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Interference Alignment. From Degrees-of-Freedom
to Constant-Gap Capacity Approximations
Urs Niesen and Mohammad A. Maddah-Ali

Abstract

Interference alignment is a key technique for communicagoenarios with multiple interfering links. In
several such scenarios, interference alignment was usetiaacterize the degrees-of-freedom of the channel.
However, these degrees-of-freedom capacity approximstoe often too weak to make accurate predictions about
the behavior of channel capacity at finite signal-to-noet@s GNRs). The aim of this paper is to significantly
strengthen these results by showing that interferenca@rakimt can be used to characterize capacity to within a
constant gap. We focus on real, time-invariant, frequdtatyX-channels. The only known solutions achieving the
degrees-of-freedom of this channel are either based onmeaference alignment or on layer-selection schemes.
Neither of these solutions seems sufficient for a constaptaapacity approximation.

In this paper, we propose a new communication scheme and tstabvit achieves the capacity of the Gaussian
X-channel to within a constant gap. To aid in this processderselop a novel deterministic channel model. This
deterministic model depends on tééog(SN R) most-significant bits of the channel coefficients rathentbaly the
single most-significant bit used in conventional deterstinimodels. The proposed deterministic model admits a
wider range of achievable schemes that can be translatdée tGaussian channel. For this deterministic model, we
find an approximately optimal communication scheme. We thamslate this scheme for the deterministic channel
to the original Gaussian X-channel and show that it achieagmcity to within a constant gap. This is the first
constant-gap result for a general, fully-connected ndtwequiring interference alignment.

I. INTRODUCTION

Interference alignment has been used to achieve optimatdegf-freedom (capacity pre-log factor)
in several common wireless network configurations such abatinels([1]-[4], interference channels [5],
[6], interfering multiple-access and broadcast chaniglsmulti-user systems with delayed feedback [8]—
[10], and distributed computation [11], among others. Tr@midea of interference alignment is to force
all interfering signals at the receivers to be aligned, @abgrmaximizing the number of interference-free
signaling dimensions.

A. Background
Alignment approaches can be divided into two broad categqsee Fig.11).
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Fig. 1. Different alignment approaches and their relation.

1) Vector-space alignment[([1],. [5] among otherdn this approach, conventional communication
dimensions, such as time, frequency, and transmit/re@itennas, are used to align interference.
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At the transmitters, precoding matrices are designed owdtipte of these dimensions such that the
interference at the receivers is aligned in a small subsphtee channel coefficients have enough
variation across the utilized time/frequency slots or an&s, then such precoding matrices can be
found.

2) Signal-scale alignment [([6],[[12] among otherslf the transmitters and receivers have only a
single antenna and the channel coefficients are time imtaaiad frequency flat, the vector-space
alignment method fails. Instead, one can make use of anotiseurce, namely the signal scale.
Using lattice codes, the transmitted and received sigmalsplit into several superimposed layers.
The transmitted signals are chosen such that all integesignals are observed within the same
layers at the receivers. Thus, alignment is now achievedgimat scale.

Signal-scale interference alignment can be further sudelivinto two different, and seemingly com-

pletely unrelated, approaches: alignment schemes metisatsignal-strength deterministic moddik2],
[13] andreal interference alignmerg].

For the signal-strength deterministic approacthe channel is first approximated by a deterministic
noise-free channel. In this deterministic model, all ch@nnputs and outputs are binary vectors, repre-
senting the binary expansion of the real valued signals enGhaussian case. The actions of the channel
are modeled by shifting these vectors up or down, dependinthe most-significant bit of the channel
gains, and by bitwise addition of interfering vectors. Thgnal layers are represented by the different
bits in the binary expansion of the signals. In the secongl, $ke signaling schemes and the outer bounds
developed for this simpler deterministic model are useduideythe design of efficient signaling schemes
for the original Gaussian problem.

This deterministic approach has proved instrumental inviohgy constant-gap capacity approximations
for several challenging multi-user communication scesasuch as single-multicast relay networks [14],
two-user interference channels with feedback [15] or wiingmit/receive cooperation [16], [17], and
lossy distributed source coding [18]. In all these commaitian scenarios, interference alignment is not
required. For communication scenarios in which interfeeealignment is required, the deterministic
approach has been less helpful. In fact, it has only beeressfidly used to obtain constant-gap capacity
approximations for the fairly restrictive many-to-onedrierence channel, in which only one of the
receivers experiences interference while all others aefarence free [12]. Even for the X-channel, one
of the simplest Gaussian networks in which interferenognatient is required, only weaker (generalized)
degrees-of-freedom capacity approximations were deriv@dg the deterministic approach [13]. The
resulting communication scheme for the Gaussian X-chaisnglite complicated and cannot be used to
derive a constant-gap capacity approximation.

For thereal interference-alignment approaobach transmitter modulates its signal using a scaledenteg
lattice such that at each receiver all interfering latticesncide, while the desired lattice is disjoint.
Each receiver recovers the desired signal using a minimistastte decoder. A humber-theoretic result
concerning the approximability of real numbers by ratishahlled Groshev’s theorem, is used to analyze
the minimum constellation distance at the receivers. Foroat all channel gains, this scheme is shown
to achieve the full degrees-of-freedom of the Gaussian afiokl and the Gaussian interference channel
[6]. While this scheme is asymptotically optimal for alm@gt channel gains, there are infinitely many
channel gains for which the scheme fails, for example whenctimnnel gains are rational. Moreover,
this approach can again not be used to derive stronger cifgsp capacity approximations.

At first glance, real interference alignment appears to ealyhe irrationally of the channel coefficients,
preventing the desired integer input signals from mixinghwhe undesired integer interference signals.
This raises the concern that the scheme might be severagtedf by the presence of measurement
errors or quantization of the channel coefficients. In addjtarbitrarily close to any irrational channel
realization is a rational channel realization. How are wentto engineer a communication device based
on this scheme? Quoting from Slepian’s 1974 Shannon Le{i@je “Most of us would treat with great
suspicion a model that predicts stable flight for an airpldreome parameter is irrational but predicts
disaster if that parameter is a nearby rational number. Hayg evould board a plane designed from such



a model.”

Some of these concerns follow from the fact that real interfee alignment is somehow isolated from
other known signaling schemes and only poorly understoodiké/the vector-space and the deterministic
approaches, no vector-space interpretation is known farinterference alignment, making it harder to
obtain intuition. On the other hand, it is known that the @egrof-freedom of the interference channel are
discontinuous at all rational channel coefficients| [20]sHbuld therefore not be surprising that the rates
achieved by real interference alignment share this chenatit. Rather, it appears that it is the degrees-
of-freedom capacity approximation that is too weak to allaecurate predictions about the behavior
of channel capacity at finit6 NRs, and that the discontinuity of the degrees-of-freedomhe) ¢channel
coefficients are mainly caused by taking a limit &8R approaches infinity. Thus, a stronger capacity
approximation is needed.

B. Summary of Results

The main contributions of this paper are as follows.

1) New Deterministic Channel ModeWe develop a novel deterministic channel model, in whictheac
channel gain is modeled by a lower-triangular, binary Toephatrix. The entries in this matrix consist
of the first%log(SNR) bits in the binary expansion of the channel gain in the cpoading Gaussian
model. This contrasts with the traditional signal-stréndg¢terministic model, which is based only on the
single most-significant nonzero bit. The proposed lower-triaagualeterministic model is rich enough to
explain the real interference-alignment approach. Thusites the so far disparate deterministic and real
interference-alignment approaches mentioned above {ged)FMoreover, as our proposed deterministic
model is based on a vector space, it enables an intuitivepretiation of real interference alignment.

2) New Mathematical ToolsThe solution for the proposed lower-triangular deterntiaisiodel can be
translated to the Gaussian setting. To analyze the regudtheme for the Gaussian setting, we develop
new tools. In particular, to prove achievability for the Gaian case, we extend Groshev’s theorem to
handle finiteSNRs as well as channel gains of different magnitudes, and weepaostrengthening of
Fano’s inequality.

3) New Notion of Capacity ApproximationMe introduce the new notion of a constant-gap capacity
approximation up to an outage set. Specifically, the aim péoide a constant-gap capacity approximation
uniform in theSNR and the channel gains as long as these channel gains aréecaitsomputable outage
set of arbitrarily small measure. This new notion of a comstmp approximation up to an outage set can
lead to a more concise capacity characterization as we aallrext.

4) Constant-Gap Result for the Gaussian X-Channge apply these ideas to the Gaussian X-channel
by deriving a constant-gap capacity approximation up tageifor this channel. This is the first constant-
gap result for a general, fully-connected network reqgirimterference alignment. To simplify the expo-
sition, we focus in this paper on the most relevant situatiorwhich the direct links of the X-channel
are stronger than the cross links—the tools and technigeeslaped here apply to the other settings as
well.

To develop this result, we first consider the lower-triamguleterministic version of the X-channel and
design a signaling scheme that achieves its capacity up tmstant gap, as long as the binary channel
matrices satisfy certain rank conditions (see TheoremsdiBaim Section 1V). We then show that the
translated version of the solution for the deterministicdeloachieves the capacity of the Gaussian X-
channel to within a constant gap up to the aforementioneaigeuset (see Theorefs 3 @and 6 in Sedtidn 1V).
In addition, we show that, similar to the MIMO broadcast amar{21], capacity is not sensitive to channel
quantization and measurement errors smaller S¢R~'/2.

One implication of these results is that the complicateditsm achieving the degrees-of-freedom of
the Gaussian X-channel in [13] is a result of oversimplif@main the signal-strength deterministic model
rather than the properties of the original Gaussian chaitsedf. Moreover, the results in this paper imply
that the discontinuity of the degrees-of-freedom of the $<8an X-channel with respect to the channel
coefficients is due to the larg&\R limit and is not present at finitSNRs.



C. Organization

The remainder of this paper is organized as follows. Segfioriroduces the new deterministic channel
model. Section Ill formalizes the Gaussian network model e problem statement. Section IV presents
the main results of the paper—Sectigns V VI contain thheesponding proofs. Sectién VII contains
the mathematical foundations for the analysis of the dempdilgorithms. Sectiof VIII concludes the
paper.

II. DETERMINISTIC CHANNEL MODELS

Developing capacity-achieving communication schemesnaiti-user communication networks is often
challenging. Indeed, even for the relatively simple twetusterference channel, finding capacity is a
long-standing open problem. For the Gaussian network, iffieutty is due to the interaction between the
various components of these networks, such as broadca$plmaccess, and additive noise. For example,
the two-user interference channel mentioned before hasbtwadcast links, two multiple-access links,
and two additive noise components.

