfying the exclusiv =~ 1§
law is same as the clustering being represented by
partially filled Latin Rectangle (PFLR) and can be usedt 0.5
get the clustering which removes singular fade subspac : :
by completing the PFLR (Section Il A). U x x x

« It is shown that the Latin Rectangles which remove tr : : :
singular fade subspaces for the case when end noi —0.5¢
have unequal number of antennas, ixe4 # np can
be obtained from the Latin Squares which remove tt
singular fade subspaces for the case when the nodes h o R <
equal number of antennas= max{n., np}(Section Il
B).

o The singular fade subspaces which are removed by 1
conv)entional Exclusive-OR map are identified (Sectio - -1 0 1 2
I C).

o It is shown that finding the network coding maps which Fig. 3.
remove all the singular fade subspaces reduces to finding

a small set of maps. The entire set can be obtained from ) ) o
the small set by the notions of isotopic and transposedThe following Lemma is useful in finding the structure as
Latin Squares (Section Il C) well as number of singular fade subspaces.

« The set of all Latin Squares which remove all the singular Lémma 1:For integersky, k2, [y andly, where
fade subspaces for the case whep = ng = 2 and M
QPSK signal set is used at the end nodes is explicitly 1<k ko liyla < =2 k1 # ko andiy # 1,
provided (Section V). sin(kyr/M)  sin(liw/M)

o Itis shown that most of the Latin Squares which remove sin(kam/M) _ sin(lgn/M)’ ®)
the singular fade subspaces for thex n system,n > . .

. . : if and only if k& =13 andky = [5.

2, are obtainable from Latin Squares which remove the
singular fade subspaces of thex m system, wheren < Proof: See [13]. u

={0}u {2 sin(mn/M)edk2/M |5, odd}

Difference constellation for QPSK signal set

n (Section V). Recall from Section | that the singular fade subspaces are

R of the form [span([Az% AzL]T)]+, where Az, € AS™
Il. SINGULAR FADE SUBSPACES FOR"-PSK andAzp € AS"2. Let Az} (Ax'y) denote then'” element

SIGNAL SET of Az (Azp). Let iy, is,...,ir, be the ordered indices for

In this section, the structure as well as the total numbatich Az’f # 0,1 < k < L. Similarly, let ji, jo, ..., jr/
of singular fade subspaces is obtained for arbitrzatyPSK be the ordered indices for whichz); # 0,1 <k < L'. Let
signal sets. The points in the symmetii¢-PSK signal set (bfjf,l <k < Land¢},1 <1< L' denote the phase angles of



A:z:if andA:z: respectively. Let the vector of lengfii-L'—1 Example 6:For the2 x 2 system with QPSK signal set,
i i is i i . it can be seen from Fid.] 3 that the non-zero points in the
[(#% - #4) A _A)“‘( A _A) difference constellation lie on circles with radii2 and 2.
(¢ —64) (85 —dW) (0 =" ForAz =[0 vZ+jvZ VvZ-jv2 vZ+;v2") and
Ax' =[0 V2 —jv2 +/2]7)], the location of the non-zero
components iMz and Az’ are the same. The relative phase
vectors of Az and Az’ are equal. Also, we haveAuz,| =
|[Azs| = |Axy| = 4, |Azhy| = |Axh| = |Az)| = 2. Hence
the vector subspac¢spar([0 V245v2 V2—5vV2 2+
7v2]1)* and[sparf[0 v2 —jv2 /2]T)]* are the same.

be referred to as the relative phase vectoAof.

Note that [span(Ax)]*- and [span(Az’)]* can be the
same for someAz, Az’ € AS"atnE. A necessary and
sufficient condition for[span(Ax)]* = [span(Axz’)]*, is
that span(Axz) = span(Az’), i.e., Az = cAz’, for some
c e C Equivalently, the conditions fofspan(Ax)]+

[span(Ax’)]*can be stated as follows: As mentioned in Section |, the singular fade subspaces
« The location of the non-zero components is the same &N Pe classified in to removable and non-removable sin-
the vectorsAz and Ax’. gular fade subspaces. The non-removable singular fade sub-
« The relative phase vector dfz and Az’ are equal. spaces are of the fomibpa;l([fm Ong)")] ', Aza €
e |Azj| = c|A2l|, V1 < i< na+np, for somece C.  AS™ or [span([0,, Axzp]")]=,Azp € AS"Z. The

For 2* PSK signal set, given the first condition, the thir T oA L

condition given above can be replaced by the condition giv span([Az Axp]")]™, Ava # On,, Az # Oy

in the following lemma. The following lemma gives the total number of non-
Lemma 2:Let 41,19,13, ...,i;, be the ordered indices cor-removable and removable singular fade subspaces.

responding to the non-zero componentsAim and Az’ (the

location of the non-zero components is the same in the \&ctor

Az and Az’). For 2*-PSK signal set,|Az;| = c|Az)|,

V1l < i < na + np, for somec € C, if and only if the

magnitude of the non-zero componentsAn: are equal and

the magnitudes of the non-zero componentairl are equal,

(iemovable singular fade subspaces are of the form

Lemma 3:For M-PSK signal set{/ any power of 2),

« the total number of non-removable singular fade sub-
spaces is given by,

e M\* M
e|-1 |é$|11| = |A:Ei2| = |A‘T1L| and|A,’E;]| = |A‘T;2 = Z(n];4> |:(?> —74-1 MF1
| A . k=1
Proof: When the condition given in the statement of the n nzB (") [(M>l M
lemma is satisfied, clearlyAx;| = c|Ax}|, V1 < i < ny + 2
nB. . ) « the number of removable singular fade subspaces of the
The proof of the “only if” part is as follows. Leil < form [sparfAz)]- with 2 < & < n4 +np non-zero
rn < rg < .. < r, < nay be the indices for which components iM\z is givenTJy B

Azxf #0,Azf # 0,1 < k < L. Similarly, let1 < j; <

J2 < .. < ji < np be the indices for wh|cm:ng + A +np - s M\ M o
08k 4 01 < k2L Sincespan(Aa) = spanaey, (5= (D)= (O] [(R) - Eea] e
we have, )
Hence the total number of removable singular fade
Aw:‘] . Aw;‘z o Am;{‘ B Aijl B Aijz o Amg‘ SUbSpaCGS IS,
Am/:ll Am/:f AI/:‘L AwljBl Aw’g Az’gL . na+np
9 Z ([(nA +nB> B (m) B (ms)}
= k k k
From [7) it follows that the absolute value of the ratio of MNE M
the pomts in the difference constellatidaS are of the form {(2> -5 1} Mm* 1>

SN for some 1 < k,1 < M/2. Equating the absolute

sm( lTr )

values of the terms if{9) and from Lemik 1, it follows that
the absolute values of the non-zero componentsimeed to
be equal and the absolute values of the non-zero components
in Az’ need to be equal. This completes the proof. Example 7:Consider the MIMO two-way relaying system
B withny =2 andng = 2. From Lemmd.B, the non-removable

Example 5:For the2 x 2 system with BPSK signal set, for singular fade subspaces for BPSK are 4 in number and are the
Az =[022—-2]T andAz’ = [0 —2 —22]T, the location of ones numbered from 1 to 4 in Table I. For QPSK signal set,
the non-zero components iiz and Az’ are the same. The there are 28 non-removable singular fade subspaces. Fd¢ BPS
relative phase vectors dfz andAx’ are equal. Also, we have, and QPSK signal sets, the number of removable singular fade
|Axs| = |Azs| = |Axy| = 2, |Ax,| = |Azh| = |Ax| = 2. subspaces of the forfsparfAz)]+, whereAz hask non-zero
Hence,[sparf[0 2 2 —2]T)]* = [spar{[0 —2 —2 2]T)]*.  entries are as given below:

where () is defined to be zero i > a.

