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Interference Alignment: From Degrees-of-Freedom
to Constant-Gap Capacity Approximations

Urs Niesen and Mohammad A. Maddah-Ali

Abstract

Interference alignment is a key technique for communication scenarios with multiple interfering links. In
several such scenarios, interference alignment was used tocharacterize the degrees-of-freedom of the channel.
However, these degrees-of-freedom capacity approximations are often too weak to make accurate predictions about
the behavior of channel capacity at finite signal-to-noise ratios (SNRs). The aim of this paper is to significantly
strengthen these results by showing that interference alignment can be used to characterize capacity to within a
constant gap. We focus on real, time-invariant, frequency-flat X-channels. The only known solutions achieving the
degrees-of-freedom of this channel are either based on realinterference alignment or on layer-selection schemes.
Neither of these solutions seems sufficient for a constant-gap capacity approximation.

In this paper, we propose a new communication scheme and showthat it achieves the capacity of the Gaussian
X-channel to within a constant gap. To aid in this process, wedevelop a novel deterministic channel model. This
deterministic model depends on the1

2
log(SNR) most-significant bits of the channel coefficients rather than only the

single most-significant bit used in conventional deterministic models. The proposed deterministic model admits a
wider range of achievable schemes that can be translated to the Gaussian channel. For this deterministic model, we
find an approximately optimal communication scheme. We thentranslate this scheme for the deterministic channel
to the original Gaussian X-channel and show that it achievescapacity to within a constant gap. This is the first
constant-gap result for a general, fully-connected network requiring interference alignment.

I. INTRODUCTION

Interference alignment has been used to achieve optimal degrees-of-freedom (capacity pre-log factor)
in several common wireless network configurations such as X-channels [1]–[4], interference channels [5],
[6], interfering multiple-access and broadcast channels [7], multi-user systems with delayed feedback [8]–
[10], and distributed computation [11], among others. The main idea of interference alignment is to force
all interfering signals at the receivers to be aligned, thereby maximizing the number of interference-free
signaling dimensions.

A. Background

Alignment approaches can be divided into two broad categories (see Fig. 1).

Alignment

Vector-Space
Alignment

Signal-Scale
Alignment

Signal-Strength
Alignment

Real Alignment

Fig. 1. Different alignment approaches and their relation.

1) Vector-space alignment ([1], [5] among others): In this approach, conventional communication
dimensions, such as time, frequency, and transmit/receiveantennas, are used to align interference.
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At the transmitters, precoding matrices are designed over multiple of these dimensions such that the
interference at the receivers is aligned in a small subspace. If the channel coefficients have enough
variation across the utilized time/frequency slots or antennas, then such precoding matrices can be
found.

2) Signal-scale alignment ([6], [12] among others): If the transmitters and receivers have only a
single antenna and the channel coefficients are time invariant and frequency flat, the vector-space
alignment method fails. Instead, one can make use of anotherresource, namely the signal scale.
Using lattice codes, the transmitted and received signals are split into several superimposed layers.
The transmitted signals are chosen such that all interfering signals are observed within the same
layers at the receivers. Thus, alignment is now achieved in signal scale.

Signal-scale interference alignment can be further subdivided into two different, and seemingly com-
pletely unrelated, approaches: alignment schemes motivated bysignal-strength deterministic models[12],
[13] and real interference alignment[6].

For the signal-strength deterministic approach, the channel is first approximated by a deterministic
noise-free channel. In this deterministic model, all channel inputs and outputs are binary vectors, repre-
senting the binary expansion of the real valued signals in the Gaussian case. The actions of the channel
are modeled by shifting these vectors up or down, depending on the most-significant bit of the channel
gains, and by bitwise addition of interfering vectors. The signal layers are represented by the different
bits in the binary expansion of the signals. In the second step, the signaling schemes and the outer bounds
developed for this simpler deterministic model are used to guide the design of efficient signaling schemes
for the original Gaussian problem.

This deterministic approach has proved instrumental in deriving constant-gap capacity approximations
for several challenging multi-user communication scenarios such as single-multicast relay networks [14],
two-user interference channels with feedback [15] or with transmit/receive cooperation [16], [17], and
lossy distributed source coding [18]. In all these communication scenarios, interference alignment is not
required. For communication scenarios in which interference alignment is required, the deterministic
approach has been less helpful. In fact, it has only been successfully used to obtain constant-gap capacity
approximations for the fairly restrictive many-to-one interference channel, in which only one of the
receivers experiences interference while all others are interference free [12]. Even for the X-channel, one
of the simplest Gaussian networks in which interference alignment is required, only weaker (generalized)
degrees-of-freedom capacity approximations were derivedusing the deterministic approach [13]. The
resulting communication scheme for the Gaussian X-channelis quite complicated and cannot be used to
derive a constant-gap capacity approximation.

For thereal interference-alignment approach, each transmitter modulates its signal using a scaled integer
lattice such that at each receiver all interfering latticescoincide, while the desired lattice is disjoint.
Each receiver recovers the desired signal using a minimum-distance decoder. A number-theoretic result
concerning the approximability of real numbers by rationals, called Groshev’s theorem, is used to analyze
the minimum constellation distance at the receivers. For almost all channel gains, this scheme is shown
to achieve the full degrees-of-freedom of the Gaussian X-channel and the Gaussian interference channel
[6]. While this scheme is asymptotically optimal for almostall channel gains, there are infinitely many
channel gains for which the scheme fails, for example when the channel gains are rational. Moreover,
this approach can again not be used to derive stronger constant-gap capacity approximations.

At first glance, real interference alignment appears to relyon the irrationally of the channel coefficients,
preventing the desired integer input signals from mixing with the undesired integer interference signals.
This raises the concern that the scheme might be severely affected by the presence of measurement
errors or quantization of the channel coefficients. In addition, arbitrarily close to any irrational channel
realization is a rational channel realization. How are we then to engineer a communication device based
on this scheme? Quoting from Slepian’s 1974 Shannon Lecture[19]: “Most of us would treat with great
suspicion a model that predicts stable flight for an airplaneif some parameter is irrational but predicts
disaster if that parameter is a nearby rational number. Few of us would board a plane designed from such
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a model.”
Some of these concerns follow from the fact that real interference alignment is somehow isolated from

other known signaling schemes and only poorly understood. Unlike the vector-space and the deterministic
approaches, no vector-space interpretation is known for real interference alignment, making it harder to
obtain intuition. On the other hand, it is known that the degrees-of-freedom of the interference channel are
discontinuous at all rational channel coefficients [20]. Itshould therefore not be surprising that the rates
achieved by real interference alignment share this characteristic. Rather, it appears that it is the degrees-
of-freedom capacity approximation that is too weak to allowaccurate predictions about the behavior
of channel capacity at finiteSNRs, and that the discontinuity of the degrees-of-freedom in the channel
coefficients are mainly caused by taking a limit asSNR approaches infinity. Thus, a stronger capacity
approximation is needed.

B. Summary of Results

The main contributions of this paper are as follows.
1) New Deterministic Channel Model:We develop a novel deterministic channel model, in which each

channel gain is modeled by a lower-triangular, binary Toeplitz matrix. The entries in this matrix consist
of the first 1

2
log(SNR) bits in the binary expansion of the channel gain in the corresponding Gaussian

model. This contrasts with the traditional signal-strength deterministic model, which is based only on the
singlemost-significant nonzero bit. The proposed lower-triangular deterministic model is rich enough to
explain the real interference-alignment approach. Thus, it unites the so far disparate deterministic and real
interference-alignment approaches mentioned above (see Fig. 1). Moreover, as our proposed deterministic
model is based on a vector space, it enables an intuitive interpretation of real interference alignment.

2) New Mathematical Tools:The solution for the proposed lower-triangular deterministic model can be
translated to the Gaussian setting. To analyze the resulting scheme for the Gaussian setting, we develop
new tools. In particular, to prove achievability for the Gaussian case, we extend Groshev’s theorem to
handle finiteSNRs as well as channel gains of different magnitudes, and we prove a strengthening of
Fano’s inequality.

3) New Notion of Capacity Approximation:We introduce the new notion of a constant-gap capacity
approximation up to an outage set. Specifically, the aim is toprovide a constant-gap capacity approximation
uniform in theSNR and the channel gains as long as these channel gains are outside a computable outage
set of arbitrarily small measure. This new notion of a constant-gap approximation up to an outage set can
lead to a more concise capacity characterization as we will see next.

4) Constant-Gap Result for the Gaussian X-Channel:We apply these ideas to the Gaussian X-channel
by deriving a constant-gap capacity approximation up to outage for this channel. This is the first constant-
gap result for a general, fully-connected network requiring interference alignment. To simplify the expo-
sition, we focus in this paper on the most relevant situation, in which the direct links of the X-channel
are stronger than the cross links—the tools and techniques developed here apply to the other settings as
well.

To develop this result, we first consider the lower-triangular deterministic version of the X-channel and
design a signaling scheme that achieves its capacity up to a constant gap, as long as the binary channel
matrices satisfy certain rank conditions (see Theorems 1 and 5 in Section IV). We then show that the
translated version of the solution for the deterministic model achieves the capacity of the Gaussian X-
channel to within a constant gap up to the aforementioned outage set (see Theorems 3 and 6 in Section IV).
In addition, we show that, similar to the MIMO broadcast channel [21], capacity is not sensitive to channel
quantization and measurement errors smaller thanSNR

−1/2.
One implication of these results is that the complicated solution achieving the degrees-of-freedom of

the Gaussian X-channel in [13] is a result of oversimplification in the signal-strength deterministic model
rather than the properties of the original Gaussian channelitself. Moreover, the results in this paper imply
that the discontinuity of the degrees-of-freedom of the Gaussian X-channel with respect to the channel
coefficients is due to the largeSNR limit and is not present at finiteSNRs.



4

C. Organization

The remainder of this paper is organized as follows. SectionII introduces the new deterministic channel
model. Section III formalizes the Gaussian network model and the problem statement. Section IV presents
the main results of the paper—Sections V and VI contain the corresponding proofs. Section VII contains
the mathematical foundations for the analysis of the decoding algorithms. Section VIII concludes the
paper.

II. DETERMINISTIC CHANNEL MODELS

Developing capacity-achieving communication schemes formulti-user communication networks is often
challenging. Indeed, even for the relatively simple two-user interference channel, finding capacity is a
long-standing open problem. For the Gaussian network, the difficulty is due to the interaction between the
various components of these networks, such as broadcast, multiple access, and additive noise. For example,
the two-user interference channel mentioned before has twobroadcast links, two multiple-access links,
and two additive noise components.

The problem of characterizing capacity can be substantially simplified if these noise components are
eliminated, so that the output at the receivers becomes a deterministic function of the channel inputs at
the transmitters [14], [22]. Such networks are called deterministic networks. This observation motivates
the investigation of noisy networks by approximating them with deterministic networks [14], [23], [24].

This approximation has two potential advantages. First, the capacity of the deterministic network may
directly approximate the capacity of the original Gaussiannetwork. Second and more important, the
deterministic model may reveal the essential ingredients of an efficient signaling scheme for the noisy
network. In other words, the capacity achieving signaling scheme for the deterministic network may be used
as a road map to design signaling schemes for the Gaussian network. If the deterministic approximation is
well chosen, then the resulting signaling scheme for the Gaussian network is close to capacity achieving.

The first critical step in this approach is thus to find an appropriate deterministic channel approximating
the Gaussian one. This deterministic channel model should satisfy two criteria:simplicity and richness.
These two requirements are conflicting. Indeed, oversimplification of the Gaussian model can sacrifice
the richness of the deterministic model. Conversely, keeping too many of the features of the Gaussian
model can result in a deterministic model that is rich but toodifficult to analyze. Striking the right balance
between these two requirements is the key to developing a useful deterministic network approximation.

One of the approaches that achieves this goal is the signal-strength deterministic model proposed
by Avestimehr et al. [14]. We review this deterministic model in Section II-A. We introduce our new
lower-triangular deterministic model in Section II-B. Section II-C compares the two deterministic models,
explaining the shortcomings of the former and the need for the latter.

A. Signal-Strength Deterministic Model [14]

We start with the real point-to-point Gaussian channel

y[t] , 2nhx[t] + z[t], (1)

with additive white Gaussian noisez[t] ∼ N (0, 1) and unit average power constraint at the transmitter.
Here,n is a nonnegative integer, andh ∈ [1, 2). Observe that all channel gains (and henceSNRs) greater
than or equal to one can be expressed in the form2nh for n andh satisfying these conditions. Since for
a constant-gap approximation the other cases are not relevant, (1) is essentially the general case.1

1If the magnitude of the channel gains is less than one, then capacity is less than one bit per channel use and hence not relevant for
capacity approximation up to a constant gap. Moreover, since capacity is only a function of the magnitude of the channel gains, negative
channel gains are not relevant either.
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To develop the deterministic model and for simplicity, we assume thatx[t] and z[t] are positive and
upper bounded by one. We can then writex andz in terms of their binary expansions as

x =

∞
∑

i=1

[x]i2
−i = 0.[x]1[x]2[x]3 . . . , (2a)

z =
∞
∑

i=1

[z]i2
−i = 0.[z]1[z]2[z]3 . . . . (2b)

The Gaussian point-to-point channel (1) can then be approximated as

y =
∞
∑

j=−∞

[y]j2
−j

≈ 2nx+ z

=
n

∑

j=1

[x]j2
n−j +

∞
∑

j=1

([x]j+n + [z]j)2
−j

≈
n

∑

j=1

[x]j2
n−j,

or, more succinctly,
[y]j−n ≈ [x]j , for 1 ≤ j ≤ n,

see Fig. 2(a).
The approximations in this derivation are to ignore the impact of h ∈ [1, 2), the noise, as well as all bits

[x]n+1, [x]n+2, . . . with exponent less than zero. These bits with exponent less than zero are approximated
as being completely corrupted by noise, whereas the bits with higher exponent are approximated as being
received noise free. Therefore, we can approximate the Gaussian channel with a deterministic channel
consisting ofn parallel error-free links from the transmitter to the receiver, each carrying one bit per
channel use.

Having reviewed the signal-strength model for the point-to-point case, we now turn to the Gaussian
multiple-access channel

y[t] , 2nh1x1[t] + 2nh2x2[t] + z[t], (3)

wherez[t] ∼ N (0, 1) is additive white Gaussian noise.2 As before, we impose a unit average transmit
power constraint onx1[t] andx2[t]. Moreover,n is a nonnegative integer, andh1, h2 ∈ [1, 2). The signal-
strength deterministic model corresponding to the Gaussian channel (3) is

[y]j−n ≈ [x1]j ⊕ [x2]j , for 1 ≤ j ≤ n, (4)

where⊕ denotes addition overZ2, i.e., modulo two.
We note that in this model the contributions ofh1 andh2 are entirely ignored, real addition is replaced

with bit-wise modulo-two addition, and noise is eliminated. As mentioned earlier, this simple model has
been used to characterize the capacity region of several challenging problems in network information
theory to within a constant gap. However, it falls short for some other settings. For example, for certain
relay networks with specific channel parameters, this modelincorrectly predicts capacity zero. Similarly,
for interference channels with more than two users and for X-channels, this model fails to predict the
correct behavior for the Gaussian case.

2For ease of exposition, we consider here the symmetric case where both links have the same approximate strength2n.
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x̄ ȳ

(a) Signal-strength deterministic model

x̄ ȳ

(b) Lower-triangular deterministic model

Fig. 2. Comparison of the signal-strength deterministic model [14], and the lower-triangular deterministic model proposed in this paper. In
the figure, solid lines depict noiseless binary links of capacity one bit per second. Dashed lines depict noiseless linksof either capacity one
or zero bits per channel use (depending on whether the corresponding entry in the channel matrix̄H is one or zero). Links with the same
color/shade have the same capacity.

B. Lower-Triangular Deterministic Model

The signal-strength deterministic model recalled in the last section ignores the contribution ofh ∈ [1, 2)
in the Gaussian point-to-point channel (1). Indeed,h is approximated by1. In this section, we introduce
a new deterministic channel model, termedlower-triangular deterministic model, in which the effect of
h is preserved. As we will see later, the new deterministic model admits a wider range of solutions—a
fact that will be critical for the approximation of Gaussiannetworks with multiple interfering signals.

Consider again the Gaussian point-to-point channel (1). Write the channel parameterh ∈ [1, 2) in terms
of its binary expansion

h =

∞
∑

j=0

[h]j2
−j = [h]0.[h]1[h]2[h]3 . . . .

Observe that[h]0 = 1, due to the assumption thath ∈ [1, 2). Then, from (1) and (2), we have

y =
∞
∑

j=−∞

[y]j2
−j

= 2n
( ∞
∑

j=0

[h]j2
−j

)( ∞
∑

i=1

[x]i2
−i

)

+

∞
∑

j=1

[z]j2
−j

=
n

∑

j=1

( j
∑

i=1

[h]j−i[x]i

)

2n−j +
∞
∑

j=1

(j+n
∑

i=1

[h]j+n−i[x]i + [z]j

)

2−j

≈
n

∑

j=1

(

j
∑

i=1

[h]j−i[x]i

)

2n−j,

so that

[y]j−n ≈

j
∑

i=1

[h]j−i[x]i, for 1 ≤ j ≤ n.

The approximation here is to ignore the noise as well as all bits in the convolution of1.[h]1[h]2 . . . and
0.[x]1[x]2 . . . with exponent less than zero. These bits with exponent less than zero are approximated as
being completely corrupted by noise, whereas the bits with higher exponent are approximated as being
received noise free.

This suggests to approximate the Gaussian point-to-point channel (1) by a deterministic channel between
the binary input vector

x̄ ,
(

x̄1 x̄2 . . . x̄n

)T

and the binary output vector
ȳ ,

(

ȳ1 ȳ2 . . . ȳn
)T
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connected through the channel operation
ȳ , H̄x̄, (5)

with

H̄ ,













1 0 · · · 0 0
[h]1 1 · · · 0 0

...
...

. . .
...

...
[h]n−2 [h]n−3 · · · 1 0
[h]n−1 [h]n−2 · · · [h]1 1













,

as depicted in Fig. 2(b). Here, we have normalized the received vectorȳ to contain the bits from1 to n.
This is a deterministic channel with finite input and output alphabets. Note that all operations in (5) are
over Z2, i.e., modulo two. Similarly, the Gaussian multiple-access channel (3) can be approximated by
the deterministic channel model

ȳ , H̄1x̄1 ⊕ H̄2x̄2. (6)

Example 1. For a concrete example, consider the Gaussian point-to-point channel (1) with channel gain
21, so thatn = 4 andh = 1.3125. The bits in the binary expansion ofh are [h]0 = 1, [h]1 = 0, [h]2 = 1,
[h]3 = 0, [h]4 = 1, [h]5 = [h]6 = · · · = 0, and the corresponding lower-triangular deterministic model is
depicted in Fig. 3. For channel input̄x, the channel output is

ȳ =
(

x̄1 x̄2 x̄1 ⊕ x̄3 x̄2 ⊕ x̄4

)

.

♦

x̄ ȳ

Fig. 3. Lower-triangular deterministic model for a point-to-point channel withn = 4 andh = 1.3125.

C. Comparison of Deterministic Models

We now compare the signal-strength deterministic model reviewed in Section II-A and the lower-
triangular deterministic model introduced in Section II-B. As an example, we consider the Gaussian
multiple-access channel (3) with signal strengthn = 4. The corresponding deterministic models are given
by (4) and (6). Assume that transmitter one wants to send three bitsa1, a2, anda3 to the receiver. At the
same time, transmitter two wants to send one bitb1.