The problem of characterizing capacity can be substaytsathplified if these noise components are
eliminated, so that the output at the receivers becomeseandi@istic function of the channel inputs at
the transmitters [14]/[22]. Such networks are called aeteistic networks. This observation motivates
the investigation of noisy networks by approximating themthvdeterministic networks [14]] [23]| [24].

This approximation has two potential advantages. Firgt,cipacity of the deterministic network may
directly approximate the capacity of the original Gaussmatwork. Second and more important, the
deterministic model may reveal the essential ingredieftanoefficient signaling scheme for the noisy
network. In other words, the capacity achieving signalictyesne for the deterministic network may be used
as a road map to design signaling schemes for the Gaussiaarketf the deterministic approximation is
well chosen, then the resulting signaling scheme for thes&an network is close to capacity achieving.

The first critical step in this approach is thus to find an appete deterministic channel approximating
the Gaussian one. This deterministic channel model shaildfg two criteria:simplicity and richness
These two requirements are conflicting. Indeed, oversfioation of the Gaussian model can sacrifice
the richness of the deterministic model. Conversely, kegpoo many of the features of the Gaussian
model can result in a deterministic model that is rich butddbcult to analyze. Striking the right balance
between these two requirements is the key to developing faludeterministic network approximation.

One of the approaches that achieves this goal is the sitremlggh deterministic model proposed
by Avestimehr et al.[[14]. We review this deterministic mbde Section[I[-A. We introduce our new
lower-triangular deterministic model in Section 11-B. $ea[[-C| compares the two deterministic models,
explaining the shortcomings of the former and the need ferlafter.

A. Signal-Strength Deterministic Model [14]
We start with the real point-to-point Gaussian channel

ylt] £ 2"halt] + 2[t], (1)

with additive white Gaussian noisgt] ~ A (0,1) and unit average power constraint at the transmitter.
Here,n is a nonnegative integer, artde [1,2). Observe that all channel gains (and heBbis) greater
than or equal to one can be expressed in the f@tmfor n andh satisfying these conditions. Since for
a constant-gap approximation the other cases are not ntJeid is essentially the general cdse.

1If the magnitude of the channel gains is less than one, thpacity is less than one bit per channel use and hence notangléor
capacity approximation up to a constant gap. Moreover,estapacity is only a function of the magnitude of the chanreéhg negative
channel gains are not relevant either.



To develop the deterministic model and for simplicity, weswase thatz[t] and z[t] are positive and
upper bounded by one. We can then writ@nd z in terms of their binary expansions as

T = Z[x]ﬂ‘i = 0.[z]s[a]a[z]s ..., (2a)
z=) [2J:27 =0[2h[z]elz]s. . .. (2b)

=1
The Gaussian point-to-point channlel (1) can then be apmated as

y= f:[y]j?_j

~ 2"+ 2

= Z[l"]j?"_j + Z([x]j+n + [2];)277

Y [2]20,
j=1

or, more succinctly,
[ylj—n = [2];, for 1 <j <mn,

see Fig[ 2(a).

The approximations in this derivation are to ignore the iotfd /. € [1,2), the noise, as well as all bits
[Z] 41, []nio, - - . With exponent less than zero. These bits with exponent kess zero are approximated
as being completely corrupted by noise, whereas the bits higther exponent are approximated as being
received noise free. Therefore, we can approximate the Seaushannel with a deterministic channel
consisting ofn parallel error-free links from the transmitter to the reeej each carrying one bit per
channel use.

Having reviewed the signal-strength model for the poirptint case, we now turn to the Gaussian
multiple-access channel

y[t] £ 2" hyzy [t] + 2" hoxo[t] + 2[t], 3)

where z[t] ~ N(0,1) is additive white Gaussian noieAs before, we impose a unit average transmit
power constraint om; [t] andxs[t]. Moreover,n is a nonnegative integer, ard, h, € [1,2). The signal-
strength deterministic model corresponding to the Ganssi@nnel[(B) is

[Y]j—n = [11]; ® [22];, fOr 1 < j <n, (4)

where® denotes addition ovef,, i.e., modulo two.

We note that in this model the contributions/gf and i, are entirely ignored, real addition is replaced
with bit-wise modulo-two addition, and noise is eliminatéd mentioned earlier, this simple model has
been used to characterize the capacity region of severdleobang problems in network information
theory to within a constant gap. However, it falls short fome& other settings. For example, for certain
relay networks with specific channel parameters, this moaerrectly predicts capacity zero. Similarly,
for interference channels with more than two users and fahXnnels, this model fails to predict the
correct behavior for the Gaussian case.

2For ease of exposition, we consider here the symmetric caseewboth links have the same approximate strefth
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(a) Signal-strength deterministic model (b) Lower-triangular deterministic model

Fig. 2. Comparison of the signal-strength deterministialeiq14], and the lower-triangular deterministic model gweed in this paper. In
the figure, solid lines depict noiseless binary links of ciyaone bit per second. Dashed lines depict noiseless bifilksther capacity one
or zero bits per channel use (depending on whether the pomdig entry in the channel matrid is one or zero). Links with the same
color/shade have the same capacity.

B. Lower-Triangular Deterministic Model

The signal-strength deterministic model recalled in tts¢ &ction ignores the contribution bfe [1,2)
in the Gaussian point-to-point channkel (1). Indekds approximated byt. In this section, we introduce
a new deterministic channel model, termeder-triangular deterministic modgin which the effect of
h is preserved. As we will see later, the new deterministic eh@dimits a wider range of solutions—a
fact that will be critical for the approximation of Gaussiaetworks with multiple interfering signals.
Consider again the Gaussian point-to-point charifel (1)tewthe channel parametére [1,2) in terms
of its binary expansion

Q

so that _
J
Wlj—n = > _ [Alj=ilz]i, for 1 < j <n.

The approximation here is to ignore the noise as well as #lihithe convolution ofl.[h];[h]» ... and
0.[z]1[z]2 . .. with exponent less than zero. These bits with exponent lems zero are approximated as
being completely corrupted by noise, whereas the bits wigindr exponent are approximated as being
received noise free.
This suggests to approximate the Gaussian point-to-phantrel [(1) by a deterministic channel between

the binary input vector

N _ _\T

€T = (;(,‘1 Ty ... .I'n)

and the binary output vector



connected through the channel operation

y = Hz, (5)
with
1 0 0O O
[h, 1 0 0
H= ; : RN
[Mln-2 [Aln-3 - 1 0
(Aot [Aln—2 -+ [h1 1

as depicted in Fid. 2(b). Here, we have normalized the redeiectory to contain the bits froni to n.
This is a deterministic channel with finite input and outpigthabets. Note that all operations [d (5) are
over Z,, i.e., modulo two. Similarly, the Gaussian multiple-accefannel[(3) can be approximated by
the deterministic channel model

g = Hiz, © HoZs. (6)

Example 1. For a concrete example, consider the Gaussian point-tat-pbannel[(ll) with channel gain
21, so thatn = 4 andh = 1.3125. The bits in the binary expansion éfare [h]y = 1, [h]; =0, [h]s =1,
[h]s =0, [h]s = 1, [h]5 = [h]¢ = --- = 0, and the corresponding lower-triangular deterministicdeids
depicted in Fig[B. For channel inp@# the channel output is

Ig:<jl Tog T1@ T3 .i’QEBi’4).

Fig. 3. Lower-triangular deterministic model for a poinHtoint channel withh = 4 andh = 1.3125.

C. Comparison of Deterministic Models

We now compare the signal-strength deterministic modeilevesd in Sectior_II-A and the lower-
triangular deterministic model introduced in Section 1I-Bs an example, we consider the Gaussian
multiple-access channgll (3) with signal strength 4. The corresponding deterministic models are given
by (4) and [(6). Assume that transmitter one wants to sene thitsa,, a,, andas to the receiver. At the
same time, transmitter two wants to send onebhit

Some signaling schemes work for both deterministic mo@lsnd [(6). For example, in both models
transmitter one can use the first three layers to send,, andas, while transmitter two can use the last
layer to sendh;, as shown in Figl]4. For the signal-strength model, the dagoscheme is trivial. For
the lower-triangular model, the receiver starts by deogdire highest layer containing onby. Having
recoveredu, the receiver cancels out its contribution in all lower lesye€l'he decoding process continues
in the same manner witt, at the second-highest layer, until all bits are decoded.

There are, however, some signaling schemes that are onbygldele in the lower-triangular model, but
not in the signal-strength model. An example of such a siggadcheme is depicted in Figl 5. In this
scheme, transmitter one uses again the first three layeenttus, a,, andas. Unlike before, transmitter
two now also uses the first layer to selyd From Fig[5(d), we can see that, in the signal-strength inode
receiver one observes b, and cannot recover; andb, from the received signal. However, this scheme
can be utilized successfully in the lower-triangular maakelong as the subspaces spanned by the message
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Fig. 4. Permissible signaling schemes for both deterniinisbdels.
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Fig. 5. lllustration of a signaling scheme that succeedsttierlower-triangular model (assuming the subspace camdiffi) holds), but

fails for the signal-strength model.

bits at the receivers are linearly independent. In this,déesubspace spanned by the first three columns
of H, and the subspace spanned by the first columnB pheed to be linearly independent. This is the
case if and only if

1 0 0 1
M) 1 0 [ho]y
bl )i 1 [kl | 7O @
[hals [Pl [Pa]i [Rols

The event[(I7) depends not only an but also on the bits in the binary expansionigfand h,. Thus,
this scheme is successful for all channel gdihs ;) € (1,2]* \ B, where B is the event that{7) does
not hold. The sefB can be understood as an outage event: if the channel gains &ethe achievable
scheme fails to deliver the desired target ratel difits per channel use.

Noting that the scheme depicted in Hig. 4(b) always workdemtie scheme depicted in F[g. 5(b) only
works under some conditions, one might question the ret@varf the second class of solutions. The
answer is that this second class of solutions make use ofdiliersity” provided by the lower-order bits
of the channel gains. It is precisely this diversity thateasgjuired for efficient communication over the
X-channel to be investigated in Sectionl IV.