Proof: See Appendix A. [ |



SINGULAR FADE SUBSPACES FOR THE X 2 SYSTEM WITH BPSKSIGNAL

No. Singular fade subspace
1 [spar{[0 0 2 2]T)]T=[spar{[0 0 —2 —2]T)] -
2 [spar{[0 0 2 —2]T)]T=[spar{[0 0 —2 2]T)] T
3 [spar{[2200]7)]T=[spar{[-2 —2 0 0]T)] -
4 [spar{[2 —2 0 0]T)] - =[spar{[—22 0 0]T)]*
5 [spar{[0 2 0 2]T)]+=[spar{[0 —2 0 —2]T)] -
6 [spar{[0 2 0 —2]T)] - =[spar{[0 —2 0 2]T)] -
7 [spar{[2 02 0]T)] L =[spar{[—2 0 —2 0]7)] -
8 [spar{[2 0 —2 0]T)] T =[spar{[—2 02 0]T)]*
9 [spar{[2 00 2]7)] - =[spar{[—2 00 —2]T)] -
10 [spar{[2 00 —2]T)] T =[spar{[—2 00 2]T)]*
11 [spar{[0 22 0]T)]L=[spar{[0 —2 —2 0]T)] -
12 [spar{[0 2 —2 0]T)] - =[spar{[0 —2 2 0]T)]*
13 [spar{[0 2 2 2]T)] T =[spar{[0 —2 —2 —2]T)]*
14 [spar{[0 2 2 —2]T")] L =[spar{[0 —2 —2 2]T)]+
15 [spar{[0 2 —2 —2]T)] - =[spar{[0 —2 2 2]T)] -
16 [spar{[0 2 —2 2]T)] - =[spar{[0 —22 —2]T)] -
17 [spar{[2 02 2]T)] L =[spar{[—2 0 —2 —2]T)] -
18 [spar{[2 02 —2]T)] T =[spar{[—2 0 —2 2] T)] -
19 [spar{[2 0 —2 —2]T)] T =[spar{[—2 0 2 2]T)]*
20 [spar{[2 0 —2 2] )] T =[spar{[—2 02 —2]T)] -
21 [spar{[2202]T)]T=[spar{[-2 —20 —2]T)]*
22 [spar(2 2 0 —2]7)]-=[spar{[—2 —2 0 2]T)] -
23 [spar{[2 —2 0 —2]T)] - =[spar{[—22 0 2]T)] -
24 [spar{[2 —2 0 2]T)] L =[spar{[—220 —2]T)]+
25 [spar{[2 22 0]7)] - =[spar{[—2 —2 —2 0]T)] -
26 [spar(2 2 —2 0]7)] - =[spar{[—2 —220]7)]*
27 [spar([2 —2 —2 0]T)] T =[spar{[—2 2 2 0] )]+
28 [spar{[2 —2 2 0]T)] T =[spar{[—22 —2 0] )] -
29 [spar([2 2 2 2]T)] T =[spar{[-2 —2 —2 —2] )]+
30 [spar([2 2 2 —2]T)] L =[spar{[—2 —2 —2 2]T)] -
31 [spar{[2 2 —2 —2]T)] L =[spar{[—2 —2 2 2]T)] -
32 spar{[2 2 —2 2] )]t =[spar{[—2 —2 2 —2]T)] -
33 spar{[2 —2 2 2] 7]t =[spar{[—2 2 —2 —2]T)] -
34 spar{[2 —2 2 —2]T)] T =[spar{[—2 2 —2 2]T)] -
35 spar{[2 —2 —2 2]T)] T =[spar{[—222 —2]T)] -
36 | [spar{[2 —2 —2 —2]T)]T=[spar{[—2222]T)] T
TABLE |

SET, WHERE THE SINGULAR FADE SUBSPACES NUMBERED TO 4 ARE
NON-REMOVABLE AND THE REST ARE REMOVABLE

k No. of removable singular fade subspa
BPSK QPSK
2 8 48
3 16 448
4 8 960
Total 32 1456

The removable singular fade subspaces for BPSK signal
which are 32 in number, are the ones numbered from 5 to

in Table .

res

IIl. THE EXCLUSIVE LAW AND LATIN RECTANGLES

For the two-way relaying scenario, with single antenna at
the nodes, with signal sets of equal cardinality used at the
end nodes, it was shown in_[12] that all network coding maps
satisfying the exclusive law are representable as Latirafxgu
In this section, we establish the connection between Latin
Rectangles and network coding maps satisfying the exdusiv
law, for the MIMO two-way relaying scenario.

Definition 4: [11] A Latin Rectangle L of orderV; x N,
on the symbols from the set; = {0,1,---,t — 1} is an
N1 x Ny array, in which each cell contains one symbol and
each symbol occurs at most once in each row and column. A
Latin Rectangle of ordelN x N is called a Latin Square of
orderN.

Let the points in thel/-point signal set used for transmis-
sion at the nodes be indexed by the elements of th& get
{0,1,2,...,M — 1}. Consider anM"4 x M"5 array at the
relay with the rows {columns) indexed by the 4-tuple(\n s-
tuple) [xa,, 245,24, ] \[TB, 2B, ... 2B, ,]) denot-
ing the complex vector transmitted by node ¥Bj. Our aim
is to form clusters from the slots in th&/™4 x M"™5 array
such that the exclusive law is satisfied. To do so, we will
fill in the slots in the array with the elements of s&t and
the clusters are obtained by taking all the row-column pairs
(i,9),% € Zy},j € ZL7 such that the entry in théi, j)—th
slot is the same symbol froi; for a cluster. The specific
symbols fromZ, are not important, but it is the set of clusters
that are important. Now, it is easy to see that if the exckisiv
law need to be satisfied, then the clustering should be such
that an element in a row (column) cannot be repeated in the
same row (column). Thus all the relay clusterings whichségati
the exclusive law form Latin Rectangles. Hence, we have the
following:

For MIMO two-way relaying, every relay clustering which
satisfy the exclusive law forms a Latin Rectangle and vice
verse.

With this observation, the study of clustering which sagisfi
the exclusive law can be equivalently carried out as theystud
of Latin Rectangles with appropriate parameters.

A. Removing singular fade subspaces, Singularity-removal
Constraints and Constrained Latin Rectangles

Consider a singular fade subspgce F. Let (k,1)(k',l') €
Zy x Zh} be the pairs which result iMz such that
[span(Ax)]*+ f. If (k,1) and (k',1') are not clustered
together, the minimum cluster distance will be zero, forra}

ch thatR(Hp) < f. To avoid this, those pairs should be
ftPthe same cluster. This requirement is termediagularity-
removal constraintSo, we need to obtain Latin Rectangles

From Lemmal[B, it can be seen that the number nowhich can remove singular fade subspaces and with minimum

removable singular fade subspacesOigh/?max{na.ns}=1)

value fort. Therefore, initially we will fill the slots in the

while the number of removable singular fade subspacesig™4 x M"™5 array such that for the slots corresponding to a
O(M?(ratns)=1) Hence, the number of non-removable sinsingularity-removal constraint the same element will bedu®
gular fade subspaces is a small fraction of the total humt@k slots. This removes that particular singular fade swaosp
of singular fade subspaces and the fraction tends to zero irch a partially filled Latin Rectangle is calledCanstrained

increasing

values ol\/.