Some signaling schemes work for both deterministic models (4) and (6). For example, in both models
transmitter one can use the first three layers to senda1, a2, anda3, while transmitter two can use the last
layer to sendb1, as shown in Fig. 4. For the signal-strength model, the decoding scheme is trivial. For
the lower-triangular model, the receiver starts by decoding the highest layer containing onlya1. Having
recovereda1, the receiver cancels out its contribution in all lower layers. The decoding process continues
in the same manner witha2 at the second-highest layer, until all bits are decoded.

There are, however, some signaling schemes that are only decodable in the lower-triangular model, but
not in the signal-strength model. An example of such a signaling scheme is depicted in Fig. 5. In this
scheme, transmitter one uses again the first three layers to senda1, a2, anda3. Unlike before, transmitter
two now also uses the first layer to sendb1. From Fig. 5(a), we can see that, in the signal-strength model,
receiver one observesa1⊕b1 and cannot recovera1 andb1 from the received signal. However, this scheme
can be utilized successfully in the lower-triangular modelas long as the subspaces spanned by the message
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x̄1

ȳ

x̄2

a1

a2

a3

b1

(a) Signal-strength deterministic model

x̄1

ȳ

x̄2

a1

a2

a3

b1

(b) Lower-triangular deterministic model

Fig. 4. Permissible signaling schemes for both deterministic models.

x̄1

ȳ

x̄2

a1

a2

a3

b1

(a) Signal-strength deterministic model

x̄1

ȳ

x̄2

a1

a2

a3

b1

(b) Lower-triangular deterministic model

Fig. 5. Illustration of a signaling scheme that succeeds forthe lower-triangular model (assuming the subspace condition (7) holds), but
fails for the signal-strength model.

bits at the receivers are linearly independent. In this case, the subspace spanned by the first three columns
of H̄1 and the subspace spanned by the first columns ofH̄2 need to be linearly independent. This is the
case if and only if

det









1 0 0 1
[h1]1 1 0 [h2]1
[h1]2 [h1]1 1 [h2]2
[h1]3 [h1]2 [h1]1 [h2]3









6= 0. (7)

The event (7) depends not only onn, but also on the bits in the binary expansion ofh1 andh2. Thus,
this scheme is successful for all channel gains(h1, h2) ∈ (1, 2]2 \ B, whereB is the event that (7) does
not hold. The setB can be understood as an outage event: if the channel gains arein B, the achievable
scheme fails to deliver the desired target rate of4 bits per channel use.

Noting that the scheme depicted in Fig. 4(b) always works while the scheme depicted in Fig. 5(b) only
works under some conditions, one might question the relevance of the second class of solutions. The
answer is that this second class of solutions make use of the “diversity” provided by the lower-order bits
of the channel gains. It is precisely this diversity that is required for efficient communication over the
X-channel to be investigated in Section IV.

As pointed out earlier, the second step in using the deterministic approach is to translate the solution
for the deterministic model to a solution for the original Gaussian model. We now show how this can
be done for the signaling scheme shown in Fig. 5(b). The proposed scheme for the Gaussian multiple-
access channel is depicted in Fig. 6. In this scheme, the input constellation at transmitter one is the set
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{0, 1/8, . . . , 7/8}, and the input constellation at transmitter two is the set{0, 1/2}. Since the additive
Gaussian receiver noise has unit variance, we expect the receiver to be able to recover the coded input
signals roughly when

2n|h1u1 + h1u2 − h1u
′
1 − h2u

′
2| > 2 (8)

for all u1, u
′
1 ∈ {0, 1/8, . . . , 7/8}, u2, u

′
2 ∈ {0, 1/2} such that(u1, u2) 6= (u′

1, u
′
2). In words, we require

the minimum constellation distance as seen at the receiver to be greater than two.

h1

u1

2n(h1u1 + h2u2)

h2
u2

Fig. 6. Modulation scheme for the Gaussian model suggested by the signaling scheme for the lower-triangular deterministic model depicted
in Fig. 5(b). At the decoder, blue dots correspond to input tuples (u1, 0) with u1 ∈ {0, 1/8, . . . , 7/8}, and red dots correspond to input
tuples(u1, 1/2) with u1 ∈ {0, 1/8, . . . , 7/8}. Here,n = h1 = 1 andh2 = 1/6.

We note that condition (8) for the Gaussian channel corresponds to condition (7) for the deterministic
model. As in the deterministic case, this scheme fails to work whenever the channel gains are in the setB
not satisfying (8), and one can bound the Lebesgue measure ofthis outage eventB. It is worth emphasizing
that condition (8) has nothing to do with the rationality or irrationality of the channel coefficients as can
be seen from Fig. 7.

1

1.2

1.4

1.6

1.8

2

1 1.2 1.4 1.6 1.8 2

h
2

h1

Fig. 7. Outage setB (indicated in black) for the modulation scheme in Fig. 6 withn = 7. The setB consists of all channel gains(h1, h2)
such that (8) fails to hold for some channel inputs. The figuremakes clear that, for finite SNRn, the outage setB is not determined by the
rationality or irrationality of the channel gains(h1, h2).

Remark:In the special case in which each transmitter has the same message size, the modulation scheme
shown in Fig. 6 is the same as the modulation scheme used inreal interference alignment[6], [20]. The
objective in [6] is to achieve only the degrees-of-freedom of the channel, and therefore the scheme there is
designed and calibrated for the high-SNR regime. As a result, the modulation scheme in [6] is not sufficient
to prove a constant-gap capacity approximation. Rather, aswe will see in Section IV, asymmetric message
sizes and judicious layer selection guided by the proposed lower-triangular deterministic model together
with a more careful and more general analysis of the receivers are required to move from a degrees-of-
freedom to a constant-gap capacity approximation.
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III. N ETWORK MODEL

In the remainder of the paper, we focus on the X-channel, which is formally introduced in this
section. We start with notational conventions in Section III-A. We introduce the Gaussian X-channel
in Section III-B, and the corresponding lower-triangular deterministic X-channel in Section III-C.

A. Notation

Throughout this paper, we use small and capital bold font to denote vectors and matrices, i.e.,x andH.
For a real numbera ∈ R, we use(a)+ to denotemax{a, 0}. For a setB ⊂ R

d, µ(B) = µd(B) denotes
d-dimensional Lebesgue measure. Finally, all logarithms are expressed to the base two and capacities are
expressed in bits per channel use.

B. Gaussian X-Channel

The Gaussian X-channel consists of two transmitters and tworeceivers. The channel outputym at
receiverm ∈ {1, 2} and timet ∈ N is

ym[t] , 2nm1hm1x1[t] + 2nm2hm2x2[t] + zm[t], (9)

where xk[t] is the channel input at transmitterk ∈ {1, 2}, where 2nmkhmk is the channel gain from
transmitterk to receiverm, and wherezm[t] ∼ N (0, 1) is additive white Gaussian receiver noise. The
channel gains consist of two parts,2nmk and hmk. We assume thatnmk ∈ Z+ and thathmk ∈ (1, 2]
for eachm, k. Since2nmkhmk varies over(2nmk , 2nmk+1] as hmk varies over(1, 2], we see that any real
channel gain greater than one can be written in this form. As discussed in Section II-A, this implies
that (9) models essentially the general Gaussian X-channel.3

Writing the channel gains in the form2nmkhmk decomposes them into two parts capturing different
aspects. The parameternmk captures the magnitude or coarse structure of the channel gain. Indeed, the
SNR of the link from transmitterk to receiverm is approximately22nmk . On the other hand, the parameter
hmk captures the fine structure of the channel gain. As we will seesoon, the impact of these two parameters
on the behavior of channel capacity is quite different. We denote by

N ,

(

n11 n12

n21 n22

)

the collection ofnmk.
Each transmitter has one message to communicate to each receiver. So there are a total of four mutually

independent messageswmk with m, k ∈ {1, 2}. We impose a unit average power constraint on each of the
two encoders. Denote byRmk the rate of messagewmk and byC(N) the sum capacity of the Gaussian
X-channel.

An important special case of this setting is the symmetric Gaussian X-channel, for whichnmk = n for
all m, k so that

ym[t] , 2nhm1x1[t] + 2nhm2x2[t] + zm[t]. (10)

With slight abuse of notation, we denote the sum capacity of the symmetric Gaussian X-channel byC(n).
In the following, we will be interested in a particular modulation scheme for the Gaussian channel,

which we describe next. Fix a time slott; to simplify notation, we will drop the dependence of variables
on t whenever there is no risk of confusion. Assume each messagewmk is modulated into the signalumk.
Transmitter one forms the channel input

x1 , h22u11 + h12u21. (11a)

3Indeed, channel gains with magnitude less than one are not relevant for a constant-gap capacity approximation, and can hence be ignored.
Similarly, negative channel gains have no effect on the achievable schemes and outer bounds presented later, and can therefore be ignored
as well.
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Similarly, transmitter two forms the channel input

x2 , h11u22 + h21u12. (11b)

The received signals are then given by

y1 = h11h222
n11u11 + h12h212

n12u12 + h11h12(2
n11u21 + 2n12u22) + z1, (12a)

y2 = h22h112
n22u22 + h21h122

n21u21 + h22h21(2
n22u12 + 2n21u11) + z2. (12b)

Receiver one is interested in the signalsu11 andu12. The other two signalsu21 andu22 are interference.
We see from (12a) that the interfering signalsu21 andu22 are received with the same coefficienth11h12.
The situation is similar for receiver two.

It will be convenient in the following to refer to the effective channel gains including the modulation
scheme asgmk, i.e.,

g10 , h11h12, g20 , h22h21, (13a)

g11 , h11h22, g21 , h21h12, (13b)

g12 , h12h21, g22 , h22h11. (13c)

Here gmk for m, k ∈ {1, 2} corresponds to the desired signalumk, andgm0 for m ∈ {1, 2} corresponds
to the interference terms. Sincehmk ∈ (1, 2], we havegmk ∈ (1, 4]. We can then rewrite (12) as

y1 = g112
n11u11 + g122

n12u12 + g10(2
n11u21 + 2n12u22) + z1, (14a)

y2 = g222
n22u22 + g212

n21u21 + g20(2
n22u12 + 2n21u11) + z2. (14b)

C. Deterministic X-Channel

As in the discussion in Section II-B, it is insightful to consider the lower-triangular deterministic
equivalent of the modulated Gaussian X-channel (14). To simplify the discussion, we assume for the
derivation and analysis of the deterministic channel modelthat the channel gainsgmk defined in (13) are
in (1, 2] instead of(1, 4]—the Gaussian setting will be analyzed for the general case.

Let us first consider the symmetric X-channel (10), i.e.,nmk = n for all m andk. Let

Ḡmk ,













1 0 · · · 0 0
[gmk]1 1 · · · 0 0

...
...

. . .
...

...
[gmk]n−2 [gmk]n−3 · · · 1 0
[gmk]n−1 [gmk]n−2 · · · [gmk]1 1













(15)

be the deterministic channel matrix corresponding to the binary expansion of the channel gaingmk with
m ∈ {1, 2} and k ∈ {0, 1, 2}. Sincegmk ∈ (1, 2] by assumption so that[gmk]0 = 1, the diagonal entries
of Ḡmk are equal to one.

The lower-triangular deterministic equivalent of the modulated Gaussian X-channel (14) is then given
by

ȳ1 , Ḡ11ū11 ⊕ Ḡ12ū12 ⊕ Ḡ10(ū21 ⊕ ū22), (16a)

ȳ2 , Ḡ22ū22 ⊕ Ḡ21ū21 ⊕ Ḡ20(ū12 ⊕ ū11), (16b)

where the channel input̄umk and the channel output̄ym are all binary vectors of lengthn, and where all
operations are overZ2.4

4This definition of the deterministic model corresponds to a power constraint of16 in the Gaussian model. This is mainly for convenience
of notation. Since the additional factor16 in power only increases capacity by a constant number of bitsper channel use, this does not
significantly affect the quality of approximation.
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Let us then consider the general X-channel (9). To simplify the presentation, we focus in the following
on the case where the direct links are stronger than the crosslinks5, i.e.,

min{n11, n22} ≥ max{n12, n21}.

It will be convenient to split the channel input into “common” and “private” portions, i.e.,

ūmk ,

(

ūC
mk

ūP
mk

)

,

whereūC
m1 ∈ Z

n21

2 and ūC
m2 ∈ Z

n12

2 for m ∈ {1, 2}. The lower-triangular deterministic equivalent of the
modulated Gaussian X-channel (14) is then

ȳ1 , Ḡ11ū11 ⊕ Ḡ12

(

0

ūC
12

)

⊕ Ḡ10

(

ū21 ⊕

(

0

ūC
22

))

, (17a)

ȳ2 , Ḡ22ū22 ⊕ Ḡ21

(

0

ūC
21

)

⊕ Ḡ20

(

ū12 ⊕

(

0

ūC
11

))

, (17b)

where all operations are again overZ2, see Figs. 8 and 9. Here, the lower-triangular binary matrices
Ḡmk are defined in analogy to (15). The matrix̄G1k is of dimensionn11 × n11 andḠ2k is of dimension
n22×n22 for all k ∈ {0, 1, 2}. Comparing the general deterministic model (17) to the symmetric one (16),
we see that the difference in the values ofnmk results in the inputs̄umk observed over the cross links
to be shifted down. As a consequence, the private portions ofthe channel inputs are visible at only the
intended receiver, whereas the common portions are visibleat both receivers.

n11 − n21

n12

n21 ūC
11

ūC
12

ūC
21

ūC
22

ūP
11 ūP

21

n11 − n12

Fig. 8. Deterministic model at receiver one. The figure showsthe signalȳ1 observed at receiver one decomposed into its four components
(see (17a)). For simplicity, the matrices̄Gmk are omitted. The interference terms̄u21 and ū22 are observed at receiver one multiplied by
the same matrixḠ10. The desired terms̄u11 and ū12 are multiplied by different matrices̄G11 andḠ12, respectively.

ūC
11

n22 − n12

n21

n12ūC
12

ūC
21

ūC
22

ūP
12 ūP

22

n22 − n21

Fig. 9. Deterministic model at receiver two (see (17b)). ThematricesḠmk are again omitted. The interference termsū11 and ū12 are
observed at receiver one multiplied by the same matrixḠ20. The desired terms̄u21 and ū22 are multiplied by different matrices̄G21 and
Ḡ22, respectively.

5This assumption is made for ease of exposition. Since the labeling of the receivers is arbitrary, all results carry immediately over to the
casemin{n12, n21} ≥ max{n11, n22}. The models and tools developed in this paper for these two cases can be applied to the other cases
as well.
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As before, there are four independent messageswmk. Each transmitterk consists of two6 encoders
mapping one of the two messageswmk to a sequence of channel inputsūmk. Denote byR̄mk the rate of
messagewmk and byC̄(N) the sum capacity of the (modulated) deterministic X-channel (17). For the
special case of the symmetric deterministic X-channel (16), the sum capacity is denoted bȳC(n).

IV. M AIN RESULTS

The main result of this paper is a constant-gap approximation for the capacity of the Gaussian X-
channel. To simplify the presentation of the relevant concepts and results, we start with the analysis of
the Gaussian X-channel with symmetricSNRs in Section IV-A. We then consider the Gaussian X-channel
with arbitrarySNRs in Section IV-B.

A. X-Channel with SymmetricSNRs

We start with the analysis of the deterministic X-channel—as we will see in the following, the insights
obtained for this model carry over to the Gaussian X-channel. The capacityC̄(n) of the symmetric
deterministic X-channel is characterized by the next theorem.

Theorem 1. For everyδ ∈ (0, 1] andn ∈ Z+, there exists a setBn ⊆ (1, 2]2×3 of Lebesgue measure

µ(Bn) ≤ δ

such that for all channel gains(gmk) ∈ (1, 2]2×3\Bn the sum capacitȳC(n) of the (modulated) symmetric
deterministic X-channel(16) satisfies

4
3
n− 2 log(c1/δ) ≤ C̄(n) ≤ 4

3
n

for some positive universal constantc1.

Theorem 1 is a special case of Theorem 5 presented in Section IV-B. We hence omit its proof.
Theorem 1 approximates the capacity of the modulated deterministic X-channel (16) up to a constant

gap for all channel gainsgmk ∈ (1, 2] outside the setBn of arbitrarily small measure. The event(gmk) ∈ Bn

can be interpreted as an outage event, as in this case the proposed achievable scheme fails to deliver the
target rate of4

3
n− 2 log(c1/δ). Hereδ parametrizes the trade-off between the measure of the outage set

Bn and the target rate: decreasingδ decreases the measure of the outage eventBn, but at the same time
also decreases the target rate4

3
n − 2 log(c1/δ). We point out thatδ can be chosen independently of the

number of input bitsn, hence the approximation gap is uniform inn.
Theorem 1 can be used to derive the more familiar result on thedegrees-of-freedomlimn→∞ C̄(n)/n

of the deterministic X-channel. Settingδ = n−2 results in the measuresµ(Bn) ≤ n−2 to be summable
overn ∈ Z+. Applying the Borel-Cantelli lemma yields then the following corollary to Theorem 1.

Corollary 2. For almost all channel gains(gmk) ∈ (1, 2]2×3 the (modulated) symmetric deterministic
X-channel(16) has4/3 degrees-of-freedom, i.e.,

lim
n→∞

C̄(n)

n
= 4/3.

We emphasize that, while Corollary 2 is simpler to state and perhaps more familiar in form, Theorem 1
is considerably stronger. Indeed, Theorem 1 provides the strongerconstant gapcapacity approximation

6Observe that in the definition of capacitȳC(n) of the modulated deterministic X-channel (17) we use two encoders at each transmitter
(one for each of the two messages). This differs from the definition of capacityC(n) of the Gaussian X-channel (10), where we use a single
encoder. Thus, in the deterministic case, we force the messages to be encoded separately, while we allow joint encoding of the two messages
in the Gaussian case. This restriction is introduced because the aim of the deterministic model is to better understand the modulated Gaussian
X-channel (12), which already handles the joint encoding ofthe messages through the modulation process.
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for the sum capacityC̄(n), whereas Corollary 2 provides the weakerdegrees-of-freedomcapacity ap-
proximation. Moreover, Theorem 1 provides bounds forfinite n on the measure of the outage eventBn,
whereas Corollary 2 provides onlyasymptoticinformation about its size.

We now describe the communication scheme achieving the lower bound in Theorem 1 (see Fig. 10). Use
the firstR̄ components of each vector̄umk to transmit information, and set the lastn− R̄ components to
zero. The sum rate of this communication scheme is hence4R̄. Receiver one is interested in̄u11 andū12.
These vectors are received in the subspace spanned by the first R̄ columns ofḠ11 andḠ12, respectively.
On the other hand, the messagesū21 andū22 that receiver one is not interested in, and that can hence be
regarded as interference, are both received in the same subspace spanned by the first̄R columns ofḠ10.
Thus, the two interference vectors are aligned in a subspaceof dimensionR̄. The situation at receiver
two is similar.

Ḡ12 Ḡ10ū12 ū21 ū22ū11Ḡ11

⊕ ⊕ ⊕

















































































































































































Fig. 10. Allocation of bits for the deterministic X-channelwith symmetricSNRs as seen at receiver one. The white regions correspond to
zero bits; the shaded regions carry information. Observe that the interference signals̄u21 and ū22 are aligned.

Assume that the three subspaces spanned by the firstR̄ columns ofḠ11, Ḡ12, and Ḡ10 are linearly
independent. Then receiver one can recover the two desired vectors by projecting the received vector into
the corresponding subspaces in order to zero force the two interfering vectors. We show that for most
channel gains this linear independence of the three subspaces holds forR̄ ≈ n/3. The outage eventBn

in Theorem 1 is thus precisely the event that at either of the two receivers the three subspaces spanned
by the firstR̄ columns ofḠm1, Ḡm2, andḠm0 are not linearly independent.

