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Abstract—The design of modulation schemes for the physical
layer network-coded two-way MIMO relaying scenario is con-
sidered, with nR antennas at the relay R,nA and nB antennas
respectively at the end nodes A and B. We consider the denoise-
and-forward (DNF) protocol which employs two phases: Multiple
access (MA) phase and Broadcast (BC) phase. It is known for the
network-coded SISO two-way relaying that adaptively changing
the networking coding map used at the relay, also known as
the denoising map, according to the channel conditions greatly
reduces the impact of multiple access interference which occurs
at the relay during the MA phase and all these network coding
maps should satisfy a requirement called theexclusive law. The
network coding maps which satisfy exclusive law can be viewed
equivalently as Latin Rectangles. In this paper, it is shownthat for
MIMO two-way relaying, deep fade occurs at the relay when the
row space of the channel fade coefficient matrix is a subspace
of a finite number of vector subspaces ofCnA+nB which are
referred to as the singular fade subspaces. It is shown that
proper choice of network coding map can remove most of the
singular fade subspaces, referred to as the removable singular
fade subspaces. All these network coding maps are obtainable by
the completion of partially filled Latin Rectangles. For 2λ-PSK
signal set, the number of removable and non-removable singular
fade subspaces are obtained analytically and it is shown that
the number of non-removable singular fade subspaces is a small
fraction of the total number of singular fade subspaces. The
Latin Rectangles for the case when the end nodes use different
number of antennas are shown to be obtainable from the Latin
Squares for the case when they use the same number of antennas,
irrespective of the value ofnR. For 2λ-PSK signal set, the singular
fade subspaces which are removed by the conventional XOR
network code are identified. Also, using the notions of isotopic
and transposed Latin Squares, the network coding maps which
remove all the removable singular singular fade subspaces are
shown to be obtainable from a small set of Latin Squares.

I. BACKGROUND AND PRELIMINARIES

We consider the two-way wireless relaying scenario shown
in Fig.1 with multiple antennas at the nodes, where data
transfer takes place between the nodes A and B with the help
of the relay R. It is assumed that all the three nodes operate
in half-duplex mode, i.e., they cannot transmit and receive
simultaneously in the same frequency band. We consider the
denoise-and-forward (DNF) protocol originally introduced in
[1], which consists of the following two phases: themultiple
access(MA) phase, during which A and B simultaneously
transmit to R and thebroadcast(BC) phase during which R
transmits to A and B. Network coding map, which is also
referred to as the denoising map, is chosen at R in such a way
that A (B) can decode the messages of B (A), given that A
(B) knows its own messages.

(a) MA Phase

(b) BC Phase

Fig. 1. The Two Way Relay Channel

The concept of physical layer network coding has attracted
a lot of attention in recent times. The idea of physical layer
network coding for the two way relay channel was first intro-
duced in [2], where the multiple access interference occurring
at the relay was exploited so that the communication between
the end nodes can be done using a two phase protocol. Infor-
mation theoretic studies for the physical layer network coding
scenario were reported in [3], [4]. A differential modulation
scheme with analog network coding for two-way relaying was
proposed in [5]. The design principles governing the choice
of modulation schemes to be used at the nodes for uncoded
transmission were studied in [6]. An extension for the case
when the nodes use convolutional codes was done in [7]. A
multi-level coding scheme for the two-way relaying scenario
was proposed in [8]. Power allocation strategies and lattice
based coding schemes for two-way relaying were proposed in
[9].

It was observed in [6] that for uncoded transmission, the
network coding map used at the relay needs to be changed
adaptively according to the channel fade coefficient, in order
to minimize the impact of the Multiple Access Interference
(MAI). For the single antenna two-way relaying scenario,
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a computer search algorithm called theClosest-Neighbour
Clustering(CNC) algorithm was proposed in [6] to obtain the
adaptive network coding maps resulting in the best distance
profile at R. An extension to MIMO two-way relaying using
the CNC algorithm was made in [10]. With a single antenna
at the nodes, the MAI becomes severe for channel fade states
referred to as the singular fade states [12]. An alternative
procedure to obtain the network coding maps, based on the
removal of singular fade states using Latin Squares was
proposed in [12]. A quantization of the set of all possible
channel realizations based on the network code used was
obtained analytically in [13].

In this paper, it is shown that for the MIMO two-way
relaying scenario, the MAI becomes severe when the row
space of the channel fade coefficient matrix is a subspace of
a finite number of vector subspaces ofCnA+nB referred to
as the singular fade subspaces. The notion of singular fade
subspaces subsumes in it as a special case the notion of
singular fade states introduced in [12] for the single antenna
two-way relaying scenario. It is shown that the network coding
maps totally avoiding the removable singular fade subspaces
can be obtained by the completion of partially filled Latin
Rectangles.

Notations: Let CN (0, σ2In) denote the circularly symmet-
ric complex Gaussian random vector of lengthn with covari-
ance matrixσ2In, whereIn is the identity matrix of ordern.
The binary field is denoted byF2. All the vector spaces and
vector subspaces considered in this paper are over the complex
field C. Let span(c1, c2, . . . cL) denote the vector space over
C spanned by the complex vectorsc1, c2, . . . cL ∈ Cn. For a
matrixA, AT denotes its transpose. For a vector subspaceV of
Cn, V ⊥ denotes the vector subspace{x : xT v = 0 ∀v ∈ V }.
For a matrixH ∈ Cm×n, R(H) denotes the row space ofH.
The all zero vector of lengthn is denoted by0n. For a vector
x of lengthn, xi, 1 ≤ i ≤ n denotes theith component of
x. For vector subspacesV1 and V2 of Cn, V1 � V2 means
that V1 is a subspace ofV2 and V1 � V2 means thatV1

is not a subspace ofV2. By nA × nB system, we refer to
the two-way relaying system withnA and nB antennas at
the nodes A and B respectively, with no restriction placed
on the number of antennas at the relaynR. For a vectorx,
x[i:j], 1 ≤ i ≤ j ≤ n denotes the vector obtained by taking
only the ith to jth components ofx.

A. Signal Model

Consider the MIMO two-way relaying system withnA, nR

and nB antennas at the nodes A, R and B respectively as
shown in Fig. 1. It is assumed that the complex numbers
transmitted in each one of the antennas at the end nodes belong
to the signal setS of size M = 2λ, whereλ is an integer.
Assume that A (B) wants to transmit aλnA-bit (λnB-bit)
binary tuple to B (A). At node A (B), theλnA (λnB) bits
are spatially multiplexed intonA (nB) streams with each one
of the streams consisting ofλ bits. Theλ bits in each one of
the streams are mapped on to the signal setS using the map
µ : Fλ

2 → S and are transmitted.

Multiple Access (MA) phase:Throughout, we assume
a block fading scenario with the Channel State In-
formation (CSI) available only at the receivers. Let
xA = [µ(sA1

), µ(sA2
), ..., µ(sAnA

)]T ∈ SnA , xB =

[µ(sB1
), µ(sB2

), ..., µ(sBnB
)]T ∈ SnB denote the com-

plex vectors transmitted by A and B respectively, where
sA1

, sA2
, ..., sAnA

, sB1
, sB2

, ..., sBnB
∈ Fλ

2 . The received sig-
nal atR is given by,

YR = HAxA +HBxB + ZR,

whereHA of size nR × nA and HB of size nR × nB are
the channel matrices associated with the A-R and B-R links
respectively. The additive noise vectorZR is assumed to be
CN (0, σ2InR

).
Let SR(HA, HB) ⊂ CnR denote the effective constellation

seen at the relay during the MA phase, i.e.,

SR(HA, HB) = {HAxA +HBxB |xA ∈ SnA , xB ∈ SnB} .
Let dmin(HA, HB) denote the minimum distance between

the points in the effective constellationSR(HA, HB), i.e.,

dmin(HA,HB) = min
(xA,xB),(x′

A,x′

B)∈SnA+nB

(xA,xB) 6=(x′

A,x′

B)

‖ HA

(

xA − x′
A

)

+HB

(

xB − x′
B

)

‖ .

(1)

From (1), it is clear that there exists values ofHA, HB for
which dmin(HA, HB) = 0.
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Fig. 2. Diagram showing the effective constellation at the relay forHR ≈
[1 + j 2 3 4 + j]T

Example 1:Consider the case whennA = nB = 2
and nR = 1 and BPSK signal set{±1} is used at the
end nodes. When[HA HB] ≈ [1 + j 2 3 4 + j]T , the
effective constellationSR is as shown in Fig. 2. It is clear
from Fig. 2 that for [HA HB ] = [1 + j 2 3 4 + j]T ,
dmin(HA, HB) = 0.

Let ∆S denote the difference constellation of the signal set
S, i.e., ∆S = {si − s′i|si, s′i ∈ S}.

Let us define∆x = [(xA − x′
A)

T (xB − x′
B)

T ]T ∈
∆SnA+nB , where∆xA = xA − x′

A ∈ ∆SnA and ∆xB =
xB − x′

B ∈ ∆SnB , and HR = [HA HB]. Also let HR =
[h1 h2 ...hnR

]T , where the row vectorhT
k , 1 ≤ k ≤ nR of



lengthnA + nB is the kth row of HR. From (1), it follows
that,

d2min(HA, HB) = min
∆x∈∆SnA+nB ,∆x 6=0nA+nB

‖ HR∆x ‖2 .

= min
∆x∈∆SnA+nB ,∆x 6=0nA+nB

nR
∑

k=1

|hT
k∆x|2.

(2)

From (2) it follows thatd2min(HA, HB) = 0 if HR is such
that hT

k∆x = 0, ∀1 ≤ k ≤ nR, for some∆x ∈ ∆SnA+nB .
Equivalently, for d2min(HA, HB) = 0, the vectorshk, 1 ≤
k ≤ nR should belong to the vector subspace[span(∆x)]⊥

for some∆x ∈ ∆SnA+nB . In other words, the row space of
the matrixHR should be a subspace of the vector subspace
[span(∆x)]⊥, for some∆x ∈ ∆SnA+nB , for d2min(HA, HB)
to become zero.

The channel fade coefficient matrixHR is said to be adeep
fade matrix, if dmin(HA, HB) = 0. The row space of the
deep fade matrices are referred to as thedeep fade spaces.
The deep fade spaces are subspaces of the vector subspaces
[span(∆x)]⊥,∆x ∈ ∆SnA+nB , which are referred to as the
singular fade subspaces. Let F denote the set of all singular
fade subspaces, i.e.,F = {[span(∆x)]⊥ : ∆x ∈ ∆SnA+nB}.

Note 1: Note that singular fade subspaces depend only on
the set{∆x : ∆x ∈ ∆SnA+nB}, i.e., they are independent of
nR.

SISO two-way relaying as a special case:
Consider the case whennA = nB = nR = 1.

The row space ofHR, R(HR) = k[HA HB]
T =

k′[1 HB

HA
]T ,where k, k′ ∈ C. For this case,span(∆x) =

c[∆xA ∆xB]
T , wherec ∈ C and∆xA,∆xB ∈ ∆S. Hence,

the singular fade subspaces[span(∆x)]⊥,∆x ∈ ∆S2 are of
the form c′[1 −∆xA

∆xB
]T , where c′ ∈ C. Note that for this

case,R(HR) and [span(∆x)]⊥ are both one dimensional
subspaces of the two dimensional vector spaceC2 over C.
Hence forR(HR) to be a subspace of[span(∆x)]⊥, it is
necessary thatR(HR) = [span(∆x)]⊥. It can be verified
that R(HR) = [span(∆x)]⊥ if and only if HB

HA
= −∆xA

∆xB
.