Partial Latin Rectangle(CPLR). After this, to make this a



00| 0110 11 singular fade subspaces for thex n system, wheren =
00 3 max{na,ng}, by removing certain rows or columns.
01 For ng > nga, if [spai[Az’, AzL]T)]t is a sin-
10 gular fade subspace for thers x np sSystem, then
1] 3 [sparf[0Z, _,,, Az’ AzL]T)]* is a singular fade subspace
Fig. 4. Constrained Partial Latin Square correspondingiéosingular fade for the np x mp system. Similarly, forny > np, if
subspacéspan([2 2 —2 —2]7)]* [sparf[AzT AzL]T)]t is a singular fade subspace for the
na x np system, therffspar{[Az% 07 _ =~ AzL]T)* is a
00/01]10] 11 singular fade subspace for the, x n4 system.
Wj0]1]2]3 For a Latin Squard. of ordern, let L;.,.,; denote the Latin
01]1/0]3]72 Rectangle of order x n obtained by taking only the first
10/2|13)]01 rows of L. Similarly, let L. .., denote the Latin Rectangle
111312 |1]0 obtained by taking only the first columns ofL.
Fig. 5. Latin Square corresponding to the bit-wise XOR mapB&SK Lemma 4:Forng > ny, if the Latin Squard. removes the
signal set singular fade subspadepar{[0] ., = Az’ AzL])]* for the

np X np system, the Latin Rectanglg .~ ;) removes the
singular fade subspadspar{[Az% AzL])]+ fortheny x np

Latin Rectangle, we will try to fill the other slots of thesystem. Similarly, forna > n, if the Latin Squard. removes
partially filled CPLR with minimum number of symbols fromip,o singular fade subspafspar([Az7, 07 AT for

he setZ i el
the setZ;. thena x na system, the Latin Rectanglg, ;. )z removes

Example 8:Consider the2 x 2 system with BPSK signal e singular fade subspadspari[Az” Az%)T)L for the
set used at the end nodes. Consider the singular fade subs%cx np system.

TVL _ TyL

[Span@ 2 -2 - 20 = [Spfm([_2 -2 2 2151 Proof: Consider the case wheng > n4. Let f denote
The singularity-removal constraint for this singular fadg,q, singular fade subspadspari[0” AL ATt
subspace is{([0 0],[1 1]),([1 1].[0 0])}. The constrained ) e o system. LetAx, iB[_O" Az%)T. The

partial Latlr_1 Squgre for this case 1S shown in Flg. ASinguIarity removal constraints fof are of the form,
The clustering which removes this singular fade subspace,

given in [2) in Example 3, can also be represented as a

Latin Square shown in Fi@l] 5. For the singular fade subspace {([X (1., . XA (nps —nasims]) +XB);
[span([0 —2—22]7)]+, the singularity removal constraints are T /T /T
{00, 0 1), (0 1],[10)}, {([1 0], [0 1]), (1 1], [10)}} (A pns 01 X Bns—nasrne) X B
The constrained partial Latin Square and the filled LatWherexap,, —n,+1:n5)] = X Bins—nating = ATa, Xp —
Square which removes this singular fade subspace are sho = Az andxafi.,, —n,) € 8"~ "4. FOr xa;

. o . Lnp—nal =
respectively in Figll6 and Fidl 7. On,—nz, the singularity removal constraints are,
B. Obtaining Latin Rectangles from Latin Squares {05 —na] XA (ng —nas1ms]l XB);
: L . : T T
In this section, it is shown that the Latin Rectangles which (P T— X/B[annAJrl:nB]’XIB)}‘ (10)

remove the singular fade subspaces for thex ng system

can be obtained from the Latin Squares, which remove thd the cells given in the constraintd (10) belong to the
rows 1 to Mn4. Since the Latin Squaré which removes

[spar[0y, _,,, Az’ Azf])]* satisfies the constraints in{10),

00| 01|10| 11 the Latin Rectangle ;.4 satisfies the constraints
00 0 T T T 1T /T
01 0 {([XA[annAJrl:nB]] ,xg); ([x Blng—na+1np] X B}
10 1 which are the singularity-removal constraints correspogd
11 1 to the singular fade subspafspar([Az”, Az%]T)]* for the
Fig. 6. Constrained Partial Latin Square correspondinghéosingular fade 14 X np System. |
subspacdspan([0 —2 —2 2]T)]*. Example 9:Consider thel x 2 system with BPSK sig-

nal set. The Latin Rectangle which removes the singular
fade subspacéspan([ —2 — 2 2]7)]*+ shown in Fig.[8
is obtained by taking only the first two rows of the Latin

00| 01|10 11
ooy 3021

0111203 Square in Fig[d7 which removes the singular fade subspace

101011132 [span([0 —2 —2 2]7)]* of the2 x 2 system.

11]2]3]1]0 From Lemmd# it follows that the network coding maps
Fig. 7. Latin Square that removes the singular fade subspaea(0 — for the case whem4 # np can be obtained from network

2 -2 2]+ coding maps for the scenario in which the number of transmit



00| 01|10 11
ooy 30| 2]1
oL 1}2]0| 3

Fig. 8. Latin Rectangle that removes the singular fade saadejppan([—2—
2 27+

antennas at A and B = max{n4,np}. Hence, in the rest of
the paper it is assumed thaty = ng = n and the network
coding maps to be obtained are Latin Squares.

Note 4: If the maximum entry in the filledr x n Latin

Square from which the Latin Rectangle is obtained is greater
thann — 1, the obtained Latin Rectangle also can have entries
greater tham — 1. Since the performance during the BC phase

is dependent on the number of distinct entries in the filletin_a
Rectangle, this adversely impacts the performance duhiag

BC phase. In that case, obtaining the Latin Rectangle bydire’

00| 01|10 11
00| 3 1 0 2
o1y 02|13
10| 2 0 3 1
111|320
Fig. 9. Latin Square that removes the singular fade subspace
[span([-220 —2]T)]+.

Equating the magnitude and phase term<1d (11) results in
the following possibilities:

ki-i-k; Zli-i-l;-i-li, (12)
ki — k) =1; — L otk; — ki = 1) —1; + M. (13)

Solving [I2) and[(I3), we get; = I;, k. = I; or k; =
/

b M=k M
Similarly for the case whex 4, = —Azp,, the conditions

completion of CPLR, instead of obtaining it from the Lati%,li, k! andl; should satisfy arel; = I/, 1; = k! or k; = I; +

Square, may lead to a better performance.

C. Some Special Constructions of Latin Squares

Recall that the rows and columns of the Latin Squares ate+ & or k; = I, 1, = k] or k; = I; +

indexed by vectors which belong @},. By bit-wise XOR

Mkl =1+ % . Hence, it needs to be shown that the bit-wise

XOR map places in the same cluster those vector gairg
and (K, 1), for which k; = 1;,k} = I, or k; = I} + & 1; =
M ki=1+24 or

ki =1U,1; =k, ork; =1; + 2 k] +%§,v1gz‘gL.

of two such vectors, it is meant the vector obtained by taking The Latin Square corresponding to the bit-wise XOR map
the bit-wise XOR of the individual components of the twahas the following properties:

vectors, after decimal to binary conversion. Every cellhie t
Latin Square corresponding to the bit-wise XOR mapping

filled with the decimal equivalent of the bit-wise XOR of the

row index and the column index.

Consider the singular fade
[span([AzaAxp]T)]+, which satisfy the condition that
Azxy, = £Azp,,V1 <i < n. Let Fi denote the set of such

singular fade subspaces. In the following lemma, it is shown
that bit-wise XOR mapping removes all the singular fade

subspaces which belong ...

Lemma 5:When the user nodes u8&-PSK constellations,
the singular fade subspaces which belong to theFetare
removed by bit-wise XOR mapping, for all.