As pointed out earlier, the second step in using the detéstiarapproach is to translate the solution
for the deterministic model to a solution for the originalUSaian model. We now show how this can
be done for the signaling scheme shown in Fig.|5(b). The mepscheme for the Gaussian multiple-
access channel is depicted in Hig. 6. In this scheme, the ignstellation at transmitter one is the set

det



{0,1/8,...,7/8}, and the input constellation at transmitter two is the f&&tl /2}. Since the additive
Gaussian receiver noise has unit variance, we expect tletveedo be able to recover the coded input
signals roughly when

2"\h1u1 + hiug — hlull — hgulz‘ > 2 (8)

for all uy,u) € {0,1/8,...,7/8}, ug,uly € {0,1/2} such that(ui, us) # (u},ub). In words, we require
the minimum constellation distance as seen at the receivbe tgreater than two.

T o

\
; | Y/

Fig. 6. Modulation scheme for the Gaussian model suggestedebsignaling scheme for the lower-triangular deterntimisiodel depicted
in Fig.[5(b]. At the decoder, blue dots correspond to inpptesi(u,0) with u; € {0,1/8,...,7/8}, and red dots correspond to input
tuples (u1,1/2) with u; € {0,1/8,...,7/8}. Here,n = h1 =1 andha = 1/6.

Y 2"(h1u1 + h2u2)

We note that conditiori {8) for the Gaussian channel cormdpado condition[{[7) for the deterministic
model. As in the deterministic case, this scheme fails takwdnenever the channel gains are in the Bet
not satisfying[(8), and one can bound the Lebesgue measthis autage evenB. It is worth emphasizing
that condition[(B) has nothing to do with the rationality oationality of the channel coefficients as can
be seen from Fid.]7.

1.8

1.6

ha

14

1.2

: P

1 1.2 1.4 1.6 1.8 2
h

Fig. 7. Outage seB (indicated in black) for the modulation scheme in Fify. 6 witk= 7. The setB consists of all channel gairi&1, h2)
such that[(B) fails to hold for some channel inputs. The fignekes clear that, for finite SNR, the outage seB is not determined by the
rationality or irrationality of the channel gair(&1, h2).

Remark:In the special case in which each transmitter has the sam&agesize, the modulation scheme
shown in Fig[6 is the same as the modulation scheme useshinnterference alignmerg], [20]. The
objective in [6] is to achieve only the degrees-of-freeddrthe channel, and therefore the scheme there is
designed and calibrated for the hi§hNR regime. As a result, the modulation scheme in [6] is not Seffiic
to prove a constant-gap capacity approximation. Rathexeawill see in Sectiof [V, asymmetric message
sizes and judicious layer selection guided by the proposeerttriangular deterministic model together
with a more careful and more general analysis of the receiae required to move from a degrees-of-
freedom to a constant-gap capacity approximation.
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[Il. NETWORK MODEL

In the remainder of the paper, we focus on the X-channel, lwiéc formally introduced in this
section. We start with notational conventions in SecfidpAll We introduce the Gaussian X-channel
in SectionII-B, and the corresponding lower-triangulatatministic X-channel in Sectidn IlC.

A. Notation

Throughout this paper, we use small and capital bold fonetwte vectors and matrices, i.e.and H.
For a real numbeu € R, we use(a)™ to denotemax{a,0}. For a setB C R¢, u(B) = uq(B) denotes
d-dimensional Lebesgue measure. Finally, all logarithneseaspressed to the base two and capacities are
expressed in bits per channel use.

B. Gaussian X-Channel

The Gaussian X-channel consists of two transmitters andregeivers. The channel outpyf, at
receiverm € {1,2} and timet € N is

Ym[t] £ 2" i1 [t] + 22 B o [t] + 2 t], 9)

where z[t] is the channel input at transmittér ¢ {1,2}, where2"#h,, is the channel gain from
transmitterk to receiverm, and wherez,,[t] ~ N (0,1) is additive white Gaussian receiver noise. The
channel gains consist of two par®i~+ and h,,,. We assume that,,, € Z. and thath,, € (1,2]
for eachm, k. Since2"=*h,,; varies over(2"~+ 2"=+*+1] asp, ., varies over(1,2|, we see that any real
channel gain greater than one can be written in this form. iksudsed in Sectioh_I[4A, this implies
that [9) models essentially the general Gaussian X-ch&nnel

Writing the channel gains in the forei'~+h,,, decomposes them into two parts capturing different
aspects. The parametey,, captures the magnitude or coarse structure of the chaniel lgdeed, the
SNR of the link from transmittek to receiverm is approximately22"~+. On the other hand, the parameter
h..i.. captures the fine structure of the channel gain. As we wilsses, the impact of these two parameters
on the behavior of channel capacity is quite different. Weade by

N 2 nip Ni2
Na1 Nag
the collection ofn,,;.

Each transmitter has one message to communicate to eadvereSe there are a total of four mutually
independent messages,, with m, k € {1,2}. We impose a unit average power constraint on each of the
two encoders. Denote bR, the rate of message,,, and byC(IN) the sum capacity of the Gaussian
X-channel.

An important special case of this setting is the symmetriagsan X-channel, for which,,,, = n for
all m, k so that

Ym [t] £ 2nhm1x1[t] + 2nhm2x2 [t] + Zm [t] (10)

With slight abuse of notation, we denote the sum capacithefsymmetric Gaussian X-channel 6yn).

In the following, we will be interested in a particular modtibn scheme for the Gaussian channel,
which we describe next. Fix a time slgtto simplify notation, we will drop the dependence of valesh
ont whenever there is no risk of confusion. Assume each messages modulated into the signai,,,;.
Transmitter one forms the channel input

T1 = hogtyy + higug;. (11a)

®Indeed, channel gains with magnitude less than one are levtire for a constant-gap capacity approximation, and esmcé be ignored.
Similarly, negative channel gains have no effect on theeaglile schemes and outer bounds presented later, and cafotbée ignored
as well.



11

Similarly, transmitter two forms the channel input
To = hyyugs + hot. (11b)
The received signals are then given by

Y1 = h11hoe2™ uyy + hioho1 2™ uys + hi1hio (2" ugy + 2™ 2 ugs) + 21, (12a)
Yo = haoh112" U9y + ho1h122"* ugy + haohoy (22w + 2™ uyy) + 2. (12b)

Receiver one is interested in the signals andu;>. The other two signals,; andu,, are interference.
We see from[(12a) that the interfering signals andu,, are received with the same coefficient i».
The situation is similar for receiver two.

It will be convenient in the following to refer to the effeadi channel gains including the modulation
scheme ag,,.., i.e.,

gJ10 £ hyihag, G920 £ hoohar, (13a)
g11 £ hi1hag, g21 = haihao, (13b)
g12 £ hygha, g22 £ hoyhyy. (13c)

Here g, for m,k € {1,2} corresponds to the desired signal,, and g,,, for m € {1,2} corresponds
to the interference terms. Sinég,;. € (1, 2], we haveg,,, € (1,4]. We can then rewritd_(12) as

Y1 = g112" M unr + 122" U1 + g10(2" ugy + 2" 2ugn) + 21, (14a)
Yo = 222" Ugp + 212" U1 + 920(2"P U1 + 2" ury) + 20. (14b)

C. Deterministic X-Channel

As in the discussion in Sectidn 1I}B, it is insightful to caéder the lower-triangular deterministic
equivalent of the modulated Gaussian X-chanhel (14). Tookiynthe discussion, we assume for the
derivation and analysis of the deterministic channel mala the channel gaing,,,. defined in[(1B) are
in (1, 2] instead of(1, 4}—the Gaussian setting will be analyzed for the general case.

Let us first consider the symmetric X-chanriell(10), irg,;,, = n for all m andk. Let

1 0 S 0 0
(gt 1 ... 0 0
G = : : ET (15)
[Gmkln—2  [Gmkln-3 - r 0
[Gmiln—1 [Gmik)n—2 -+ [gmil1 1

be the deterministic channel matrix corresponding to timardyi expansion of the channel gajp, with
m € {1,2} andk € {0,1,2}. Sinceg,,r € (1,2] by assumption so thdy,.;Jo = 1, the diagonal entries
of G, are equal to one.

The lower-triangular deterministic equivalent of the miaded Gaussian X-channél (14) is then given

by
Y1 £ Gty © Gratig @ é1o(ﬁ21 ® Ua2), (16a)
U = Gaatigy O Goylg; @ Goo (12 ® 1), (16Db)

where the channel inElﬂm,C and the channel output,, are all binary vectors of length, and where all
operations are ovef.,

“This definition of the deterministic model corresponds ta®gr constraint ofl6 in the Gaussian model. This is mainly for convenience
of notation. Since the additional fact@6 in power only increases capacity by a constant number ofggtschannel use, this does not
significantly affect the quality of approximation.
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Let us then consider the general X-chanhél (9). To simphfy presentation, we focus in the following
on the case where the direct links are stronger than the & , l.e.,

min{nu, n22} Z max{nlg, ngl}.

It will be convenient to split the channel input into “comnicand “private” portions, i.e.,

~C
_ A u k
Umk = <7F7>1 ) )
Uk

whereuS,, € Zy* anduS, € Zy* for m € {1,2}. The lower-triangular deterministic equivalent of the
modulated Gaussian X-channgl(14) is then

_ = _ - 0 = _ 0

71 = Gty © Gy (c) ® G <u21 S (c )) ; (17a)
U7y Ugs

A = ~ 0 ~ _ 0

Y2 = Gt © Gy (c) @ Gy (uu S (c )) ; (17b)
Ugy Uy

where all operations are again ovV&s, see Figs[18 anfl 9. Here, the lower-triangular binary medric
G, are defined in analogy t@_(1L5). The matiik,, is of dimensionn;; x ny; and Gy, is of dimension
ngs X ngo for all k € {0, 1,2}. Comparing the general deterministic modell (17) to the sgimmone [(16),
we see that the difference in the valuesmgf;, results in the inputss,,, observed over the cross links
to be shifted down. As a consequence, the private portiotkeothannel inputs are visible at only the
intended receiver, whereas the common portions are visibb®oth receivers.

nip — Ni2
_c
n21 U7y Uz
_c _c
U7io Uzo ni2
_p _p
nil1 — n21 Ul U271

Fig. 8. Deterministic model at receiver one. The figure shtivessignalg: observed at receiver one decomposed into its four compsnent
(see [(I7k)). For simplicity, the matric€s,., are omitted. The interference termis; anda22 are observed at receiver one multiplied by
the same matrixG1o. The desired term&.; and w2 are multiplied by different matrice&11 and G2, respectively.

22 — N21
_c _c
U7y U3y n12
_C _
n21 Uy Uz
ﬁ'fg 17,52 n22 — N12

Fig. 9. Deterministic model at receiver two (sée_{17b)). TiatricesG,,.,. are again omitted. The interference terms, andui2 are
observed at receiver one multiplied by the same maf¥is. The desired term&2; andu22 are multiplied by different matrice6/2: and
G2, respectively.