We now turn to the Gaussian X-channel. The results for the deterministic X-channel suggest that the
modulation scheme (11) should achieve a sum rate of

3R̄ ≈ 4
3
n± O(1)

over the Gaussian channel asn → ∞. Furthermore, it suggests that an-bit quantization of the channel
gainshmk available at both transmitters and receivers should be sufficient to achieve this asymptotic rate.
This intuition turns out to be correct, as the next theorem shows.

Theorem 3. For everyδ ∈ (0, 1] and n ∈ Z+, there exists a setBn ⊆ (1, 2]2×2 of Lebesgue measure at
most

µ(Bn) ≤ δ

such that for all channel gains(hmk) ∈ (1, 2]2×2 \ Bn the sum capacity of the symmetric Gaussian
X-channel(10) satisfies

4
3
n− 2 log(c2/δ) ≤ C(n) ≤ 4

3
n + 4

for some positive universal constantc2. Moreover, the lower bound is achievable with an-bit quantization
of the channel gainshmk available at both transmitters and receivers.

Theorem 3 is a special case of Theorem 6 presented in Section IV-B. We hence omit its proof.
Theorem 3 provides a constant-gap capacity approximation for the symmetric Gaussian X-channel (10).

The constant in the approximation is uniform in the channel gains hmk ∈ (1, 2] outside the setBn of
arbitrarily small measure, and uniform inn. The event(hmk) ∈ Bn can again be interpreted as an outage
event, andδ parametrizes the trade-off between the measure of the outage setBn and the target rate of
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the achievable scheme. Sinceδ can be chosen independently ofn, the approximation gap is uniform in
the SNR, i.e., uniform in22n.

Remark:It is worth pointing out that the outage setBn can be explicitly computed: given channel gains
hmk, there is an algorithm that can determine in bounded time if these channel gains are in the outage
setBn. More precisely,Bn is the union of2Θ(n) “strips” similar to Fig. 7 in Section II-C. Membership of
(hmk) in the outage setBn is mostly determined by then most-significant bits in the binary expansion of
the channel gainshmk. In particular, for any finiten (and hence finiteSNR), the question of rationality
or irrationality of the channel gainshmk is largely irrelevant to determining membership inBn.

The theorem shows furthermore that the proposed achievablescheme for the Gaussian X-channel is
not dependent on the exact knowledge of the channel gains, and a quantized version, available at all
transmitters and receivers, is sufficient. In fact, the scheme achieving the lower bound uses mismatched
encoders and decoders. The encoders perform modulation with respect to thewrong channel model

ym[t] = 2nĥm1x1[t] + 2nĥm2x2[t] + zm[t], (18)

whereĥmk is an-bit (or, equivalently,1
2
log(SNR)-bit) quantization of the true channel gainhmk. In other

words, the channel inputs are

x1[t] = ĥ22u11[t] + ĥ12u21[t],

x2[t] = ĥ11u22[t] + ĥ21u12[t].

The decoders perform maximum-likelihood decoding also with respect to the wrong channel model (18).
Thus, both the encoders and the decoders treat the channel estimates as if they were the true channel
gains. This shows that the proposed achievable scheme is actually quite robust with respect to channel
estimation and quantization errors.

As before, we can use Theorem 3 to derive more familiar results on the degrees-of-freedom of the
Gaussian X-channel. Consider a sequence ofSNRs 22n indexed byn ∈ Z+, and setδ = n−2. Then the
measuresµ(Bn) ≤ n−2 are summable overn ∈ Z+. Applying the Borel-Cantelli lemma as before yields
the following corollary to Theorem 3.

Corollary 4. For almost all channel gains(hmk) ∈ (1, 2]2×2 the symmetric Gaussian X-channel(10) has
4/3 degrees-of-freedom, i.e.,

lim
n→∞

C(n)

n
= 4/3.

Since theSNR of the channel is approximately22n so thatn ≈ 1
2
log(SNR), the quantitylimn→∞C(n)/n

in Corollary 4 is indeed the degrees-of-freedom limit. Corollary 4 recovers the result in [6]. We emphasize
again that Theorem 3 is considerably stronger than Corollary 4. Indeed, Theorem 3 proves theconstant-gap
capacity approximation

|C(n)− 4
3
n| ≤ O(1)

with pre-constant in theO(1) term uniform in the channel gainshmk outsideBn. This is considerably
stronger than thedegrees-of-freedomcapacity approximation in Corollary 4, which shows only that

|C(n)− 4
3
n| ≤ o(n)

with pre-constant in theo(n) term depending onhmk. Moreover, Theorem 3 provides bounds on the
measure of the outage event forfinite SNRs, not justasymptoticguarantees as in Corollary 4.
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B. X-Channel with ArbitrarySNRs

In the last section, we considered the Gaussian X-channel with SNRs across each link of order22n.
Thus, all links had approximately the same strength. We now turn to the Gaussian X-channel with arbitrary
SNRs. As before, we start with the analysis of the deterministicX-channel. The next theorem provides
an approximate characterization of the sum capacityC̄(N) of the general deterministic X-channel with
bit levelsN .

Theorem 5. For everyδ ∈ (0, 1] and N ∈ Z
2×2
+ with min{n11, n22} ≥ max{n12, n21} there exists a set

B ⊆ (1, 2]2×3 of Lebesgue measure
µ(B) ≤ δ

such that for all channel gains(gmk) ∈ (1, 2]2×3 \B the sum capacitȳC(N) of the (modulated) general
deterministic X-channel(17) satisfies

D(N)− 2 log(c1/δ) ≤ C̄(N) ≤ D(N)

for some positive universal constantc1, and where

D(N) , min
{

D1(N), D2(N), D3(N), D4(N)
}

+ (n11 − n21) + (n22 − n12)

and

D1(N) , (n12 + n21 − n11)
+ + (n12 + n21 − n22)

+,

D2(N) , 1
2

(

n12 + n21 + (n12 + n21 − n22)
+
)

,

D3(N) , 1
2

(

n12 + n21 + (n12 + n21 − n11)
+
)

,

D4(N) , 2
3
(n12 + n21).

The proof of Theorem 5 is presented in Section V. For the special case of symmetric channelSNRs,
nmk = n for all m, k, Theorem 5 reduces to Theorem 1 in Section IV-A.

We now provide a sketch of the communication scheme achieving the lower bound in Theorem 5 (see
Figs. 11 and 12). Observe from Figs. 8 and 9 in Section III-C that then11−n21 least-significant bits̄uP

11

R̄C
22

R̄C
11

R̄P
11

R̄12

R̄21

n11 − n12

n21

n22 − n21

ū11 ū12 ū21 ū22

Fig. 11. Allocation of bits as seen at receiver one. Here,ū11 andū12 are the desired bits and are received multiplied by the matricesḠ11

and Ḡ12 (not shown in the figure), respectively. The vectorsū21 and ū22 are interference and are both received multiplied by the same
matrix Ḡ10.

of ū11 are not visible at the second receiver. Therefore, we can usethese bits to privately carryn11 −n21

bits from the first transmitter to the first receiver without affecting the second receiver. The rate of this
private message is denoted bȳRP

11. The remaining rate is denoted bȳRC
11, i.e.,

R̄11 , R̄C
11 + R̄P

11,

where

R̄P
11 , n11 − n21.



17

R̄12

R̄C
22

n11 − n12 R̄C
11

R̄21

n22 − n21

n12

ū11 ū12 ū21 ū22

R̄P
22

Fig. 12. Allocation of bits as seen at receiver two. Here,ū21 andū22 are the desired bits and are received multiplied by the matricesḠ21

and Ḡ22 (not shown in the figure), respectively. The vectorsū11 and ū12 are interference and are both received multiplied by the same
matrix Ḡ20.

Similarly, then22 − n12 least-significant bits̄uP
22 of ū22 are not visible at the first receiver. Therefore,

we can use this part to privately carryn22 − n12 bits from the second transmitter to the second receiver
without affecting the first receiver. The rate of this private message is denoted bȳRP

22. The remaining rate
is denoted byR̄C

22, i.e.,

R̄22 , R̄C
22 + R̄P

22,

where

R̄P
22 , n22 − n12.

It remains to choose the values ofR̄C
11, R̄

C
22, R̄12, andR̄21. Our proposed design rules are as follows.

• We dedicate thēRC
11 most-significant bits of̄u11 to carry information from transmitter one to receiver

one.
• Similarly, we dedicate thēRC

22 most-significant bits of̄u22 to carry information from transmitter two
to receiver two.

• We always set then22 − n21 most-significant bits of̄u12 to zero. The nextR̄12 bits of ū12 carry
information from transmitter two to receiver one. As shown in Fig. 12, this guarantees the (partial)
alignment ofū12 with ū11 at the second receiver.

• We always set then11 − n12 most-significant bits of̄u21 to zero. The nextR̄21 bits of ū21 carry
information from transmitter one to receiver two. As shown in Fig. 11, this guarantees the (partial)
alignment ofū21 with ū22 at the first receiver.

Optimizing the values of the rates̄Rmk subject to the condition that both receivers can decode the
desired messages yields the lower bound in Theorem 5. The details of this analysis can be found in
Section V-A.

Generalizing these ideas from the deterministic to the Gaussian model, we obtain the following constant-
gap capacity approximation for the Gaussian X-channel withgeneral asymmetric channel gains.

Theorem 6. For everyδ ∈ (0, 1] and N ∈ Z
2×2
+ with min{n11, n22} ≥ max{n12, n21} there exists a set

B ⊆ (1, 2]2×2 of Lebesgue measure
µ(B) ≤ δ

such that for all channel gains(hmk) ∈ (1, 2]2×2 \ B the sum capacityC(N) of the general Gaussian
X-channel(9) satisfies

D(N)− 2 log(c2/δ) ≤ C(N) ≤ D(N) + 4

for some positive universal constantc2, and whereD(N) is as defined in Theorem 5. Moreover, the lower
bound onC(N) is achievable with amax{nmk}-bit quantization of the channel gainshmk available at
both transmitters and receivers.
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The proof of Theorem 6 is presented in Section VI. For the special case of symmetric channelSNRs,
nmk = n for all m, k, Theorem 6 reduces to Theorem 3 in Section IV-A. Comparing Theorems 6 and 5, we
see that, up to a constant gap, the Gaussian X-channel and itslower-triangular deterministic approximation
have the same capacity. Thus, the lower-triangular deterministic model captures the relevant features of
the Gaussian X-channel.

The lower bound in Theorem 6 is achieved by encoders and decoders that have access to only a
max{nmk}-bit quantizationĥmk of the channel gainshmk. As before, the encoders and decoders are
mismatched, in the sense that they are operating under the assumption that̂hmk is the correct channel
gain. This shows again that the proposed communication scheme is quite robust with respect to channel
estimation and quantization errors.

V. PROOF OFTHEOREM 5 (DETERMINISTIC X-CHANNEL)

This section contains the proof of the capacity approximation for the deterministic X-channel in
Theorem 5. Achievability of the lower bound in the theorem isproved in Section V-A; the upper bound
is proved in Section V-B.

A. Achievability for the Deterministic X-Channel

This section contains the proof of the lower bound in Theorem5. Without loss of generality, we assume
that n22 ≥ n11. We use the achievable scheme outlined in Section IV-B (see Figs. 11 and 12 there). We
want to maximize the sum rate

R̄C
11 + R̄P

11 + R̄C
22 + R̄P

22 + R̄12 + R̄21,

where
R̄C

kk + R̄P
kk = R̄kk

is the total rate from transmitterk to receiverk. The constraint is that each receiver can solve for its own
desired messages plus the visible parts of the aligned interference bits.

If the subspaces spanned by the columns ofḠmk corresponding to information-bearing bits ofūmk are
linearly independent, then there exists a unique channel input to the deterministic X-channel that results
in the observed channel output. The decoder declares that this unique channel input was sent. The next
lemma provides a sufficient condition for this linear independence to hold and hence for decoding to be
successful.

Lemma 7. Let δ ∈ (0, 1] and N ∈ Z
2×2
+ such thatmin{n11, n22} ≥ max{n12, n21}. AssumeR̄P

11,R̄
C
11,

R̄12, R̄21, R̄P
22, R̄

C
22 ∈ Z+ satisfy

R̄C
11 +max{R̄21, R̄

C
22}+ R̄12 + R̄P

11 ≤ n11 − log(32/δ), (19a)

max{R̄21, R̄
C
22}+ R̄12 + R̄P

11 ≤ n12 − log(32/δ), (19b)

R̄12 + R̄P
11 ≤ n12 + n21 − n22, (19c)

and

R̄C
22 +max{R̄12, R̄

C
11}+ R̄21 + R̄P

22 ≤ n22 − log(32/δ), (20a)

max{R̄12, R̄
C
11}+ R̄21 + R̄P

22 ≤ n21 − log(32/δ), (20b)

R̄21 + R̄P
22 ≤ n12 + n21 − n11. (20c)

Then the bit allocation in Section IV-B for the (modulated) deterministic X-channel(17) allows successful
decoding at both receivers for all channel gains(gmk) ∈ (1, 2]2×3 except for a setB ⊂ (1, 2]2×3 of
Lebesgue measure

µ(B) ≤ δ.
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If max{R̄21, R̄
C
22} = 0, then (19b) can be removed (i.e., does not need to be verified); and ifR̄12 = 0,

(19c) can be removed. Similarly, ifmax{R̄12, R̄
C
11} = 0, (20b) can be removed; and if̄R21 = 0, (20c) can

be removed.

The proof of Lemma 7 is reported in Section VII-A.
We now choose rates satisfying these decoding conditions. For ease of notation, we will ignore the

log(32/δ) terms throughout—the reduction in sum rate due to this additional requirement is at most
2 log(32/δ). The optimal allocation of bits at the transmitters dependson the valuen12 + n21. We treat
the cases

I: n12 + n21 ∈
[

0, n11

]

II: n12 + n21 ∈
(

n11, n22

]

III: n12 + n21 ∈
(

n22, n11 +
1
2
n22

]

IV: n12 + n21 ∈
(

n11 +
1
2
n22,

3
2
n22

]

V: n12 + n21 ∈
(

3
2
n22, n11 + n22

]

separately. Sincen12 + n21 ≤ n11 + n22 by the assumptionmax{n12, n21} ≤ min{n11, n22}, this covers
all possible values ofN .

Case I (0 ≤ n12 + n21 ≤ n11): We set

R̄P
11 , n11 − n21,

R̄P
22 , n22 − n12,

R̄C
22 , R̄C

11 , R̄12 , R̄21 , 0.

In words, we solely communicate using the private channel inputs ūP
11 and ūP

22. Recall that, by our
assumptions throughout this section,max{n12, n21} ≤ n11 ≤ n22. Hence,R̄P

11 ≥ 0 and R̄P
22 ≥ 0, so that

this rate allocation is valid. The calculation in Appendix Averifies that this rate allocation satisfies the
decoding conditions (19) and (20) in Lemma 7. Hence both receivers can recover the desired messages.
The sum rate can be verified to be

(n11 − n21) + (n22 − n12) = D1(N) + (n11 − n21) + (n22 − n12)

≥ D(N). (21)

Case II (n11 < n12 + n21 ≤ n22): We set

R̄P
11 , n11 − n21,

R̄P
22 , n22 − n12,

R̄C
22 , n12 − R̄P

11,

R̄C
11 , R̄12 , R̄21 , 0,

as shown in Fig. 13. Sincen12 + n21 > n11, we haveR̄C
22 ≥ 0, and hence this rate allocation is valid.

The calculation in Appendix A verifies that this rate allocation satisfies the decoding conditions (19)
and (20) in Lemma 7. Hence both receivers can decode successfully. The sum rate can be verified to be

(n12 + n21 − n11) + (n11 − n21) + (n22 − n12) = D1(N) + (n11 − n21) + (n22 − n12)

≥ D(N). (22)
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ū11 ū12 ū21 ū22ū11 ū12 ū21 ū22

Receiver One Receiver Two

Fig. 13. Allocation of bits in case II. Heren11 = 10, n22 = 13, n12 = 8, n21 = 4. The transmitters send private messages at ratesR̄P
11 = 6

and R̄P
22 = 5. Transmitter two sends a common message to receiver two at rate R̄C

22 = 2.

Case III (n22 < n12 + n21 ≤ n11 +
1
2
n22): We set

R̄P
11 , n11 − n21,

R̄P
22 , n22 − n12,

R̄12 , (n12 + 2n21 − n11 − n22)
+,

R̄21 , (n21 + 2n12 − n11 − n22)
+,

R̄C
11 , n21 − R̄P

22 − R̄21,

R̄C
22 , n12 − R̄P

11 − R̄12,

as depicted in Fig. 14. Usingn12 + n21 > n22 and n22 ≥ n11 ≥ max{n12, n21}, it can be verified that
R̄C

11 ≥ 0 and R̄C
22 ≥ 0, and hence this rate allocation is valid.

ū11 ū12 ū21 ū22ū11 ū12 ū21 ū22

Receiver One Receiver Two

Fig. 14. Allocation of bits in case III. Heren11 = 11, n22 = 13, n12 = 8, n21 = 9. The transmitters send private messages at ratesR̄P
11 = 2

and R̄P
22 = 5. Transmitter one sends a common message to receiver one at rate R̄C

11 = 3. Transmitter two sends a common message to
receiver two at ratēRC

22 = 4. The rates over the cross links arēR12 = 2 and R̄21 = 1. Observe that the interference terms are partially
aligned at each receiver.

The calculation in Appendix A verifies the decoding conditions (19) and (20) in Lemma 7. The sum
rate can be verified to be

n12 + n21 = D1(N) + (n11 − n21) + (n22 − n12)

≥ D(N). (23)

Case IV (n11 +
1
2
n22 < n12 + n21 ≤

3
2
n22): We set

R̄P
11 , n11 − n21,

R̄P
22 , n22 − n12,

R̄21 ,
⌊

n12 −
1
2
n22

⌋

,

R̄12 , R̄C
11 ,

⌊

n21 −
1
2
n22

⌋

,

R̄C
22 , n22 − n21,
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as shown in Fig. 15. Using thatn11 +
1
2
n22 ≤ n12 + n21, it can be verified that̄R21, R̄12, and R̄C

11 are
nonnegative, so that this rate allocation is valid.

ū11 ū12 ū21 ū22ū11 ū12 ū21 ū22

Receiver One Receiver Two

Fig. 15. Allocation of bits in case IV. Heren11 = 18, n22 = 26, n12 = n21 = 16. The transmitters send private messages at ratesR̄P
11 = 2

and R̄P
22 = 10. Transmitter one sends a common message to receiver one at rate R̄C

11 = 3, and transmitter two sends a common message to
receiver two at ratēRC

22 = 10. The rates over the cross links arēR12 = 3 and R̄21 = 3. In case IV, the interference terms are completely
aligned at receiver two, but only partially aligned at receiver one.

The calculation in Appendix A verifies the decoding conditions (19) and (20) in Lemma 7. The sum
rate can be verified to be at least

(n12 + n21−
1
2
n22) + (n11 − n21) + (n22 − n12)− 3

= D2(N) + (n11 − n21) + (n22 − n12)− 3

≥ D(N)− 3, (24)

where the loss of three bits is due to the floor operation in thedefinition of R̄21, R̄12, R̄
C
11.

Case V (3
2
n22 < n12 + n21 ≤ n11 + n22): We set

R̄P
11 , n11 − n21,

R̄P
22 , n22 − n12,

R̄12 , R̄C
11 ,

⌊

2
3
n21 −

1
3
n12

⌋

,

R̄21 , R̄C
22 ,

⌊

2
3
n12 −

1
3
n21

⌋

,

as shown in Fig. 16. From3
2
n22 < n12 + n21, it follows that R̄12, R̄C

11, R̄21, andR̄C
22 are nonnegative, so

that this rate allocation is valid.