Proof: By definition, for f = span([AzaAxg]T)t) €
F+, the non-zero locations cdAz 4 and Az should match.
Let L be the number of non-zero components A4
and Azp. Without loss of generality assumedz; =
[Azy, Az, ... Azy,0,-1]7,J € {A, B}, (if the non-
zero components ofAxz4 and Axzp appear in any other
order, the indexing given for the transmit antennas can

permuted to get the assumed ordering). By definition, a

f € Fy should satisfy, Az, = +Azp,,1 < i < L. Let
za, = ki1 < i < Landzp, = [;,1 < i < L. For
{[k1 ko o kp Iy lo o 0n)T [y K Ky 0 0T
to be a singularity-removal constraint, sinde 4, = +Azp,,
it follows that,

Consider the case whehz 4, = Azp,.

jlim g
e M —e M

),1§z’§L. (11)

subspaces
L[]

3

o k;+k; = 0. Hence, it places vectors withy = [;,
in the same cluster.

o ki+1l; =k — % +1; — %-. Hence, it places vectors with
ki =1+ 201 =k + g in the same cluster.

ki +1; = l; + k;. Hence, it places vectors with; =

IL,1; = k. in the same cluster.

. l
is !
M

o ki+k;— % =1+ — % Hence, it places vectors with
ki =1; + 5, ki = l; + 5 in the same cluster.

This completes the proof. |
Example 10:Consider the2 x 2 system with BPSK signal
set. The singular fade subspaces 6-9 and 30-37 (12 in total)
given in Table 1 belong t&.. and are removed by the bit-wise
XOR map.

Definition 2: A Latin SquareL” is said to be the Transpose
of a Latin SquareL, if LT(i,j) L(j,7) for all 4,5 €
{0,1,2,.., M —1}.

Lemma 6:If the Latin Squarel. removes the singular fade
subspacdsparf{[Az? AzL)]T]L, then the Latin Squard,”
femoves the singular fade subspasgar{[AxL AzT)|T]+.

n Proof: The singular fade subspace
[%lpani[Aazg AzL)T1+ can be viewed as the singular
fade subspacdspari[AzL Az%)|T]+ with the users A
and B interchanged. Interchanging the users is the same
as interchanging the row and column indices, i.e., taking
transpose. [ |

Example 11:For a2 x 2 system with BPSK signal set,
since the Latin Square given in Figl 7 removes the singular
fade subspacéspan([0 —2 —2 2]7)]+, from Lemmal®, its
transpose shown in Fifl 9 removes the singular fade subspace
[span([—220 —2]7)]*.



00| 01|10 11 00| 01|10 11
00| O 1 2 3 01| 3 0 2 1
10| 1| 0| 3| 2 oo 12|03
01| 2 3 0 1 11| O 1 3 2
11| 3| 2|10 1002 (3]1]O0
Fig. 10. Latin Square obtained from XOR map by the permutatibrow  Fig. 12. Latin Square that removes the singular fade sulsgppan([02 —
indices 2 2|7+
00| 01|10 11 00l o011 10T 11
01| 2 3 0 1 01| 3 0 2 1
11| 3 2 1 0 111 0 1 3 2

Fig. 11. Latin Square which is same as the one shown in[Eig. 10 Fig. 13. Latin Square that is same as the Latin Square in[Bg. 1

Definition 3: [11] Two Latin Squared. and L ’ (using the
same symbol set) are isotopic if there is a trifflg,h), where
f is a row permutationg is a column permutation antl is
a symbol permutation, such that applying these permuiti
on L gives L.

Consider a vectonz = [Az] AZL]T, where Az, and
Azp are obtained by the applying the permutatiens and
op on Az, and Azp respectively. Equivalently this can
be viewed as applying the permutatiomg and op on the
indices of the transmitting antennasiat andn g respectively.
Since the rows and columns of the Latin Squares whi%h

r

ko 2m : - .
. . an angle®2:== ' can be viewed equivalently as rotating the

remove the singular fade subspaces are indexed by the sec M ‘

transmitted by nodesd and B respectively, applying the phase of the signal set used by the antennat node A, by the

i 1
permutationss 4 andop on the components of the row andSame angle. In the Latin Squakethat removesspar(Az)|~,

column indices of the Latin Square which removes the sirrgulthIS change can be effected by addihg, modulo M to the

dn indi imi i
) ; . : t of the row indices. By a similar reasonihg,
fade subspacgspariAz)|* results in an isotopic Latin Square’._ SOMPONeN . :
which rempove?zpthg sin)g]ular fade subspé F:(A@)]L. T?]is negds to be added to the column indicesZofo obtain L’
is stated as the following lemma. ThIIES comlplelt:séhe p(;ooi'h@ 9 svst ith BPSK si n |
Lemma 7:If a Latin SquareL removes the singular fade xampie 1s.L.onsider X = system wi signail
subspacéspar{Az)] -, the Latin Squard. obtained by apply- set. As discussed in Example 8, the Latin Square shown in Fig.

H _9_ T\1+ —
ing the permutatior 4, on the components of the row indice%I remcz)v2eséth2eTsmf1u:§1r fadf subsdip:%qcmg([j(.) 2 2? I)] 2:
and the permutatioms on the components of the cqumnSpam[ —2]")]~. From Lemma.B, adding modulo 2 to

indices of L removes the singular fade subspésgariAz)|-. th_e second component of the row |nde>$ in the Latin _Squ_are in
) . ; ; Fig.[d, we get the Latin Square shown in Hig] 12 which is the
Example 12:Consider the2 x 2 system with BPSK signal h in Fig113, which the sinaular fad
set. As seen in Example 10, the XOR map given in Elg. me as e one in =i » Which removes the singular fade

_ Ty1L
removes the singular fade subspaces 6-9 given in Tablesy$zpac¢s$a;m[02 ?E] ) ﬂ[ﬁ 8 is that th t of all Lati
Permuting the components of the row indices of the Lati € useluiness ot Lemm -o IS that the set of all Lalin

Square in Figlh (i.e., the first component becomes the sec ares which remove all the si.ngular fade sups_pa_ces can be
component and vice verse), results in the Latin Square F tained from a small set of Latin Squares. This is illusitat

[0, which is the same as the Latin Square shown in[Ely. 11" the 2 x 2 system in the following subsection.

From Lemmd, it follows that the Latin Square in Higl 1
removes the singular fade subspaces 9-13 given in Table
Consider the case whel-PSK signal set {/ any power
of 2) is used at the end nodes. Consider two singular fadeConsider the2 x 2 system with M-PSK (M any power
subspacefsparfAz)]* and[sparfAz)]* which are such that of 2) signal set used at A and B. For this case, the
the absolute values of the components/f and Az are singular fade subspaces are of the fojsparfAz)]- where
equal, i.e., they differ only in the relative phase vecttet Az = [Aza, Aza, Arp, Axp,|T € AS? Let k be the
(0% ¢E]T and [¢'" #'L]T be the relative phase vectors &f:  number of non-zero componentsanz. The following lemma
and Az respectively, where 4 and ¢/, are of lengthn — 1, gives the sufficient number of Latin Squares from which the
and ¢p and ¢’z are of lengthn. Let A¢g4 = ¢4 — ¢/, and Latin Squares which remove all the removable singular fade

Adp = dpp—dly. AlsOletAga, = 227 andAgp, = L2227
Lemma 8:For 2*-PSK signal set, letL denote the

Latin Square which removes the singular fade subspace

O[gpar(Ax)]L. The Latin Squard.” which removes the singular

fade subspacsparfAz)]+ can be obtained from as follows:

To the i*» component of all the row indices of. add

ka,,¥1 < i < n modulo M and to thei** component of

all the column indices of. addkp,, V1 < ¢ < n modulo M,

to obtain the Latin Squaré’.