Hence, the effect of the MAI is totally captured by the
ratio of the channel fade coefficientsHB

HA
, consistent with

the results in [6], [12]. Also, when the ratioHB

HA
referred to

as the fade state in [12] becomes equal to−∆xA

∆xB
for some

∆xA,∆xB ∈ ∆S, the minimum distance of the effective
constellation at the relay becomes zero. The complex numbers
−∆xA

∆xB
, where∆xA,∆xB ∈ ∆S, were referred to as the

singular fade states in [12].
From above, it is clear that the notion of singular fade

subspaces subsumes in it as a special case the notion of
singular fade states used for two-way relaying with single
antenna at the nodes.

Example 2:Consider the2 × 2 system with BPSK signal
set used at nodes A and B, with the bit0 mapped onto+1
and the bit1 mapped onto−1. The difference constellation of

the BPSK signal set∆S = {−2, 0, 2}. The vector subspace
f = [span([2 2 2 2]T )]⊥ = [span([−2 − 2 − 2 − 2]T )]⊥ is a
singular fade subspace for this case.

Broadcast (BC) phase:Let (x̂A, x̂B) ∈ SnA+nB denote the
Maximum Likelihood (ML) estimate of(xA, xB) at R based
on the received complex vectorYR, i.e.,

(x̂A, x̂B) = arg min
(x′

A
,x′

B
)∈SnA+nB

|YR −HAx
′
A −HBx

′
B |.

(3)

Depending onHR, R chooses a many-to-one mapMHR :
SnA+nB → S ′, where S ′ ⊂ CnR is the signal set (of
size betweenmax {MnA ,MnB} and MnA+nB ) used by R
during the BC phase. Note that|S ′| should be at least
max {MnA ,MnB}, to transmitmax{λnA, λnB} information
bits. The elements inSnA+nB which are mapped on to the
same complex vector inS ′ by the mapMHR are said to form
a cluster. Let{L0,L2, ...,Lt−1} denote the set of all such
clusters. The formation of clusters forHR is called clustering,
and is denoted byCHR . For simplicity, in the rest of the
paper, the clusterLk is denoted by the subscriptk, where
0 ≤ k ≤ t− 1.

Example 3:For the2× 2 system with BPSK signal set,















{

[0 0 0 0]T , [0 1 0 1]T , [1 0 1 0]T , [1 1 1 1]T
}

{

[0 0 0 1]T , [0 1 0 0]T , [1 0 1 1]T , [1 1 1 0]T
}

{

[0 0 1 0]T , [0 1 1 1]T , [1 0 0 0]T , [1 1 0 1]T
}

{

[0 0 1 1]T , [0 1 1 0]T , [1 0 0 1]T , [1 1 0 0]T
}















, (4)

represents a clustering with four clusters. For two decoded
pairs (xA, xB) and (x′

A, x
′
B), the relay transmits the same

vector from the signal setS ′ if [xA xB] and[x′
Ax′

B ] belong to
the same cluster. For example, if R uses the clustering given
in (4), the vector transmitted during the BC phase will be the
same, if the decoded pair during MA phase is([0 0]T , [0 0]T )
or ([0 1]T , [0 1]T ), since [0 0 0 0]T and [0 1 0 1]T belong to
the same cluster.

The received signals at A and B during the BC phase are
respectively given by,

YA = H ′
AXR + ZA, YB = H ′

BXR + ZB, (5)

where XR = MHR(x̂A, x̂B) ∈ S ′ is the complex vector
transmitted by R. The fading matrices of sizenA × nR and
nB ×nR corresponding to the R-A and R-B links are denoted
by H ′

A andH ′
B respectively and the additive noisesZA and

ZB areCN (0, σ2).
In order to ensure that A (B) is able to decode B’s (A’s)

messages, the clusteringCHR should satisfy the exclusive law
[6], i.e.,

MHR (xA, xB) 6= MHR (x′
A, xB), ∀xA 6= x′

A ∈ SnA , xB ∈ SnB ,
MHR (xA, xB) 6= MHR (xA, x′

B), ∀xB 6= x′
B ∈ SnB , xA ∈ SnA .

}

(6)

Definition 1: The cluster distance between a pair of clusters
Li andLj is the minimum among all the distances calculated
between the pointsHAxA + HBxB andHAx

′
A + HBx

′
B ∈



SR(HA, HB), where (xA, xB) ∈ Li and (x′
A, x

′
B) ∈ Lj .

The minimum cluster distanceof the clusteringCHR is the
minimum among all the cluster distances, i.e.,

dmin(C
HR ) = min

(xA,xB),(x′

A,x′

B)∈SnA+nB ,

MHR (xA,xB) 6=MHR (x′

A,x′

B)

‖ HA

(

xA − x′
A

)

+HB

(

xB − x′
B

)

‖ .

The minimum cluster distance determines the performance
during the MA phase of relaying. The performance during the
BC phase is determined by the minimum distance of the signal
set S ′. Throughout, we restrict ourselves to optimizing the
performance during the MA phase. For values ofHR such that
|hT

k∆x| is small,∀1 ≤ k ≤ nR, for some∆x ∈ ∆SnA+nB ,
dmin(HR) is greatly reduced, a phenomenon referred as
distance shortening. To avoid distance shortening, for every
removable singular fade subspace, a clustering needs to be
chosen such that the minimum cluster distance at everyHR

whose rows belong to that singular fade subspace is non-zero.
For a singular fade subspacef ∈ F , let dmin(Cf , HR) be

defined as,

dmin(C
f , HR) = min

(xA,xB),(x′

A,x′

B)∈SnA+nB ,

Mf (xA,xB) 6=Mf (x′

A,x′

B)

|HA

(

xA − x′
A

)

+HB

(

xB − x′
B

)

|,

whereMf is the many-one map associated with the clustering
Cf .

A clusteringCf is said to remove a singular fade subspace
f ∈ F , if the minimum cluster distancedmin(Cf , HR) is
greater than zero, for everyHR such thatR(HR) � f . If
there are more than one clusterings which remove a singular
fade subspacef , choose any one of them.

It is important to note that certain singular fade subspaces
cannot be removed. These are precisely the singular fade
subspaces which are of the form[span(∆x)]⊥, for which

∆x = [0nA
∆xB],∆xB ∈ ∆SnB or

∆x = [∆xA 0nB
],∆xA ∈ ∆SnA ,

and are referred to as the non-removable singular fade sub-
spaces. The reason for this is as follows: The pair(xA, xB)
and (xA, x

′
B) result in∆x = [0nA

∆xB]. But (xA, xB) and
(xA, x

′
B) cannot be placed in the same cluster since exclusive

law given in (6) will be violated. Note that0nA+nB
is also a

non-removable singular fade subspace, referred to as the trivial
non-removable singular fade subspace.

Note 2: The non-trivial non-removable singular fade sub-
spaces for the SISO two-way relaying scenario are of
the form [span([∆x 0]T )]⊥ = span([0 1]T ) and
[span([0 ∆x]T )]⊥ = span([1 0]T ), where∆x ∈ ∆S \ {0}.
Irrespective of the signal set used at A and B, the non-
trivial non-removable singular fade spaces are only two in
number, since the vector subspaces[span([∆x 0]T )]⊥ are
the same for all∆x ∈ ∆S \ {0}. In terms of the notion
of singular fade states [12], from the earlier discussion on
SISO two-way relaying as a special case of MIMO two-
way relaying, it follows that the above two singular fade

subspaces correspond to the singular fade states infinity and
zero respectively. Alternatively, the fact that these singular fade
states are non-removable has been stated in [6] as follows:the
distance shortening atHB/HA ≈ 0 (or HA/HB ≈ 0) is
inevitable. For SISO two-way relaying, the number of non-
trivial non-removable singular fade subspaces remains two
irrespective of the size of the signal set used at A and B. In
contrast, it will be seen in Section II that for MIMO two-way
relaying, the number of non-trivial non-removable singular
fade subspaces increases with increasing size of the signal
set used at A and B.

Let CF =
{

Cf : f ∈ F
}

denote the set of all clusterings,
which remove a removable singular fade subspace.

Note 3: For every removable singular fade subspace, the set
CF contains exactly one clustering which removes that singular
fade subspace. The clusterings which belong to the setCF
need not be distinct, since a single clustering can remove more
than one singular fade subspace, as shown in the following
example.

Example 4:Consider the2 × 2 system with BPSK signal
set used at nodes A and B, with the bit0 mapped onto+1
and the bit1 mapped onto−1. The difference constellation
of the BPSK signal set is∆S = {−2, 0, 2}. Consider
the singular fade subspace,f = [span([2 2 2 2]T )]⊥ =
[span([−2 − 2 − 2 − 2]T )]⊥. The binary vectors
[sA1

sA2
sB1

sB2
]T , [s′A1

s′A2
s′B1

s′B2
]T ∈ F4

2 which result
in the singular fade subspacef are [0 0 0 0]T , [1 1 1 1]T .
The above two vectors need to be placed in the same cluster
by the clustering which removes the singular fade subspace
f. The clustering given in (4) in Example 3 removes the
singular fade subspacef. Since[0 0 1 1]T and [1 1 0 0]T are
in the same cluster, the clustering given in (4) removes the
singular fade subspacef ′ = [span([2 2 − 2 − 2]T )]⊥ =
[span([−2 − 2 2 2]T )]⊥ as well.

In general, the row space ofHR need not be a subspace
of a singular fade subspace. In such a scenario, among all the
clusterings which remove the singular fade subspaces, the one
which maximizes the minimum cluster distance is chosen. In
other words, forR(HR) � F , the clusteringCHR is chosen to
beCf , which satisfiesdmin(Cf , HR) ≥ dmin(Cf ′

, HR), ∀f 6=
f ′ ∈ F . Since the clusterings which remove the singular fade
subspaces are known to all the three nodes and are finite in
number, the clustering used for a particular realization ofthe
channel fade coefficients can be indicated by R to A and B
using overhead bits.

In [6], a computer search algorithm called the Closest-
Neighbour Clustering (CNC) algorithm was proposed for two-
way relaying with single antenna at the nodes, which was
used to obtain the network coding map that results in the
best distance profile. The CNC algorithm was extended to
the multiple antenna scenario in [10]. The algorithm is run
for a givenHR. The total number of network coding maps
which would result is known only after the algorithm is run for
all possible realizations ofHR which is uncountably infinite.
Hence, the number of overhead bits required is not known
beforehand.



In contrast, the scheme proposed in this paper is based on
the removal of singular fade subspaces. Since the number of
singular fade subspaces is finite, the number of overhead bits
required is upper bounded by the number of singular fade sub-
spaces, which is known beforehand. In other words, the total
number of network coding maps required is known exactly,
which determines the number of overhead bits required. It is
shown in Section III that the problem of obtaining clusterings
which remove all the singular fade subspaces reduces to
completing a finite number of partially filled Latin Rectangles,
which totally avoids the problem of performing exhaustive
search for an uncountably infinite number of values.

The contributions and organization of this paper are as
follows.

• The structure and the exact number of non-removable and
removable singular fade subspaces forM −PSK signal
set (M any power of 2) are obtained analytically (Section
II). It is shown that the fraction of the number of non-
removable singular fade subspaces to the total number of
singular fade subspaces tends to zero for large values of
M (Section II).

• It is shown that the requirement of satisfying the exclusive
law is same as the clustering being represented by a
partially filled Latin Rectangle (PFLR) and can be used to
get the clustering which removes singular fade subspaces,
by completing the PFLR (Section III A).

• It is shown that the Latin Rectangles which remove the
singular fade subspaces for the case when end nodes
have unequal number of antennas, i.e.,nA 6= nB can
be obtained from the Latin Squares which remove the
singular fade subspaces for the case when the nodes have
equal number of antennasn = max{nA, nB}(Section III
B).

• The singular fade subspaces which are removed by the
conventional Exclusive-OR map are identified (Section
III C).