This assumption is made for ease of exposition. Since thaitaof the receivers is arbitrary, all results carry imnagely over to the
casemin{niz,n21} > max{ni1,n22}. The models and tools developed in this paper for these twescaan be applied to the other cases
as well.
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As before, there are four independent messagggs. Each transmittek consists of twh encoders
mapping one of the two messages,, to a sequence of channel inputs,,. Denote byR,,;, the rate of
messagev,,, and by C(IN) the sum capacity of the (modulated) deterministic X-ch&uf@é). For the
special case of the symmetric deterministic X-chaniel, (& sum capacity is denoted ay(n).

IV. MAIN RESULTS

The main result of this paper is a constant-gap approximdo the capacity of the Gaussian X-
channel. To simplify the presentation of the relevant cptea@nd results, we start with the analysis of
the Gaussian X-channel with symmet8NRs in Sectior IV-A. We then consider the Gaussian X-channel
with arbitrary SNRs in Sectior 1V-B.

A. X-Channel with SymmetrNRs

We start with the analysis of the deterministic X-channes-ae will see in the following, the insights
obtained for this model carry over to the Gaussian X-chanfike capacityC'(n) of the symmetric
deterministic X-channel is characterized by the next teeor

Theorem 1. For everyd € (0,1] andn € Z,, there exists a seB,, C (1,2]**? of Lebesgue measure
w(Br) <0

such that for all channel gaing,...) € (1,2]?*%\ B, the sum capacity’'(n) of the (modulated) symmetric
deterministic X-channg[l8) satisfies

an —2log(c1/8) < C(n) < 3n
for some positive universal constamnt

Theoren{l is a special case of Theorlgm 5 presented in S€&kBh\We hence omit its proof.

TheorenT L approximates the capacity of the modulated détestioc X-channel [(16) up to a constant
gap for all channel gaing,.. € (1, 2] outside the seB,, of arbitrarily small measure. The evept,.) € B,
can be interpreted as an outage event, as in this case thespmpchievable scheme fails to deliver the
target rate ofgn — 2log(c1/9). Here§ parametrizes the trade-off between the measure of the @stty
B,, and the target rate: decreasifglecreases the measure of the outage elenbut at the same time
also decreases the target rgte — 2log(c,/5). We point out thaty can be chosen independently of the
number of input bits:, hence the approximation gap is uniformsin

Theoren(lL can be used to derive the more familiar result ordéigeees-of-freedortim,, ., C(n)/n
of the deterministic X-channel. Setting= n~2 results in the measureg B,,)) < n~2 to be summable
overn € Z. . Applying the Borel-Cantelli lemma yields then the followi corollary to Theorernl 1.

Corollary 2. For almost all channel gaingg,..) € (1,2]**3 the (modulated) symmetric deterministic
X-channel(d16) has4/3 degrees-of-freedom, i.e.,

im0
n—oo N

We emphasize that, while Corollary 2 is simpler to state agrthgps more familiar in form, Theordm 1
is considerably stronger. Indeed, Theoreim 1 provides tlmgerconstant gapcapacity approximation

= 4/3.

®Observe that in the definition of capacify(n) of the modulated deterministic X-channE[(17) we use twoodacs at each transmitter
(one for each of the two messages). This differs from the itiefinof capacityC(n) of the Gaussian X-channél {10), where we use a single
encoder. Thus, in the deterministic case, we force the rgessa be encoded separately, while we allow joint encodfrtgeotwo messages
in the Gaussian case. This restriction is introduced becthesaim of the deterministic model is to better understhedrodulated Gaussian
X-channel [[IP), which already handles the joint encodinghef messages through the modulation process.
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for the sum capacityC'(n), whereas Corollary]2 provides the wealdagrees-of-freedormapacity ap-
proximation. Moreover, Theorefd 1 provides boundsffoite n on the measure of the outage evéi,
whereas Corollary]2 provides onsymptoticinformation about its size.

We now describe the communication scheme achieving therlbaend in Theorernl1 (see Flg.]110). Use
the first R components of each vectar,,;, to transmit information, and set the last- R components to
zero. The sum rate of this communication scheme is héfcdReceiver one is interested i, and ..
These vectors are received in the subspace spanned by the idumns ofG,; and G,., respectively.
On the other hand, the messadges andu., that receiver one is not interested in, and that can hence be
regarded as interference, are both received in the sampaubhspanned by the fir& columns ofG.
Thus, the two interference vectors are aligned in a subspadémensionR. The situation at receiver
two is similar.

G Uy Gio Ui Gy U U

Fig. 10. Allocation of bits for the deterministic X-channegith symmetricSNRs as seen at receiver one. The white regions correspond to
zero bits; the shaded regions carry information. Obseraettie interference signais,; andus. are aligned.

Assume that the three subspaces spanned by theRficgilumns of G411, G2, and Gy, are linearly
independent. Then receiver one can recover the two desaetdrg by projecting the received vector into
the corresponding subspaces in order to zero force the tteoféening vectors. We show that for most
channel gains this linear independence of the three subsgaads forRk ~ n/3. The outage evenB,
in Theoren( 1L is thus precisely the event that at either of Wee receivers the three subspaces spanned
by the firstR columns ofG,,:, G2, andG,,,, are not linearly independent.

We now turn to the Gaussian X-channel. The results for therdghistic X-channel suggest that the
modulation schemé_(11) should achieve a sum rate of

3R~ 3n+0(1)

over the Gaussian channel as— oco. Furthermore, it suggests thatnabit quantization of the channel
gainsh,,, available at both transmitters and receivers should becgrifito achieve this asymptotic rate.
This intuition turns out to be correct, as the next theoreomwsh

Theorem 3. For everyd € (0,1] andn € Z,, there exists a seB,, C (1,2]**? of Lebesgue measure at
most
u(Br) <6

such that for all channel gaingh,..) € (1,2]**? \ B, the sum capacity of the symmetric Gaussian
X-channel(10) satisfies
an — 2log(c2/d) < C(n) < 3n+4

for some positive universal constant Moreover, the lower bound is achievable witl#it quantization
of the channel gaing,,, available at both transmitters and receivers.

Theoren( B is a special case of Theorledm 6 presented in S&8kBh \IVe hence omit its proof.

Theoreni B provides a constant-gap capacity approximatiothé symmetric Gaussian X-chanriell(10).
The constant in the approximation is uniform in the chanrehgh,,. € (1,2] outside the sei3, of
arbitrarily small measure, and uniform in The events,,.) € B, can again be interpreted as an outage
event, and) parametrizes the trade-off between the measure of the ®staty3,, and the target rate of
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the achievable scheme. Singecan be chosen independently af the approximation gap is uniform in
the SNR, i.e., uniform in22",

Remark:It is worth pointing out that the outage sBt, can be explicitly computed: given channel gains
h.i, there is an algorithm that can determine in bounded timbeéé¢ channel gains are in the outage
set B,,. More precisely,3, is the union 029 “strips” similar to Fig.[7 in Sectiof II-=C. Membership of
(hmi) in the outage seB,, is mostly determined by the most-significant bits in the binary expansion of
the channel gaing,,;. In particular, for any finitex (and hence finit&eNR), the question of rationality
or irrationality of the channel gaink,,; is largely irrelevant to determining membership/#).

The theorem shows furthermore that the proposed achiewahleme for the Gaussian X-channel is
not dependent on the exact knowledge of the channel gaimsaaguantized version, available at all
transmitters and receivers, is sufficient. In fact, the seh@chieving the lower bound uses mismatched
encoders and decoders. The encoders perform modulatibnregpect to thevrong channel model

whereh,,;, is an-bit (or, equivalently,% log(SNR)-bit) quantization of the true channel gdip,. In other
words, the channel inputs are

7 t] = ]Al22u11[t] + }Al12u21[t]>
Ta[t] = hiyuga(t] + houialt].

The decoders perform maximume-likelihood decoding alsd wétspect to the wrong channel modell(18).
Thus, both the encoders and the decoders treat the chanimebtes as if they were the true channel
gains. This shows that the proposed achievable schemeuallgictjuite robust with respect to channel
estimation and quantization errors.

As before, we can use Theordm 3 to derive more familiar resuit the degrees-of-freedom of the
Gaussian X-channel. Consider a sequencéNRs 22" indexed byn € Z,, and setd = n=2. Then the
measures:(B,) < n~? are summable over € Z,. Applying the Borel-Cantelli lemma as before yields
the following corollary to Theorernl 3.

Corollary 4. For almost all channel gaingh,,.;) € (1,2]?*? the symmetric Gaussian X-chanr{&D0) has

4/3 degrees-of-freedom, i.e.,
_ C(n)
lim —= =4/3.
n—oo n
Since theSNR of the channel is approximately” so thatn ~ ; log(SNR), the quantitflim,, ., C(n)/n
in Corollary[4 is indeed the degrees-of-freedom limit. Glany [4! recovers the result in[6]. We emphasize
again that Theorefd 3 is considerably stronger than Coydlandeed, Theorem 3 proves tbenstant-gap
capacity approximation
[C(n) = 3nl < O(1)

with pre-constant in th&)(1) term uniform in the channel gains,, outsideB,. This is considerably
stronger than theegrees-of-freedormapacity approximation in Corollafy 4, which shows onlyttha

[C(n) — 3n| < o(n)

with pre-constant in the(n) term depending ork,,.. Moreover, Theorem]3 provides bounds on the
measure of the outage event fiarite SNRs, not justasymptoticguarantees as in Corollay 4.
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B. X-Channel with ArbitrarySNRs

In the last section, we considered the Gaussian X-chanrtel SWRs across each link of ordex*”.
Thus, all links had approximately the same strength. We nowtb the Gaussian X-channel with arbitrary
SNRs. As before, we start with the analysis of the determiniXtichannel. The next theorem provides

an approximate characterization of the sum capaCityN) of the general deterministic X-channel with
bit levels IV.

Theorem 5. For everyd € (0,1] and N € Z2** with min{ny;, n} > max{nis, ny, } there exists a set
B C (1,2]**® of Lebesgue measure

u(B) <0

such that for all channel gaingy,,..) € (1,2]**3\ B the sum capacity’(IN) of the (modulated) general
deterministic X-channg[l7) satisfies

D(N) —2log(c;/8) < C(IN) < D(N)
for some positive universal constant and where

D(N) é min {Dl(N), DQ(N), Dg(N), D4(N)} —|— (n11 — ngl) —|— (7’L22 — nlg)

and
Di(N) = (n12 + 11 — n11) " + (na2 + nop — naa) ™,
Dy(N) = %(nlg + n91 + (12 + noy — n22)+)7
D3(N) = %(nm + ng1 + (n12 + noy — n11)+),
Dy(N) £ %(nm + naq).