ū11 ū12 ū21 ū22ū11 ū12 ū21 ū22

Receiver One Receiver Two

Fig. 16. Allocation of bits in case V. Heren11 = 12, n22 = 13, n12 = 12, n21 = 9. The private messages to receiver one and two have
ratesR̄P

11 = 3 and R̄P
22 = 1. The remaining messages to receiver one have rateR̄12 = R̄C

11 = 2, and are both entirely aligned at receiver
two. The remaining messages to receiver two have rateR̄21 = R̄C

22 = 5, and are both entirely aligned at receiver one.

The calculation in Appendix A verifies the decoding conditions (19) and (20) in Lemma 7. The sum
rate is at least

2
3
(n12 + n21) + (n11−n21) + (n22 − n12)− 4

= D4(N) + (n11 − n21) + (n22 − n12)− 4

≥ D(N)− 4, (25)
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where the loss of four bits is due to floor operation in the definition of R̄12, R̄
C
11, R̄21, R̄

C
22.

Combining (21)–(25), and accounting for the loss of2 log(32/δ) in Lemma 7 shows that, assuming
n22 ≥ n11,

C̄(N) ≥ D(N)− 4− 2 log(32/δ)

= D(N)− 2 log(c1/δ)

with
c1 , 128.

If n11 ≥ n22, we can simply relabel the two transmitters and receivers, and the same argument holds. This
relabeling of receivers introduces the functionD3(N) instead ofD2(N) in the lower bound. Together,
this concludes the proof of the lower bound in Theorem 5.

B. Upper Bound for the Deterministic X-Channel

The section contains the proof of the upper bound in Theorem 5. We start with a lemma upper bounding
various linear combinations of achievable rates for the deterministic X-channel.

Lemma 8. Any achievable rate tuple(R̄11, R̄12, R̄21, R̄22) for the (modulated) deterministic X-channel(17)
satisfies the following inequalities

R̄11 + R̄12 + R̄22 ≤ max{n11, n12}+ (n22 − n12)
+, (26a)

R̄11 + R̄21 + R̄22 ≤ max{n21, n22}+ (n11 − n21)
+, (26b)

R̄11 + R̄12 + R̄21 ≤ max{n11, n12}+ (n21 − n11)
+, (26c)

R̄12 + R̄21 + R̄22 ≤ max{n21, n22}+ (n12 − n22)
+, (26d)

R̄11 + R̄12 + R̄21 + R̄22 ≤ max{n12, n11 − n21}+max{n21, n22 − n12}, (26e)

R̄11 + R̄12 + R̄21 + R̄22 ≤ max{n11, n12 − n22}+max{n22, n21 − n11}, (26f)

2R̄11 + R̄12 + R̄21 + R̄22 ≤ max{n11, n12}+max{n21, n22 − n12}+ (n11 − n21)
+, (26g)

R̄11 + 2R̄12 + R̄21 + R̄22 ≤ max{n11, n12}+max{n22, n21 − n11}+ (n12 − n22)
+, (26h)

R̄11 + R̄12 + 2R̄21 + R̄22 ≤ max{n22, n21}+max{n11, n12 − n22}+ (n21 − n11)
+, (26i)

R̄11 + R̄12 + R̄21 + 2R̄22 ≤ max{n22, n21}+max{n12, n11 − n21}+ (n22 − n12)
+, (26j)

The proof of Lemma 8 is reported in Appendix B. Inequalities (26a)–(26f) are based on an argument
from [13, Theorem 4.4]. Inequalities (26g)–(26j) are novel.

The upper bounds in Lemma 8 can be understood intuitively as multiple-access bounds for a channel
where the receivers are forced to decode certain parts of theinterference (see Figs. 8 and 9 in Section IV-B).
For example, inequality (26a) corresponds to the multiple-access bound

R̄11 + R̄12 + R̄C
22 ≤ max{n11, n12} (27)

at receiver one, combined with the inequality

R̄P
22 ≤ (n22 − n12)

+.

Similarly, inequality (26e) corresponds to the multiple-access bound

R̄P
11 + R̄12 + R̄C

22 ≤ max{n12, n11 − n21}

at receiver one, combined with the multiple-access bound

R̄P
22 + R̄21 + R̄C

11 ≤ max{n21, n22 − n12} (28)



23

at receiver two. Finally, inequality (26g) corresponds to the multiple-access bounds (27) and

R̄P
11 ≤ (n11 − n21)

+

at receiver one, combined with the multiple-access bound (28) at receiver two. The proof of Lemma 8
makes this intuitive reasoning precise. A detailed discussion of this type of cut-set interpretation can be
found in [23].

We proceed with the proof of the upper bound in Theorem 5 for the deterministic X-channel. Under
the assumption

min{n11, n22} ≥ max{n12, n21}, (29)

the first four inequalities (26a)–(26d) in Lemma 8 yield the following upper bound on sum capacity

C̄(N) ≤ 2
3
(n12 + n21) + (n11 − n21) + (n22 − n12)

= D4(N) + (n11 − n21) + (n22 − n12). (30)

Again using (29), inequality (26e) in Lemma 8 shows that

C̄(N) ≤ max{n12, n11 − n21}+max{n21, n22 − n12}

= (n12 + n21 − n11)
+ + (n12 + n21 − n22)

+ + (n11 − n21) + (n22 − n12)

= D1(N) + (n11 − n21) + (n22 − n12). (31)

Inequalities (26d) and (26g) in Lemma 8 combined with (29) yield

C̄(N) ≤ 1
2

(

n11 + n22 +max{n21, n22 − n12}+ (n11 − n21)
)

= 1
2

(

n12 + n21 + (n12 + n21 − n22)
+
)

+ (n11 − n21) + (n22 − n12)

= D2(N) + (n11 − n21) + (n22 − n12). (32)

Similarly, from (26c) and (26j) in Lemma 8,

C̄(N) ≤ 1
2

(

n12 + n21 + (n12 + n21 − n11)
+
)

+ (n11 − n21) + (n22 − n12)

= D3(N) + (n11 − n21) + (n22 − n12). (33)

The sum capacity is hence at most the minimum of the upper bounds (30)–(33), i.e.,

C̄(N) ≤ min
{

D1(N), D2(N), D3(N), D4(N)
}

+ (n11 − n21) + (n22 − n12)

= D(N),

concluding the proof.

VI. PROOF OFTHEOREM 6 (GAUSSIAN X-CHANNEL)

This section contains the proof of the capacity approximation for the Gaussian X-channel in Theorem 6.
Achievability of the lower bound in the theorem is proved in Section VI-A; the upper bound is proved
in Section VI-B.
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A. Achievability for the Gaussian X-Channel

Here, we prove the lower bound in Theorem 6 by translating theachievable scheme for the deterministic
model to the Gaussian model. For ease of exposition, we assume in most of the analysis that all channels
gainshmk are exactly known at the two transmitters and receivers. Thechanges in the arguments necessary
for the mismatched case, in which the transmitters and receivers have access only to a quantized version
ĥmk of the channel gainhmk, are reported in Appendix C.

Recall that each transmitterk has access to two messages,w1k and w2k. The transmitter forms the
modulated symbolumk from the messagewmk. From these modulated signals, the channel inputs

x1 , h22u11 + h12u21,

x2 , h21u12 + h11u22

are constructed.
We now describe the modulation process fromwmk to umk in detail. Eachumk is of the form

umk ,

nkk
∑

i=3

[umk]i2
−i

with [umk]i ∈ {0, 1}. Since|hmk| ≤ 2 and |umk| ≤ 1/4, the resulting channel inputxk satisfies the unit
average power constraint at the transmitters.

In analogy to the achievable scheme for the deterministic channel, we only use certain portions of
the bits [umk]i in the binary expansion ofumk; the remaining bits are set to zero. The allocation of
information bits depends on the channel strengthN and is chosen as in the deterministic case described
in Sections IV-B and V-A, and as illustrated in Figs. 11 and 12. In particular, the messagesukk are again
decomposed into common and private portions, i.e.,

ukk = uP
kk + uC

kk.

We denote byR̄mk the modulation rate ofumk in bits per symbol in analogy to the deterministic case.
To satisfy the power constraint (as discussed above), we impose that the two most significant bits of

each common message are zero. For reasons that will become clear in the next paragraph, we also impose
that the two most significant bits for each private message are zero. This reduces the modulation rate by
at most12 bits per channel use compared to the deterministic case.

The channel output at receiver one is

y1 = 2n11h11x1 + 2n12h12x2 + z1

=
(

g112
n11u11 + g122

n12u12

)

+ g10
(

2n11u21 + 2n12uC
22

)

+
(

g102
n12uP

22 + z1
)

,

with gmk denoting the product of two channel gains as defined in (13) inSection III-B. The situation is
similar at receiver two. The channel output is grouped into three parts. The first part contains the two
desired signalsu11 andu12. The second part contains the interference signalsu21 anduC

22. Note that these
interference terms are received with the same coefficientg10 and are hence aligned. The third part contains
noisez1 and the private portionuP

22 of the messageu22. By construction,

2n12uP
22 ∈ [0, 1/4)

so that
|g102

n12uP
22| ≤ 4 · 1

4
≤ 1.

We will treat this part of the interference as noise.
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Set

s11 , 2n11u11,

s12 , 2n12u12,

s10 , 2n11u21 + 2n12uC
22.

The goal of the demodulator at receiver one is to find estimates ŝ1k of s1k, from which estimates for
the desired channel inputsu11 and u12 can be derived. The demodulator searches forŝ11, ŝ12, ŝ10 that
minimize

|y1 − g11ŝ11 − g12ŝ12 − g10ŝ10|.

We point out that the demodulator decodes only thesum ŝ10 of the two interfering symbols, but not the
individual interfering symbols themselves. The demodulator at receiver two works in analogy.

We now lower bound the minimum distance

d , min
(s11,s12,s10)
6=(s′

11
,s′

12
,s′

10
)

∣

∣g11(s11 − s′11) + g12(s12 − s′12) + g10(s10 − s′10)
∣

∣. (34)

between the noiseless received signal generated by the correct (s11, s12, s10) and by any other triple
(s′11, s

′
12, s

′
10). The next lemma provides a sufficient condition for this minimum distance to be large at

both receivers.

Lemma 9. Let δ ∈ (0, 1] and N ∈ Z
2×2
+ such thatmin{n11, n22} ≥ max{n12, n21}. AssumeR̄P

11,R̄
C
11,

R̄12, R̄21, R̄P
22, R̄

C
22 ∈ Z+ satisfy

R̄C
11 +max{R̄21, R̄

C
22}+ R̄12 + R̄P

11 ≤ n11 − 6− log(13104/δ), (35a)

max{R̄21, R̄
C
22}+ R̄12 + R̄P

11 ≤ n12 − 6− log(13104/δ), (35b)

R̄12 + R̄P
11 ≤ n12 + n21 − n22 − 6, (35c)

and

R̄C
22 +max{R̄12, R̄

C
11}+ R̄21 + R̄P

22 ≤ n22 − 6− log(13104/δ), (36a)

max{R̄12, R̄
C
11}+ R̄21 + R̄P

22 ≤ n21 − 6− log(13104/δ), (36b)

R̄21 + R̄P
22 ≤ n12 + n21 − n11 − 6. (36c)

Then the bit allocation in Section IV-B applied to the Gaussian X-channel(9) results in a minimum
constellation distanced ≥ 32 at each receiver for all channel gains(hmk) ∈ (1, 2]2×2 except for a set
B ⊂ (1, 2]2×2 of Lebesgue measure

µ(B) ≤ δ.

If max{R̄21, R̄
C
22} = 0, then (35b) can be removed (i.e., does not need to be verified); and ifR̄12 = 0,

(35c) can be removed. Similarly, ifmax{R̄12, R̄
C
11} = 0, (36b) can be removed; and if̄R21 = 0, (36c) can

be removed.

The proof of Lemma 9 is reported in Section VII-B. Observe that, up to the constants, Lemma 9 is
exactly of the same form as Lemma 7 in Section V-A for the lower-triangular deterministic X-Channel,
highlighting again the close connection between the two models. In the following discussion, we will
assume that the channel gains are outside the outage set, i.e., (hmk) /∈ B.

Recall that we have chosen the same allocation of information bits in the binary expansion ofumk as in
the deterministic case analyzed in Section V-A. Since the most-significant bit of eachumk is zero, the binary
expansion ofsmk is also of the form analyzed there. Moreover, since the conditions in Lemma 9 used here
are the same as the conditions in Lemma 7 used in the deterministic case, we conclude that Lemma 9 can be
applied if we further reduce the rates to accommodate the constant6+log(13104/δ) in Lemma 9. This can
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be achieved for example by reducing the modulation rate by a further3+ 1
2
log(13104/δ) ≤ 10+ 1

2
log(1/δ)

per symbol. Accounting for the loss of12 bits per channel use due to the power constraint, the sum rate
of the modulation scheme is then

∑

m,k

R̄mk = D(N)− 12− 4 · 10− 4 · 1
2
log(1/δ)− 4

= D(N)− 2 log(1/δ)− 56, (37)

with D(N) as defined in Theorem 5 for the deterministic X-channel, and where the additional loss of4
bits results from rounding in the bit allocation for the deterministic scheme as discussed in Section V-A.

Lemma 9 is sufficient to show that the probability of demodulation error issmall. To achieve avanishing
probability of error, we use an outer code over the modulatedchannel. The distribution ofumk is chosen
to be uniform over the set allowed by the modulator constraints and independent of all other modulator
inputs. LetRmk denote the rate of this outer code from transmitterk to receiverm. We now lower bound
the rateR11 as a function of the modulation ratēR11.

We have

I
(

s11, s12, s10; ŝ11, ŝ12, ŝ10
)

= H
(

s11, s12, s10
)

−H
(

s11, s12, s10
∣

∣ ŝ11, ŝ12, ŝ10
)

.

We will argue below that
H
(

s11, s12, s10
∣

∣ ŝ11, ŝ12, ŝ10
)

≤ 1.5 (38)

so that

I
(

s11, s12, s10; ŝ11, ŝ12, ŝ10
)

≥ H
(

s11, s12, s10
)

− 1.5

= H(s11) +H(s12) +H(s10)− 1.5. (39)

On the other hand,

I
(

s11, s12, s10; ŝ11, ŝ12, ŝ10
)

≤ I
(

s11; ŝ11, ŝ12, ŝ10
)

+H(s12) +H(s10).

Together with (39), this shows that

I
(

s11; ŝ11, ŝ12, ŝ10
)

≥ H(s11)− 1.5

= R̄11 − 1.5.

Since there is a one-to-one relationship betweenu11 ands11, this implies that the outer code can achieve
a rate of

R11 = I
(

u11; ŝ11, ŝ12, ŝ10
)

= I
(

s11; ŝ11, ŝ12, ŝ10
)

≥ R̄11 − 1.5.

The same argument can be used for the other rates as well, showing that

Rmk ≥ R̄mk − 1.5

for all m, k ∈ {1, 2}. Hence the outer codes achieves a sum rate of at least
∑

m,k

Rmk ≥
∑

m,k

R̄mk − 6.

Using (37), this shows that, except for a setB of measure at mostδ,

C(N) ≥ D(N)− 2 log(1/δ)− 62

= D(N)− 2 log(c2/δ)
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with
c2 , 231,

which is what needed to be shown.

Remark:The rateRmk of the outer code can be lower bounded in terms of the modulation rateR̄mk

using Fano’s inequality. This is the approach taken, for example, in [6], [20]. However, this approach
results in a gap that depends onN , and is hence not strong enough for a constant-gap approximation of
capacity. Instead, we use a stronger argument (see the proofof (38) below) that yields a gap independent
of N . This argument is a key step in the derivation of the lower bound on capacity.

It remains to prove (38). It will be convenient to define

v , g11s11 + g12s12 + g10s10,

and similarly forv̂ with respect tôs1k. Observe that the channel outputy1 is then equal tov plus signals
treated as noise. Since we assume that the channel gains are outside the outage setB, Lemma 9 implies
that there is a one-to-one relationship betweenv and (s11, s12, s10), and between̂v and (ŝ11, ŝ12, ŝ10).
Hence,

H
(

s11, s12, s10
∣

∣ ŝ11, ŝ12, ŝ10
)

= H(v | v̂). (40)

Set
pv|v̂(q | q̂) , P(v = q | v̂ = q̂).

We will show thatH(v | v̂) is small by arguing thatpv|v̂(q | q̂) is close to one forq = q̂ and decays
exponentially quickly forq 6= q̂. More precisely, define a mappingq(q̂, ℓ), with q̂ a possible value of̂v
and ℓ an integer, as follows. Setq(q̂, 0) , q̂. If ℓ is a negative integer, setq(q̂, ℓ) to be theℓth closest
possible value ofv to the left of q̂. If ℓ is a positive integer, setq(q̂, ℓ) to be theℓth closest possible value
of v to the right of q̂. This mapping is illustrated in Fig. 17. We will show thatpv|v̂(q(q̂, ℓ) | q̂) decays
exponentially in|ℓ|.

q(q̂, 0)

q̂

q(q̂,−1) q(q̂, 1) q(q̂, 2)

≥ 32 ≥ 32≥ 32

Fig. 17. Illustration of the mappingq(q̂, ℓ). The parameterℓ ranges over the integers. The parameterq̂ ranges over all possible values of
v̂. Observe that, for each fixed value ofq̂, q(q̂, ·) ranges over all possible values ofv as a function ofℓ. Similarly, for each fixed value of
ℓ, q(·, ℓ) ranges over a subset of the possible values ofv as a function of̂q. The distance between any two points is at least32.

Rewritepv|v̂(q(q̂, ℓ) | q̂) as

pv|v̂(q(q̂, ℓ) | q̂) =
P(v = q(q̂, ℓ))P(v̂ = q̂ | v = q(q̂, ℓ))

P(v̂ = q̂)
.

Recall that, by Lemma 9, the distance between two possible values of v is at leastd ≥ 32. In order to
decode tôv = q̂ if the correct value ofv is q(q̂, ℓ), the noise terms needs to have magnitude at least16|ℓ|.
From this observation, we can obtain an upper bound onP(v̂ = q̂ | v = q(q̂, ℓ)).

As mentioned before, this analysis is based on the assumption that both transmitters and receivers have
access tohmk. The analysis in Appendix C shows that the only difference under mismatched encoding
and decoding, in which the transmitters and receivers usemax{nmk}-bit quantized channel gainŝhmk

instead ofhmk, is a decrease in the minimum constellation distanced. In particular, (78) in Appendix C,
shows that for|ℓ| ≥ 1

P(v̂ = q̂ | v = q(q̂, ℓ)) ≤ P(z1 ≥ |ℓ|(d− 8)/2− 3)

≤ P(z1 ≥ 12|ℓ| − 3)

≤ 1
2
exp

(

−(12|ℓ| − 3)2/2
)

,
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where in the last inequality we have used the Chernoff bound on the Q-function. Hence,

pv|v̂(q(q̂, ℓ) | q̂) ≤
P(v = q(q̂, ℓ))

2P(v̂ = q̂)
exp

(

−(12|ℓ| − 3)2/2
)

, (41)

showing thatpv|v̂(q(q̂, ℓ) | q̂) decays exponentially in|ℓ|.
We next argue that this exponential decay implies thatH(v | v̂) is small. We have

H(v | v̂) =
∑

q̂

P(v̂ = q̂)H(v | v̂ = q̂). (42)

Applying [25, Theorem 9.7.1],

H(v | v̂ = q̂) = −
∑

q

pv|v̂(q | q̂) log pv|v̂(q | q̂)

= −
∑

ℓ

pv|v̂(q(q̂, ℓ) | q̂) log pv|v̂(q(q̂, ℓ) | q̂)

≤
1

2
log

(

(2πe)
(

∑

ℓ

(2|ℓ|+ 1)2pv|v̂(q(q̂, ℓ) | q̂)−
11

12

)

)

=
1

2
log

(

(2πe)
(

4
∑

ℓ

(ℓ2 + |ℓ|)pv|v̂(q(q̂, ℓ) | q̂) +
1

12

)

)

≤
1

2
log(2πe) +

1

2
log(e)

(

4
∑

ℓ

(ℓ2 + |ℓ|)pv|v̂(q(q̂, ℓ) | q̂)−
11

12

)

=
1

2
log(2πe1/12) + 2 log(e)

∑

ℓ

(ℓ2 + |ℓ|)pv|v̂(q(q̂, ℓ) | q̂).