• It is shown that finding the network coding maps which
remove all the singular fade subspaces reduces to finding
a small set of maps. The entire set can be obtained from
the small set by the notions of isotopic and transposed
Latin Squares (Section III C).

• The set of all Latin Squares which remove all the singular
fade subspaces for the case whennA = nB = 2 and
QPSK signal set is used at the end nodes is explicitly
provided (Section IV).

• It is shown that most of the Latin Squares which remove
the singular fade subspaces for then × n system,n ≥
2, are obtainable from Latin Squares which remove the
singular fade subspaces of them×m system, wherem <
n (Section V).

II. SINGULAR FADE SUBSPACES FOR2λ-PSK
SIGNAL SET

In this section, the structure as well as the total number
of singular fade subspaces is obtained for arbitrary2λ-PSK
signal sets. The points in the symmetricM -PSK signal set

are assumed to be of the formej(2k+1)π/M , 0 ≤ k ≤ M − 1
andM is of the form2λ, whereλ is a positive integer.

For anyM -PSK signal set, the set∆S is of the form,

∆S = {0} ∪
{

2 sin(πn/M)ejk2π/M |n odd
}

∪
{

2 sin(πn/M)ej(k2π/M+π/M)|n even
}

, (7)

where1 ≤ n ≤ M/2 and0 ≤ k ≤ M − 1.
In other words, the non-zero points in∆S lie on M/2

circles of radius2 sin(πn/M), 1 ≤ n ≤ M/2 with each circle
containingM points. The phase angles of theM points on
each circle is2kπ/M , if n is odd and2kπ/M + π/M if n
is even, where0 ≤ k ≤ M − 1. For example the difference
constellation for QPSK signal set is shown in Fig. 3.
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Fig. 3. Difference constellation for QPSK signal set

The following Lemma is useful in finding the structure as
well as number of singular fade subspaces.

Lemma 1:For integersk1, k2, l1 and l2, where

1 ≤ k1, k2, l1, l2 ≤ M

2
, k1 6= k2 and l1 6= l2,

sin(k1π/M)

sin(k2π/M)
=

sin(l1π/M)

sin(l2π/M)
, (8)

if and only if k1 = l1 andk2 = l2.
Proof: See [13].

Recall from Section I that the singular fade subspaces are
of the form [span([∆xT

A ∆xT
B ]

T )]⊥, where∆xA ∈ ∆SnA

and∆xB ∈ ∆SnB . Let ∆xm
A (∆xm

B ) denote themth element
of ∆xA (∆xB). Let i1, i2, ..., iL be the ordered indices for
which ∆xik

A 6= 0, 1 ≤ k ≤ L. Similarly, let j1, j2, ..., jL′

be the ordered indices for which∆xjk
B 6= 0, 1 ≤ k ≤ L′. Let

φik
A , 1 ≤ k ≤ L andφjl

B , 1 ≤ l ≤ L′ denote the phase angles of



∆xik
A and∆xjl

B respectively. Let the vector of lengthL+L′−1,

[(φi2
A − φi1

A ) (φi3
A − φi1

A )...(φiL
A − φi1

A )

(φj1
B − φi1

A ) (φj2
B − φi1

A )...(φ
jL′

B − φi1
A )]T

be referred to as the relative phase vector of∆x.
Note that [span(∆x)]⊥ and [span(∆x′)]⊥ can be the

same for some∆x,∆x′ ∈ ∆SnA+nB . A necessary and
sufficient condition for [span(∆x)]⊥ = [span(∆x′)]⊥, is
that span(∆x) = span(∆x′), i.e., ∆x = c∆x′, for some
c ∈ C. Equivalently, the conditions for[span(∆x)]⊥ =
[span(∆x′)]⊥can be stated as follows:

• The location of the non-zero components is the same in
the vectors∆x and∆x′.

• The relative phase vector of∆x and∆x′ are equal.
• |∆xi| = c|∆x′

i|, ∀1 ≤ i ≤ nA + nB, for somec ∈ C.

For 2λ PSK signal set, given the first condition, the third
condition given above can be replaced by the condition given
in the following lemma.

Lemma 2:Let i1, i2, i3, ..., iL be the ordered indices cor-
responding to the non-zero components in∆x and∆x′ (the
location of the non-zero components is the same in the vectors
∆x and ∆x′). For 2λ-PSK signal set,|∆xi| = c|∆x′

i|,
∀1 ≤ i ≤ nA + nB, for some c ∈ C, if and only if the
magnitude of the non-zero components in∆x are equal and
the magnitudes of the non-zero components in∆x′ are equal,
i.e., |∆xi1 | = |∆xi2 | = ...|∆xiL | and |∆x′

i1
| = |∆x′

i2
| =

...|∆x′
iL |.

Proof: When the condition given in the statement of the
lemma is satisfied, clearly,|∆xi| = c|∆x′

i|, ∀1 ≤ i ≤ nA +
nB.

The proof of the “only if” part is as follows. Let1 ≤
r1 < r2 < ... < rL ≤ nA be the indices for which
∆xrk

A 6= 0,∆x′rk
A 6= 0, 1 ≤ k ≤ L. Similarly, let 1 ≤ j1 <

j2 < ... < j′L ≤ nB be the indices for which∆xjk
B 6=

0,∆x′jk
B 6= 0, 1 ≤ k ≤ L′. Since span(∆x) = span(∆x′),

we have,

∆x
r1
A

∆x′
r1
A

=
∆x

r2
A

∆x′
r2
A

= ... =
∆x

rL
A

∆x′
rL
A

=
∆x

j1
B

∆x′
j1
B

=
∆x

j2
B

∆x′
j2
B

= ... =
∆x

j′
L

B

∆x′
j′
L

B

.

(9)

From (7) it follows that the absolute value of the ratio of
the points in the difference constellation∆S are of the form
sin( kπ

M
)

sin( lπ
M

)
, for some 1 ≤ k, l ≤ M/2. Equating the absolute

values of the terms in (9) and from Lemma 1, it follows that
the absolute values of the non-zero components in∆x need to
be equal and the absolute values of the non-zero components
in ∆x′ need to be equal. This completes the proof.

Example 5:For the2×2 system with BPSK signal set, for
∆x = [0 2 2 − 2]T and∆x′ = [0 − 2 − 2 2]T , the location of
the non-zero components in∆x and∆x′ are the same. The
relative phase vectors of∆x and∆x′ are equal. Also, we have,
|∆x2| = |∆x3| = |∆x4| = 2, |∆x′

2| = |∆x′
3| = |∆x′

4| = 2.
Hence,[span([0 2 2 − 2]T )]⊥ = [span([0 − 2 − 2 2]T )]⊥.

Example 6:For the 2 × 2 system with QPSK signal set,
it can be seen from Fig. 3 that the non-zero points in the
difference constellation lie on circles with radii

√
2 and 2.

For ∆x = [0
√
2 + j

√
2

√
2 − j

√
2

√
2 + j

√
2]T )] and

∆x′ = [0
√
2 −j

√
2

√
2]T )], the location of the non-zero

components in∆x and∆x′ are the same. The relative phase
vectors of∆x and ∆x′ are equal. Also, we have,|∆x2| =
|∆x3| = |∆x4| = 4, |∆x′

2| = |∆x′
3| = |∆x′

4| = 2. Hence
the vector subspaces[span([0

√
2+j

√
2

√
2−j

√
2

√
2+

j
√
2]T )]⊥ and[span([0

√
2 −j

√
2

√
2]T )]⊥ are the same.

As mentioned in Section I, the singular fade subspaces
can be classified in to removable and non-removable sin-
gular fade subspaces. The non-removable singular fade sub-
spaces are of the form[span([∆xA 0nB

]T )]⊥,∆xA ∈
∆SnA or [span([0nA

∆xB ]
T )]⊥,∆xB ∈ ∆SnB . The

removable singular fade subspaces are of the form
[

span([∆xT
A ∆xT

B ]
T )

]⊥
,∆xA 6= 0nA

,∆xB 6= 0nB
.

The following lemma gives the total number of non-
removable and removable singular fade subspaces.

Lemma 3:For M -PSK signal set (M any power of 2),

• the total number of non-removable singular fade sub-
spaces is given by,

nA
∑

k=1

(nA

k

)

[

(

M

2

)k

−
M

2
+ 1

]

Mk−1

+

nB
∑

l=1

(nB

l

)

[

(

M

2

)l

−
M

2
+ 1

]

M l−1.

• the number of removable singular fade subspaces of the
form [span(∆x)]⊥ with 2 ≤ k ≤ nA + nB non-zero
components in∆x is given by,

[

(nA + nB

k

)

−
(nA

k

)

−
(nB

k

)

]

[

(

M

2

)k

−
M

2
+ 1

]

Mk−1.

Hence the total number of removable singular fade
subspaces is,

nA+nB
∑

k=2

([

(nA + nB

k

)

−
(nA

k

)

−
(nB

k

)

]

[

(

M

2

)k

−
M

2
+ 1

]

Mk−1

)

,

where
(

a
b

)

is defined to be zero ifb > a.

Proof: See Appendix A.

Example 7:Consider the MIMO two-way relaying system
with nA = 2 andnB = 2. From Lemma 3, the non-removable
singular fade subspaces for BPSK are 4 in number and are the
ones numbered from 1 to 4 in Table I. For QPSK signal set,
there are 28 non-removable singular fade subspaces. For BPSK
and QPSK signal sets, the number of removable singular fade
subspaces of the form[span(∆x)]⊥, where∆x hask non-zero
entries are as given below:



No. Singular fade subspace
1 [span([0 0 2 2]T )]⊥=[span([0 0−2−2]T )]⊥

2 [span([0 0 2−2]T )]⊥=[span([0 0−2 2]T )]⊥

3 [span([2 2 0 0]T )]⊥=[span([−2−2 0 0]T )]⊥

4 [span([2−2 0 0]T )]⊥=[span([−2 2 0 0]T )]⊥

5 [span([0 2 0 2]T )]⊥=[span([0−2 0−2]T )]⊥

6 [span([0 2 0−2]T )]⊥=[span([0−2 0 2]T )]⊥

7 [span([2 0 2 0]T )]⊥=[span([−2 0−2 0]T )]⊥

8 [span([2 0−2 0]T )]⊥=[span([−2 0 2 0]T )]⊥

9 [span([2 0 0 2]T )]⊥=[span([−2 0 0−2]T )]⊥

10 [span([2 0 0−2]T )]⊥=[span([−2 0 0 2]T )]⊥

11 [span([0 2 2 0]T )]⊥=[span([0−2−2 0]T )]⊥

12 [span([0 2−2 0]T )]⊥=[span([0−2 2 0]T )]⊥

13 [span([0 2 2 2]T )]⊥=[span([0−2−2−2]T )]⊥

14 [span([0 2 2−2]T )]⊥=[span([0−2−2 2]T )]⊥

15 [span([0 2−2−2]T )]⊥=[span([0−2 2 2]T )]⊥

16 [span([0 2−2 2]T )]⊥=[span([0−2 2−2]T )]⊥

17 [span([2 0 2 2]T )]⊥=[span([−2 0−2−2]T )]⊥

18 [span([2 0 2−2]T )]⊥=[span([−2 0−2 2]T )]⊥

19 [span([2 0−2−2]T )]⊥=[span([−2 0 2 2]T )]⊥

20 [span([2 0−2 2]T )]⊥=[span([−2 0 2−2]T )]⊥

21 [span([2 2 0 2]T )]⊥=[span([−2−2 0−2]T )]⊥

22 [span(2 2 0−2]T )]⊥=[span([−2−2 0 2]T )]⊥

23 [span([2−2 0−2]T )]⊥=[span([−2 2 0 2]T )]⊥

24 [span([2−2 0 2]T )]⊥=[span([−2 2 0−2]T )]⊥

25 [span([2 2 2 0]T )]⊥=[span([−2−2−2 0]T )]⊥

26 [span(2 2−2 0]T )]⊥=[span([−2−2 2 0]T )]⊥

27 [span([2−2−2 0]T )]⊥=[span([−2 2 2 0]T )]⊥

28 [span([2−2 2 0]T )]⊥=[span([−2 2−2 0]T )]⊥

29 [span([2 2 2 2]T )]⊥=[span([−2−2−2−2]T )]⊥

30 [span([2 2 2−2]T )]⊥=[span([−2−2−2 2]T )]⊥

31 [span([2 2−2−2]T )]⊥=[span([−2−2 2 2]T )]⊥

32 [span([2 2−2 2]T )]⊥=[span([−2−2 2−2]T )]⊥

33 [span([2−2 2 2]T )]⊥=[span([−2 2−2−2]T )]⊥

34 [span([2−2 2−2]T )]⊥=[span([−2 2−2 2]T )]⊥

35 [span([2−2−2 2]T )]⊥=[span([−2 2 2−2]T )]⊥

36 [span([2−2−2−2]T )]⊥=[span([−2 2 2 2]T )]⊥

TABLE I
SINGULAR FADE SUBSPACES FOR THE2× 2 SYSTEM WITH BPSKSIGNAL

SET, WHERE THE SINGULAR FADE SUBSPACES NUMBERED1 TO 4 ARE
NON-REMOVABLE AND THE REST ARE REMOVABLE

k No. of removable singular fade subspaces
BPSK QPSK

2 8 48
3 16 448
4 8 960

Total 32 1456

The removable singular fade subspaces for BPSK signal set,
which are 32 in number, are the ones numbered from 5 to 36
in Table I.

From Lemma 3, it can be seen that the number non-
removable singular fade subspaces isO(M2max{nA,nB}−1),
while the number of removable singular fade subspaces is
O(M2(nA+nB)−1). Hence, the number of non-removable sin-
gular fade subspaces is a small fraction of the total number
of singular fade subspaces and the fraction tends to zero for
increasing values ofM.

III. T HE EXCLUSIVE LAW AND LATIN RECTANGLES

For the two-way relaying scenario, with single antenna at
the nodes, with signal sets of equal cardinality used at the
end nodes, it was shown in [12] that all network coding maps
satisfying the exclusive law are representable as Latin Squares.
In this section, we establish the connection between Latin
Rectangles and network coding maps satisfying the exclusive
law, for the MIMO two-way relaying scenario.

Definition 4: [11] A Latin Rectangle L of orderN1 × N2

on the symbols from the setZt = {0, 1, · · · , t − 1} is an
N1 × N2 array, in which each cell contains one symbol and
each symbol occurs at most once in each row and column. A
Latin Rectangle of orderN × N is called a Latin Square of
orderN.

Let the points in theM -point signal set used for transmis-
sion at the nodes be indexed by the elements of the setZM =
{0, 1, 2, . . . ,M − 1}. Consider anMnA ×MnB array at the
relay with the rows (\columns) indexed by thenA-tuple(\nB-
tuple) [xA1

, xA2
, . . . , xAnA

] (\[xB1
, xB2

, . . . , xBnB
]) denot-

ing the complex vector transmitted by node A (\B). Our aim
is to form clusters from the slots in theMnA × MnB array
such that the exclusive law is satisfied. To do so, we will
fill in the slots in the array with the elements of setZt and
the clusters are obtained by taking all the row-column pairs
(i, j), i ∈ ZnA

M , j ∈ ZnB

M such that the entry in the(i, j)−th
slot is the same symbol fromZt for a cluster. The specific
symbols fromZt are not important, but it is the set of clusters
that are important. Now, it is easy to see that if the exclusive
law need to be satisfied, then the clustering should be such
that an element in a row (column) cannot be repeated in the
same row (column). Thus all the relay clusterings which satisfy
the exclusive law form Latin Rectangles. Hence, we have the
following:

For MIMO two-way relaying, every relay clustering which
satisfy the exclusive law forms a Latin Rectangle and vice
verse.

With this observation, the study of clustering which satisfies
the exclusive law can be equivalently carried out as the study
of Latin Rectangles with appropriate parameters.

A. Removing singular fade subspaces, Singularity-removal
Constraints and Constrained Latin Rectangles

Consider a singular fade subspacef ∈ F . Let (k, l)(k′, l′) ∈
ZnA

M × ZnB

M be the pairs which result in∆x such that
[span(∆x)]⊥ = f . If (k, l) and (k′, l′) are not clustered
together, the minimum cluster distance will be zero, for allHR

such thatR(HR) � f. To avoid this, those pairs should be
in the same cluster. This requirement is termed assingularity-
removal constraint. So, we need to obtain Latin Rectangles
which can remove singular fade subspaces and with minimum
value for t. Therefore, initially we will fill the slots in the
MnA ×MnB array such that for the slots corresponding to a
singularity-removal constraint the same element will be used to
fill slots. This removes that particular singular fade subspace.
Such a partially filled Latin Rectangle is called aConstrained
Partial Latin Rectangle(CPLR). After this, to make this a



00 01 10 11
00 3
01
10
11 3

Fig. 4. Constrained Partial Latin Square corresponding to the singular fade
subspace[span([2 2 − 2 − 2]T )]⊥

00 01 10 11
00 0 1 2 3
01 1 0 3 2
10 2 3 0 1
11 3 2 1 0

Fig. 5. Latin Square corresponding to the bit-wise XOR map for BPSK
signal set

Latin Rectangle, we will try to fill the other slots of the
partially filled CPLR with minimum number of symbols from
the setZt.

Example 8:Consider the2 × 2 system with BPSK signal
set used at the end nodes. Consider the singular fade subspace
[span([2 2 − 2 − 2]T )]⊥ = [span([−2 − 2 2 2]T )]⊥.
The singularity-removal constraint for this singular fade
subspace is{([0 0], [1 1]), ([1 1], [0 0])}. The constrained
partial Latin Square for this case is shown in Fig. 4.
The clustering which removes this singular fade subspace,
given in (4) in Example 3, can also be represented as a
Latin Square shown in Fig. 5. For the singular fade subspace
[span([0−2−2 2]T )]⊥, the singularity removal constraints are
{{([0 0] , [0 1]) , ([0 1] , [1 0])} , {([1 0] , [0 1]) , ([1 1] , [1 0])}} .
The constrained partial Latin Square and the filled Latin
Square which removes this singular fade subspace are shown
respectively in Fig. 6 and Fig. 7.

B. Obtaining Latin Rectangles from Latin Squares

In this section, it is shown that the Latin Rectangles which
remove the singular fade subspaces for thenA × nB system
can be obtained from the Latin Squares, which remove the

00 01 10 11
00 0
01 0
10 1
11 1

Fig. 6. Constrained Partial Latin Square corresponding to the singular fade
subspace[span([0 − 2 − 2 2]T )]⊥.

00 01 10 11
00 3 0 2 1
01 1 2 0 3
10 0 1 3 2
11 2 3 1 0

Fig. 7. Latin Square that removes the singular fade subspace[span([0 −
2 − 2 2]T )]⊥.

singular fade subspaces for then × n system, wheren =
max{nA, nB}, by removing certain rows or columns.

For nB > nA, if [span([∆xT
A ∆xT

B ]
T )]⊥ is a sin-

gular fade subspace for thenA × nB system, then
[span([0TnB−nA

∆xT
A ∆xT

B ]
T )]⊥ is a singular fade subspace

for the nB × nB system. Similarly, fornA > nB, if
[span([∆xT

A ∆xT
B ]

T )]⊥ is a singular fade subspace for the
nA × nB system, then[span([∆xT

A 0TnA−nB
∆xT

B ]
T )]⊥ is a

singular fade subspace for thenA × nA system.
For a Latin SquareL of ordern, let L[1:r,:] denote the Latin

Rectangle of orderr × n obtained by taking only the firstr
rows of L. Similarly, let L[:,1:c] denote the Latin Rectangle
obtained by taking only the firstc columns ofL.

Lemma 4:FornB > nA, if the Latin SquareL removes the
singular fade subspace[span([0TnB−nA

∆xT
A∆xT

B ])]
⊥ for the

nB × nB system, the Latin RectangleL[1:MnA ,:] removes the
singular fade subspace[span([∆xT

A ∆xT
B ])]

⊥ for thenA×nB

system. Similarly, fornA > nB, if the Latin SquareL removes
the singular fade subspace[span([∆xT

A 0TnA−nB
∆xT

B ]
T )]⊥ for

thenA × nA system, the Latin RectangleL[:,1:MnB ] removes
the singular fade subspace[span([∆xT

A ∆xT
B ]

T )]⊥ for the
nA × nB system.

Proof: Consider the case whennB > nA. Let f denote
the singular fade subspace[span([0TnB−nA

∆xT
A ∆xT

B])]
⊥

for the nB × nB system. Let∆xA = [0TnB−nA
∆xT

A]
T . The

singularity removal constraints forf are of the form,

{([xTA[1:nB−nA] x
T
A[nB−nA+1:nB ]]

T , xTB),

([xTA[1:nB−nA] x
′T
B [nB−nA+1:nB ], x

′T
B)},

where xA[nB−nA+1:nB ]] − x
′
B [nB−nA+1:nB ] = ∆xA, xB −

x
′
B = ∆xB andxA[1:nB−nA] ∈ SnB−nA . For xA[1:nB−nA] =

0nA−nB
, the singularity removal constraints are,

{([0[1:nB−nA] x
T
A[nB−nA+1:nB ]]

T , xTB),

([0[1:nB−nA] x
′T
B [nB−nA+1:nB ], x

′T
B)}. (10)

All the cells given in the constraints (10) belong to the
rows 1 toMnA. Since the Latin SquareL which removes
[span([0TnB−nA

∆xT
A ∆xT

B ])]
⊥ satisfies the constraints in (10),

the Latin RectangleL[1:MnA ,:] satisfies the constraints

{([xTA[nB−nA+1:nB ]]
T , xTB), ([x

′T
B [nB−nA+1:nB ], x

′T
B)},

which are the singularity-removal constraints corresponding
to the singular fade subspace[span([∆xT

A ∆xT
B ]

T )]⊥ for the
nA × nB system.

Example 9:Consider the1 × 2 system with BPSK sig-
nal set. The Latin Rectangle which removes the singular
fade subspace[span([ −2 − 2 2]T )]⊥ shown in Fig. 8
is obtained by taking only the first two rows of the Latin
Square in Fig. 7 which removes the singular fade subspace
[span([0 − 2 − 2 2]T )]⊥ of the 2× 2 system.

From Lemma 4 it follows that the network coding maps
for the case whennA 6= nB can be obtained from network
coding maps for the scenario in which the number of transmit



00 01 10 11
00 3 0 2 1
01 1 2 0 3

Fig. 8. Latin Rectangle that removes the singular fade subspace[span([−2−
2 2]T )]⊥.

antennas at A and Bn = max{nA, nB}. Hence, in the rest of
the paper it is assumed thatnA = nB = n and the network
coding maps to be obtained are Latin Squares.

Note 4: If the maximum entry in the filledn × n Latin
Square from which the Latin Rectangle is obtained is greater
thann− 1, the obtained Latin Rectangle also can have entries
greater thann−1. Since the performance during the BC phase
is dependent on the number of distinct entries in the filled Latin
Rectangle, this adversely impacts the performance during the
BC phase. In that case, obtaining the Latin Rectangle by direct
completion of CPLR, instead of obtaining it from the Latin
Square, may lead to a better performance.