The proof of Theorer]5 is presented in Secfidn V. For the speeise of symmetric chann8NRs,
nmr = n for all m, k, Theoren b reduces to Theorérn 1 in Secfion IV-A.

We now provide a sketch of the communication scheme achyethie lower bound in Theorefd 5 (see
Figs.[I1 and12). Observe from Fig$. 8 and 9 in Sedfionllll-& then,, — ny; least-significant bita’,

w11 w12 U21 U22

Fig. 11. Allocation of bits as seen at receiver one. Herg, andu» are the desired bits and are received multiplied by the e,

and G412 (not shown in the figure), respectively. The vectars and @22 are interference and are both received multiplied by theesam
matrix G'io.

of w;; are not visible at the second receiver. Therefore, we carthese bits to privately carng;; — no;
bits from the first transmitter to the first receiver withotfieating the second receiver. The rate of this
private message is denoted BY,. The remaining rate is denoted ¥, i.e.,

Rii £ Ry, + R,
where

“p A
Rll = N1 —N21.
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w11 w12 u21 U22

Fig. 12. Allocation of bits as seen at receiver two. Herg, andu»2 are the desired bits and are received multiplied by the oesG
and G2z (not shown in the figure), respectively. The vectars, and w2 are interference and are both received multiplied by theesam
matrix G'zo.

Similarly, theny, — ny, least-significant bitaib, of w., are not visible at the first receiver. Therefore,
we can use this part to privately carmg, — n15 bits from the second transmitter to the second receiver
without affecting the first receiver. The rate of this prvaessage is denoted I&f,. The remaining rate
is denoted byRS,, i.e.,

5 A pBC P
Ras = R22 + R22>
where
5P A

It remains to choose the values Bf,, RS,, R, and Ry;. Our proposed design rules are as follows.

« We dedicate theék$, most-significant bits ofi; to carry information from transmitter one to receiver
one.

« Similarly, we dedicate théS, most-significant bits ofiy, to carry information from transmitter two
to receiver two.

« We always set thew,, — ny; most-significant bits ofii;, to zero. The nextR;, bits of @, carry
information from transmitter two to receiver one. As shownFig.[12, this guarantees the (partial)
alignment ofu,, with u;; at the second receiver.

« We always set they;; — ni» most-significant bits ofii,; to zero. The nextR,; bits of @, carry
information from transmitter one to receiver two. As shownFig.[11, this guarantees the (partial)
alignment ofu,; with uq, at the first receiver.

Optimizing the values of the rateR,,;, subject to the condition that both receivers can decode the
desired messages yields the lower bound in Thedrem 5. Thaelsdef this analysis can be found in
Section \V-A.

Generalizing these ideas from the deterministic to the &ansnodel, we obtain the following constant-
gap capacity approximation for the Gaussian X-channel g#heral asymmetric channel gains.

Theorem 6. For everyé € (0,1] and N € Z?ﬁ? with min{nj;,no} > max{nqs,no} there exists a set
B C (1,2]**? of Lebesgue measure
u(B) <6

such that for all channel gainéh,.;) € (1,2]**%\ B the sum capacity’(IN) of the general Gaussian
X-channel(9) satisfies
D(N) —2log(cy/0) < C(N) < D(N)+4

for some positive universal constant and whereD(IN) is as defined in Theorem 5. Moreover, the lower
bound onC(IN) is achievable with anax{n,, }-bit quantization of the channel gairis,; available at
both transmitters and receivers.
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The proof of Theorem]6 is presented in Secfioh VI. For the ispease of symmetric chann8NRs,

Nk = n for all m, k, Theoren 6 reduces to Theoréin 3 in Section IV-A. Comparingoféms 6 andl 5, we
see that, up to a constant gap, the Gaussian X-channel dod@striangular deterministic approximation
have the same capacity. Thus, the lower-triangular detgstic model captures the relevant features of
the Gaussian X-channel.

The lower bound in Theorerl 6 is achieved by encoders and dexdHat have access to only a
max{n,,; }-bit quantizationh,,, of the channel gaing.,,,. As before, theAencoders and decoders are
mismatched, in the sense that they are operating under susnasion thath,,, is the correct channel
gain. This shows again that the proposed communicatiomsehg quite robust with respect to channel
estimation and quantization errors.

V. PROOF OFTHEOREM[ (DETERMINISTIC X-CHANNEL)

This section contains the proof of the capacity approxiomatior the deterministic X-channel in
Theoren{b. Achievability of the lower bound in the theorenpiieved in Sectiofi V-A; the upper bound
is proved in Sectioh V-B.

A. Achievability for the Deterministic X-Channel

This section contains the proof of the lower bound in ThedBeW/ithout loss of generality, we assume
that no, > nq;. We use the achievable scheme outlined in SedfionlIV-B (sge [E1 and 12 there). We
want to maximize the sum rate

Ri:l _|_ R?l + Rgé _|_ RSZ _|_ Rlz + RZl)
where B B B
Ry, + Ry, = R
is the total rate from transmittér to receiverk. The constraint is that each receiver can solve for its own
desired messages plus the visible parts of the alignedentgice bits.
If the subspaces spanned by the columné&gf, corresponding to information-bearing bits @f,,. are
linearly independent, then there exists a unique chanmpeitito the deterministic X-channel that results
in the observed channel output. The decoder declares tisatitique channel input was sent. The next

lemma provides a sufficient condition for this linear indegence to hold and hence for decoding to be
successful.

Lemma 7. Let§ € (0,1] and N € Z3** such thatmin{n;;, nss} > max{ni2, ns;}. Assumer? R,
Ris, Ro1, RY,, RS, € 7., satisfy

RS, 4+ max{ Ry, RS,} + Ryy + RY, < nyy —log(32/9), (19a)
max{ Ry, RS} + Ria + RY, < nyy —log(32/6), (19b)
Ris + R} < nyp + nop — ngg, (19¢)
and
RS, + max{Rys, RS} + Ry + R, < ngy — log(32/0), (20a)
max{ Rz, RS} + Ry + RS, < ngy — log(32/6), (20b)
Ryt + R, < myap + ngy — nay. (20c)

Then the bit allocation in Sectidon TV-B for the (modulated)atministic X-channg[l7) allows successful
decoding at both receivers for all channel gaifg,.) € (1,2]**® except for a setB C (1,2]**3 of
Lebesgue measure

u(B) < 6.
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If max{Rs, RS,} = 0, then(I9B) can be removed (i.e., does not need to be verified); arfif= 0
(19d) can be removed. Similarly, ifiax{ R, k%, } = 0, (208) can be removed; and ik,; = 0, (20d) can
be removed.

The proof of Lemmal7 is reported in Section VII-A.

We now choose rates satisfying these decoding conditiomse&se of notation, we will ignore the
log(32/§) terms throughout—the reduction in sum rate due to this smfdit requirement is at most
21og(32/6). The optimal allocation of bits at the transmitters depeodghe valuen;, + ny;. We treat
the cases

I: nip+ng € [0 7111}
12 ng +no1 € (7111,7122}
Il: N2 + N9y € (ngg,nn —+ ngg]
V: N2 + N9y € (nn + n22, 2n22}
Vi nig+ng € ( Ng2, N1y + 7122}
separately. Since, s + 1y < nyp + nge by the assumptiomax{nis, no1} < min{ni;,na}, this covers
all possible values ofV.

Case | O < Nyg +ng < nll): We set

R'fl = ni1 — Nai,
A

»P
R22 Moo — Ny2,

In words, we solely communicate using the private channpltmu?, and u5,. Recall that, by our
assumptions throughout this sectionax{ns, ns1} < ny; < nyy. Hence,R?, > 0 and RY, > 0, so that
this rate allocation is valid. The calculation in Appenfikvarifies that this rate allocation satisfies the
decoding conditiond (19) an@ (20) in Lemia 7. Hence bothivere can recover the desired messages.
The sum rate can be verified to be

(n11 — na1) + (no2 — na2) = Di(IN) + (n11 — na1) + (o2 — naz)

1
> D(N) (1)
Case Il (11 < ni2 + ng1 < ng): We set
Rlpl £ N1 — Noa,
RQ} £ N2 — N2,
RS, £ niy — RY),

R(l:l = R12 = R21 = 07

as shown in Figl_13. Sincey, + ny > ny11, we haveRS, > 0, and hence this rate allocation is valid.
The calculation in AppendikJA verifies that this rate allooatsatisfies the decoding conditiors1(19)
and [20) in Lemm&l7. Hence both receivers can decode suattgs¥he sum rate can be verified to be

(P12 + no1 — na1) + (a1 — n21) + (no2 — na2) = Di(IN) + (na1 — na1) + (nog — nao)
> D(N). (22)
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Receiver One Receiver Two

w11 w12 U2 U22 w11 w12 U2 U22

Fig. 13. Allocation of bits in case Il. Hergi1 = 10, n22 = 13, n12 = 8, n21 = 4. The transmitters send private messages at fafes= 6
and R5, = 5. Transmitter two sends a common message to receiver twdeafzfa = 2.

Case Il (122 < n12 4 noy < nyy + 3n92): We set

Ri £ ni1 — Naa,

RE; £ N2z — N2,

R12 = (n12 + 2191 — N1 — n22)+,
Ro1 £ (na1 + 2n12 — 1 — nag) ™,
R% £ no1 — RQPQ - R217

RSQ £ nig — R!fl - R12>

a._S depiCted i_n Flgz.4 USinglz “+ No1 > Nog and N9y > N1 > max{nlg,ngl}, it can be verified that
R$, > 0 and RS, > 0, and hence this rate allocation is valid.

Receiver One Receiver Two

w11 w12 u21 U22 w11 w12 w21 U22

Fig. 14. Allocation of bits in case lll. Here,1 = 11, n2s = 13, n12 = 8, n21 = 9. The transmitters send private messages at fafgs= 2

and R5, = 5. Transmitter one sends a common message to receiver oneeakTa= 3. Transmitter two sends a common message to

receiver two at rateRS, = 4. The rates over the cross links aR> = 2 and Ro; = 1. Observe that the interference terms are partially

aligned at each receiver.