Combined with (41) and (42), this implies

H(v | v̂) ≤
1

2
log(2πe1/12) + log(e)

∑

ℓ

(|ℓ|2 + |ℓ|) exp
(

−(12|ℓ| − 3)2/2
)

∑

q̂

P(v = q(q̂, ℓ)). (43)

Now, since for every fixed value ofℓ, q(·, ℓ) takes each possible value ofv at most once as a function
of q̂ (see Fig. 17), we have

∑

q̂

P(v = q(q̂, ℓ)) ≤
∑

q

P(v = q) = 1.

Moreover,

∑

ℓ

(ℓ2 + |ℓ|) exp
(

−(12|ℓ| − 3)2/2
)

≤ 2
∞
∑

ℓ=1

(ℓ2 + ℓ) exp
(

−(12ℓ− 3)2/2
)

≤ 10−16.

Substituting this into (43) yields

H(v | v̂) ≤
1

2
log(2πe1/12) + 10−16 log(e) ≤ 1.5.

Together with (40), this proves (38).
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B. Upper Bound for the Gaussian X-Channel

This section proves the upper bound in Theorem 6. We start with a lemma upper bounding various
linear combinations of achievable rates for the Gaussian X-channel.

Lemma 10. Any achievable rate tuple(R11, R12, R21, R22) for the Gaussian X-channel(9) satisfies the
following inequalities

R11 +R12 +R22 ≤
1
2
log(1 + 22n11h2

11 + 22n12h2
12) +

1
2
log

(

1 +
22n22h2

22

1 + 22n12h2
12

)

, (44a)

R11 +R21 +R22 ≤
1
2
log(1 + 22n22h2

22 + 22n21h2
21) +

1
2
log

(

1 +
22n11h2

11

1 + 22n21h2
21

)

, (44b)

R11 +R12 +R21 ≤
1
2
log(1 + 22n11h2

11 + 22n12h2
12) +

1
2
log

(

1 +
22n21h2

21

1 + 22n11h2
11

)

, (44c)

R12 +R21 +R22 ≤
1
2
log(1 + 22n22h2

22 + 22n21h2
21) +

1
2
log

(

1 +
22n12h2

12

1 + 22n22h2
22

)

, (44d)

R11 +R12 +R21 +R22 ≤
1
2
log

(

1 + 22n12h2
12 +

22n11h2
11

1 + 22n21h2
21

)

+ 1
2
log

(

1 + 22n21h2
21 +

22n22h2
22

1 + 22n12h2
12

)

,

(44e)

R11 +R12 +R21 +R22 ≤
1
2
log

(

1 + 22n11h2
11 +

22n12h2
12

1 + 22n22h2
22

)

+ 1
2
log

(

1 + 22n22h2
22 +

22n21h2
21

1 + 22n11h2
11

)

,

(44f)

2R11 +R12 +R21 +R22 ≤
1
2
log(1 + 22n11h2

11 + 22n12h2
12) +

1
2
log

(

1 + 22n21h2
21 +

22n22h2
22

1 + 22n12h2
12

)

+ 1
2
log

(

1 +
22n11h2

11

1 + 22n21h2
21

)

, (44g)

R11 + 2R12 +R21 +R22 ≤
1
2
log(1 + 22n12h2

12 + 22n11h2
11) +

1
2
log

(

1 + 22n22h2
22 +

22n21h2
21

1 + 22n11h2
11

)

+ 1
2
log

(

1 +
22n12h2

12

1 + 22n22h2
22

)

, (44h)

R11 +R12 + 2R21 +R22 ≤
1
2
log(1 + 22n21h2

21 + 22n22h2
22) +

1
2
log

(

1 + 22n11h2
11 +

22n12h2
12

1 + 22n22h2
22

)

+ 1
2
log

(

1 +
22n21h2

21

1 + 22n11h2
11

)

, (44i)

R11 +R12 +R21 + 2R22 ≤
1
2
log(1 + 22n22h2

22 + 22n21h2
21) +

1
2
log

(

1 + 22n12h2
12 +

22n11h2
11

1 + 22n21h2
21

)

+ 1
2
log

(

1 +
22n22h2

22

1 + 22n12h2
12

)

. (44j)

The proof of Lemma 10 is reported in Appendix D. Inequalities(44a)–(44f) are from [13, Lemma 5.2,
Theorem 5.3]. Inequalities (44g)–(44j) are novel.

We proceed with the proof of the upper bound in Theorem 6 for the Gaussian X-channel. Note that,
for nmk ∈ Z+ andhmk ∈ (1, 2],

1
2
log

(

1 + 22n11h2
11 + 22n12h2

12

)

≤ 1
2
log

(

1 + 4 · 22n11 + 4 · 22n12
)

≤ 1
2
log

(

9max{1, 22n11, 22n12}
)

= max{n11, n12}+
1
2
log(9)



30

and

1
2
log

(

1 +
22n22h2

22

1 + 22n12h2
12

)

≤ 1
2
log

(

1 + 22n22−2n12h2
22

)

≤ 1
2
log

(

5max{1, 22n22−2n12}
)

= (n22 − n12)
+ + 1

2
log(5).

Hence, (44a) yields

R11 +R12 +R22 ≤ max{n11, n12}+ (n22 − n12)
+ + 1

2
log(5 · 9).

In a similar manner, we can upper bound the right-hand sides of all terms in Lemma 10 by quantities
depending only onN . For example, (44e) yields

R11 +R12 +R21 +R22 ≤ max{n12, n11 − n21}+max{n21, n22 − n12}+
1
2
log(92),

and (44g) yields

2R11 +R12 +R21 +R22 ≤ max{n11, n12}+max{n21, n22 − n12}+ (n11 − n21)
+ + 1

2
log(5 · 92).

Comparing this to the upper bounds in Lemma 8 in Section V-B for the lower-triangular deterministic
X-channel, we see that Lemma 10 for the Gaussian X-channel isidentical up to a constant gap. This
highlights again the close connection between the two models. Using the same derivation as for the
deterministic case, Lemma 10 can thus be used to show that, under the assumption

min{n11, n22} ≥ max{n12, n21},

the sum capacity of the Gaussian X-channel satisfies

C(N) ≤ D(N) + 4.

This concludes the proof of the upper bound.

VII. M ATHEMATICAL FOUNDATIONS FORRECEIVER ANALYSIS

This section lays the mathematical groundwork for the analysis of the decoders used in Sections V-A
and VI-A. For the deterministic channel model, decoding is successful if the various message subspaces
are linearly independent. Conditions for this linear independence to hold are presented in Section VII-A.
For the Gaussian case, decoding is successful if the minimumdistance between the different messages
as seen at the receivers is large. As we will see, this problemcan be reformulated as a number-theoretic
problem. Conditions for successful decoding in the Gaussian case are presented in Section VII-B.

A. Decoding Conditions for the Deterministic Channel

We start by analyzing a “generic” receiver (i.e., the bit allocation seen at either receiver one or two).
To this end, we assume there are two desired vectorsū1 and ū2 and one interference vector̄u0. The
interference vector̄u0 consists of two signal vectors that are aligned and can therefore be treated as a
single vector. These three vectors are multiplied by the lower-triangular channel matrices̄G1, Ḡ2, andḠ0

created via the binary expansion of the channel gainsg1, g2, g0 as before.
We assume that certain components of the vectorsūk are set to zero. To formally capture this, we need

to introduce some notation. Letn− andn+ be two nonnegative integers such thatn− ≥ n+. Define

Ū(n−, n+) ,
{

ū ∈ {0, 1}n1 : ūi = 0 ∀i ∈ {1, . . . , n1 − n−} ∪ {n1 − n+ + 1, . . . , n1}
}

as illustrated in Fig. 18. We consider vectors(ū0, ū1, ū2, ū3) in the set

Ū , Ū(n0, n0 − R̄0)× Ū(n1, n1 − R̄1)× Ū(n2, n2 − R̄2)× Ū(R̄3, 0)
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n1

ū

n+

n1 − n−

n− − n+

Fig. 18. A vectorū in the setŪ(n−, n+). White regions represent bits set to zero.

n1

n2

ū1 ⊕ ū3 ū2 ū0

n0

R̄0

R̄3

R̄2

R̄1

Fig. 19. A generic receiver as analyzed in Lemma 11. White regions correspond to zero bits; shaded regions carry information. Bits are
labeled from1 to n1, starting from the top.

with n1 ≥ n0 ≥ n2, as is illustrated in Fig. 19. Here,̄u1 and ū3 are to be interpreted as the common
and private portions of the desired signal transmitted overthe direct link;ū2 is to be interpreted as the
desired signal transmitted over the cross link; andū0 is to be interpreted as the aligned interference.

The next lemma states that the subspaces spanned by the corresponding columns ofḠk are linearly
independent for most channel gains(g0, g1, g2).

Lemma 11. Let n0, n1, n2 ∈ Z+ such thatn1 ≥ n0 ≥ n2, and letR̄0, R̄1, R̄2, R̄3 ∈ Z+. Define the event

B(ū0, ū1, ū2, ū3) ,
{

(g0, g1, g2) ∈ (1, 2]3 : Ḡ0ū0 ⊕ Ḡ1(ū1 ⊕ ū3)⊕ Ḡ2ū2 = 0
}

,

and set
B ,

⋃

(ū0,ū1,ū2,ū3)∈Ū\{(0,0,0,0)}

B(ū0, ū1, ū2, ū3).

For any δ ∈ (0, 1] satisfying

R̄1 + R̄0 + R̄2 + R̄3 ≤ n1 − log(16/δ),

R̄0 + R̄2 + R̄3 ≤ n0 − log(16/δ),

R̄2 + R̄3 ≤ n2,

we have
µ(B) ≤ δ.

Observe thatB is the set of channel gainsg0, g1, g2 such that the corresponding subspaces spanned by
the selected columns of̄G0, Ḡ1, Ḡ2 are linearly dependent. In other words,B is the set of channel gains
resulting in decoding error. Thus the lemma states that if the ratesR̄k satisfy certain conditions, then
the subspaces under consideration are linearly independent with high probability, and hence decoding is
successful.

The condition on the rates in Lemma 11 can be interpreted as follows. Let n be some natural number.
Since the matrices̄Gk are lower triangular, the subspaces spanned by the lastn columns ofḠk are the
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same for allk ∈ {0, 1, 2}. Thus, anecessarycondition for the linear independence of the three subspaces
is that the total number of possible nonzero components ofūki with i ≥ n1 − n + 1 andk ∈ {0, 1, 2, 3}
is at mostn for every n ∈ {1, ..., n1}. By the structure of the set̄U , this condition can be verified by
considering only three values ofn, namelyn ∈ {n0, n1, n2} (see Fig. 19). Thus, a necessary condition
for the linear independence of the subspaces is

R̄1 + R̄0 + R̄2 + R̄3 ≤ n1,

(R̄1 − (n1 − n0))
+ + R̄0 + R̄2 + R̄3 ≤ n0,

(R̄1 − (n1 − n2))
+ + (R̄0 − (n0 − n2))

+ + R̄2 + R̄3 ≤ n2.

After some algebra these three conditions can be rewritten equivalently as

R̄1 + R̄0 + R̄2 + R̄3 ≤ n1,

R̄0 + R̄2 + R̄3 ≤ n0,

R̄2 + R̄3 ≤ n2.

Thus, Lemma 11 shows that, up to the constantlog(16/δ) and for most channel gains(g0, g1, g2), these
necessaryconditions are alsosufficientfor the linear independence of the subspaces.

Before we provide the proof of Lemma 11, we show how it can be used to prove Lemma 7 in
Section V-A.

Proof of Lemma 7:We start by reformulating the conditions in Lemma 11 for eachreceiver. Consider
first receiver one in Lemma 7. From Fig. 11 in Section IV-B, we see that the corresponding message rates
in Lemma 11 are given by

R̄0 , max{R̄21, R̄
C
22},

R̄1 , R̄C
11,

R̄2 , R̄12,

R̄3 , R̄P
11.

The choice of the bit levelsnk in Lemma 11 depends on the values ofR̄0 and R̄2. If R̄0, R̄2 > 0, we
need to set

n0 , n12,

n1 , n11,

n2 , n12 + n21 − n22,

see again Fig. 11.
The conditions in Lemma 11 (withδ replaced byδ/2 to guarantee that the outage event at each receiver

has measure at mostδ/2) are then that

R̄C
11 +max{R̄21, R̄

C
22}+ R̄12 + R̄P

11 ≤ n11 − log(32/δ), (45a)

max{R̄21, R̄
C
22}+ R̄12 + R̄P

11 ≤ n12 − log(32/δ), (45b)

R̄12 + R̄P
11 ≤ n12 + n21 − n22. (45c)

If R̄2 = 0, then the second column in Fig. 19 is empty, and hence the third condition in Lemma 11 does
not need to be verified. Formally, note that in this case the value ofn2 is irrelevant to the decoding process.
We may hence assume without loss of generality thatn2 is equal ton0 (thus still satisfyingn0 ≥ n2). As
a consequence, only conditions (45a) and (45b) need to be checked. If R̄0 = 0, then the value ofn0 is
irrelevant to the decoding process, and we can assume it to beequal ton1 (thus still satisfyingn1 ≥ n0).
As a consequence, only conditions (45a) and (45c) need to be checked.

The decoding conditions for receiver two follow by symmetry.
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Denote byB1 ⊆ R
3 the collection of triples(g10, g11, g12) such that decoding fails at receiver one.

Similarly, defineB2 ⊆ R
3 with respect to receiver two. Finally, letB ⊂ R

6 be the union ofB1 andB2.
If the two sets of decoding conditions are satisfied, then Lemma 11 shows that

µ3(Bm) ≤ δ/2

for m ∈ {1, 2}, where here and in the following we use the notationµd to emphasize the Lebesgue
measure is computed inRd. Then

µ6(B) ≤ µ3(B1)µ3((1, 2]
3) + µ3(B2)µ3((1, 2]

3)

≤ δ,

i.e., the collection of channel gains(gmk) ∈ R
2×3 for which decoding fails is small. This concludes the

proof of Lemma 7.
It remains to prove Lemma 11.

Proof of Lemma 11: We start with a few preliminary observations. Note that, by the assumptions
on R̄k,

R̄1 + R̄3 ≤ n1,

R̄0 + R̄3 ≤ n0,

R̄2 + R̄3 ≤ n2,

which implies that
max

{

R̄1, n1 − n0 + R̄0, n1 − n2 + R̄2

}

≤ n1 − R̄3. (46)

From Fig. 19, we see that this guarantees that ifūk 6= 0, then

n(ūk) ≤ n1 − R̄3 (47)

for k ∈ {0, 1, 2}, where for a binary vector̄u we use the notationn(ū) to denote the smallest index
i such thatūi = 1 with the convention thatn(0) = +∞. Moreover, we see from the same figure that
n(ū3) > n1 − R̄3.

We now remove the dependence ofB on the private signal̄u3. SinceḠk is lower triangular with unit
diagonal (so that bits are only shifted downwards), we haven(Ḡkūk) = n(ūk). Hence,

Ḡ0ū0 ⊕ Ḡ1(ū1 ⊕ ū3)⊕ Ḡ2ū2 = 0

can hold only if

n
(

Ḡ0ū0 ⊕ Ḡ1ū1 ⊕ Ḡ2ū2

)

= n(Ḡ1ū3)

= n(ū3)

> n1 − R̄3,

where we have used thatn(ū3) > n1 − R̄3. Furthermore, we have for̄u3 6= 0 that

Ḡ0ū0 ⊕ Ḡ1(ū1 ⊕ ū3)⊕ Ḡ2ū2 = 0

can hold only if(ū0, ū1, ū2) 6= (0, 0, 0).
Defining the sets

B′(ū0, ū1, ū2) ,
{

(g0, g1, g2) ∈ (1, 2]3 : n
(

Ḡ0ū0 ⊕ Ḡ1ū1 ⊕ Ḡ2ū2

)

> n1 − R̄3

}

and

Ū ′ , Ū(n0, n0 − R̄0)× Ū(n1, n1 − R̄1)× Ū(n2, n2 − R̄2),
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we hence have
B ⊆ B′ ,

⋃

(ū0,ū1,ū2)∈Ū ′\{(0,0,0)}

B′(ū0, ū1, ū2).

We can then upper boundµ(B) using the union bound

µ(B) ≤ µ(B′) ≤
∑

(ū0,ū1,ū2)∈Ū ′\{(0,0,0)}

µ
(

B′(ū0, ū1, ū2)
)

. (48)

Observe that the right-hand side does not depend on the private signalū3. We continue by analyzing each
term in the summation on the right-hand side of (48) separately.

Since we are integrating with respect to Lebesgue measure over (g0, g1, g2) ∈ (1, 2]3, we can equivalently
assume thatg0, g1, g2 are independent and uniformly distributed over(1, 2]. The bits in the binary expansion
([gk]i)

∞
i=−∞ of these numbers are then binary random variables with the following properties.[gk]i = 0

for i ≤ −1, [gk]0 = 1, and ([gk]i)
1
i=∞ are i.i.d.Bernoulli(1/2) (see, e.g., [26, Exercise 1.4.20]). The

lower-triangular Toeplitz matrixḠk is then constructed from these binary random variables. Note that
this implies that the three matrices̄G0, Ḡ1, Ḡ2 are independent and identically distributed.

Fix a binary vectorū and consider the product̄Gū for someḠ = Ḡk, ū = ūk, and with addition
again overZ2. We now describe the distribution of̄Gū. SinceḠ is lower triangular with unit diagonal,
(Ḡu)i = 0 whenever1 ≤ i < n(ū), and (Ḡū)n(ū) = 1. Moreover, the components(Ḡū)i for n(ū) <
i ≤ n1 are i.i.d.Bernoulli(1/2).

Assume first that
n(ū0) ≤ n(ū1) ≤ n(ū2) < ∞. (49)

The summand in (48) can be written as

µ
(

B′(ū0, ū1, ū2)
)

=
∑

b3:n(b3)>n1−R̄3

∑

b1

∑

b2

P(Ḡ0ū0 = b1 ⊕ b2 ⊕ b3)P(Ḡ1ū1 = b1)P(Ḡ2ū2 = b2), (50)

where the probabilities are computed with respect to the random matricesḠk. Using thatn(Ḡkūk) =
n(ūk), the three factors inside the summation are nonzero only if

n(b1 ⊕ b2 ⊕ b3) = n(ū0),

n(b1) = n(ū1),

n(b2) = n(ū2).

From this, we obtain that

n(ū0) = n(b1 ⊕ b2 ⊕ b3)

≥ min{n(b1), n(b2), n(b3)}

≥ min{n(ū1), n(ū2), n1 − R̄3}

= n(ū1),

where for the last equality we have used (49) and thatn1 − R̄3 is larger thann(ū1) by (47). Since
n(ū0) ≤ n(ū1) by (49), this shows thatn(b1 ⊕ b2 ⊕ b3) = n(ū0) can hold only ifn(ū0) = n(ū1).

If these conditions on thēuk andbk are satisfied, then

P(Ḡ0ū0 = b1 ⊕ b2 ⊕ b3)P(Ḡ1ū1 = b1)P(Ḡ2ū2 = b2) = 2−(n1−n(ū0))−(n1−n(ū1))−(n1−n(ū2)).