C. Some Special Constructions of Latin Squares

Recall that the rows and columns of the Latin Squares are
indexed by vectors which belong toZn

M . By bit-wise XOR
of two such vectors, it is meant the vector obtained by taking
the bit-wise XOR of the individual components of the two
vectors, after decimal to binary conversion. Every cell in the
Latin Square corresponding to the bit-wise XOR mapping is
filled with the decimal equivalent of the bit-wise XOR of the
row index and the column index.

Consider the singular fade subspaces
[span([∆xA∆xB]

T )]⊥, which satisfy the condition that
∆xAi

= ±∆xBi
, ∀1 ≤ i ≤ n. Let F± denote the set of such

singular fade subspaces. In the following lemma, it is shown
that bit-wise XOR mapping removes all the singular fade
subspaces which belong toF±.

Lemma 5:When the user nodes use2λ-PSK constellations,
the singular fade subspaces which belong to the setF± are
removed by bit-wise XOR mapping, for allλ.

Proof: By definition, for f = span([∆xA∆xB ]
T )⊥) ∈

F±, the non-zero locations of∆xA and∆xB should match.
Let L be the number of non-zero components in∆xA

and ∆xB . Without loss of generality assume,∆xJ =
[∆xJ1

∆xJ2
. . . ∆xJL

0n−L]
T , J ∈ {A,B}, (if the non-

zero components of∆xA and ∆xB appear in any other
order, the indexing given for the transmit antennas can be
permuted to get the assumed ordering). By definition, any
f ∈ F± should satisfy,∆xAi

= ±∆xBi
, 1 ≤ i ≤ L. Let

xAi
= ki, 1 ≤ i ≤ L and xBi

= li, 1 ≤ i ≤ L. For
{[k1 k2 . . . kL l1 l2 . . . lL]

T , [k′1 k′2 . . . k′L l′1 l′2 . . . l′L]
T }

to be a singularity-removal constraint, since∆xAi
= ±∆xBi

,
it follows that,

e
jkiπ

M − e
jk′

iπ

M = ±
(

e
jliπ

M − e
jl′iπ

M

)

, 1 ≤ i ≤ L. (11)

Consider the case when∆xAi
= ∆xBi

.

00 01 10 11
00 3 1 0 2
01 0 2 1 3
10 2 0 3 1
11 1 3 2 0

Fig. 9. Latin Square that removes the singular fade subspace
[span([−2 2 0 −2]T )]⊥.

Equating the magnitude and phase terms in (11) results in
the following possibilities:

ki + k′i = li + l′i + li, (12)

ki − k′i = li − l′i orki − k′i = l′i − li +M. (13)

Solving (12) and (13), we getki = li, k
′
i = l′i or ki =

l′i +
M
2 , li = k′i +

M
2 .

Similarly for the case when∆xAi
= −∆xBi

, the conditions
ki, li, k

′
i andli should satisfy are,ki = l′i, li = k′i or ki = li+

M
2 , k′i = l′i+

M
2 . Hence, it needs to be shown that the bit-wise

XOR map places in the same cluster those vector pairs(k, l)
and (k′, l′), for which ki = li, k

′
i = l′i or ki = l′i +

M
2 , li =

k′i +
M
2 , or ki = l′i, li = k′i or ki = li +

M
2 , k′i = l′i +

M
2 , or

ki = l′i, li = k′i or ki = li +
M
2 , k′i = l′i +

M
2 , ∀1 ≤ i ≤ L.

The Latin Square corresponding to the bit-wise XOR map
has the following properties:

• ki+ki = 0. Hence, it places vectors withki = li, k
′
i = l′i

in the same cluster.
• ki+ li = ki− M

2 + li− M
2 . Hence, it places vectors with

ki = l′i +
M
2 , li = k′i +

M
2 in the same cluster.

• ki + li = li + ki. Hence, it places vectors withki =
l′i, li = k′i in the same cluster.

• ki+ ki− M
2 = li+ li− M

2 . Hence, it places vectors with
ki = li +

M
2 , k′i = l′i +

M
2 in the same cluster.

This completes the proof.
Example 10:Consider the2× 2 system with BPSK signal

set. The singular fade subspaces 6-9 and 30-37 (12 in total)
given in Table 1 belong toF± and are removed by the bit-wise
XOR map.

Definition 2: A Latin SquareLT is said to be the Transpose
of a Latin SquareL, if LT (i, j) = L(j, i) for all i, j ∈
{0, 1, 2, ..,M − 1}.

Lemma 6: If the Latin SquareL removes the singular fade
subspace[span([∆xT

A ∆xT
B)]

T ]⊥, then the Latin SquareLT

removes the singular fade subspace[span([∆xT
B ∆xT

A)]
T ]⊥.

Proof: The singular fade subspace
[span([∆xT

A ∆xT
B)]

T ]⊥ can be viewed as the singular
fade subspace[span([∆xT

B ∆xT
A)]

T ]⊥ with the users A
and B interchanged. Interchanging the users is the same
as interchanging the row and column indices, i.e., taking
transpose.

Example 11:For a 2 × 2 system with BPSK signal set,
since the Latin Square given in Fig. 7 removes the singular
fade subspace[span([0 −2 −2 2]T )]⊥, from Lemma 6, its
transpose shown in Fig. 9 removes the singular fade subspace
[span([−2 2 0−2]T )]⊥.



00 01 10 11
00 0 1 2 3
10 1 0 3 2
01 2 3 0 1
11 3 2 1 0

Fig. 10. Latin Square obtained from XOR map by the permutation of row
indices

00 01 10 11
00 0 1 2 3
01 2 3 0 1
10 1 0 3 2
11 3 2 1 0

Fig. 11. Latin Square which is same as the one shown in Fig. 10

Definition 3: [11] Two Latin SquaresL andL ′ (using the
same symbol set) are isotopic if there is a triple(f,g,h), where
f is a row permutation,g is a column permutation andh is
a symbol permutation, such that applying these permutations
on L givesL′.

Consider a vector∆x̃ = [∆x̃T
A ∆x̃T

B ]
T , where∆x̃A and

∆x̃B are obtained by the applying the permutationsσA and
σB on ∆xA and ∆xB respectively. Equivalently this can
be viewed as applying the permutationsσA and σB on the
indices of the transmitting antennas atnA andnB respectively.
Since the rows and columns of the Latin Squares which
remove the singular fade subspaces are indexed by the vectors
transmitted by nodesA and B respectively, applying the
permutationsσA andσB on the components of the row and
column indices of the Latin Square which removes the singular
fade subspace[span(∆x)]⊥ results in an isotopic Latin Square
which removes the singular fade subspace[span(∆x̃)]⊥. This
is stated as the following lemma.

Lemma 7: If a Latin SquareL removes the singular fade
subspace[span(∆x)]⊥, the Latin SquareL′ obtained by apply-
ing the permutationσA on the components of the row indices
and the permutationσB on the components of the column
indices ofL removes the singular fade subspace[span(∆x̃)]⊥.

Example 12:Consider the2× 2 system with BPSK signal
set. As seen in Example 10, the XOR map given in Fig. 5
removes the singular fade subspaces 6-9 given in Table 1.
Permuting the components of the row indices of the Latin
Square in Fig. 5 (i.e., the first component becomes the second
component and vice verse), results in the Latin Square Fig.
10, which is the same as the Latin Square shown in Fig. 11.
From Lemma 7, it follows that the Latin Square in Fig. 11
removes the singular fade subspaces 9-13 given in Table 1.

Consider the case whenM -PSK signal set (M any power
of 2) is used at the end nodes. Consider two singular fade
subspaces[span(∆x)]⊥ and [span(∆x̄)]⊥ which are such that
the absolute values of the components of∆x and ∆x̄ are
equal, i.e., they differ only in the relative phase vectors.Let
[φT

A φT
B]

T and[φ′T
A φ′T

B]
T be the relative phase vectors of∆x

and∆x̄ respectively, whereφA andφ′
A are of lengthn − 1,

and φB and φ′
B are of lengthn. Let ∆φA = φA − φ′

A and

00 01 10 11
01 3 0 2 1
00 1 2 0 3
11 0 1 3 2
10 2 3 1 0

Fig. 12. Latin Square that removes the singular fade subspace [span([02 −
2 2]T )]⊥.

00 01 10 11
00 1 2 0 3
01 3 0 2 1
10 2 3 1 0
11 0 1 3 2

Fig. 13. Latin Square that is same as the Latin Square in Fig. 12

∆φB = φB−φ′
B . Also let∆φAi

=
kAi

2π

M and∆φBi
=

kBi
2π

M .

Lemma 8:For 2λ-PSK signal set, letL denote the
Latin Square which removes the singular fade subspace
[span(∆x)]⊥. The Latin SquareL′ which removes the singular
fade subspace[span(∆x̄)]⊥ can be obtained fromL as follows:
To the ith component of all the row indices ofL add
kAi

, ∀1 ≤ i ≤ n modulo M and to theith component of
all the column indices ofL addkBi

, ∀1 ≤ i ≤ n moduloM,
to obtain the Latin SquareL′.

Proof: Rotating the phase of theith component of∆xA

by an anglekAi2π
M , can be viewed equivalently as rotating the

phase of the signal set used by the antennani at node A, by the
same angle. In the Latin SquareL that removes[span(∆x)]⊥,
this change can be effected by addingkAi

moduloM to the
ith component of the row indices. By a similar reasoning,kBi

needs to be added to the column indices ofL to obtainL′.
This completes the proof.

Example 13:Consider the2× 2 system with BPSK signal
set. As discussed in Example 8, the Latin Square shown in Fig.
7 removes the singular fade subspace[span([0−2−22]T )]⊥ =
[span([0 2 2−2]T )]⊥. From Lemma 8, adding1 modulo 2 to
the second component of the row index in the Latin Square in
Fig. 7, we get the Latin Square shown in Fig. 12 which is the
same as the one in Fig. 13, which removes the singular fade
subspace[span([0 2−2 2]T )]⊥.

The usefulness of Lemmas 6-8 is that the set of all Latin
Squares which remove all the singular fade subspaces can be
obtained from a small set of Latin Squares. This is illustrated
for the 2× 2 system in the following subsection.

D. Sufficient number of Latin Squares to be obtained for2×2
system withM -PSK signal set

Consider the2 × 2 system withM -PSK (M any power
of 2) signal set used at A and B. For this case, the
singular fade subspaces are of the form[span(∆x)]⊥ where
∆x = [∆xA1

∆xA2
∆xB1

∆xB2
]T ∈ ∆S4. Let k be the

number of non-zero components in∆x. The following lemma
gives the sufficient number of Latin Squares from which the
Latin Squares which remove all the removable singular fade



subspaces can be obtained.

Lemma 9:For the2 × 2 system, with2λ-PSK signal set,
the sufficient number of Latin Squares from which the Latin
Squares which remove all the removable singular fade sub-
spaces of the form[span(∆x)]⊥, with k non-zero components
in ∆x can be obtained are given by,

k No.of Latin Squares

2 M2

8 − M
4 + 1

3 M3

16 + M2

8 − M
2 + 1

4 M4

128 + M3

32 − 11M2

32 − 3M
8 + 1.

Proof: Case 1: k=4
For this case, from Lemma 3, there are

[

(

M
2

)4 − M
2 + 1

]

M3 singular fade subspaces.

For vectors∆x and∆x̃ such that|∆xi| = |∆x̃i|, ∀1 ≤ i ≤
n i.e., ∆x and∆x̃ differ only in their relative phase vectors,
from Lemma 7, the Latin Square which removes[span(∆x̃)]⊥

can be obtained by row and column permutations. This reduces
the total number of Latin Squares to be obtained by a factor
M3. In other words the total number of Latin Squares to be
obtained is upper bounded by

[

(

M
2

)4 − M
2 + 1

]

.