The calculation in AppendikJA verifies the decoding condi§d19) and[{(20) in Lemmia 7. The sum
rate can be verified to be

N2 + no1 = Di(IN) + (n11 — na1) + (n22 — na2)
> D(N). (23)

Case IV @11 + %77/22 < Nyg +ng < %ngg): We set

5P A
R11 = N1 — Nai,

RS} = Nag — Ni2,

Ry £ Ln12 - %nzﬂ,

Rm = Rlcl = an - %nmJ,
RSQ £ Ngz — Nai,
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as shown in Figld5. Using that;; + nss < nia + nay, it can be verified thai?y, Ry, and RS, are
nonnegative, so that this rate allocation is valid.

Receiver One Receiver Two

w11 w12 U2 U22 w11 w12 U2 U22

Fig. 15. Allocation of bits in case IV. Here,; = 18, no2 = 26, n12 = na1 = 16. The transmitters send private messages at rafgs= 2

and R5, = 10. Transmitter one sends a common message to receiver one &%a= 3, and transmitter two sends a common message to
receiver two at rateRS, = 10. The rates over the cross links alas = 3 and Rs; = 3. In case IV, the interference terms are completely
aligned at receiver two, but only partially aligned at reeeione.

The calculation in AppendikJA verifies the decoding condiid19) and[{(20) in Lemmi@ 7. The sum
rate can be verified to be at least

(n12 + 7121—%7122) + (n11 — na1) + (na2 — n12) — 3
= DQ(N) + (nn — n21) + (n22 — nlg) -3
> D(N) -3, (24)

where the loss of three bits is due to the floor operation indifinition of Ry, Rio, RS,.
Case V €n22 < nig + ngr < nyp + ngg): We set

=P A
Ru = N1 — Nai,

>

P

Ry = ngg — naa,

p_A pC A4 |2 1

Rip = Ry = 501 — 372,
3 3

D A pC A |2 1

Ryt = R3, £ | 201 — dna |

as shown in Figl_16. Fromny, < nis + nay, it follows that Ri», RS, Ry, and RS, are nonnegative, so
that this rate allocation is valid.

Receiver One Receiver Two

w11 U2 U2 U22 w11 w12 U2 U22

Fig. 16. Allocation of bits in case V. Hergi1 = 12, n22 = 13,n12 = 12,n21 = 9. The private messages to receiver one and two have
ratesR}, = 3 and R5, = 1. The remaining messages to receiver one have Rate= RS, = 2, and are both entirely aligned at receiver
two. The remaining messages to receiver two have Rate= RS, = 5, and are both entirely aligned at receiver one.

The calculation in AppendikJA verifies the decoding condisd19) and[(20) in Lemm@ 7. The sum
rate is at least
%(nm +n21) + (n11—n21) + (22 — N12) — 4
4(IN) + (n11 — ng1) + (ng2 — n1a) — 4
(IN) — 4, (25)

D
D

v



22

where the loss of four bits is due to floor operation in the diédim of 2,5, RS, Ry, RS,.
Combining [(21)-(25), and accounting for the loss2dbg(32/5) in LemmalT shows that, assuming
Ngg = N1,

C(N) > D(N) — 4 — 21og(32/9)

D
D(N) = 2log(c1/9)

with
c1 =128,
If n11 > na9, we can simply relabel the two transmitters and receiverg,the same argument holds. This

relabeling of receivers introduces the functidén(INV) instead ofD,(IN) in the lower bound. Together,
this concludes the proof of the lower bound in Theofém 5. [ |

B. Upper Bound for the Deterministic X-Channel
The section contains the proof of the upper bound in ThebleWesstart with a lemma upper bounding
various linear combinations of achievable rates for themehistic X-channel.

Lemma 8. Any achievable rate tupl@?,;, Ri2, Ro1, Ry0) for the (modulated) deterministic X-chani{&l)
satisfies the following inequalities

Ri1 4 Ris + Ry < max{niy, ni2} + (ng2 — nya) ™, (26a)
Ry + Ry + Ryy < max{ng, ngo} + (n1y — not) ™, (26b)
Ri1 4 Ris + Ry < max{nyy, ni2} + (no1 —nn)™*, (26¢)
Ris + Ry + Ryy < max{ng;, ng} + (n1a — naz) ™, (26d)
Ri1 4 Ris + Roy + Ry < max{niz,n11 — no1} + max{nay, nay — nia}, (26e)
Ri1 + Ris 4 Rot + Ros < max{nii, niz — nas} + max{nas, nos — nu1 }, (26f)

2R11 + Riz + Ro1 + Ry < max{nyy, n12} + max{nor, nay — nia} + (n1y — nap) ¥, (269)
Ry + 2R3 + Ryt + Ryy < max{nyi, nia} + max{nay, no1 — n11} + (n1a — ngo) ™, (26h)
Ri1 4 Rz + 2Ry1 + Ryy < max{ng, no1 } + max{ni, niz — noo} + (noy — na1) ¥, (26i)
Ry + Ris + Ry + 2Ry < max{ngy, ny1 } + max{na, niy1 — na1} + (noy — n1a) ™, (26j)

The proof of Lemmal8 is reported in Appendix B. Inequalitiééd)—{26f) are based on an argument
from [13, Theorem 4.4]. Inequalitief (26d)—(26j) are novel

The upper bounds in Lemnia 8 can be understood intuitively asipte-access bounds for a channel
where the receivers are forced to decode certain parts aftérderence (see Figs| 8 9 in Secfion IV-B).
For example, inequality (26a) corresponds to the multigmeess bound

Ri1 + Ris + RS, < max{ni1,ni2} (27)
at receiver one, combined with the inequality
Ry, < (nas — na2) ™.
Similarly, inequality [26k) corresponds to the multipteess bound
Ry, + Rip + RS, < max{niz, niy — nar }
at receiver one, combined with the multiple-access bound

RY, + Ry + RS, < max{ngi, ngs — nya} (28)
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at receiver two. Finally, inequality (26g) correspondstie tnultiple-access bounds {27) and
Ri < (nyg —mno1) "

at receiver one, combined with the multiple-access bolu®) é2 receiver two. The proof of Lemna 8
makes this intuitive reasoning precise. A detailed disomsef this type of cut-set interpretation can be
found in [23].
We proceed with the proof of the upper bound in Theokém 5 ferdaterministic X-channel. Under
the assumption
min{nyi, nea} > max{nys, no }, (29)

the first four inequalitied (26aj—(26d) in Lemiinia 8 yield tloddwing upper bound on sum capacity
C(N) < 2(n2 + na1) + (11 — na1) + (ne2 — n12)
= Dy(N) + (n11 — n21) + (n22 — n12). (30)
Again using [(2D), inequality (26e) in Lemma 8 shows that
C(N) < max{nyy,ni; — no1 } + max{ng, ngs — nis}

= (n12 + n21 — n11) T + (N2 + na1 — na2) ™ + (N1 — na1) + (na2 — na2)
= D1(N) + (n11 — na1) + (na2 — nia). (31)

Inequalities [(26d) and (26g) in Lemrha 8 combined with (2®Idi
C(N) < 3(n11 + ngo + max{ng1, nas — ni2} + (n11 — na1))
= %(nm + o1 + (n12 +ng1 — n22)+) + (n11 — na1) + (22 — ny2)
= Dy(N) + (n11 — na1) + (N2 — ny2). (32)
Similarly, from (26¢) and[(2§j) in Lemmd 8,
C(N) < 5 (ma2 + no1 + (n12 + 11 — n11) ™) + (n11 — no1) + (n22 — 112)
= D3(N) + (n11 — na1) + (noe — ni2). (33)
The sum capacity is hence at most the minimum of the upperds(B0)-{(3B), i.e.,
C(N) <min{D;(N),Dy(N), D3(N), Ds(N)} + (n11 — na1) + (no2 — n1a)
~ D(N),

concluding the proof. [ |

VI. PROOF OFTHEOREMI[B (GAUSSIAN X-CHANNEL)

This section contains the proof of the capacity approxiamefor the Gaussian X-channel in Theorem 6.
Achievability of the lower bound in the theorem is proved iecon[VI-A; the upper bound is proved
in Section VI-B.
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A. Achievability for the Gaussian X-Channel

Here, we prove the lower bound in Theorem 6 by translatingtigevable scheme for the deterministic
model to the Gaussian model. For ease of exposition, we @&sumost of the analysis that all channels
gainsh,,; are exactly known at the two transmitters and receivers.chia@ges in the arguments necessary
for the mismatched case, in which the transmitters andvecehave access only to a quantized version
h.i. of the channel gai,,,;, are reported in Appendix]C.

Recall that each transmittér has access to two messages; and wy,. The transmitter forms the
modulated symbol.,,,;, from the message,,,.. From these modulated signals, the channel inputs

A

x1 = hoouyy + higua;,
A

To = hortia + hiugg

are constructed.
We now describe the modulation process fram, to u,,; in detail. Eachu,,, is of the form

Nk
Umk S Z[umk]zz_l
=3
with [u,..]; € {0,1}. Since|h,x| < 2 and |u,,x| < 1/4, the resulting channel input, satisfies the unit
average power constraint at the transmitters.

In analogy to the achievable scheme for the deterministanchkl, we only use certain portions of
the bits [u,,;]; in the binary expansion ofi,,;; the remaining bits are set to zero. The allocation of
information bits depends on the channel stren®ythand is chosen as in the deterministic case described
in Sections IV-B and"V-A, and as illustrated in Figs] 11 [h2particular, the messages, are again
decomposed into common and private portions, i.e.,

p c
Ukl = Uy, + Upy,-

We denote byR,,. the modulation rate ofi,,; in bits per symbol in analogy to the deterministic case.
To satisfy the power constraint (as discussed above), wesmphat the two most significant bits of
each common message are zero. For reasons that will beceardrcithe next paragraph, we also impose
that the two most significant bits for each private messagezaro. This reduces the modulation rate by
at most12 bits per channel use compared to the deterministic case.

The channel output at receiver one is

y1 = 2" hpxy + 2" haoxs + 2
= (9112n11U11 + 9122n12u12) + g10 (2nllu21 + 2””“52) + (9102"12U52 + 21)7

with g¢,,» denoting the product of two channel gains as defined ih (13ectionIl[-B. The situation is
similar at receiver two. The channel output is grouped itmee parts. The first part contains the two
desired signals;; andu,. The second part contains the interference signalanduS,. Note that these
interference terms are received with the same coeffigigriind are hence aligned. The third part contains
noisez; and the private portion5, of the message,,. By construction,

M2y b, € [0,1/4)

so that

|9102"12u52| S 4. S 1.

1
4

We will treat this part of the interference as noise.
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Set

A
S11 = 2n11u117
A onio
S12 = 2" Uy,
A
S10 = 2”1111,21 + 2"12u§2.