Substituting this into (50) shows that

µ
(

B′(ū0, ū1, ū2)
)

≤ 2R̄3−n1+n(ū0)

whenevern(ū0) = n(ū1), and
µ
(

B′(ū0, ū1, ū2)
)

= 0
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otherwise.
Assume more generally that(ū1, ū2, ū3) 6= (0, 0, 0). Then a similar argument shows that

µ
(

B′(ū0, ū1, ū2)
)

≤ 2R̄3−n1+mink n(ūk) (51)

whenever there are two distinct indicesk, k′ achieving the minimummink n(uk), and

µ
(

B′(ū0, ū1, ū2)
)

= 0 (52)

otherwise. In particular, the setB′(ū0, ū1, ū2) has measure zero whenever at least two of theūk are equal
to zero.

Setting
Ū ′(n−, n+) , Ū(n−, n+) \ {0},

we can then rewrite (48) as

µ(B′) ≤
∑

ū0∈Ū ′(n0,n0−R̄0)

∑

ū1∈Ū ′(n1,n1−R̄1)

∑

ū2∈Ū ′(n2,n2−R̄2)

µ
(

B′(ū0, ū1, ū2)
)

+
∑

ū1∈Ū ′(n1,n1−R̄1)

∑

ū2∈Ū ′(n2,n2−R̄2)

µ
(

B′(0, ū1, ū2)
)

+
∑

ū0∈Ū ′(n0,n0−R̄0)

∑

ū2∈Ū ′(n2,n2−R̄2)

µ
(

B′(ū0, 0, ū2)
)

+
∑

ū0∈Ū ′(n0,n0−R̄0)

∑

ū1∈Ū ′(n1,n1−R̄1)

µ
(

B′(ū0, ū1, 0)
)

.

By (52), the setB′ has measure zero whenever there is only a single minimizingn(ūk). Together with
the assumptionn1 ≥ n0 ≥ n2, this shows that we can restrict the lower boundaries of the sets Ū ′ in the
various sums. For example

∑

ū0∈Ū ′(n0,n0−R̄0)

∑

ū1∈Ū ′(n1,n1−R̄1)

∑

ū2∈Ū ′(n2,n2−R̄2)

µ
(

B′(ū0, ū1, ū2)
)

=
∑

ū0∈Ū ′(n0,n0−R̄0)

∑

ū1∈Ū ′(n0,n1−R̄1)

∑

ū2∈Ū ′(n2,n2−R̄2)

µ
(

B′(ū0, ū1, ū2)
)

,

where we have changed̄U ′(n1, n1− R̄1) to Ū ′(n0, n1− R̄1), and similarly for the other three summations.
Together with (51) this yields that

µ(B′) ≤
∑

ū0∈Ū ′(n0,n0−R̄0)

∑

ū1∈Ū ′(n0,n1−R̄1)

∑

ū2∈Ū ′(n2,n2−R̄2)

2R̄3−n1+mink n(ūk)

+
∑

ū1∈Ū ′(n2,n1−R̄1)

∑

ū2∈Ū ′(n2,n2−R̄2)

2R̄3−n1+mink n(ūk)

+
∑

ū0∈Ū ′(n2,n0−R̄0)

∑

ū2∈Ū ′(n2,n2−R̄2)

2R̄3−n1+mink n(ūk)

+
∑

ū0∈Ū ′(n0,n0−R̄0)

∑

ū1∈Ū ′(n0,n1−R̄1)

2R̄3−n1+mink n(ūk).

We consider each of the four terms in turn.
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For the first term, we have
∑

ū0∈Ū ′(n0,n0−R̄0)

∑

ū1∈Ū ′(n0,n1−R̄1)

∑

ū2∈Ū ′(n2,n2−R̄2)

2R̄3−n1+mink n(ūk)

=

n1
∑

i=n1−n0+1

∑

ū0∈Ū ′(n0,n0−R̄0)

∑

ū1∈Ū ′(n0,n1−R̄1)

∑

ū2∈Ū ′(n2,n2−R̄2)

2R̄3−n1+i11{mink n(ūk)=i}

≤
n1
∑

i=n1−n0+1

∑

ū0∈Ū ′(n1−i+1,n0−R̄0)

∑

ū1∈Ū ′(n1−i+1,n1−R̄1)

∑

ū2∈Ū ′(n2,n2−R̄2)

2R̄3−n1+i.

Using that
|Ū ′(n−, n+)| ≤ 2n

−−n+

,

the right-hand side can be further upper bounded by
n1
∑

i=n1−n0+1

2n1−n0+R̄0−i+1 · 2R̄1−i+1 · 2R̄2 · 2R̄3−n1+i

= 2R̄0+R̄1+R̄2+R̄3−n0+2
n1
∑

i=n1−n0+1

2−i

≤ 2R̄0+R̄1+R̄2+R̄3−n1+2.

We can upper bound the remaining three terms in a similar fashion, yielding

µ(B′) ≤ 2R̄3+2
(

2R̄0+R̄1+R̄2−n1 + 2R̄1+R̄2−n1 + 2R̄0+R̄2−n0 + 2R̄0+R̄1−n1
)

≤ 16 · 2R̄3+max{R̄0+R̄1+R̄2−n1,R̄0+R̄2−n0}.

This shows that if

R̄1 + R̄0 + R̄2 + R̄3 ≤ n1 − log(16/δ),

R̄0 + R̄2 + R̄3 ≤ n0 − log(16/δ),

and (in order to guarantee (46)) if

R̄2 + R̄3 ≤ n2,

then
µ(B) ≤ µ(B′) ≤ δ,

completing the proof of the lemma.

B. Decoding Conditions for the Gaussian Channel

In this section, we analyze a “generic” receiver for the Gaussian case. To this end, we prove a variation
of a well-known result from Diophantine approximation called Groshev’s theorem (see, e.g., [27, Theorem
1.12]).

Define

U(n−, n+) ,
{

u ∈ [−1, 1] : [u]i = 0 ∀i ∈ {1, . . . , n1 − n−} ∪ {n1 − n+ + 1, . . .}
}

,

where we assume that the binary expansion ofu and−u is identical. Set

U , U(n0, n0 − R̄0)× U(n1, n1 − R̄1)× U(n2, n2 − R̄2)× U(R̄3, 0).

U is the set of real numbers such that their binary expansions,when viewed as vectors of lengthn1, are
in the setŪ as illustrated in Fig. 19 in Section VII-A. Thus,U is the direct translation of the set̄U of
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possible channel inputs for the deterministic setting to the Gaussian setting. The next lemma states that
if the channel inputs are chosen fromU , then the resulting minimum constellation distance as observed
at the receivers is large for most channel gains(g0, g1, g2).

Lemma 12. Let n0, n1, n2 ∈ Z+ such thatn1 ≥ n0 ≥ n2, and letR̄0, R̄1, R̄2, R̄3 ∈ Z+. Define the event

B(u0, u1, u2, u3) ,
{

(g0, g1, g2) ∈ (1, 4]3 : |g0u0 + g1(u1 + u3) + g2u2| ≤ 25−n1},

and set
B ,

⋃

(u0,u1,u2,u3)∈U\{(0,0,0,0)}

B(u0, u1, u2, u3).

For any δ ∈ (0, 1] satisfying

R̄1 + R̄0 + R̄2 + R̄3 ≤ n1 − 6− log(6552/δ),

R̄0 + R̄2 + R̄3 ≤ n0 − 6− log(6552/δ),

R̄2 + R̄3 ≤ n2 − 6,

we have
µ(B) ≤ δ.

Lemma 12 is the equivalent for the Gaussian channel of Lemma 11 for the deterministic channel. Note
that, except for the constants, the conditions on the rates in the two lemmas are identical.

We now prove Lemma 9 in Section VI-A using Lemma 12.
Proof of Lemma 9:We will use Lemma 12 withδ/2 instead ofδ and the same rate allocations as in

the deterministic case, see Figs. 11 and 12 in Section IV-B. Let B̃m ⊂ (1, 4]3 be the collection of triples
(gm0, gm1, gm2) such that decoding is successful at receiverm. DefineBm as the collection of channel
gains(hmk) ⊂ (1, 2]2×2 such that the corresponding(gmk) are in B̃m. Finally, let B denote the union of
B1 and B2. Following the same arguments as in the proof of Lemma 7 from Lemma 11 presented in
Section VII-A, it can be shown that if the decoding conditions in Lemma 9 are satisfied, then Lemma 12
guarantees that

µ3(B̃m) ≤ δ/2

for m ∈ {1, 2}.
The next lemma allows us to transfer this statement about theproductsgmk of channel gains to the

corresponding statement about the original channel gainshmk. For ease of notation, the statement of the
lemma usesgk as a shorthand forgmk as defined in (13) for some fixed value ofm ∈ {1, 2}.

Lemma 13. Let B̃ ⊆ (1, 4]3 be a subset of channel gains(g0, g1, g2) such thatµ3(B̃) ≤ δ. Define

B ,
{

(hmk) ∈ (1, 2]2×2 : (g0, g1, g2) ∈ B̃
}

.

Thenµ4(B) ≤ δ.

The proof of Lemma 13 is reported in Appendix E. Applying Lemma 13 to the setsB̃1 and B̃2

corresponding to the outage events defined above, this implies that

µ4(Bm) ≤ δ/2.

Hence,
µ4(B) ≤ µ4(B1) + µ4(B2) ≤ δ,

proving Lemma 9.
We continue with the proof of Lemma 12. Instead of directly analyzing the setB in the statement of

Lemma 12, it will be convenient to work with an equivalent set. Note thatB(u0, u1, u2, u3) can be written
as

B(u0, u1, u2, u3) =
{

(g0, g1, g2) ∈ (1, 4]3 : |g02
n1u0 + g12

n1(u1 + u3) + g22
n1u2| ≤ 25

}

.
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By the definition ofU (see also Fig. 19 in Section VII-A), we can decompose

2n1u0 = A′
0q0,

2n1u1 = A′
1q1,

2n1u2 = A′
2q2,

2n1u3 = q3,

with
A′

k , 2nk−R̄k

for k ∈ {0, 1, 2} and
qk ∈ {−Qk,−Qk + 1, . . . , Qk − 1, Qk}

for k ∈ {0, 1, 2, 3}, where
Qk , 2R̄k .

We now remove the dependence ofB on u3. We can further rewriteB using the triangle inequality as

B(u0, u1, u2, u3) = {|A′
0g0q0 + A′

1g1q1 + g1q3 + A′
2g2q2| ≤ 25}

⊆ {|A′
0g0q0 + A′

1g1q1 + A′
2g2q2| ≤ 25 + 2R̄3+2}

⊆ {|A′
0g0q0 + A′

1g1q1 + A′
2g2q2| ≤ β ′}

, B′(q0, q1, q2),

where all sets are defined over(g0, g1, g2) ∈ (1, 4]3, and where we have defined

β ′ , 2R̄3+6.

Setting
B′ ,

⋃

q0,q1,q2∈Z:
(q0,q1,q2)6=0,
|qk|≤Qk∀k

B′(q0, q1, q2),

we then have
µ3(B) ≤ µ3(B

′).

The next lemma analyzes the setB′ with A′
0 = 1.

Lemma 14. Let β ∈ (0, 1], A1, A2 ∈ N, andQ0, Q1, Q2 ∈ N. Define the event

B′(q0, q1, q2) ,
{

(g0, g1, g2) ∈ (1, 4]3 : |g0q0 + A1g1q1 + A2g2q2| < β
}

,

and set
B′ ,

⋃

q0,q1,q2∈Z:
(q0,q1,q2)6=0,
|qk|≤Qk∀k

B′(q0, q1, q2).

Then

µ(B′) ≤ 504β

(

2min
{

Q2,
Q0

A2

}

+min
{

Q1Q̃2,
Q0Q̃2

A1

,
A2Q̃

2
2

A1

}

+ 2min
{

Q1,
Q0

A1

}

+min
{

Q2Q̃1,
Q0Q̃1

A2
,
A1Q̃

2
1

A2

}

)
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with

Q̃1 , min
{

Q1, 8
max{Q0, A2Q2}

A1

}

,

Q̃2 , min
{

Q2, 8
max{Q0, A1Q1}

A2

}

.

Remark:The special case of Lemma 14 withA1 = A2 = 1, Q0 = Q1 = Q2 = Q, and Q → ∞
corresponds to the (converse part of) Groshev’s theorem, see, e.g., [27, Theorem 1.12]. Hence, Lemma 14
extends Groshev’s theorem to asymmetric and non-asymptotic settings.

Before we present the proof of Lemma 14, we show how to prove Lemma 12 with the help of Lemma 14.
Proof of Lemma 12: We consider the three casesA′

0 ≤ min{A′
1, A

′
2}, A′

1 ≤ min{A′
0, A

′
2}, and

A′
2 ≤ min{A′

0, A
′
1} separately.

Assume first thatA′
0 ≤ min{A′

1, A
′
2}. Define

A0 , 1,

A1 , A′
1/A

′
0 = 2R̄0−R̄1−n0+n1 ,

A2 , A′
2/A

′
0 = 2R̄0−R̄2−n0+n2 ,

β , β ′/A′
0 = 2R̄0+R̄3−n0+6.

Note thatA1, A2 ∈ N, and thatβ ∈ (0, 1] if

R̄0 + R̄3 ≤ n0 − 6, (53)

as required by Lemma 14. The quantitiesQ̃1 and Q̃2 in Lemma 14 can be upper bounded as

Q̃1 ≤ 8max{Q0, A2Q2}/A1 = 8Q0/A1,

sincen0 ≥ n2 implies thatQ0 ≥ A2Q2, and as

Q̃2 ≤ Q2.

Applying Lemma 14 yields then

µ(B) ≤ µ(B′)

≤ 504β
(

2Q2 +
A2Q̃

2
2

A1
+ 2

Q0

A1
+Q2Q̃1

)

≤ 504β
(

2Q2 +
A2Q

2
2

A1

+ 2
Q0

A1

+ 8
Q0Q2

A1

)

≤ 6652βmax
{

Q2,
A2Q

2
2

A1
,
Q0

A1
,
Q0Q2

A1

}

= 6652βmax
{

Q2,
Q0Q2

A1

}

,

where we have used thatQ2 ≥ 1 and thatA2Q2 ≤ Q0 implying

A2Q
2
2

A1

≤
Q0Q2

A1

.

Substituting the definitions ofβ, Ak, andQk, yields that

µ(B) ≤ 6652 · 2R̄0+R̄3−n0+6max
{

2R̄2 , 2R̄1+R̄2+n0−n1
}

.
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Together with (53), this shows that if

R̄1 + R̄0 + R̄2 + R̄3 ≤ n1 − 6− log(6652/δ),

R̄0 + R̄2 + R̄3 ≤ n0 − 6− log(6652/δ),

R̄0 + R̄3 ≤ n0 − 6,

then
µ(B) ≤ δ.

Sinceδ ∈ (0, 1] and R̄2 ≥ 0, the third condition is redundant and can be removed, showing the result in
Lemma 12. We point out that the third condition in Lemma 12 is not active ifA′

0 ≤ min{A′
1, A

′
2}. This

is consistent with it not appearing in the derivation here.
Assume next thatA′

1 ≤ min{A′
0, A

′
2}. Define

A0 , A′
0/A

′
1 = 2−R̄0+R̄1+n0−n1,

A1 , 1,

A2 , A′
2/A

′
1 = 2R̄1−R̄2−n1+n2,

β , β ′/A′
1 = 2R̄1+R̄3−n1+6.

Note thatA0, A2 ∈ N, and thatβ ∈ (0, 1] if

R̄1 + R̄3 ≤ n1 − 6. (54)

We can hence apply Lemma 14 by appropriately relabeling indices (i.e., by swapping indices0 and 1).
The quantitiesQ̃0 and Q̃2 can be upper bounded as

Q̃0 = min
{

Q0, 8
max{Q1, A2Q2}

A0

}

≤ Q0,

and

Q̃2 = min
{

Q2, 8
max{Q1, A0Q0}

A2

}

≤ Q2.

Applying Lemma 14 yields then that

µ(B) ≤ µ(B′)

≤ 504β
(

2Q2 +Q0Q̃2 + 2Q0 +Q2Q̃0

)

≤ 504β
(

2Q2 +Q0Q2 + 2Q0 +Q2Q0

)

≤ 3024βQ0Q2.

Substituting the definitions ofβ andQk, yields that

µ(B) ≤ 3024 · 2R̄0+R̄1+R̄2+R̄3+6−n1 .

Together with (54), this shows that if

R̄1 + R̄0 + R̄2 + R̄3 ≤ n1 − 6− log(3024/δ),

R̄1 + R̄3 ≤ n1 − 6,

then
µ(B) ≤ δ.
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Since δ ∈ (0, 1] and R̄0, R̄2 ≥ 0, the second condition is redundant and can be removed, showing the
result in Lemma 12. As can be verified, the second and third conditions in Lemma 12 are not active when
A′

1 ≤ min{A′
0, A

′
2}, consistent with them not appearing in the derivation here.

Finally, assume thatA′
2 ≤ min{A′

0, A
′
1}. Define

A0 , A′
0/A

′
2 = 2−R̄0+R̄2+n0−n2,

A1 , A′
1/A

′
2 = 2−R̄1+R̄2+n1−n2,

A2 , 1,

β , β ′/A′
2 = 2R̄2+R̄3−n2+6.

Note thatA0, A1 ∈ N, and thatβ ∈ (0, 1] if

R̄2 + R̄3 ≤ n2 − 6. (55)

We can hence apply Lemma 14 by relabeling indices as before (this time by swapping indices0 and2).
The quantitiesQ̃0 and Q̃1 can be upper bounded as

Q̃0 = min
{

Q0, 8
max{Q2, A1Q1}

A0

}

≤ Q0,

and

Q̃1 = min
{

Q1, 8
max{Q2, A0Q0}

A1

}

≤ 8
max{Q2, A0Q0}

A1

= 8
A0Q0

A1

sincen0 ≥ n2 impliesA0Q0 ≥ Q2.
Applying Lemma 14 yields then that

µ(B) ≤ µ(B′)

≤ 504β
(

2
Q2

A0

+
Q2Q̃0

A1

+ 2
Q2

A1

+
Q2Q̃1

A0

)

≤ 504β
(

2
Q2

A0
+

Q2Q0

A1
+ 2

Q2

A1
+ 8

Q2Q0

A1

)

≤ 6552βmax
{Q2

A0
,
Q2Q0

A1

}

.

Substituting the definitions ofβ, Ak, andQk, yields that

µ(B) ≤ 6652 · 2R̄2+R̄3+6−n2 max
{

2R̄0+n2−n0, 2R̄0+R̄1+n2−n1
}

.

Together with (55), this shows that if

R̄1 + R̄0 + R̄2 + R̄3 ≤ n1 − 6− log(6652/δ),

R̄0 + R̄2 + R̄3 ≤ n0 − 6− log(6652/δ),

R̄2 + R̄3 ≤ n2 − 6,

then
µ(B) ≤ δ,
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showing the result in Lemma 12. It can be verified that, unlikein the other two cases, all three conditions
in Lemma 12 can be active whenA′

2 ≤ min{A′
0, A

′
1}. This is again consistent with the derivation here.

This proves Lemma 12.
It remains to prove Lemma 14. The proof builds on an argument in [28].

Proof of Lemma 14:Define

B′(q1, q2) ,
⋃

q0∈Z:
|q0|≤Q0

B′(q0, q1, q2)

for (q1, q2) 6= (0, 0), and
B′(0, 0) ,

⋃

q0∈Z\{0}:
|q0|≤Q0

B′(q0, 0, 0).

For g0 ∈ (1, 4], set

B′
g0
(q1, q2) ,

{

(g1, g2) ∈ (1, 4]2 : (g0, g1, g2) ∈ B′(q1, q2)
}

.