Consider the set∆S2
\0 = {{∆x1,∆x2} ∈ ∆S2 :

∆x1,∆x2 6= 0}. There are
(M

2

2

)

+
(M

2

1

)

= M(M+2)
8 choices

for the pair {∆x1,∆x2}. If ∆x and ∆x̃ such that the
unordered pairs{∆xA∆xB} and {∆x̄A∆x̄B} are the same,
from Lemma 8, the Latin Square which removes the singular
fade subspace[span(∆x̄)]⊥ can be obtained from the one
which removes[span(∆x)]⊥.

Hence the number of Latin Squares to be obtained is equal
to the number of ways of choosing two elements from the set
∆S2

\0 minus the number of cases which results in the same
singular fade subspaces. The total number of such possibilities
is,

(M(M+2)
8

2

)

+

(M(M+2)
8

1

)

− M

2
+ 1 =

M4

128
+

M3

32
− 11M2

32
− 3M

8
+ 1.

Case 2: k=3For this case, from Lemma 3, the number of
removable singular fade subspaces are

[

(

M
2

)3 − M
2 + 1

]

M2.

Considering only those singular fade subspaces for which|∆x|
is distinct, the total number of Latin Squares to be obtained
for this case is less than

[

(

M
2

)3 − M
2 + 1

]

.

The number of Latin Squares to be obtained is equal to the
number of ways of choosing an element from the set∆S2

\0

and an element from the set∆S \ {0} minus the number of
cases which results in the same singular fade subspaces. The
total number of such possibilities is,

[

M(M + 2)

8

]

M

2
− M

2
+ 1 =

M3

16
+

M2

8
− M

2
+ 1.

Case 3:k = 2

For this case, from Lemma 3, there are[M
2

4 − M
2 + 1]M3

singular fade subspaces. The total number of Latin Squares to
be obtained is equal to the total number of ways of choosing
two elements from∆S\{0} minus the number of cases which
result in the same singular fade subspaces. The total number
of such possibilities is,

(M
2

2

)

+

(M
2

1

)

− M

2
+ 1 =

M2

8
− M

4
+ 1.

Note 5: Lemma 9 provides only the sufficient number of
Latin Squares from which all the Latin Squares can be
obtained. The actual number can be lesser than the number
given in Lemma 9, since the same Latin Square can remove
more than one singular fade subspace. For example, from
Lemma 5 it follows that the bit-wise XOR map removes more
than one singular fade subspace.

IV. ILLUSTRATIONS FOR THE2× 2 SYSTEM WITH
QPSK SIGNAL SET

Consider the2× 2 system with QPSK signal set. The non-
zero points of the difference constellation of the QPSK signal
set∆S lie on two circle with radii

√
2 and2. The four points

on the circles with radius
√
2 have phase angles2mπ

M and
the 4 points on the circle with radius2 have phase angles
(2m+1)π

M , 0 ≤ m ≤ 3.

As seen in Example 7, there are 1456 removable singular
fade subspaces, out of which 960 havek = 4. From Lemma
9, it follows that the set of Latin Squares which remove all
these 960 singular fade subspaces can be obtained from 5 Latin
Squares, which remove the following singular fade subspaces:

f1 = [span([
√
2 + j

√
2
√
2 + j

√
2
√
2 + j

√
2
√
2 + j

√
2])]⊥,

f2 = [span([
√
2 + j

√
2
√
2
√
2 + j

√
2
√
2 + j

√
2])]⊥,

f3 = [span([
√
2 + j

√
2
√
2
√
2
√
2])]⊥,

f4 = [span([
√
2 + j

√
2
√
2
√
2 + j

√
2
√
2])]⊥ and

f5 = [span([
√
2 + j

√
2
√
2 + j

√
2
√
2
√
2])]⊥.

From Lemma 5, the singular fade subspacesf1 and f4 are
removed by the bitwise-XOR map, given in Fig. 17(a), given
in Appendix B. The Latin squares which remove the other
three singular fade subspacesf2, f3 andf5 are given in Fig.
17(b)-17(d) in Appendix B.

For k = 3, the Latin Squares which remove all the 448 sin-
gular fade subspaces can be obtained from the Latin Squares
given in Fig. 17(e)-17(i) in Appendix B, which remove the
following 5 singular fade subspaces:

f6 = [span([0
√
2 + j

√
2
√
2 + j

√
2
√
2 + j

√
2]T )]⊥,

f7 = [span([0
√
2 + j

√
2
√
2
√
2 + j

√
2]T )]⊥,

f8 = [span([0
√
2 + j

√
2
√
2
√
2]T )]⊥,

f9 = [span([0
√
2 + j

√
2
√
2 + j

√
2
√
2]T )]⊥ and

f10 = [span([0
√
2
√
2 + j

√
2
√
2]T )]⊥.
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(a) The Latin SquaresL
and L̄
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(b) The Latin SquareL⊗ L̄

Fig. 14. Example illustrating the notion of Cartesian product of Latin Squares

For k = 2, there are 48 removable singular fade sub-
spaces. From Lemma 9, the Latin Squares which re-
move all these 48 singular fade subspaces can be ob-
tained from the 2 Latin Squares which remove the singular
fade subspacesf11 = [span([0

√
2 0

√
2]T )]⊥ and f12 =

[span([0
√
2 + j

√
20

√
2]T )]⊥. From Lemma 5, it follows that

the XOR map given in Fig. 17(a) in Appendix B removesf11.
The Latin Square that removesf12 is given in Fig. 17(j) in
Appendix B. To sum up, the Latin Squares which remove all
the 1496 removable singular fade subspaces, are obtainable
from the 10 Latin Squares given in Fig. 17 in Appendix B.

V. OBTAINING LATIN SQUARES FOR THEn× n
SYSTEM FROM LATIN SQUARES OF LOWER

ORDER

In this section, it is shown that most of the Latin Squares
which remove the singular fade subspaces of then×n system,
n ≥ 2 are obtainable from the Latin Squares which remove
the singular fade subspaces ofm×m system, wherem < n.

Definition 4: For two vectorsy and z of length 2a and
2b respectively, the compound vector ofy and z, denoted as
comp(y, z) is the vector of length2a+ 2b given by,

[yT[1:a] zT[1:b] yT[a+1:2a] zT[b+1:2b]]
T .

For example, for two vectorsy = [1 2 3 4]T and z = [0 5]T ,
comp(y, z) = [1 2 0 3 4 5]T .

For a Latin SquareL, let L[i:j,k:l] denote the(j − i+ 1)×
(l − k + 1) array obtained by taking only theith to jth rows
andkth to lth columns ofL. Let L+c denote the Latin Square
obtained by adding integerc to all the cells ofL. Let max{L}
denote the maximum among all the integers filled in the cells
of the Latin SquareL.

Definition 5: The Cartesian product of the two Latin
SquaresL of orderMa andL̄ of orderM b, denoted as(L⊗L̄),
is the Latin Square of orderMa+b for which

(L⊗ L̄)[(i−1)Ma+1:iMa,(j−1)Ma+1:jMa] = L+ L̄(i, j) (max{L}+ 1) ,

where1 ≤ i, j ≤ M b.

For example, the Cartesian product of the Latin SquaresL
and L̄ of order21 and22 respectively shown in Fig. 14(a), is
the Latin Square of order23 shown in Fig. 14(b).

Consider two vectors∆x ∈ ∆S2a and∆x̄ ∈ ∆S2b. The
vector subspaces[span(∆x)]⊥ and [span(∆x̄)]⊥ are singular
fade subspaces for thea × a and b × b systems respec-
tively. The following lemma shows that the Latin Square
which removes all the singular fade subspaces of the form
[span(comp(∆x, k∆x̄))]⊥, k ∈ C can be obtained by taking
the Cartesian product of the Latin Squares which remove
[span(∆x)]⊥ and [span(∆x̄)]⊥.

Note 6: For x̄ ∈ ∆S2b and k ∈ C such thatk∆x̄ ∈ S2b,
the vector subspaces ofC2b [span(∆x̄)]⊥ and [span(k∆x̄)]⊥

are the same. But the vector subspaces ofC2a+2b

[span(comp(∆x,∆x̄))]⊥ and [span(comp(∆x, k∆x̄))]⊥, k 6=
1 are different.

Lemma 10:Let L and L̄ respectively denote the Latin
Squares of orderMa × Ma and M b × M b, which remove
the singular fade subspaces[span(∆x)]⊥ of thea× a system,
and [span(∆x̄)]⊥ of the b × b system. The Latin Square
L ⊗ L̄ removes all the singular fade subspaces of the form
[span(comp(∆x, k∆x̄))]⊥, k ∈ C.

Proof: For thea× a system, let

{([

x1A x2A . . . xaA

]

,
[

x1B x2A . . . xaB

])

,
([

x′
1A

x′
2A

. . . x′
aA

]

,
[

x′
1B

x′
2A

. . . x′
aB

])}

denote a singularity removal constraint for the singular fade
subspace[span(∆x)]⊥. Similarly, for theb× b system, let

{([

y1A y2A . . . ybA
]

,
[

y1B y2A . . . ybB
])

,
([

y′1A y′2A . . . y′bA

]

,
[

y′1B y′2A . . . y′bB

])}

denote a singularity removal constraint for the singular fade
subspace[span(∆x̄)]⊥. Since span(∆x̄) = kspan(∆x̄),

{([

ky1A ky2A . . . kybA
]

,
[

ky1B ky2A . . . kybB
])

,
([

ky′1A ky′2A . . . ky′bA

]

,
[

ky′1B ky′2A . . . ky′bB

])}

is also a singularity removal constraint for the singular fade
subspace[span(∆x̄)]⊥.

It can be verified that the Cartesian product of the
Latin Squares which remove the singular fade subspaces
[span(∆x)]⊥ and [span(∆x̄)]⊥ satisfy the Cartesian product
of their constraints. In other words, the Latin Square(L⊗ L̄)
satisfies the constraint,

{([

x1A x2A . . . xaA ky1A ky2A . . . kybA
]

,
[

x1B x2A . . . xaB ky1B ky2A . . . kybB
])

,
([

x′
1A

x′
2A

. . . x′
aA

ky′1A ky′2A . . . ky′bA

]

,
[

x′
1B

x′
2A

. . . x′
aB

ky′1B ky′2A . . . ky′bB

])}

,

which is a singularity removal constraint for the singular fade
subspace[span(comp(∆x, k∆x̄))]⊥ of the (a + b) × (a + b)
system. This completes the proof.



From Lemma 10, it follows that Latin Squares for those
singular fade subspaces for then × n system, which are
expressible as[span(comp(∆x, k∆x̄))]⊥, where[span(∆x)]⊥

and [span(∆x̄)]⊥ are removable singular fade subspaces for
a × a and b × b systems respectively, for some choices of
a < n andb < n such thata+ b = n, are obtainable from the
Latin Squares for thea× a andb× b systems.

Example 14:Consider the3× 3 system with BPSK signal
set. Consider the singular fade subspace[span([2 − 2 2 2 2 −
2])]⊥. The Latin SquareL shown in Fig. 14(a) removes the
singular fade subspace[span([2 2]T )⊥ of the1×1 system and
the Latin SquarēL shown in Fig. 14(a) removes the singular
fade subspace[span([−222−2])]⊥ of the2×2 system. Since
[2 − 2 2 2 2 − 2] = comp([2 2], [−2 2 2 − 2]), the Latin Square
L⊗ L̄ shown in Fig. 14(b) removes the singular fade subspace
[span([2 − 2 2 2 2 − 2])]⊥ of the 3× 3 system.