The goal of the demodulator at receiver one is to find estisnéte of s, from which estimates for
the desired channel inputs; and u;, can be derived. The demodulator searchessfers,», $;9 that
minimize

|yl — 911811 — g12512 — 910=§10|-
We point out that the demodulator decodes only gshe s, of the two interfering symbols, but not the

individual interfering symbols themselves. The demodulait receiver two works in analogy.
We now lower bound the minimum distance

d= (suﬂslli;lsm) 911 (511 — 811) + g12(s12 — 81) + g10(s10 — 510 (34)
#(511,512:510)

between the noiseless received signal generated by thectdss;, si2, s10) and by any other triple

(s11, S19s S1p)- The next lemma provides a sufficient condition for this minm distance to be large at

both receivers.

Lemma 9. Let§ € (0,1] and N € Z7** such thatmin{nii, no»} > max{nis, no}. AssumeR? RS,
Ris, Ry, RY,, RS, € 7., satisfy

RS, + max{Ry, RS,} + Ry + RT, < nyy — 6 — log(13104/0), (35a)
max{ Ry, RS} + Rio + RY, < njp — 6 — log(13104/6), (35b)
Riz + RY) < myp + ngy — noy — 6, (35¢)
and
RS, + max{ R, RS} + Ro1 + RS, < ngy — 6 — log(13104/0), (36a)
max{ Ry, RS} + Ry + RS, < ngy — 6 — log(13104/6), (36b)
Ry + R, < i + ngy — nyy — 6. (36¢)

Then the bit allocation in Section 1V-B applied to the GaassK-channel(@) results in a minimum
constellation distance > 32 at each receiver for all channel gaing,..) € (1,2]**? except for a set
B C (1,2]**? of Lebesgue measure

u(B) < 6.

If max{R,, RS,} = 0, then(35B) can be removed (i.e., does not need to be verified); arfif= 0,
(35d) can be removed. Similarly, ifiax{R,,, k%, } = 0, (368) can be removed; and ik,; = 0, (368) can
be removed.

The proof of Lemmal9 is reported in Sectibn VII-B. Observetthg to the constants, Lemma 9 is
exactly of the same form as Lemrhh 7 in Secfion V-A for the letmangular deterministic X-Channel,
highlighting again the close connection between the two et®dn the following discussion, we will
assume that the channel gains are outside the outage seth.i.g) ¢ B.

Recall that we have chosen the same allocation of informdtits in the binary expansion af,,;. as in
the deterministic case analyzed in SectionV-A. Since thstragnificant bit of each.,,,;. is zero, the binary
expansion of,,;, is also of the form analyzed there. Moreover, since the ¢mmdi in LemmaP used here
are the same as the conditions in Lenitha 7 used in the detstivicése, we conclude that Lempa 9 can be
applied if we further reduce the rates to accommodate thstantt+log(13104/5) in Lemmd9. This can
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be achieved for example by reducing the modulation rate hytadr3-+1log(13104/6) < 10+1 log(1/0)
per symbol. Accounting for the loss @ bits per channel use due to the power constraint, the sum rate
of the modulation scheme is then

> Ry =D(N)—12—4-10—4- log(1/5) — 4
m,k

= D(N) —2log(1/6) — 56, (37)

with D(IN) as defined in Theorem 5 for the deterministic X-channel, ahdres the additional loss af
bits results from rounding in the bit allocation for the detaistic scheme as discussed in SecfionIV-A.

Lemmd9 is sufficient to show that the probability of demotiataerror issmall To achieve aanishing
probability of error, we use an outer code over the modulatexhnel. The distribution of,,, is chosen
to be uniform over the set allowed by the modulator constsa@md independent of all other modulator
inputs. LetR,,; denote the rate of this outer code from transmiktéo receiverm. We now lower bound
the rateR;; as a function of the modulation rafe,;.

We have

](511, 812, 8105 5115 512, 510) = H(Sn, S12, 510) - H(Slla S12, 810 } 811, S12, 810)-

We will argue below that
H (511,512, 510 | $11, 812, 810) < 1.5 (38)

so that

I(s11, 812, 5103 811, 812, $10) > H (511, 812, 510) — 1.5
= H(SH) —|—H(812) +H(810) —1.5. (39)

On the other hand,
1(811, $12, $105 511, S12, =§10) < 1(811; 811, 812, 510) + H(s12) + H(s10).
Together with [(3P), this shows that

I(s11; 811, $12, 810) = H(s11) — 1.5
= Ry — 1.5.

Since there is a one-to-one relationship betwegnand s;;, this implies that the outer code can achieve
a rate of

Riy = I (u11; 511, 812, $10)
= 1(511; S11, S12, §10)
> Ry — 1.5.
The same argument can be used for the other rates as wellinghtivat

for all m, k € {1,2}. Hence the outer codes achieves a sum rate of at least
m,k m,k

Using (37), this shows that, except for a g&tof measure at most,

C(N) > D(N) — 2log(1/8) — 62
= D(IN) — 2log(c2/9)
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with
¢ 29,

which is what needed to be shown.

Remark:The rateR,,; of the outer code can be lower bounded in terms of the modulatite R,,,;,
using Fano’s inequality. This is the approach taken, fomgda, in [6], [20]. However, this approach
results in a gap that depends oW, and is hence not strong enough for a constant-gap approgimaf
capacity. Instead, we use a stronger argument (see the gir@@8) below) that yields a gap independent
of IN. This argument is a key step in the derivation of the lowerrisban capacity.

It remains to prove[(38). It will be convenient to define

A
U = g11511 + g12512 + J10510,

and similarly foro with respect tos;,. Observe that the channel outpytis then equal ta plus signals
treated as noise. Since we assume that the channel gainstaigeathe outage sét, Lemmal9 implies
that there is a one-to-one relationship betweeand (s, s12, s10), and betweerny and (31, 12, $19)-
Hence,

H(811,$12,$10 } §11,§12,§10) =H(v|9). (40)

Set
poi(a | @) £ Pv=q|0=4q).

We will show thatH (v | ) is small by arguing thap,;(¢ | ¢) is close to one foy = ¢ and decays
exponentially quickly forg # ¢. More precisely, define a mappingg, ¢), with ¢ a possible value of
and/ an integer, as follows. Sef(G,0) = ¢. If £ is a negative integer, setq, () to be the/th closest
possible value of to the left ofq. If ¢ is a positive integer, set(q, ¢) to be thefth closest possible value
of v to the right ofg. This mapping is illustrated in Fig. 17. We will show that;(q(¢,¢) | §) decays
exponentially in|¢|.

Fig. 17. lllustration of the mapping(g, ¢). The parametef ranges over the integers. The paraméteanges over all possible values of
9. Observe that, for each fixed value @fq(q, -) ranges over all possible values ofas a function of¢. Similarly, for each fixed value of
¢, q(-,¢) ranges over a subset of the possible values aé a function ofj. The distance between any two points is at lexst

Rewrite p,5(q(d, £) | ¢) as
puola )| = TR =)

Recall that, by Lemma]9, the distance between two possibleesafv is at leastd > 32. In order to
decode tay) = g if the correct value ob is ¢(¢, ¢), the noise terms needs to have magnitude at [Ed6L
From this observation, we can obtain an upper bound®h= ¢ | v = ¢(§, ¢)).

As mentioned before, this analysis is based on the assumibta both transmitters and receivers have
access toh,,;. The analysis in Appendix]C shows that the only differencdenrmismatched encoding
and decoding, in which the transmitters and receiversruse{n,, }-bit quantized channel gains,,
instead ofh,,;, is a decrease in the minimum constellation distaf\ickn particular, [(78) in AppendikIC,
shows that forf¢| > 1

P(o=qlv=q(q0) <Pz = |f|(d—-8)/2-3)
ex

(—(12lfl —3)%/2),

<
<P
<

1
2
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where in the last inequality we have used the Chernoff bounthe Q-function. Hence,

pos(a(d) ) <~ exp(—1216] - 372), (@1)

showing thatp,s(¢(¢, ¢) | ¢) decays exponentially ifY|.
We next argue that this exponential decay implies tHat | v) is small. We have

H(v|d) = ZIPv—q v |0 =4q). (42)

Applying [25, Theorem 9.7.1],

H( | U= Cj va\v q | q) 1ngv\v(q | Q)

I
|
-
;
c?

Q7 |q logpvh)( ( 7£> ‘ qA)

- %1 0 <(2W6)(%:(2|g| +1)"pujo(a(d, 0) 1 ) — %))

- %1 og <(2W6)(4Z(52+ [Dpuia(a(a. 0) 1 9) + 112))

< %1 g(2me) +%10g<e) <4Z€:(£2 et O 1) = %)
1

5 log(2me/12) + 2log(e) Y (£ + [€)puia(a(d.0) | 9)-

Combined with [(4]l) and(42), this implies

H(v| o) < ; log(2me/?) + log(e) Y (€] + |¢]) exp(—(12]¢] - 3)*/2) Z]P(v =q(q,0).  (43)

¢

Now, since for every fixed value df ¢(-, /) takes each possible value ofat most once as a function

of ¢ (see Fig[1l7), we have
Y P=q(G0)) <) P=
q q
Moreover,

ST + 0] exp(—(12]6] = 3)/2) <23 (£ + £) exp(— (12 — 3)2/2) < 107%.
)4 /=1

Substituting this into[(43) yields
Hw|0) < ;10g(2ﬂ'61/12) +107*%log(e) < 1.5.

Together with [(4D), this prove§ (38). |
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B. Upper Bound for the Gaussian X-Channel
This section proves the upper bound in Theoiem 6. We staht avitemma upper bounding various
linear combinations of achievable rates for the Gaussiarhaginel.