Proof: Rotating the phase of th&" component ofAx 4

ij' Sufficient number of Latin Squares to be obtainedfer2
System with)M/-PSK signal set



subspaces can be obtained. For this case, from Lemn{d 3, there ailﬁé— MM
singular fade subspaces. The total number of Lat|n Squares t
Lemma 9:For the2 x 2 system, with2*-PSK signal set, be obtained is equal to the total number of ways of choosing
the sufficient number of Latin Squares from which the Latitwo elements from\S\ {0} minus the number of cases which
Squares which remove all the removable singular fade sulsult in the same singular fade subspaces. The total number
spaces of the formspar{Az)]+, with k£ non-zero components of such possibilities is,

in Ax can be obtained are gi\{en by, % % o u: M
k No.of Lat|n Squares + ——4+1l=———+1.
. 2 1 2 8 4
2 A M1
3 M —z — M . . n
i B Note 5: Lemmal® provides only the sufficient number of
it ar — " — % + 1L Latin Squares from which all the Latin Squares can be

obtained. The actual number can be lesser than the number
Proof: Case 1: k=4 given in LemmdD, since the same Latin Square can remove
';f’r t]r:;s casg, from Lemmall3, there arg e than one singular fade subspace. For example, from
(7) -5+ 1} M? singular fade subspaces. Lemmal5 it follows that the bit-wise XOR map removes more
For vectorsAz and Az such thaiAz;| = |AZ;|,V1 <4 < than one singular fade subspace.
n i.e., Az and Az differ only in their relative phase vectors,
from Lemméy, the Latin Square which removesaiiAZ)] |y || | USTRATIONS FOR THE2 x 2 SYSTEM WITH
can be obtained by row and column permutations. This reduces
QPSK SIGNAL SET
the total number of Latin Squares to be obtained by a factor
M?3. In other words the total number of Latin Squares to be Consider the2 x 2 system with QPSK signal set. The non-
obtained is upper bounded t{)(M) -5 + 1} zero points of the difference constellation of the QPSK algn
Consider the setA82 = {{Az, sz} c AS? . setAS lie on two circle with radiiv/2 and2. The four points

Aty Ay # 0}. There are( )+ (%) B M(Agﬁ) choices ©ON the circles with radius/2 have phase angle$’™ and

for the pair {Azr, Azs}. If Az and Az such that the t(f;g:ll)go(l)ntsrzn;ge circle with radius have phase angles

unordered paird Az Azp} and{Az,AZp} are the same, M .
from Lemma8, the Latin Square which removes the smgularAS seen in Example 7, there are 1456 removable singular

fade subspaceésparfAz)|- can be obtained from the 0ne|g fade subspaces, out of which 960 have- 4. From Lemma
which removessparAa)]*. it follows that the set of Latin Squares which remove all

Hence the number of Latin Squares to be obtained is eq se 960 singular fade subspaces can be obtained fromrb Lati
to the number of ways of choosing two elements from the s puares, which remove the following singular fade subspace
ASZ, minus the number of cases which results in the same — spar[Vv2 + jvV2 V2 + jvV2 V2 + jvV2 V2 + jV2))]H,
smgular fade subspaces. The total number of such poﬂeublll sparf V34 iVEVEVE + V3 \/§—|—j\/§])]{

sparf|
is, = [spar]
= [spar([v2 +jV2 V2 V2 V2))|*,
MOLZ) MO g = [spar[V2 + jv2 V2 V2 + jv2 V2))]* and
41 =
< > )+( 1 > > " :[spam[ﬁﬂx/iﬁﬂ\/iﬁ\/i])]%
4 3 2
M- M UM M + 1. From Lemma[b, the singular fade subspag¢gesand f, are
128 = 32 32 8 removed by the bitwise-XOR map, given in Fig. 17(a), given
Case 2: k=3For this case, from Lemmi 3, the number oin Appendix B. The Latin squares which remove the other
removable singular fade subspaces %(r@z@) M 1} M?. three singular fade subspacgs f5 and f; are given in Fig.

Considering only those singular fade subspaces for widieh [I7(B)fI7(d) in Appendix B.
is distinct, the total number of Latin Squares to be obtainedFor k£ = 3, the Latin Squares which remove all the 448 sin-
for this case is less thab )3 — M +1 gular fade subspaces can be obtained from the Latin Squares

The number of Latin Squares to be obtalned is equal to tAiven in Fig.[T7(d)-I7() in Appendix B, which remove the
number of ways of choosing an element from the et following 5 singular fade subspaces:

and an element from the s&S \ {0} minus the number of = [sparf[0 V2 + jV2 V2 + jv2 V2 + V2| ),
cases which results in the same singular fade subspaces. The ) =L
total number of such possibilities is, = [spari(0 V2 +jv2 V2 V2 + jv2 )],
M(M+2) 1M M MP M2 M = [sparf[0 V2 +jv2 V2 V2],
{78 }7—7+1:1—6+?—7+1 = [spar{[0 V2 + jV2 V2 + jv2v2]")]* and
Case 3k = 2 flo = [sparf[0 V2 V2 + jv2 v2]")]*.



o 1| 2] 3 4] 5| 6| 7 For example, the Cartesian product of the Latin Squéres
and L of order2! and2? respectively shown in Fi§. T4{a), is
the Latin Square of orde?® shown in Fig[ T4(H).

OL T 280 L6 T s Consider two vectord\z € AS?** and Az € AS?. The
i sl 2 2 ol 71 ol 51 4 vector subspacespar{Az)]* and [sparfAz)]* are singular
fade subspaces for the x a« and b x b systems respec-
L S A A L I R tively. The following lemma shows that the Latin Square
OFp 11 21 3 s ool 7 sl 1l ol 51 which removes all the singular fade subspaces of the form
11 0) 3] 2 [sparfcomp(Az, kAz))]*, k € C can be obtained by taking
21 3] o] 1 ST the Cartesian product of the Latin Squares which remove
3 2] 1| O o6 s | 4| 3| 2| 1| o [spariAz)|*- and [sparfAz)]+.
Note 6: For z € AS?® andk € C such thatkAz € S%,
(a) The Latin Squares (b) The Latin Square. © L the vector subspaces GP° [spar{Az)]* and [sparfkAz)]*-

and L are the same. But the vector subspaces @fa2

Fig. 14. Example illustrating the notion of Cartesian proichf Latin Squares  [sparfcomp(Az, Az))]* and [sparfcomp(Ax, kAZ))]*L, k #
1 are different.

Lemma 10:Let I and L respectively denote the Latin
For k = 2, there are 48 removable singular fade sulsquares of ordens® x M@ and M® x M?, which remove
spaces. From Lemmd] 9, the Latin Squares which rgre singular fade subspacEparfAz)|* of thea x a system,
move all these 48 singular fade subspaces can be @by [sparfAz)|- of the b x b system. The Latin Square
tained from the 2 Latin Squares which remove the singulagr I, removes all the singular fade subspaces of the form
fade subspacegi, = [spar[0 v2 0 v2]")]* and fi2 = [sparfcomp(Az, kAZ))]*, k € C.
[sparf[0v/2 + jv/20+/2]7)]*. From Lemmdsb, it follows that Proof: For thea x a system, let
the XOR map given in Fig. I7(a) in Appendix B removgs.
The Latin Square that removefs, is given in Fig.[I7()) in
Appendix B. To sum up, the Latin Squares which remove all
the 1496 removable singular fade subspaces, are obtainable ([I'u 2, ~~~$;A] ’ [5”'13 2, ””&BD}

from the 10 Latin Squares given in Fig.117 in Appendix B. genote a singularity removal constraint for the singulatefa
subspacésparfAz)]*. Similarly, for theb x b system, let

{([m14 224 -+ Tau] s [215 224 - Tap]),

V. OBTAINING LATIN SQUARES FOR THEn x n

SYSTEM FROM LATIN SQUARES OF LOWER
ORDER {([ylA y2A"'ybA}7[y13 y2A-~~be})7

In this section, it is shown that most of the Latin Squares ([yl“ 24 “'yb“] ’ [le Y24 ...be])}
which remove the singular fade subspaces ofithe: system, denote a singularity removal constraint for the singulatefa
n > 2 are obtainable from the Latin Squares which remowibspacédspar{Az)]*. Since spafAz) = ksparfAz),
the singular fade subspacesmfx m system, wheren < n.