Observe thatB′
g0
(q1, q2) is a subset ofR2 and that

µ3(B
′(q1, q2)) =

∫ 4

g0=1

µ2(B
′
g0
(q1, q2))dg0.

We treat the casesA1|q1| ≤ A2|q2| andA1|q1| > A2|q2| separately. Assume firstA1|q1| ≤ A2|q2| and
q2 6= 0. If

A2|q2| ≥ 8max{Q0, A1Q1}+ 1,

then

|g0q0 + A1g1q1 + A2g2q2| ≥ A2g2|q2| − A1g1|q1| − g0|q0|

≥ A2|q2| − 4A1Q1 − 4Q0

≥ 1

≥ β,

where we have used thatβ ≤ 1. Hence,µ2(B
′
g0(q1, q2)) = 0. We can therefore assume without loss of

generality that
A2|q2| ≤ 8max{Q0, A1Q1}

for any value ofq1. By a similar argument, we can assume that

A2|q2| ≤ 4Q0

for q1 = 0.
The setB′

g0(q1, q2) consists of at most

min{3Q0, 7A2|q2|}

strips of slope−A1q1/(A2q2) and width2β/(A2|q2|) in the g2 direction, including several partial strips
(see Fig. 20). The area of this set is at most

µ2(B
′
g0
(q1, q2)) ≤ 3 ·

2β

A2|q2|
·min{3Q0, 7A2|q2|}

≤ 42βmin
{ Q0

A2|q2|
, 1
}

. (56)
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(1, 1)

g2

(4, 1)

(1, 4)

g1

(4, 4)

Fig. 20. Illustration of the setB′

1(1,−2) ⊆ (1, 4]2 with g0 = 1, q1 = 1, q2 = −2, A1 = A2 = 1, andβ = 0.2. In the figure, we assume
thatQ0 ≫ A2|q2|. The set consists of10 ≤ 7A2|q2| = 14 strips of slope1/2 = −A1q1/(A2q2).

We now consider the caseA1|q1| > A2|q2| and q1 6= 0. As before, we can assume without loss of
generality that

A1|q1| ≤ 8max{Q0, A2Q2}

for any value ofq2, and that
A1|q1| ≤ 4Q0

for q2 = 0. By the same analysis as in the last paragraph, we obtain that

µ2(B
′
g0
(q1, q2)) ≤ 42βmin

{ Q0

A1|q1|
, 1
}

. (57)

Finally, when(q1, q2) = 0 andq0 6= 0, theng0|q0| ≥ 1 ≥ β, and hence

µ2(B
′
g0(0, 0)) = 0. (58)

We can upper bound

µ3(B
′) = µ3

(

∪ q1∈Z:
|q1|≤Q1

∪ q2∈Z:
|q2|≤Q2

∪q0∈Z:|q0|≤Q0

(q0,q1,q2)6=0

B′(q0, q1, q2)

)

≤
∑

q1∈Z:
|q1|≤Q1

∑

q2∈Z:
|q2|≤Q2

µ3(B
′(q1, q2))

=
∑

q1∈Z:
|q1|≤Q1

∑

q2∈Z:
|q2|≤Q2

∫ 4

g0=1

µ2(B
′
g0(q1, q2))dg0

=
∑

q2∈Z\{0}:|q2|≤Q2

A2|q2|≤4Q0

∫ 4

g0=1

µ2(B
′
g0(0, q2))dg0

+
∑

q2∈Z\{0}:|q2|≤Q2

A2|q2|≤8max{Q0,A1Q1}

∑

q1∈Z\{0}:|q1|≤Q1

A1|q1|≤A2|q2|

∫ 4

g0=1

µ2(B
′
g0
(q1, q2))dg0

+
∑

q1∈Z\{0}:|q1|≤Q1

A1|q1|≤4Q0

∫ 4

g0=1

µ2(B
′
g0
(q1, 0))dg0
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+
∑

q1∈Z\{0}:|q1|≤Q1

A1|q1|≤8max{Q0,A2Q2}

∑

q2∈Z\{0}:|q2|≤Q2

A2|q2|≤A1|q1|

∫ 4

g0=1

µ2(B
′
g0
(q1, q2))dg0

+

∫ 4

g0=1

µ2(B
′
g0
(0, 0))dg0.

Combined with (56), (57), and (58), this yields

µ3(B
′) ≤

∑

q2∈Z\{0}:|q2|≤Q2

A2|q2|≤4Q0

126βmin
{ Q0

A2|q2|
, 1
}

+
∑

q2∈Z\{0}:|q2|≤Q2

A2|q2|≤8max{Q0,A1Q1}

∑

q1∈Z\{0}:|q1|≤Q1

A1|q1|≤A2|q2|

126βmin
{ Q0

A2|q2|
, 1
}

+
∑

q1∈Z\{0}:|q1|≤Q1

A1|q1|≤4Q0

126βmin
{ Q0

A1|q1|
, 1
}

+
∑

q1∈Z\{0}:|q1|≤Q1

A1|q1|≤8max{Q0,A2Q2}

∑

q2∈Z\{0}:|q2|≤Q2

A2|q2|≤A1|q1|

126βmin
{ Q0

A1|q1|
, 1
}

. (59)

We now upper bound the four terms in the right-hand side of (59).
For the first term in (59), observe that

∣

∣

{

q2 ∈ Z \ {0} : |q2| ≤ Q2, A2|q2| ≤ 4Q0

}∣

∣ ≤ 2min
{

Q2, 4
Q0

A2

}

≤ 8min
{

Q2,
Q0

A2

}

,

so that
∑

q2∈Z\{0}:|q2|≤Q2

A2|q2|≤4Q0

126βmin
{ Q0

A2|q2|
, 1
}

≤ 1008βmin
{

Q2,
Q0

A2

}

. (60)

For the second term in (59), observe that

∣

∣

{

q1 ∈ Z \ {0} : |q1| ≤ Q1, A1|q1| ≤ A2|q2|
}∣

∣ ≤ 2min
{

Q1,
A2|q2|

A1

}

,

and hence
∑

q1∈Z\{0}:|q1|≤Q1

A1|q1|≤A2|q2|

min
{ Q0

A2|q2|
, 1
}

≤ 2min
{

Q1,
A2|q2|

A1

}

min
{ Q0

A2|q2|
, 1
}

≤ 2min
{Q0Q1

A2|q2|
, Q1,

Q0

A1
,
A2|q2|

A1

}

≤ 2min
{

Q1,
Q0

A1

,
A2|q2|

A1

}

.

Moreover,
{

q2 ∈ Z \ {0} : |q2| ≤ Q2, A2|q2| ≤ 8max{Q0, A1Q1}
}

=
{

q2 ∈ Z \ {0} : |q2| ≤ Q̃2

}
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with

Q̃2 , min
{

Q2, 8
max{Q0, A1Q1}

A2

}

.

Using these two facts, we can upper bound
∑

q2∈Z\{0}:|q2|≤Q2

A2|q2|≤8max{Q0,A1Q1}

∑

q1∈Z\{0}:|q1|≤Q1

A1|q1|≤A2|q2|

126βmin
{ Q0

A2|q2|
, 1
}

≤ 252β
∑

q2∈Z\{0}:|q2|≤Q̃2

min
{

Q1,
Q0

A1

,
A2|q2|

A1

}

≤ 252β
∑

q2∈Z\{0}:|q2|≤Q̃2

min
{

Q1,
Q0

A1

,
A2Q̃2

A1

}

≤ 504βmin
{

Q1Q̃2,
Q0Q̃2

A1

,
A2Q̃

2
2

A1

}

. (61)

Similarly, for the third term in (59),
∑

q1∈Z\{0}:|q1|≤Q1

A1|q1|≤4Q0

126βmin
{ Q0

A1|q1|
, 1
}

≤ 1008βmin
{

Q1,
Q0

A1

}

, (62)

and for the fourth term
∑

q1∈Z\{0}:|q1|≤Q1

A1|q1|≤8max{Q0,A2Q2}

∑

q2∈Z\{0}:|q2|≤Q2

A2|q2|≤A1|q1|

126βmin
{ Q0

A1|q1|
, 1
}

≤ 504βmin
{

Q2Q̃1,
Q0Q̃1

A2
,
A1Q̃

2
1

A2

}

(63)

with

Q̃1 , min
{

Q1, 8
max{Q0, A2Q2}

A1

}

.

Substituting (60)–(63) into (59) yields

µ3(B
′) ≤ β

(

1008min
{

Q2,
Q0

A2

}

+ 504min
{

Q1Q̃2,
Q0Q̃2

A1
,
A2Q̃

2
2

A1

}

+ 1008min
{

Q1,
Q0

A1

}

+ 504min
{

Q2Q̃1,
Q0Q̃1

A2

,
A1Q̃

2
1

A2

}

)

,

completing the proof.

VIII. C ONCLUSION

In this paper, we derived a constant-gap capacity approximation for the Gaussian X-channel. This
derivation was aided by a novel deterministic channel modelused to approximate the Gaussian channel.
In the proposed deterministic channel model, the actions ofthe channel are described by a lower-triangular
Toeplitz matrices with coefficients determined by the bits in the binary expansion of the corresponding
channel gains in the original Gaussian problem. This is in contrast to traditional deterministic models, in
which the actions of the channel are only dependent on the single most-significant bit of the channel gains
in the original Gaussian problem. Preserving this dependence on the fine structure of the Gaussian channel
gains turned out to be crucial to successfully approximate the Gaussian X-channel by a deterministic
channel model.

Throughout this paper, we were only interested in obtaininga constant-gap capacity approximation.
Less emphasis was placed on the actual value of that constant. For a meaningful capacity approximation
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at smaller values of SNR, this constant needs to be optimized. More sophisticated lattice codes (as opposed
to the ones over the simple integer lattice used in this paper) could be employed for this purpose, see, e.g.,
[29]. Furthermore, all the results in this paper were derived for all channel gains outside an arbitrarily
small outage set. Analyzing the behavior of capacity for channel gains that are inside this outage set is
hence of interest. An approach similar to the one in [30] could perhaps be utilized to this end.

Finally, the analysis in this paper focused on the Gaussian X-channel as an example of a fully-
connected communication network in which interference alignment seems necessary. The hope is that
the tools developed in this paper can be used to help with the analysis of more general networks
requiring interference alignment. Ultimately, the goal should be to move from degrees-of-freedom capacity
approximations to stronger constant-gap capacity approximations.

APPENDIX A
VERIFICATION OF DECODING CONDITIONS

This appendix verifies that the rate allocation in Section V-A for the deterministic X-channel satisfies
the decoding conditions (19) and (20) in Lemma 7.

Case I (0 ≤ n12 + n21 ≤ n11): Recall

R̄P
11 , n11 − n21,

R̄P
22 , n22 − n12,

R̄C
22 , R̄C

11 , R̄12 , R̄21 , 0.

This choice of rates satisfies (19a) and (20a). Since these are the only two relevant conditions in this case,
this shows that both receivers can recover the desired messages.

Case II (n11 < n12 + n21 ≤ n22): Recall

R̄P
11 , n11 − n21,

R̄P
22 , n22 − n12,

R̄C
22 , n12 − R̄P

11,

R̄C
11 , R̄12 , R̄21 , 0.

At receiver one, (19a) and (19b) are satisfied since

R̄C
22 + R̄P

11 = n12 ≤ n11.

Condition (19c) does not need to be checked here. At receivertwo, (20a) is satisfied since

R̄C
22 + R̄P

22 = n22 + n21 − n11 ≤ n22.

Conditions (20b) and (20c) do not need to be checked here. Hence both receivers can decode successfully.
Case III (n22 < n12 + n21 ≤ n11 +

1
2
n22): Recall

R̄P
11 , n11 − n21,

R̄P
22 , n22 − n12,

R̄12 , (n12 + 2n21 − n11 − n22)
+,

R̄21 , (n21 + 2n12 − n11 − n22)
+,

R̄C
11 , n21 − R̄P

22 − R̄21,

R̄C
22 , n12 − R̄P

11 − R̄12.
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To check the decoding conditions (19) and (20), we first arguethat

max{R̄21, R̄
C
22} = R̄C

22, (64a)

max{R̄12, R̄
C
11} = R̄C

11. (64b)

The first equality trivially holds ifR̄21 = 0. Assuming then that̄R21 > 0, we have

R̄C
22 − R̄21 = n22 − n12 − R̄12.

If R̄12 = 0, then this is nonnegative. Assuming thenR̄12 > 0, we obtain

R̄C
22 − R̄21 = 2n22 + n11 − 2(n12 + n21) ≥ 0,

where we have used thatn22 ≥ n11 and thatn11 +
1
2
n22 ≥ n12 + n21. This proves (64a). Using a similar

argument, it can be shown that̄RC
11 − R̄12 ≥ 0, proving (64b). To check the decoding conditions (19) at

receiver one, observe now that
R̄C

22 + R̄12 + R̄P
11 = n12,

satisfying (19b). Moreover,

R̄C
11 + R̄C

22 + R̄12 + R̄P
11 = R̄C

11 + n12

= 2n12 + n21 − n22 − R̄21

≤ n11

satisfying (19a). Finally, ifR̄12 > 0, then

R̄12 + R̄P
11 = n12 + n21 − n22,

satisfying (19c); and ifR̄12 = 0, then (19c) is irrelevant. Using a similar argument, it can be shown that
the decoding conditions (20) at receiver two hold.

Case IV (n11 +
1
2
n22 < n12 + n21 ≤

3
2
n22): Recall

R̄P
11 , n11 − n21,

R̄P
22 , n22 − n12,

R̄21 ,
⌊

n12 −
1
2
n22

⌋

,

R̄12 , R̄C
11 ,

⌊

n21 −
1
2
n22

⌋

,

R̄C
22 , n22 − n21.

To check the decoding conditions, note first that

max{R̄21, R̄
C
22} = R̄C

22,

max{R̄12, R̄
C
11} = R̄C

11,

since
3
2
n22 ≥ n12 + n21

by assumption. For receiver one, we then have

R̄C
11 + R̄C

22 + R̄12 + R̄P
11 ≤ n11,

satisfying (19a). Moreover,

R̄C
22 + R̄12 + R̄P

11 ≤ n11 +
1
2
n22 − n21 ≤ n12,

where we have usedn11 +
1
2
n22 < n12 + n21. Hence (19b) is satisfied. Finally,

R̄12 + R̄P
11 ≤ n11 −

1
2
n22 ≤ n12 + n21 − n22,
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where we have again usedn11 +
1
2
n22 < n12 + n21. Hence (19c) is satisfied. Together, this shows that

decoding is successful at receiver one. At receiver two, we have

R̄C
22 + R̄C

11 + R̄21 + R̄P
22 ≤ n22,

satisfying (20a), and
R̄C

11 + R̄21 + R̄P
22 ≤ n21,

satisfying (20b). Finally,
R̄21 + R̄P

22 ≤
1
2
n22 ≤ n12 + n21 − n11,

where we have usedn11 +
1
2
n22 < n12 + n21. Hence (20c) is satisfied. Together, this shows that decoding

is successful at receiver two.
Case V (3

2
n22 < n12 + n21 ≤ n11 + n22): Recall

R̄P
11 , n11 − n21,

R̄P
22 , n22 − n12,

R̄12 , R̄C
11 ,

⌊

2
3
n21 −

1
3
n12

⌋

,

R̄21 , R̄C
22 ,

⌊

2
3
n12 −

1
3
n21

⌋

.

For decoding at receiver one, we need to verify the decoding conditions (19). We have

R̄C
11 + R̄C

22 + R̄12 + R̄P
11 ≤ n11,

satisfying (19a). Moreover,

R̄C
22 + R̄12 + R̄P

11 ≤ n11 + n12 −
2
3
(n21 + n12) ≤ n12,

where we have used3
2
n11 ≤

3
2
n22 < n12 + n21 This satisfies (19b). Finally

R̄12 + R̄P
11 ≤ n11 −

1
3
(n12 + n21)

= n11 + n12 + n21 −
4
3
(n12 + n21)

≤ n11 + n12 + n21 − 2n22

≤ n12 + n21 − n22,

where we have used thatn12 + n21 ≥
3
2
n22. Hence (19c) is satisfied. A similar argument shows that the

decoding conditions (20) at receiver two hold. Hence decoding is successful at both receivers.

APPENDIX B
PROOF OFLEMMA 8 IN SECTION V-B

Throughout this proof, we make use of the fact that, for the (modulated) deterministic X-channel (17),
the definition of capacity imposes that

ū
(T )
mk , (ūmk[t])

T
t=1

is only a function ofwmk.
We start with (26a). Definēs12 as the contribution of the second transmitter at the first receiver, i.e.,

s̄12 , Ḡ12

(

0

ūC
12

)

⊕ Ḡ10

(

0

ūC
22

)

.

Let s̄22 denote the contribution of the second transmitter at the second receiver, i.e.,

s̄22 , Ḡ22ū22 ⊕ Ḡ20ū12.
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Similarly, we definēs11 ands̄21 as the contributions of the first transmitter at the first and second receivers,
respectively. With this, we can rewrite the received vectorat receiverm as

ȳm = s̄m1 ⊕ s̄m2.

For block lengthT , we have

T (R̄22 − ε) ≤ I
(

w22; ȳ
(T )
2

)

≤ I
(

w22; ȳ
(T )
2 , s̄

(T )
12 , ū

(T )
11 , ū

(T )
21 , w12

)

= I
(

w22; ȳ
(T )
2 , s̄

(T )
12

∣

∣ ū
(T )
11 , ū

(T )
21 , w12

)

= I
(

w22; s̄
(T )
22 , s̄

(T )
12

∣

∣ w12

)

= I
(

w22; s̄
(T )
12

∣

∣ w12

)

+ I
(

w22; s̄
(T )
22

∣

∣ s̄
(T )
12 , w12

)

≤ H
(

s̄
(T )
12

∣

∣ w12

)

+H
(

s̄
(T )
22

∣

∣ s̄
(T )
12 , w12

)

, (65)

where the first step follows from Fano’s inequality. In addition, using again Fano’s inequality,

T (R̄11 + R̄12 − ε) ≤ I
(

w11, w12; ȳ
(T )
1

)

≤ I
(

w11, w12, w21; ȳ
(T )
1

)

= H
(

ȳ
(T )
1

)

−H
(

ȳ
(T )
1

∣

∣ w11, w12, w21

)

= H
(

ȳ
(T )
1

)

−H
(

s̄
(T )
12

∣

∣ w12

)

. (66)

Adding (65) and (66) yields

T (R̄11 + R̄12 + R̄22 − 2ε) ≤ H
(

ȳ
(T )
1

)

+H
(

s̄
(T )
22

∣

∣ s̄
(T )
12 , w12

)

.

For the first term on the right-hand side, we have

H
(

ȳ
(T )
1

)

≤ T max{n11, n12}.

For the second term, recall thatū(T )
12 is a function of onlyw12, and hence

H
(

s̄
(T )
22

∣

∣ s̄
(T )
12 , w12

)

≤ H
(

s̄
(T )
22

∣

∣ s̄
(T )
12 , ū

(T )
12

)

≤ H

(

Ḡ22ū
(T )
22

∣

∣

∣

∣

Ḡ10

(

0
(T )

(ūC
22)

(T )

))

.

SinceḠmk is lower triangular with nonzero diagonal, it is invertible, implying that

H
(

s̄
(T )
22

∣

∣ s̄
(T )
12 , w12

)

≤ H
(

ū
(T )
22

∣

∣ (ūC
22)

(T )
)

= H
(

(ūP
22)

(T )
∣

∣ (ūC
22)

(T )
)

≤ (n22 − n12)
+.

Together, this shows that

T (R̄11 + R̄12 + R̄22 − 2ε) ≤ T max{n11, n12}+H
(

(ūP
22)

(T )
∣

∣ (ūC
22)

(T )
)

(67)

≤ T (max{n11, n12}+ (n22 − n12)
+).