From Lemma 3 it follows that the number of non-removable
singular fade subspaces for then × n system withM -PSK
signal set is of orderM4n−1 and the singular fade subspaces
of the form[span(∆x)]⊥, where∆x has all the components to
be non-zero contributes to the maximum number of singular
fade states which is of orderM4n−1. It is easy to verify that a
vector∆x with all the components to be non-zero can always
be written of the form comp(∆x1,∆x2), where∆x1 and∆x2

are of lengthsa andb, wherea, b < n anda+b = n, such that
[span(∆x1)]

⊥ and [span(∆x2)]
⊥ are removable singular fade

subspaces for thea×a andb× b systems respectively. Hence,
it follows that most of the Latin Squares which remove the
singular fade subspaces for then × n system are obtainable
from Latin Squares of lower order.

VI. SIMULATION RESULTS

The proposed scheme is based on the removal of all the
singular fade subspaces, i.e., a minimum cluster distance
greater than zero is ensured for all realizations of the channel
fade coefficient matrices. Also, it is ensured that the number
of clusters in the clustering, which is the same as the size
of the signal set used during the BC phase is minimized.
As a reference scheme, we consider the case when bit-wise
XOR network code is used at R, irrespective of the channel
conditions. Since XOR network does not remove all the
singular fade subspaces, the proposed scheme is expected
to perform better than the pure XOR network code based
scheme, which is confirmed by the simulation results. All the
simulation results presented are for the case when QPSK signal
set is used at the end nodes. The number of antennas at all
the three nodes are taken to be two.

The additive noises at the nodes are taken to be of unit
variance. It is assumed that signal sets of equal energies are
used at all the nodes, which is defined to be the Signal to Noise
Ratio (SNR). Fig. 15 shows the SNR vs BER performance for
the proposed scheme and the for the case when XOR network
code is used irrespective of the channel condition, for the case
when each one of the entries of the matricesHA, HB , H ′

A

andH ′
B follow i.i.d. Rayleigh distribution, with unit variance.

Fig. 16 shows a similar plot for the case when each one of
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Fig. 15. SNR vs BER for different schemes for QPSK signal set for a
Rayleigh fading scenario with channel variances 0 dB
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Fig. 16. SNR vs BER for different schemes at node B for QPSK signal set
for a Rician fading scenario with a Rician factor of 10 dB

the entries of the matricesHA, HB, H ′
A andH ′

B follow i.i.d.
Rician distribution with a Rician Factor1 of 10 dB and unit
variances. From Fig. 15 and Fig. 16, it can be seen that the
diversity order is two, for the proposed scheme as well as
the scheme which uses the conventional XOR network code.
Also, it can be seen that for the Rayleigh and Rician fading
scenarios considered, at a BER of10−4, the proposed scheme
provides a gain of 1.5 dB and 2.5 dB respectively over the
conventional XOR network code based scheme.

VII. D ISCUSSION

An adaptive network coding scheme using Latin Rectangles
for the wireless two-way relaying scenario was proposed. The
scheme was based on the removal of a finite number of vector
subspaces referred to as the removable singular fade subspaces
by proper choice of network coding maps. For a particular

1Rician factor is the power ratio between the line of sight andscattered
components.



channel realization, among all the network coding maps which
remove the singular fade subspaces, the one which maximizes
the minimum clustering distance is chosen. In this way, the
set of all possible channel realizations, which isCnA+nB for
the nA × nB system, is quantized in to a finite number of
regions, based on which one of the network coding maps
obtained optimizes the performance. Such a quantization was
obtained analytically in [13] for the1 × 1 system. Obtaining
the quantization for a generalnA×nB system is an interesting
problem for further investigation.
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APPENDIX A
PROOF OF LEMMA 3

Number of non-removable singular fade subspaces:

Consider the case when the non-removable singular fade
subspaces are of the form[span([∆xA 0nB

]T )]⊥. Let k
be the number of non-zero components of∆xA. Assume
that the relative phase vector of∆xA is fixed. Since the

points in ∆S lie on M
2 circles, there are(M2 )k possibil-

ities for the absolute values of the non-zero components
of ∆xA. But out of these, if the absolute values of all
the components of∆xA, are equal, from Lemma 2, the
resulting singular fade subspaces are the same. Subtracting
all such cases which areM2 in number and adding one

to account for all such cases, results in
[

(

M
2

)k − M
2 + 1

]

singular fade subspaces. From Lemma 2, given the same
absolute values of the non-zero components of∆xA, distinct
singular fade subspaces results for distinct relative phase
vectors of∆xA. Since there areMk−1 distinct possibilities for
the relative phase vector, there are

[

(

M
2

)k − M
2 + 1

]

Mk−1

singular fade subspaces for the case considered withk
non-zero components. Summing over all possible values
of k, we have

∑nA

k=1

(

nA

k

)

[

(

M
2

)k − M
2 + 1

]

Mk−1 sin-
gular fade subspaces for the case considered. Similarly,
for the case when the non-removable singular fade sub-
spaces are of the form[span([0nA

∆xB ]
T )]⊥, there are

∑nB

l=1

(

nB

l

)

[

(

M
2

)l − M
2 + 1

]

M l−1 singular fade subspaces.

Number of removable singular fade subspaces:

Let k be the number of non-zero entries in∆x =
[∆xT

A ∆xT
B]

T . Since∆xA 6= 0nA
and∆xB 6= 0nB

, k should
be at least 2. Without loss of generality, assume thatnB ≥ nA.

Case 1:2 ≤ k ≤ nA

The k non-zero components of∆x can be chosen in
(

nA+nB

k

)

ways. But this also includes the cases when all
the k non-zero components occur in∆xA and∆xB = 0nB

or vice verse. Subtracting out those cases, thek non-zero
components of∆x can be chosen in

(

nA+nB

k

)

−
(

nA

k

)

−
(

nB

k

)

ways. For each one of those possibilities, following an ap-
proach similar to the one used in the proof of Lemma
3, it can be shown that there are

[

(M2 )k − M
2 + 1

]

Mk−1

singular fade subspaces. Hence, for this case there are
[(

nA+nB

k

)

−
(

nA

k

)

−
(

nB

k

)] [

(M2 )k − M
2 + 1

]

Mk−1 possible
singular fade subspaces in total.
Case 2:nA < k ≤ nB

The k non-zero components of ∆x can be
chosen in

(

nA+nB

k

)

−
(

nB

k

)

ways, since the case
when all the k non-zero components occur in
∆xB , i.e., ∆xA = 0nA

, needs to be excluded. Hence, there
are

[(

nA+nB

k

)

−
(

nB

k

)] [

(M2 )k − M
2 + 1

]

Mk−1 possibilities
in total for this case.
Case 3:nB < k ≤ nA + nB

The k non-zero components of ∆x can
be chosen in

(

nA+nB

k

)

ways. This results in
(

nA+nB

k

) [

(M2 )k − M
2 + 1

]

Mk−1 singular fade subspaces in
total for this case.

For 2 ≤ k ≤ nA + nB, summing up the number of
possibilities obtained in the above three cases and defining
(

a
b

)

to be zero forb > a, the number of removable singular
fade subspaces is as given in the statement of the lemma. This
completes the proof.



APPENDIX B
LATIN SQUARES FOR THE 2× 2 SYSTEM WITH

4-PSK SIGNAL SET

For the2×2 system with 4-PSK signal set, the Latin Squares
from which the set of Latin Squares which remove all the
removable singular fade subspaces are obtainable, are given
in the next three pages.



0 0 0 1 0 2 0 3 1 0 1 1 1 2 1 3 2 0 2 1 2 2 2 3 3 0 3 1 3 2 3 3
0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
0 2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
0 3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
1 0 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
1 1 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
1 2 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
1 3 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
2 0 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
2 1 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
2 2 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
2 3 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
3 0 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
3 1 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
3 2 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
3 3 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(a) Latin Square that removes the singular fade subspacesf1, f4 andf11

0 0 0 1 0 2 0 3 1 0 1 1 1 2 1 3 2 0 2 1 2 2 2 3 3 0 3 1 3 2 3 3
0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 14
0 1 5 4 6 1 0 3 2 10 11 12 14 15 7 8 13 9
0 2 9 8 7 10 6 11 14 15 12 13 2 0 1 5 3 4
0 3 3 12 11 15 13 14 10 2 4 1 9 7 5 0 6 8
1 0 2 0 3 4 5 1 7 6 9 8 11 10 13 12 14 15
1 1 6 5 4 7 1 2 0 3 10 14 15 8 9 11 12 13
1 2 10 9 8 11 7 12 15 13 14 0 4 1 3 6 2 5
1 3 13 14 15 8 9 7 12 11 2 5 6 3 4 10 1 0
2 0 1 2 0 5 3 4 8 9 6 7 12 13 14 15 10 11
2 1 7 6 5 2 8 9 1 12 13 15 0 14 11 3 4 10
2 2 11 10 12 13 14 15 4 0 1 2 3 5 6 9 8 7
2 3 14 15 13 9 12 8 11 4 5 3 7 2 10 1 0 6
3 0 4 3 1 0 2 6 5 8 7 10 13 9 15 14 11 12
3 1 8 7 9 6 10 0 13 14 15 11 1 12 2 4 5 3
3 2 12 11 10 14 15 13 3 1 0 4 5 6 8 7 9 2
3 3 15 13 14 12 11 10 9 5 3 6 8 4 0 2 7 1

(b) Latin Square that removes the singular fade subspacef2

0 0 0 1 0 2 0 3 1 0 1 1 1 2 1 3 2 0 2 1 2 2 2 3 3 0 3 1 3 2 3 3
0 0 0 4 5 1 6 7 8 9 10 11 12 13 2 14 15 3
0 1 3 1 0 2 5 8 4 6 7 9 10 11 12 13 16 15
0 2 5 2 1 0 3 9 6 4 8 7 11 10 15 12 14 16
0 3 4 8 2 5 0 1 3 10 9 12 13 14 6 16 11 7
1 0 2 0 3 4 7 5 9 1 6 13 14 8 16 15 10 11
1 1 1 3 7 8 4 6 0 2 11 14 15 16 5 9 12 13
1 2 6 5 4 3 1 2 7 0 12 15 16 9 13 10 8 14
1 3 7 6 8 9 2 13 15 12 14 16 0 1 3 11 4 10
2 0 8 7 6 10 9 14 16 13 15 0 1 2 11 3 5 12
2 1 9 10 11 6 8 0 1 15 16 2 3 12 14 4 13 5
2 2 10 9 12 11 14 4 5 16 13 6 7 15 0 1 2 8
2 3 11 12 9 7 15 16 13 14 1 3 2 0 10 5 6 4
3 0 12 11 10 13 16 15 14 3 2 1 4 5 7 8 9 6
3 1 13 14 15 16 10 3 12 11 4 5 8 6 1 0 7 9
3 2 14 13 16 15 11 12 2 5 0 10 6 4 8 7 3 1
3 3 15 16 13 14 12 10 11 8 3 4 5 7 9 6 0 2

(c) Latin Square that removes the singular fade subspacef3

0 0 0 1 0 2 0 3 1 0 1 1 1 2 1 3 2 0 2 1 2 2 2 3 3 0 3 1 3 2 3 3
0 0 0 2 3 1 5 4 8 9 10 11 12 13 6 14 15 7
0 1 1 0 2 3 6 7 4 5 8 9 10 11 12 13 14 15
0 2 3 1 0 2 7 6 5 4 9 8 11 10 13 15 12 14
0 3 4 5 1 0 2 3 6 7 11 10 8 14 15 9 13 12
1 0 5 4 6 7 0 1 2 3 12 13 9 15 14 8 10 11
1 1 2 3 7 6 4 5 0 1 13 14 15 8 9 12 11 10
1 2 6 7 4 5 1 2 3 0 14 15 13 12 10 11 8 9
1 3 7 6 5 4 3 8 9 2 15 12 14 0 11 10 1 13
2 0 8 9 10 11 12 13 14 15 0 1 2 3 4 5 7 6
2 1 9 8 11 10 13 12 15 14 1 0 3 2 5 7 6 4
2 2 10 11 12 14 15 0 1 13 2 6 7 5 3 4 9 8
2 3 11 10 8 9 14 15 13 12 3 2 0 1 7 6 4 5
3 0 12 13 9 15 8 14 10 11 4 3 6 7 0 2 5 1
3 1 13 14 15 8 9 11 12 10 7 5 4 6 2 1 0 3
3 2 15 12 14 13 11 10 7 6 5 4 1 9 8 3 2 0
3 3 14 15 13 12 10 9 11 8 6 7 5 4 1 0 3 2