Definition 4: For two vectorsy and z of length 2a and  {([ky1, ky2, - kv, ] s [kyip kyoa - kubg]) s
2b respectively, the compound vector gfand z, denoted as ([k’y’lA Ky, ---/fyz’,A] , [kyiB kv, “kyéeb}

comp(y, z) is the vector of lengti2a + 2b given by,
is also a singularity removal constraint for the singulatefa

[y[:q;a] Za:b] yﬁ;+1:2a] Z[zl:+1:2b]]T' subspacédspafAz)]*.
For example, for two vectorg = [1 2 3 4]7 andz = [0 5|7, It can be verified that the Cartesian product of the
comp(y, z) = [120345]T. Latin Squares which remove the singular fade subspaces

For a Latin Square., let L ; ., denote the(j —i + 1) x [spani_A:c)]L and [spanfAz)]* satisfy the Cartesian product
(1 -k + 1) array obtained by taking only thé" to j** rows of t_he_|r constraints. I_n other words, the Latin Squékex L)
andk" to 1™ columns ofL. Let L+ denote the Latin Square Satisfies the constraint,
obtained by adding integerto all the cells ofL. Let max{L}
denote the maximum among all the integers filled in the cells {([z14 24 - -@as kyia ky2, -~ kyp,]
of the Latin Squard.. [T1p T24 - Tap kY1 ky2, - kypg]) s

Definition 5: The Cartesian product of the two Latin ([:BSA @l Ryl kb, ,,,kylfm] ,

Squared. of orderM® andL of orderM?, denoted a§L® L), ., L, ,

is the Latin Square of ordet/**? for which [mlB 24+ Tap M1 RY2, "'kbeD}’
which is a singularity removal constraint for the singuladé
subspacésparfcomp(Az, kAz))]* of the (a + b) x (a + b)
wherel <i,j < MP. system. This completes the proof. [

(LR L)~y mat1:ima,(i—1)Mat1:5Mma] = L+L(i,5) (max{L} 4+ 1),



From Lemma1D, it follows that Latin Squares for thos ‘

singular fade subspaces for the x n system, which are g
expressible agpar{comp(Ax, kAzZ))]*, where[sparfAz)]+ ol T |
and [sparfAz)]+ are removable singular fade subspaces fi B

op’

a x a and b x b systems respectively, for some choices ¢
a < n andb < n such thatu + b = n, are obtainable from the
Latin Squares for the x a andb x b systems.

Example 14:Consider the3 x 3 system with BPSK signal .
set. Consider the singular fade subspEmar{[2 —2222 — ) Yo
2])]*. The Latin Squarel. shown in Fig[TI4(@) removes the w0 R :
singular fade subspadspari[2 2]7)~+ of the 1 x 1 system and RN
the Latin Squarel shown in Fig[ I4(d) removes the singula U
fade subspacgsparf[—222 —2])]* of the2 x 2 system. Since w0 Qu 1
[2 —-2222 —2] = comp([22],[-222 —2]), the Latin Square ‘ ‘ ‘ ‘ S
L® L shown in Fig[T4{B) removes the singular fade subspa 5 0 %
[sparf[2 —2222 —2])]* of the3 x 3 system.

From Lemmd3B it follows that the number of non-removablgg- 15. SNR vs BER for different schemes for QPSK signal setd

- . Ravleiah fadina scenario with channel variances 0 dB

singular fade subspaces for thex n system with M-PSK
signal set is of order/*”~! and the singular fade subspace ‘
of the form[spar{Az)]+, whereAx has all the components to Treg
be non-zero contributes to the maximum number of singul . N
fade states which is of ordéZ*" 1. It is easy to verify that a o .
vector Ax with all the components to be non-zero can alway o,
be written of the form com@\z+, Azs), whereAz; andAz, U
are of lengths: andb, wherea, b < n anda+b = n, such that 0% LN ]
[sparfAz;)]*+ and[sparfAzs)]* are removable singular fade B
subspaces for the x a andb x b systems respectively. Hence,

0 1

BER
,65':-'1

15
SNRin dB

on

BER
o

0
it follows that most of the Latin Squares which remove th . “
singular fade subspaces for thex n system are obtainable 0% ‘&\ kS ]
from Latin Squares of lower order. )
VI. SIMULATION RESULTS ol @ “
The proposed scheme is based on the removal of all t 5 10 15 2 %

. . . . SNRin dB
singular fade subspaces, i.e., a minimum cluster distar

greater than zero is ensured for all realizations of the wblanFig. 16. SNR vs BER for different schemes at node B for QPSKaliget

fade coefficient matrices. Also, it is ensured that the numb@" & Rician fading scenario with a Rician factor of 10 dB

of clusters in the clustering, which is the same as the size

of the signal set used during th? BC phase is m|n|m_|ze&i1.e entries of the matriced 4, Hg, H, and H follow i.i.d.
As a reference scheme, we consider the case when bit-wisé.

: : : Gian distribution with a Rician Facfbrof 10 dB and unit
XOR network code is used at R, irrespective of the Channvea!riances. From Fig—15 and Fig]16, it can be seen that the

conditions. Since XOR network does not remove all th . .
V(arsny order is two, for the proposed scheme as well as

singular fade subspaces, the proposed scheme is expeﬁﬁe scheme which uses the conventional XOR network code.

to perform better than the pure XOR network code bas?ﬂio, it can be seen that for the Rayleigh and Rician fading

scheme, which is confirmed by the simulation results. All Fhsecenarios considered, at a BERIOF . the proposed scheme

simulation results presented are for the case when QPSHlIsign ides a gain of 1.5 dB and 2.5 dB respectively over the

; rov
set is used at the end nodes. The number of antennas acg(illventional XOR network code based scheme.
the three nodes are taken to be two.

The additive noises at the nodes are taken to be of unit VIl. DISCUSSION

variance. It is assumed that signal sets of equal energées ar . . . .

e . ) ._ An adaptive network coding scheme using Latin Rectangles
used at all the nodes, which is defined to be the Signal to No%ef: the wireless two-wav relaving scenario was pronosed. Th
Ratio (SNR). Fig[[Ib shows the SNR vs BER performance for y ying . brop i

Scheme was based on the removal of a finite number of vector
the proposed scheme and the for the case when XOR networ

. . . L subspaces referred to as the removable singular fade sidsspa
code is used irrespective of the channel condition, for Heec bv proper choice of network codina mans. For a particular
when each one of the entries of the matridés, Hg, H/ y prop 9 pS- P

a_ndHB follow '-'-d-.R.ayle'gh distribution, with unit variance. IRician factor is the power ratio between the line of sight andttered
Fig.[18 shows a similar plot for the case when each one @fmponents.



channel realization, among all the network coding maps Wwhipoints in AS lie on % circles, there are(%)’C possibil-

remove the singular fade subspaces, the one which maximizees for the absolute values of the non-zero components
the minimum clustering distance is chosen. In this way, tlef Axz 4. But out of these, if the absolute values of all
set of all possible channel realizations, which(g+ "2 for the components ofAz,, are equal, from Lemmal2, the
the ny x np system, is quantized in to a finite humber ofesulting singular fade subspaces are the same. Subgractin
regions, based on which one of the network coding map# such cases which ar% in number and adding one
obtained optimizes the performance. Such a quantizatian Wg account for all such cases, results i(,%)k —M g

obtained analytically in[[13] for the x 1 system. Obtaining singular fade subspaces. From Lemfa 2, given the same
the quantization for a general, x np system is an interesting oy <oute values of the non-zero componentg\af,, distinct

problem for further investigation. singular fade subspaces results for distinct relative @has
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Number of non-removable singular fade subspaces: For2 < k < ns + ng, summing up the number of

Consider the case when the non-removable singular fagessibilities obtained in the above three cases and defining
subspaces are of the forfspan([Aza 0,,]7)]*. Let & (}) to be zero forb > a, the number of removable singular
be the number of non-zero components &f 4. Assume fade subspaces is as given in the statement of the lemma. This
that the relative phase vector dfz4 is fixed. Since the completes the proof.