Therefore, asT → ∞ andε → 0, we have (26a). Similarly, we can prove (26b), (26c), and (26d).
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We now establish the upper bound (26e). Starting with Fano’sinequality,

T (R̄11 + R̄12 − ε) ≤ I
(

w11, w12; ȳ
(T )
1

)

≤ I
(

w11, w12; ȳ
(T )
1 , s̄

(T )
21 , w21

)

= I
(

w11, w12; ȳ
(T )
1 , s̄

(T )
21

∣

∣ w21

)

= I
(

w11, w12; s̄
(T )
21

∣

∣ w21

)

+ I
(

w11, w12; ȳ
(T )
1

∣

∣ s̄
(T )
21 , w21

)

≤ H
(

s̄
(T )
21

∣

∣ w21

)

+H
(

ȳ
(T )
1

∣

∣ s̄
(T )
21 , w21

)

−H
(

ȳ
(T )
1

∣

∣ s̄
(T )
21 , w21, w11, w12

)

= H
(

s̄
(T )
21

∣

∣ w21

)

+H
(

ȳ
(T )
1

∣

∣ s̄
(T )
21 , w21

)

−H
(

ȳ
(T )
1

∣

∣ s̄
(T )
21 , w21, w11, w12, ū

(T )
11 , ū

(T )
21

)

= H
(

s̄
(T )
21

∣

∣ w21

)

+H
(

ȳ
(T )
1

∣

∣ s̄
(T )
21 , w21

)

−H
(

s̄
(T )
12

∣

∣ w12

)

. (68)

Similarly, we have

T (R̄21 + R̄22 − ε) ≤ H
(

s̄
(T )
12

∣

∣ w12

)

+H
(

ȳ
(T )
2

∣

∣ s̄
(T )
12 , w12

)

−H
(

s̄
(T )
21

∣

∣ w21

)

. (69)

Adding (68) and (69), we obtain

T (R̄11 + R̄12 + R̄21 + R̄22 − 2ε) ≤ H
(

ȳ
(T )
1

∣

∣ s̄
(T )
21 , w21

)

+H
(

ȳ
(T )
2

∣

∣ s̄
(T )
12 , w12

)

≤ H
(

ȳ
(T )
1

∣

∣ s̄
(T )
21 , ū

(T )
21

)

+H
(

ȳ
(T )
2

∣

∣ s̄
(T )
12 , ū

(T )
12

)

,

where in the last line we have used thatū
(T )
mk is only a function ofwmk. For the first term, we obtain

using invertibility of the matrices̄Gmk,

H
(

ȳ
(T )
1

∣

∣ s̄
(T )
21 , ū

(T )
21

)

= H
(

ȳ
(T )
1

∣

∣ (ūC
11)

(T ), ū
(T )
21

)

= H

(

Ḡ11

(

(ūC
11)

(T )

(ūP
11)

(T )

)

⊕ Ḡ12

(

0
(T )

(ūC
12)

(T )

)

⊕ Ḡ10

(

0
(T )

(ūC
22)

(T )

) ∣

∣

∣

∣

(ūC
11)

(T )

)

≤ H

(

Ḡ11

(

0
(T )

(ūP
11)

(T )

)

⊕ Ḡ12

(

0
(T )

(ūC
12)

(T )

)

⊕ Ḡ10

(

0
(T )

(ūC
22)

(T )

))

.

Since the matrices̄Gmk are lower triangular, this last term is upper bounded by

T max{n12, n11 − n21}.

By an analogous argument,

H
(

ȳ
(T )
2

∣

∣ s̄
(T )
12 , ū

(T )
12

)

≤ T max{n21, n22 − n12}.

Together, this shows that

T (R̄11 + R̄12 + R̄21 + R̄22 − 2ε) ≤ T
(

max{n12, n11 − n21}+max{n21, n22 − n12}
)

,

proving (26e) asT → ∞ andε → 0. Similarly, we can prove (26f).
We now establish the bound (26g). By Fano’s inequality,

T (R̄21 + R̄22 − ε) ≤ I
(

w21, w22; ȳ
(T )
2

)

≤ I
(

w21, w22; ȳ
(T )
2 , (ūC

22)
(T ), w12

)

= I
(

w21, w22; ȳ
(T )
2 , (ūC

22)
(T )

∣

∣ w12

)

= I
(

w21, w22; (ū
C
22)

(T )
∣

∣ w12

)

+ I
(

w21, w22; ȳ
(T )
2

∣

∣ w12, (ū
C
22)

(T )
)

= H
(

(ūC
22)

(T )
)

+ I
(

w21, w22, s̄
(T )
21 ; ȳ

(T )
2

∣

∣ w12, (ū
C
22)

(T )
)

− I
(

s̄
(T )
21 ; ȳ

(T )
2

∣

∣ w12, w21, w22, (ū
C
22)

(T )
)

= H
(

(ūC
22)

(T )
)

+H
(

ȳ
(T )
2

∣

∣ w12, (ū
C
22)

(T )
)

−H
(

(ūC
11)

(T )
)

. (70)
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Moreover, using again Fano’s inequality,

T (R̄11 − ε) ≤ I
(

w11; ȳ
(T )
1

)

≤ I
(

w11; ȳ
(T )
1 , w12, w21, w22

)

= I
(

w11; ȳ
(T )
1

∣

∣ w12, w21, w22

)

= H
(

ȳ
(T )
1

∣

∣ w12, w21, w22

)

= H
(

ū
(T )
11

)

= H
(

(ūC
11)

(T )
)

+H
(

(ūP
11)

(T )
∣

∣ (ūC
11)

(T )
)

. (71)

Adding (70) and (71) yields

T (R̄11 + R̄21 + R̄22 − 2ε)

≤ H
(

ȳ
(T )
2

∣

∣ w12, (ū
C
22)

(T )
)

+H
(

(ūP
11)

(T )
∣

∣ (ūC
11)

(T )
)

+H
(

(ūC
22)

(T )
)

≤ T
(

max{n21, n22 − n12}+ (n11 − n21)
+
)

+H
(

(ūC
22)

(T )
)

.

Combined with (67) derived earlier, we obtain

T (2R̄11 + R̄12 + R̄21 + 2R̄22 − 4ε)

≤ T
(

max{n11, n12}+max{n21, n22 − n12}+ (n11 − n21)
+
)

+H
(

(ūC
22)

(T )
)

+H
(

(ūP
22)

(T ) | (ūC
22)

(T )
)

= T
(

max{n11, n12}+max{n21, n22 − n12}+ (n11 − n21)
+
)

+H
(

(ū22)
(T )

)

.

Since(ū22)
(T ) is a deterministic function ofw22, we have

H
(

(ū22)
(T )

)

≤ H(w22) = TR̄22. (72)

From (72), we obtain

T (2R̄11 + R̄12 + R̄21 + R̄22 − 4ε) ≤ T
(

max{n11, n12}+max{n21, n22 − n12}+ (n11 − n21)
+
)

.

Letting T → ∞ andε → 0 yields the upper bound (26g). Similarly, we can prove (26h)–(26j).

Remark:Equation (72) is a key step in the derivation of the outer bound (26g). If we had used the
standard boundH

(

(ū22)
(T )

)

≤ T max{n22, n21}, we would have obtained a looser bound than (26g).

APPENDIX C
ANALYSIS OF M ISMATCHED ENCODERS ANDDECODERS

The proof of Theorem 6 in Section VI-A assumes that the precise channel gainshmk are available at all
encoders and decoders. Here we assume instead that these channel gains are only known approximately
at any node in the network. As we will see, the only effect of this change in available channel state
information is to decrease the minimum constellation distance seen at the receivers.

Formally, assume both transmitters and receivers have onlyaccess to estimateŝhmk of hmk satisfying

|hmk − ĥmk| ≤ ε , 2−maxm,k nmk . (73)

In other words, all transmitters and receivers have access to amaxm,k nmk-bit quantization of the channel
gains. Since we know a priori thathmk ∈ (1, 2], we can assume without loss of generality thatĥmk ∈ (1, 2]
as well.

Each transmitterk forms the modulated symbolumk from the messagewmk. From these modulated
signals, the channel inputs

x1 , ĥ22u11 + ĥ12u21,

x2 , ĥ21u12 + ĥ11u22
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are formed. In other words, the transmitters treat the estimated channel gainŝhmk as if they were the
correct ones; the encoders are thus mismatched. The modulation process fromw1k to u1k is the same as
in the matched case analyzed in Section VI-A. Since|ĥmk| ≤ 2 and |umk| ≤ 1/4, the resulting channel
input xk satisfies the unit average power constraint at the transmitters.

The channel output at receiver one is

y1 = 2n11h11x1 + 2n12h12x2 + z1

=
(

h11ĥ222
n11u11 + h12ĥ212

n12u12

)

+
(

ĥ12h112
n11u21 + h12ĥ112

n12uC
22

)

+
(

h12ĥ112
n12uP

22 + z1
)

,

As in the matched case, the received signal consists of desired signals, interference signals, and signals
treated as noise. For the third term treated as noise, we have

|h12ĥ112
n12uP

22| ≤ 1, (74)

since
2n12uP

22 ∈ [0, 1/4).

The demodulator at receiver one searches for(ŝ11, ŝ12, ŝ10) minimizing

|y1 − ĥ11ĥ22ŝ11 − ĥ12ĥ21ŝ12 − ĥ12ĥ11ŝ10|.

Note that the entire demodulation process depends solely onthe estimated channel gainsĥmk and not on
the actual channel gainshmk. Furthermore, the demodulator is the maximum-likelihood detector only if
the estimated channel gains coincide with the actual channel gains. Thus, the demodulator is mismatched.

We now analyze the probability of error of this mismatched demodulator. There are two contributions
to this probability of error. One is due to noise, the other one due to mismatched detection. Set

v , ĥ11ĥ22s11 − ĥ12ĥ21s12 − ĥ12ĥ11s10,

and definêv similarly, but with respect to(ŝ11, ŝ12, ŝ12).
We need to upper bound

P(v̂ = q̂ | v = q(q̂, ℓ))

with q(q̂, ℓ) as defined in in Section VI-A. Letd′ be the minimum distance between any two noiseless
estimated received signals (as assumed by the mismatched demodulator usinĝhmk), i.e., between any two
possible values ofv. Let d̂ be the maximum distance between the noiseless received signal y1 − z1 −
h12ĥ112

n12uP
22 and the estimated receivedv signal with the same channel inputs. Then

P(v̂ = q̂ | v = q(q̂, ℓ)) ≤ P
(

z1 + |h12ĥ112
n12uP

22|+ d̂ ≥ |ℓ|d′/2
)

≤ P
(

z1 ≥ |ℓ|d′/2− d̂− 1
)

, (75)

where we have used (74).
We start by upper bounding the mismatch distanced̂. We have

d̂ , max
(umk)

∣

∣ĥ222
n11u11(h11 − ĥ11) + ĥ212

n12u12(h12 − ĥ12)

+ ĥ122
n11u21(h11 − ĥ11) + ĥ112

n12uC
22(h12 − ĥ12)

∣

∣

≤ 4 · 2 · 2n11 · 1
4
· ε

≤ 2, (76)

where we have used (73), that|umk| ≤ 1/4, and that|ĥmk| ≤ 2.



53

We continue by lower bounding the distanced′ between the estimated received signal (i.e., as assumed
by the mismatched detector) generated by the correct(s11, s12, s10) and by any other triple(s′11, s

′
12, s

′
10).

By the triangle inequality,

d′ , min
(s11,s12,s10)
6=(s′

11
,s′

12
,s′

10
)

∣

∣ĥ11ĥ22(s11 − s′11) + ĥ12ĥ21(s12 − s′12) + ĥ12ĥ11(s10 − s′10)
∣

∣

≥ min
(s11,s12,s10)
6=(s′

11
,s′

12
,s′

10
)

∣

∣h11h22(s11 − s′11) + h12h21(s12 − s′12) + h12h11(s10 − s′10)
∣

∣− 3 · 5/2

≥ d− 8, (77)

whered denotes the minimum distance (34) in the matched case as analyzed in Section VI-A. Here we
have used that

|s11 − s′11||ĥ11ĥ22 − h11h22| ≤ 2n11−1|(ĥ11 − h11)(ĥ22 − h22) + h22(ĥ11 − h11) + h11(ĥ22 − h22)|

≤ 2n11−1 · 5 · ε

≤ 5/2

by (73), and similarly for the other two terms.
Combining (76) and (77) shows that

|ℓ|d′/2− d̂− 1 ≥ |ℓ|(d− 8)/2− 3.

By (75), this implies
P
(

v̂ = q̂ | v = q(q̂, ℓ)
)

≤ P
(

z1 ≥ |ℓ|(d− 8)/2− 3
)

. (78)

APPENDIX D
PROOF OFLEMMA 10 IN SECTION VI-B

The inequalities (44a)–(44f) have been already proved in [13, Lemma 5.2, Theorem 5.3]. Here we
present the proof for inequalities (44g)–(44j). First, we establish the bound (44g).

Definesmk[t] as the contribution of transmitterk at receiverm corrupted by receiver noisezm[t], i.e.,

smk[t] , 2nmkhmkxk[t] + zm[t].

For block lengthT , we have

T (R22 − ε) ≤ I
(

w22; y
(T )
2

)

≤ I
(

w22; y
(T )
2 , s

(T )
12 , x

(T )
1 , w12

)

= I
(

w22; y
(T )
2 , s

(T )
12

∣

∣ x
(T )
1 , w12

)

= I
(

w22; s
(T )
22 , s

(T )
12

∣

∣ w12

)

= I
(

w22; s
(T )
12

∣

∣ w12

)

+ I
(

w22; s
(T )
22

∣

∣ s
(T )
12 , w12

)

= h
(

s
(T )
12

∣

∣ w12

)

− h
(

z
(T )
1

)

+ h
(

s
(T )
22

∣

∣ s
(T )
12 , w12

)

− h
(

z
(T )
2

)

, (79)

where the first step follows from Fano’s inequality. Again from Fano’s inequality, we have

T (R11 +R12 − ε) ≤ I
(

w11, w12; y
(T )
1

)

≤ I
(

w11, w12, w21; y
(T )
1

)

= h
(

y
(T )
1

)

− h
(

y
(T )
1

∣

∣ w11, w12, w21

)

= h
(

y
(T )
1

)

− h
(

s
(T )
12

∣

∣ w12

)

. (80)
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Adding (79) and (80) yields

T (R11 +R12 +R22 − 2ε) ≤ h
(

y
(T )
1

)

− h
(

z
(T )
1

)

+ h
(

s
(T )
22

∣

∣ s
(T )
12 , w12

)

− h
(

z
(T )
2

)

. (81)

Using Fano’s inequality at receiver two, we have

T (R21 +R22 − ε) ≤ I
(

w21, w22; y
(T )
2

)

≤ I
(

w21, w22; y
(T )
2 , s

(T )
12 , w12

)

= I
(

w21, w22; y
(T )
2 , s

(T )
12

∣

∣ w12

)

= I
(

w21, w22; s
(T )
12

∣

∣ w12

)

+ I
(

w21, w22; y
(T )
2

∣

∣ s
(T )
12 , w12

)

= h
(

s
(T )
12

∣

∣ w12

)

− h
(

z
(T )
1

)

+ h
(

y
(T )
2

∣

∣ s
(T )
12 , w12

)

− h
(

s
(T )
21

∣

∣ w21

)

. (82)

Moreover, Fano’s inequality at receiver one yields

T (R11 − ε) ≤ I
(

w11; y
(T )
1

)

≤ I
(

w11; y
(T )
1 , s

(T )
21 , w12, w21, w22

)

= I
(

w11; y
(T )
1 , s

(T )
21

∣

∣ w12, w21, w22

)

= I
(

w11; s
(T )
11 , s

(T )
21

∣

∣ w12, w21, w22

)

= h
(

s
(T )
11 , s

(T )
21

∣

∣ w12, w21, w22

)

− h
(

s
(T )
11 , s

(T )
21

∣

∣ w11, w12, w21, w22

)

= h
(

s
(T )
21

∣

∣ w21

)

+ h
(

s
(T )
11

∣

∣ s
(T )
21 , w21

)

− h
(

z
(T )
1 , z

(T )
2

)

. (83)

Adding (82) and (83) yields

T (R11+R21 +R22 − 2ε)

= h
(

s
(T )
12

∣

∣ w12

)

− h
(

z
(T )
1

)

+ h
(

y
(T )
2

∣

∣ s
(T )
12 , w12

)

+ h
(

s
(T )
11

∣

∣ s
(T )
21 , w21

)

− h
(

z
(T )
1 , z

(T )
2

)

. (84)

Adding (84) and (81) derived earlier, we obtain

T (2R11 +R12 +R21 + 2R22 − 4ε)

≤ h
(

y
(T )
1

)

− 2h
(

z
(T )
1

)

+ h
(

s
(T )
22

∣

∣ s
(T )
12 , w12

)

− h
(

z
(T )
2

)

+ h
(

s
(T )
12

∣

∣ w12

)

+ h
(

y
(T )
2

∣

∣ s
(T )
12 , w12

)

+ h
(

s
(T )
11

∣

∣ s
(T )
21 , w21

)

− h
(

z
(T )
1 , z

(T )
2

)

. (85)

Since

h
(

s
(T )
12

∣

∣ w12

)

+ h
(

s
(T )
22

∣

∣ s
(T )
12 , w12

)

− h
(

z
(T )
1 , z

(T )
2

)

= I
(

w22; s
(T )
22 , s

(T )
12

∣

∣ w12

)

≤ H(w22)

= TR22, (86)

we obtain from (85) that

T (2R11 +R12 +R21 +R22 − 4ε)

≤ h
(

y
(T )
1

)

− 2h
(

z
(T )
1

)

− h
(

z
(T )
2

)

+ h
(

y
(T )
2

∣

∣ s
(T )
12 , w12

)

+ h
(

s
(T )
11

∣

∣ s
(T )
21 , w21

)

≤ h
(

y
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1

)

− h
(

z
(T )
1

)

+ h
(

y
(T )
2

∣

∣ s
(T )
12

)

− h
(

z
(T )
2

)

+ h
(

s
(T )
11

∣

∣ s
(T )
21

)

− h
(

z
(T )
1

)

≤
T

2
log

(

1 + 22n11h2
11 + 22n12h2

12

)

+
T

2
log

(

1 + 22n21h2
21 +

22n22h2
22

1 + 22n12h2
12

)

+
T

2
log

(

1 +
22n11h2

11

1 + 22n21h2
21

)

,
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where the last inequality follows from the fact that i.i.d. Gaussian random variables maximize conditional
differential entropy. LettingT → ∞ and ε → 0 proves (44g). Inequalities (44h)–(44j) can be proved
similarly.

Remark:We point out that, as in the deterministic case, (86) is a key step to the derivation of the outer
bound for the Gaussian X-channel.

APPENDIX E
PROOF OFLEMMA 13 IN SECTION VII-B

By Fubini’s theorem, we have form = 1

µ4(B) =

∫ 2

h11=1

∫ 2

h12=1

∫ 2

h21=1

∫ 2

h22=1

11B(h11, h12, h21, h22)dh22dh21dh12dh11

=

∫ 2

h11=1

∫ 2

h12=1

∫ 2

h21=1

∫ 2

h22=1

11B̃(h11h12, h11h22, h12h21)dh22dh21dh12dh11

≤

∫ 2

h11=1

∫ 4

g0=1

∫ 4

g2=1

∫ 4

g1=1

11B̃(g0, g1, g2)g
−1
0 h−1

11 dg1dg2dg0dh11

≤

∫ 2

h11=1

µ3(B̃)dh11

≤ δ.

The situation is analogous form = 2.
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