(d) Latin Square that removes the singular fade subspacef5

Fig. 17. Latin Squares that remove different singular fade subspaces



0 0 0 1 0 2 0 3 1 0 1 1 1 2 1 3 2 0 2 1 2 2 2 3 3 0 3 1 3 2 3 3
0 0 0 1 2 3 8 9 10 11 12 13 14 15 4 5 6 7
0 1 8 9 10 11 1 0 3 2 5 4 7 6 12 13 14 15
0 2 12 13 14 15 5 4 7 6 2 3 0 1 11 10 9 8
0 3 4 5 6 7 12 13 14 15 11 10 9 8 3 2 1 0
1 0 1 0 3 2 9 8 11 10 13 12 15 14 5 4 7 6
1 1 9 8 11 10 0 1 2 3 4 5 6 7 13 12 15 14
1 2 13 12 15 14 4 5 6 7 3 2 1 0 10 11 8 9
1 3 5 4 7 6 13 12 15 14 10 11 8 9 2 3 0 1
2 0 2 3 0 1 10 11 8 9 14 15 12 13 6 7 4 5
2 1 10 11 8 9 3 2 1 0 7 6 5 4 14 15 12 13
2 2 14 15 12 13 7 6 5 4 0 1 2 3 9 8 11 10
2 3 6 7 4 5 14 15 13 12 9 8 11 10 1 0 3 2
3 0 3 2 1 0 11 10 9 8 15 14 13 12 7 6 5 4
3 1 11 10 9 8 2 3 0 1 6 7 4 5 15 14 13 12
3 2 15 14 13 12 6 7 4 5 1 0 3 2 8 9 10 11
3 3 7 6 5 4 15 14 12 13 8 9 10 11 0 1 2 3

(e) Latin Square that removes the singular fade subspacef6

0 0 0 1 0 2 0 3 1 0 1 1 1 2 1 3 2 0 2 1 2 2 2 3 3 0 3 1 3 2 3 3
0 0 0 1 2 3 4 5 6 7 8 9 10 13 12 11 14 15
0 1 5 4 6 7 0 8 9 12 13 14 1 2 3 15 10 11
0 2 8 9 10 13 14 15 0 1 2 4 12 5 11 6 7 3
0 3 12 13 14 9 10 0 15 11 5 1 6 8 7 2 3 4
1 0 1 0 3 2 5 4 7 6 9 8 11 12 13 10 15 14
1 1 4 5 7 6 1 9 8 13 12 15 0 3 2 14 11 10
1 2 9 8 11 12 15 14 1 0 3 5 13 4 10 7 6 2
1 3 13 12 15 8 11 1 14 10 4 0 7 9 6 3 2 5
2 0 2 3 0 1 6 7 4 5 10 11 8 15 14 9 12 13
2 1 7 6 4 5 2 10 11 14 15 12 3 0 1 13 8 9
2 2 10 11 8 15 12 13 2 3 0 6 14 7 9 4 5 1
2 3 14 15 12 11 8 2 13 9 7 3 4 10 5 1 0 6
3 0 3 2 1 0 7 6 5 4 11 10 9 14 15 8 13 12
3 1 6 7 5 4 3 11 10 15 14 13 2 1 0 12 9 8
3 2 11 10 9 14 13 12 3 2 1 7 15 6 8 5 4 0
3 3 15 14 13 10 9 3 12 8 6 2 5 11 4 0 1 7

(f) Latin Square that removes the singular fade subspacef7

0 0 0 1 0 2 0 3 1 0 1 1 1 2 1 3 2 0 2 1 2 2 2 3 3 0 3 1 3 2 3 3
0 0 0 1 2 4 5 9 3 6 7 13 10 14 8 15 11 12
0 1 8 12 5 1 0 4 9 13 14 2 3 10 15 11 6 7
0 2 5 9 13 14 15 0 4 10 11 8 12 6 1 7 2 3
0 3 13 5 9 10 11 14 15 1 2 6 4 0 7 3 12 8
1 0 1 0 3 5 4 8 2 7 6 12 11 15 9 14 10 13
1 1 9 13 4 0 1 5 8 12 15 3 2 11 14 10 7 6
1 2 4 8 12 15 14 1 5 11 10 9 13 7 0 6 3 2
1 3 12 4 8 11 10 15 14 0 3 7 5 1 6 2 13 9
2 0 2 3 0 6 7 11 1 4 5 15 8 12 10 13 9 14
2 1 10 14 7 3 2 6 11 15 12 0 1 8 13 9 4 5
2 2 7 11 15 12 13 2 6 8 9 10 14 4 3 5 0 1
2 3 15 7 11 8 9 12 13 3 1 4 6 2 5 0 14 10
3 0 3 2 1 7 6 10 0 5 4 14 9 13 11 12 8 15
3 1 11 15 6 2 3 7 10 14 13 1 0 9 12 8 5 4
3 2 6 10 14 13 12 3 7 9 8 11 15 5 2 4 1 0
3 3 14 6 10 9 8 13 12 2 0 5 7 3 4 1 15 11

(g) Latin Square that removes the singular fade subspacef8

0 0 0 1 0 2 0 3 1 0 1 1 1 2 1 3 2 0 2 1 2 2 2 3 3 0 3 1 3 2 3 3
0 0 0 4 8 12 1 5 9 11 2 6 10 14 3 7 13 15
0 1 5 0 13 3 4 8 14 15 6 9 1 10 7 12 2 11
0 2 8 14 2 11 9 15 4 6 10 0 12 7 13 1 5 3
0 3 12 10 5 7 13 0 1 2 14 15 6 3 9 11 8 4
1 0 1 5 9 13 0 4 8 10 3 7 11 15 2 6 12 14
1 1 4 1 12 2 5 9 15 14 7 8 0 11 6 13 3 10
1 2 9 15 3 10 8 14 5 7 11 1 13 6 12 0 4 2
1 3 13 11 4 6 12 1 0 3 15 14 7 2 8 10 9 5
2 0 2 6 10 14 3 7 11 9 0 4 8 12 1 5 15 13
2 1 7 2 15 1 6 10 12 13 4 11 3 8 5 14 0 9
2 2 10 12 0 9 11 13 6 4 8 2 14 5 15 3 7 1
2 3 14 8 7 5 15 2 3 1 12 13 4 0 11 9 10 6
3 0 3 7 11 15 2 6 10 8 1 5 9 13 0 4 14 12
3 1 6 3 14 0 7 11 13 12 5 10 2 9 4 15 1 8
3 2 11 13 1 8 10 12 7 5 9 3 15 4 14 2 6 0
3 3 15 9 6 4 14 3 2 0 13 12 5 1 10 8 11 7

(h) Latin Square that removes the singular fade subspacef9

Fig. 17. (Contd.) Latin Squares that remove different singular fade subspaces



0 0 0 1 0 2 0 3 1 0 1 1 1 2 1 3 2 0 2 1 2 2 2 3 3 0 3 1 3 2 3 3
0 0 0 3 10 4 8 12 11 14 1 9 13 15 2 5 6 7
0 1 9 7 13 15 12 8 14 10 5 0 4 11 6 1 2 3
0 2 13 14 3 11 1 2 5 6 9 4 0 7 10 15 8 12
0 3 4 9 7 0 5 6 1 2 13 15 11 3 14 10 12 8
1 0 1 2 11 5 9 13 10 15 0 8 12 14 3 4 7 6
1 1 8 6 12 14 13 9 15 11 4 1 5 10 7 0 3 2
1 2 12 15 2 10 0 3 4 7 8 5 1 6 11 14 9 13
1 3 5 8 6 1 4 7 0 3 12 14 10 2 15 11 13 9
2 0 2 1 8 6 10 14 9 12 3 11 15 13 0 7 4 5
2 1 11 5 15 13 14 10 12 8 7 2 6 9 4 3 0 1
2 2 15 12 1 9 3 0 7 4 11 6 2 5 8 13 10 14
2 3 6 11 5 2 7 4 3 1 15 13 9 0 12 8 14 10
3 0 3 0 9 7 11 15 8 13 2 10 14 12 1 6 5 4
3 1 10 4 14 12 15 11 13 9 6 3 7 8 5 2 1 0
3 2 14 13 0 8 2 1 6 5 10 7 3 4 9 12 11 15
3 3 7 10 4 3 6 5 2 0 14 12 8 1 13 9 15 11

(i) Latin Square that removes the singular fade subspacef10

0 0 0 1 0 2 0 3 1 0 1 1 1 2 1 3 2 0 2 1 2 2 2 3 3 0 3 1 3 2 3 3
0 0 0 4 1 3 5 9 6 8 10 14 11 13 15 19 16 18
0 1 1 2 4 0 6 7 9 5 11 12 14 10 16 17 19 15
0 2 2 0 3 4 7 5 8 9 12 10 13 14 17 15 18 19
0 3 4 3 2 1 9 8 7 6 14 13 12 11 19 18 17 16
1 0 5 9 6 8 0 4 1 3 15 19 16 18 10 14 11 13
1 1 6 7 9 5 1 2 4 0 16 17 19 15 11 12 14 10
1 2 7 5 8 9 2 0 3 4 17 15 18 19 12 10 13 14
1 3 9 8 7 6 4 3 2 1 19 18 17 16 14 13 12 11
2 0 10 14 11 13 15 19 16 18 0 4 1 3 5 9 6 8
2 1 11 12 14 10 16 17 19 15 1 2 4 0 6 7 9 5
2 2 12 10 13 14 17 15 18 19 2 0 3 4 7 5 8 9
2 3 14 13 12 11 19 18 17 16 4 3 2 1 9 8 7 6
3 0 15 19 16 18 10 14 11 13 5 9 6 8 0 4 1 3
3 1 16 17 19 15 11 12 14 10 6 7 9 5 1 2 4 0
3 2 17 15 18 19 12 10 13 14 7 5 8 9 2 0 3 4
3 3 19 18 17 16 14 13 12 11 9 8 7 6 4 3 2 1

(j) Latin Square that removes the singular fade subspacef12

Fig. 17. (Contd.) Latin Squares that remove different singular fade subspaces


	I Background and Preliminaries
	I-A Signal Model

	II SINGULAR FADE SUBSPACES FOR 2-PSK SIGNAL SET
	III The Exclusive Law and Latin Rectangles
	III-A Removing singular fade subspaces, Singularity-removal Constraints and Constrained Latin Rectangles
	III-B Obtaining Latin Rectangles from Latin Squares
	III-C Some Special Constructions of Latin Squares
	III-D Sufficient number of Latin Squares to be obtained for 2 2 system with M-PSK signal set

	IV ILLUSTRATIONS FOR THE 2 2 SYSTEM WITH QPSK SIGNAL SET
	V OBTAINING LATIN SQUARES FOR THE n n SYSTEM FROM LATIN SQUARES OF LOWER ORDER
	VI SIMULATION RESULTS
	VII Discussion
	References
	Appendix A: PROOF OF LEMMA ??
	Appendix B: LATIN SQUARES FOR THE 2  2 SYSTEM WITH 4-PSK SIGNAL SET