APPENDIXB
LATIN SQUARES FOR THE 2x 2 SYSTEM WITH
4-PSK SIGNAL SET

For the2 x 2 system with 4-PSK signal set, the Latin Squares
from which the set of Latin Squares which remove all the
removable singular fade subspaces are obtainable, ara give
in the next three pages.



oof01(02|03|10|11|12|13|20(|21}|22[23|30|31]32]|33
00 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
02 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
03 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
10 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
11 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
12 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
13 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
20 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
21 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
22| 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
23| 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
30| 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
31| 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
32| 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
33| 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
(a) Latin Square that removes the singular fade subspAceg; and fi1
oof01(02|03|10|11|12|13|20|21}22[23|30|31]32|33
00 0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 14
01 5 4 6 1 0 3 2 10 11 12 14 15 7 8 13 9
02 9 8 7 10 6 11 14 15 12 13 2 0 1 5 3 4
03 3 12 11 15 13 14 10 2 4 1 9 7 5 0 6 8
10 2 0 3 4 5 1 7 6 9 8 11 10 13 12 14 15
11 6 5 4 7 1 2 0 3 10 14 15 8 9 11 12 13
12] 10 9 8 11 7 12 15 13 14 0 4 1 3 6 2 5
13| 13 14 15 8 9 7 12 11 2 5 6 3 4 10 1 0
20 1 2 0 5 3 4 8 9 6 7 12 13 14 15 10 11
21 7 6 5 2 8 9 1 12 13 15 0 14 11 3 4 10
22| 11 10 12 13 14 15 4 0 1 2 3 5 6 9 8 7
23| 14 15 13 9 12 8 11 4 5 3 7 2 10 1 0 6
30 4 3 1 0 2 6 5 8 7 10 13 9 15 14 11 12
31 8 7 9 6 10 0 13 14 15 11 1 12 2 4 5 3
32| 12 11 10 14 15 13 3 1 0 4 5 6 8 7 9 2
33| 15 13 14 12 11 10 9 5 3 6 8 4 0 2 7 1
(b) Latin Square that removes the singular fade subspace
oof01(02|03|10|11|12|13|20|21}|22][23|30|31]32]|33
00 0 4 5 1 6 7 8 9 10 11 12 13 2 14 15 3
01 3 1 0 2 5 8 4 6 7 9 10 11 12 13 16 15
02 5 2 1 0 3 9 6 4 8 7 11 10 15 12 14 16
03 4 8 2 5 0 1 3 10 9 12 13 14 6 16 11 7
10 2 0 3 4 7 5 9 1 6 13 14 8 16 15 10 11
11 1 3 7 8 4 6 0 2 11 14 15 16 5 9 12 13
12 6 5 4 3 1 2 7 0 12 15 16 9 13 10 8 14
13 7 6 8 9 2 13 15 12 14 16 0 1 3 11 4 10
20 8 7 6 10 9 14 16 13 15 0 1 2 11 3 5 12
21 9 10 11 6 8 0 1 15 16 2 3 12 14 4 13 5
22| 10 9 12 11 14 4 5 16 13 6 7 15 0 1 2 8
23| 11 12 9 7 15 16 13 14 1 3 2 0 10 5 6 4
30| 12 11 10 13 16 15 14 3 2 1 4 5 7 8 9 6
31| 13 14 15 16 10 3 12 11 4 5 8 6 1 0 7 9
32| 14 13 16 15 11 12 2 5 0 10 6 4 8 7 3 1
33| 15 16 13 14 12 10 11 8 3 4 5 7 9 6 0 2
(c) Latin Square that removes the singular fade subsgace
0of01(02|03|10|11|12|13|20(|21}22[23|30|31]32]|33
00 0 2 3 1 5 4 8 9 10 11 12 13 6 14 15 7
01 1 0 2 3 6 7 4 5 8 9 10 11 12 13 14 15
02 3 1 0 2 7 6 5 4 9 8 11 10 13 15 12 14
03 4 5 1 0 2 3 6 7 11 10 8 14 15 9 13 12
10 5 4 6 7 0 1 2 3 12 13 9 15 14 8 10 11
11 2 3 7 6 4 5 0 1 13 14 15 8 9 12 11 10
12 6 7 4 5 1 2 3 0 14 15 13 12 10 11 8 9
13 7 6 5 4 3 8 9 2 15 12 14 0 11 10 1 13
20 8 9 10 11 12 13 14 15 0 1 2 3 4 5 7 6
21 9 8 11 10 13 12 15 14 1 0 3 2 5 7 6 4
22| 10 11 12 14 15 0 1 13 2 6 7 5 3 4 9 8
23| 11 10 8 9 14 15 13 12 3 2 0 1 7 6 4 5
30| 12 13 9 15 8 14 10 11 4 3 6 7 0 2 5 1
31| 13 14 15 8 9 11 12 10 7 5 4 6 2 1 0 3
32| 15 12 14 13 11 10 7 6 5 4 1 9 8 3 2 0
33| 14 15 13 12 10 9 11 8 6 7 5 4 1 0 3 2
(d) Latin Square that removes the singular fade subspace

Fig. 17.

Latin Squares that remove different singular fadespaces




oof01(02|03|10|11|12|13|20(|21}|22[23|30|31]32]|33
00 0 1 2 3 8 9 10 11 12 13 14 15 4 5 6 7
01 8 9 10 11 1 0 3 2 5 4 7 6 12 13 14 15
02| 12 13 14 15 5 4 7 6 2 3 0 1 11 10 9 8
03 4 5 6 7 12 13 14 15 11 10 9 8 3 2 1 0
10 1 0 3 2 9 8 11 10 13 12 15 14 5 4 7 6
11 9 8 11 10 0 1 2 3 4 5 6 7 13 12 15 14
12| 13 12 15 14 4 5 6 7 3 2 1 0 10 11 8 9
13 5 4 7 6 13 12 15 14 10 11 8 9 2 3 0 1
20 2 3 0 1 10 11 8 9 14 15 12 13 6 7 4 5
21| 10 11 8 9 3 2 1 0 7 6 5 4 14 15 12 13
22| 14 15 12 13 7 6 5 4 0 1 2 3 9 8 11 10
23 6 7 4 5 14 15 13 12 9 8 11 10 1 0 3 2
30 3 2 1 0 11 10 9 8 15 14 13 12 7 6 5 4
31| 11 10 9 8 2 3 0 1 6 7 4 5 15 14 13 12
32| 15 14 13 12 6 7 4 5 1 0 3 2 8 9 10 11
33 7 6 5 4 15 14 12 13 8 9 10 11 0 1 2 3
(e) Latin Square that removes the singular fade subspace
oof01(02|03|10|11|12|13|20|21}22[23|30|31]32|33
00 0 1 2 3 4 5 6 7 8 9 10 13 12 11 14 15
01 5 4 6 7 0 8 9 12 13 14 1 2 3 15 10 11
02 8 9 10 13 14 15 0 1 2 4 12 5 11 6 7 3
03| 12 13 14 9 10 0 15 11 5 1 6 8 7 2 3 4
10 1 0 3 2 5 4 7 6 9 8 11 12 13 10 15 14
11 4 5 7 6 1 9 8 13 12 15 0 3 2 14 11 10
12 9 8 11 12 15 14 1 0 3 5 13 4 10 7 6 2
13| 13 12 15 8 11 1 14 10 4 0 7 9 6 3 2 5
20 2 3 0 1 6 7 4 5 10 11 8 15 14 9 12 13
21 7 6 4 5 2 10 11 14 15 12 3 0 1 13 8 9
22| 10 11 8 15 12 13 2 3 0 6 14 7 9 4 5 1
23| 14 15 12 11 8 2 13 9 7 3 4 10 5 1 0 6
30 3 2 1 0 7 6 5 4 11 10 9 14 15 8 13 12
31 6 7 5 4 3 11 10 15 14 13 2 1 0 12 9 8
32| 11 10 9 14 13 12 3 2 1 7 15 6 8 5 4 0
33| 15 14 13 10 9 3 12 8 6 2 5 11 4 0 1 7
(f) Latin Square that removes the singular fade subspace
0of01(02|03[10|11|12|13|20(|21}22[23|30|31]32]|33
00 0 1 2 4 5 9 3 6 7 13 10 14 8 15 11 12
01 8 12 5 1 0 4 9 13 14 2 3 10 15 11 6 7
02 5 9 13 14 15 0 4 10 11 8 12 6 1 7 2 3
03| 13 5 9 10 11 14 15 1 2 6 4 0 7 3 12 8
10 1 0 3 5 4 8 2 7 6 12 11 15 9 14 10 13
11 9 13 4 0 1 5 8 12 15 3 2 11 14 10 7 6
12 4 8 12 15 14 1 5 11 10 9 13 7 0 6 3 2
13| 12 4 8 11 10 15 14 0 3 7 5 1 6 2 13 9
20 2 3 0 6 7 11 1 4 5 15 8 12 10 13 9 14
21| 10 14 7 3 2 6 11 15 12 0 1 8 13 9 4 5
22 7 11 15 12 13 2 6 8 9 10 14 4 3 5 0 1
23| 15 7 11 8 9 12 13 3 1 4 6 2 5 0 14 10
30 3 2 1 7 6 10 0 5 4 14 9 13 11 12 8 15
31| 11 15 6 2 3 7 10 14 13 1 0 9 12 8 5 4
32 6 10 14 13 12 3 7 9 8 11 15 5 2 4 1 0
33| 14 6 10 9 8 13 12 2 0 5 7 3 4 1 15 11
(g) Latin Square that removes the singular fade subspace
0of01(02|03|10|11|12|13|20(|21}22[23|30|31]32]|33
00 0 4 8 12 1 5 9 11 2 6 10 14 3 7 13 15
01 5 0 13 3 4 8 14 15 6 9 1 10 7 12 2 11
02 8 14 2 11 9 15 4 6 10 0 12 7 13 1 5 3
03| 12 10 5 7 13 0 1 2 14 15 6 3 9 11 8 4
10 1 5 9 13 0 4 8 10 3 7 11 15 2 6 12 14
11 4 1 12 2 5 9 15 14 7 8 0 11 6 13 3 10
12 9 15 3 10 8 14 5 7 11 1 13 6 12 0 4 2
13| 13 11 4 6 12 1 0 3 15 14 7 2 8 10 9 5
20 2 6 10 14 3 7 11 9 0 4 8 12 1 5 15 13
21 7 2 15 1 6 10 12 13 4 11 3 8 5 14 0 9
22| 10 12 0 9 11 13 6 4 8 2 14 5 15 3 7 1
23| 14 8 7 5 15 2 3 1 12 13 4 0 11 9 10 6
30 3 7 11 15 2 6 10 8 1 5 9 13 0 4 14 12
31 6 3 14 0 7 11 13 12 5 10 2 9 4 15 1 8
32| 11 13 1 8 10 12 7 5 9 3 15 4 14 2 6 0
33| 15 9 6 4 14 3 2 0 13 12 5 1 10 8 11 7
(h) Latin Square that removes the singular fade subspace

Fig. 17.

(Contd.) Latin Squares that remove different siagtade subspaces




oof01(02|03|10|11|12|13|20|21}22[23|30|31]32|33
00 0 3 10 4 8 12 11 14 1 9 13 15 2 5 6 7
01 9 7 13 15 12 8 14 10 5 0 4 11 6 1 2 3
02| 13 14 3 11 1 2 5 6 9 4 0 7 10 15 8 12
03 4 9 7 0 5 6 1 2 13 15 11 3 14 10 12 8
10 1 2 11 5 9 13 10 15 0 8 12 14 3 4 7 6
11 8 6 12 14 13 9 15 11 4 1 5 10 7 0 3 2
12] 12 15 2 10 0 3 4 7 8 5 1 6 11 14 9 13
13 5 8 6 1 4 7 0 3 12 14 10 2 15 11 13 9
20 2 1 8 6 10 14 9 12 3 11 15 13 0 7 4 5
21| 11 5 15 13 14 10 12 8 7 2 6 9 4 3 0 1
22| 15 12 1 9 3 0 7 4 11 6 2 5 8 13 10 14
23 6 11 5 2 7 4 3 1 15 13 9 0 12 8 14 10
30 3 0 9 7 11 15 8 13 2 10 14 12 1 6 5 4
31| 10 4 14 12 15 11 13 9 6 3 7 8 5 2 1 0
32| 14 13 0 8 2 1 6 5 10 7 3 4 9 12 11 15
33 7 10 4 3 6 5 2 0 14 12 8 1 13 9 15 11

(i) Latin Square that removes the singular fade subsgage

0of01(02|03|10|11|12|13|20(|21}22[23|30|31]32]|33
00 0 4 1 3 5 9 6 8 10 14 11 13 15 19 16 18
01 1 2 4 0 6 7 9 5 11 12 14 10 16 17 19 15
02 2 0 3 4 7 5 8 9 12 10 13 14 17 15 18 19
03 4 3 2 1 9 8 7 6 14 13 12 11 19 18 17 16
10 5 9 6 8 0 4 1 3 15 19 16 18 10 14 11 13
11 6 7 9 5 1 2 4 0 16 17 19 15 11 12 14 10
12 7 5 8 9 2 0 3 4 17 15 18 19 12 10 13 14
13 9 8 7 6 4 3 2 1 19 18 17 16 14 13 12 11
20| 10 14 11 13 15 19 16 18 0 4 1 3 5 9 6 8
21| 11 12 14 10 16 17 19 15 1 2 4 0 6 7 9 5
22| 12 10 13 14 17 15 18 19 2 0 3 4 7 5 8 9
23| 14 13 12 11 19 18 17 16 4 3 2 1 9 8 7 6
30| 15 19 16 18 10 14 11 13 5 9 6 8 0 4 1 3
31| 16 17 19 15 11 12 14 10 6 7 9 5 1 2 4 0
32| 17 15 18 19 12 10 13 14 7 5 8 9 2 0 3 4
33| 19 18 17 16 14 13 12 11 9 8 7 6 4 3 2 1

() Latin Square that removes the singular fade subsgage

Fig. 17.

(Contd.) Latin Squares that remove different siagtade subspaces




	I Background and Preliminaries
	I-A Signal Model

	II SINGULAR FADE SUBSPACES FOR 2-PSK SIGNAL SET
	III The Exclusive Law and Latin Rectangles
	III-A Removing singular fade subspaces, Singularity-removal Constraints and Constrained Latin Rectangles
	III-B Obtaining Latin Rectangles from Latin Squares
	III-C Some Special Constructions of Latin Squares
	III-D Sufficient number of Latin Squares to be obtained for 2 2 system with M-PSK signal set

	IV ILLUSTRATIONS FOR THE 2 2 SYSTEM WITH QPSK SIGNAL SET
	V OBTAINING LATIN SQUARES FOR THE n n SYSTEM FROM LATIN SQUARES OF LOWER ORDER
	VI SIMULATION RESULTS
	VII Discussion
	References
	Appendix A: PROOF OF LEMMA ??
	Appendix B: LATIN SQUARES FOR THE 2  2 SYSTEM WITH 4-PSK SIGNAL SET