Lemma 10. Any achievable rate tupl€R;;, Rio, Ra1, Rao) for the Gaussian X-channd®) satisfies the
following inequalities

n " 22n22h2
Riy+ Riz + Ry < glog(1 + 27" hiy + 27"2h3y) + 5 log (1 T e, ) (44a)
1 222 1,2 221 1.2 1 221
Ri1 + Ry + Ry < 5log(1+ 27"22h5y + 27" hy ) + 5 log (1 + T oz 2 ) (44b)
1 211 1,2 21272 1 22121 p3,
Riy + Rip 4+ Ry < 5log(1 4 27" hyy + 27"2hi,) + 5 log (1 o2, ) (44c)
1 222 1,2 221 1.2 1 22M2h3,
n22 n21
Ris + Ry + Ry < 5log(1+ 27"22h5y + 27" hy ) + 5 log (1 + HT%)’ (44d)

22muip? 22222, )
1+ 22m2p2, /)7
(44e)

Rll + R12 + Rgl + R22 S %lOg (1 + 22n12h%2 + 11 ) + % log (1 + 22n21 h%l +

14 22m21h2

Ri1 + Ris 4 Ryy + Ryy < 51 (1 + 22" R34 o ) + 31 (1 + 2723, + e )
11+ fig + L) + My < 5 log N oy ) T2 08 2T T2, )
(441)
1 2n11 2 2n12 )2 1 2n21 1,2 22223,
2R11 + Rig + Ro1 + Ryp < g log(1 + 27" Ay +27"2hy,) + 5 log (1 + 27 hyy + 1+ 22m12],2 )
12
22n11 h2
11 (1 711) 44
+ 3 log +1+22"21h§1 ; (449)
2n12 2 2n11 2 222 1,2 22121 b,
Ri1 4 2R13 + Roy + Ry < 3log(1 + 222, + 22" hT,) + % log (1 + 27 g, + 1 + 22nu1 2 )
11
22n12h2
1 12
+ 2 log (1 + 1 + 922n22 h%2>’ (44h)
2n21 1,2 222 12 2n11 2 222 hi,
Ri1 + Riz + 2Ry + Ryp < 5log(1 + 2221 h3; + 22722, ) + % log (1 + 27 hyy + 1 + 22n22 2 )
22
22n21 h2
1 (1 721) 44i
+ 5 108 + 1+ 227111]1%1 ) ( )
2n22 1,2 2n21 1,2 2n12 2 22 by
Ry + Rig + Roy + 2Ry < 5log(1 4 27"22h3, + 22" A3, ) + 5 log (1 + 27, + 1+ 2221 )2 )
21
22n22h2
1] (1 > ) 44
+5log (1+ ey (44))

The proof of Lemm&10 is reported in Appendix D. Inequalii{é4a)-{(44f) are from[13, Lemma 5.2,
Theorem 5.3]. Inequalitie$ (4Ag)—(44j) are novel.
We proceed with the proof of the upper bound in Theotém 6 fer@aussian X-channel. Note that,
for n,., € Z, and h,,;, € (1,2],
1log (1+22"1h3) + 2°™2h3,) < Llog (1+4- 27" 4. 2°™M2)
% log (9 max{1, 22", 22"12})

= max{n1, m2} + 3 log(9)

<
<
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and
22122 h%z )

1 1 2n922—2n 2
3 log <]_ + HT% ) log (1 + 2 22 12h22)

IA

% log (5 max{1, 22”22_2"12})
(7’L22 - n12)+ + %log(f))

Hence, [(44ia) yields
R11 + R12 + R22 S max{nn, nlg} + (n22 — n12)+ + %10g(5 . 9)

In a similar manner, we can upper bound the right-hand sifedl eerms in Lemmd_10 by quantities
depending only onV. For example,[{44e) yields

Ri1 + Ris + Ry + Ry < max{nia, niy — no1} + max{ngy, noy — nia} + %log(Qz),

and [449) yields
2R11 + R12 + R21 + R22 S max{nn, nlg} + max{ngl, Moo — nlg} + (nn — n21)+ -+ %10g(5 . 92)

Comparing this to the upper bounds in Lemima 8 in Sedtion V4Bte lower-triangular deterministic
X-channel, we see that Lemmal10 for the Gaussian X-channideigtical up to a constant gap. This
highlights again the close connection between the two nsodd$ing the same derivation as for the
deterministic case, Lemniall0 can thus be used to show thder dine assumption

min{nii, nge} > max{nis, na1 },
the sum capacity of the Gaussian X-channel satisfies
C(N) < D(N)+4.

This concludes the proof of the upper bound. [ |

VIlI. M ATHEMATICAL FOUNDATIONS FORRECEIVER ANALYSIS

This section lays the mathematical groundwork for the asialgf the decoders used in Sectigns V-A
and[VI-A. For the deterministic channel model, decodinguscessful if the various message subspaces
are linearly independent. Conditions for this linear inelegence to hold are presented in Secfion VII-A.
For the Gaussian case, decoding is successful if the miniclistance between the different messages
as seen at the receivers is large. As we will see, this prolombe reformulated as a humber-theoretic
problem. Conditions for successful decoding in the Gauss#ése are presented in Section VI1I-B.

A. Decoding Conditions for the Deterministic Channel

We start by analyzing a “generic” receiver (i.e., the bibeadition seen at either receiver one or two).
To this end, we assume there are two desired veaigrand u, and one interference vectar,. The
interference vectoi, consists of two signal vectors that are aligned and can fitverdoe treated as a
single vector. These three vectors are multiplied by theeletriangular channel matrices,, G, and G,
created via the binary expansion of the channel gaing,, g, as before.

We assume that certain components of the veaigrare set to zero. To formally capture this, we need
to introduce some notation. Let” andn™ be two nonnegative integers such that > n*. Define

Un ,nt)2{aec{0,1}" :q;=0Vie{l,...,ny —n }U{n  —n" +1,...,n}}
as illustrated in Fig._18. We consider vectdis), u,, us, us) in the set

Z/_{(?’Lo,no — RO) X L_l(nl,nl — Rl) X Z/_{(ng,ng — Rg) X Z/_{(Rg,O)

U

>
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ny—n_

u

R _ 'RO
n1 IRQ
no
n2
2
u1 D us U2 Uo

Fig. 19. A generic receiver as analyzed in Leniméa 11. Whitéoregcorrespond to zero bits; shaded regions carry inféomaBits are
labeled from1 to n;, starting from the top.

with n; > ng > no, as is illustrated in Fig. 19. Herai; and u; are to be interpreted as the common
and private portions of the desired signal transmitted ¢herdirect link;u, is to be interpreted as the
desired signal transmitted over the cross link; ands to be interpreted as the aligned interference.

The next lemma states that the subspaces spanned by thepoomiéng columns o&}, are linearly
independent for most channel gaifis, g1, g2)-

Lemma 11. Let ng, ni,ny € Z, such thatn; > ny > n,, and letRy, R,, Ry, R3 € Z_. Define the event
B(to, U1, Uz, Us) = {(90791792) € (1,2]* : Gong ® G1 (1 ® u3) ® Gotiy = 0},
and set

B U B(ug, w1, Uy, U3).
(w@o,a1,a2,a3)€U\{(0,0,0,0)}

For any ¢ € (0, 1] satisfying

R1 + Ro + RQ + Rg S ny — 10g(16/5),
Ry + Ry 4+ Ry < ny — 1og(16/6),
Ry + Ry < ng,

we have
n(B) < 6.

Observe that3 is the set of channel gaing, g1, g» such that the corresponding subspaces spanned by
the selected columns @&, G+, G, are linearly dependent. In other words,is the set of channel gains
resulting in decoding error. Thus the lemma states thatef rates?;, satisfy certain conditions, then
the subspaces under consideration are linearly indepemdtmhigh probability, and hence decoding is
successful.

The condition on the rates in Lemrhal 11 can be interpretedlisvi Letn be some natural number.
Since the matrice&s,, are lower triangular, the subspaces spanned by thenlastumns of G, are the
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same for allk € {0, 1,2}. Thus, anecessaryondition for the linear independence of the three subspace
is that the total number of possible nonzero components,pfvith i > n; —n+ 1 andk € {0,1,2,3}

is at mostn for everyn € {1,...,n,}. By the structure of the sét, this condition can be verified by
considering only three values af namelyn € {ng,ni,n,} (see Fig[IB). Thus, a necessary condition
for the linear independence of the subspaces is

Ri+ Ry + Ry + Ry < ny,
(Rl —(n — no))+ +Ry+ Ro+ R < No,
(Ri — (n1 —n2))" 4+ (Ro — (no — n2))™ + R + Rz < no.
After some algebra these three conditions can be rewritjeivalently as

R1+R0+R2+R3§n1,
Ry + Ry + Rs < ny,
Ry + Ry < ny.

Thus, Lemma_1I1 shows that, up to the consiagt16/6) and for most channel gaingo, 91, g2), these
necessaryonditions are alsgufficientfor the linear independence of the subspaces.
Before we provide the proof of Lemmalll, we show how it can bedu® prove Lemmal7 in
Section V-A.
Proof of Lemm&]7:We start by reformulating the conditions in Lemma 11 for esedeiver. Consider
first receiver one in Lemmd 7. From Fig.l11 in Secfion IV-B, we $hat the corresponding message rates
in Lemmal1l are given by

H’l&X{Rgl y RZCQ},

oy
<
> > >
=]
=0

The choice of the bit levels, in Lemmal[Il depends on the values&f and R,. If Ry, R, > 0, we
need to set

) nio,

n ni,

> >

Ny = Nq1g + Na1 — Nag,

see again Fid.11.
The conditions in Lemm@a 11 (with replaced by /2 to guarantee that the outage event at each receiver
has measure at mos&f2) are then that

R(fl + max{ﬁ’gl, R;:Q} + Rys + Rfl < ny; — log(32/9), (45a)
max{ Ry, RgQ} + Ry + Rfl <y — log(32/6), (45Db)
Rip + Ri < Nz + Nay — Naa. (45c)

If R, =0, then the second column in Fig.]19 is empty, and hence the ¢oindition in Lemma 11 does
not need to be verified. Formally, note that in this case thaevaf n is irrelevant to the decoding process.
We may hence assume without loss of generality thas equal ton, (thus still satisfyingng > n»). As
a consequence, only conditiois (45a) and (45b) need to kekethelf 2, = 0, then the value ofy is
irrelevant to the decoding process, and we can assume it ¢gle ton; (thus still satisfyingn; > ny).
As a consequence, only conditions (45a) dndl(45c) need tddeked.

The decoding conditions for receiver two follow by symmetry
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Denote byB; C R3 the collection of triples(gio, 911, g12) such that decoding fails at receiver one.
Similarly, defineB, C R? with respect to receiver two. Finally, Ié&8 c R® be the union ofB; and B..
If the two sets of decoding conditions are satisfied, thenrhaill shows that

NS(Bm) < 5/2

for m € {1,2}, where here and in the following we use the notatignto emphasize the Lebesgue
measure is computed iR?. Then

ps(B) < pis(By)ps((1,2]°) + pa(Ba) s (1, 2)°)
<4,

i.e., the collection of channel gairig,..) € R?*3 for which decoding fails is small. This concludes the
proof of Lemmd7. u
It remains to prove LemmialL1.
Proof of Lemma_11: We start with a few preliminary observations. Note that, bg assumptions
on Ry,

Ry + R3 < ny,
Ry + Rs < ny,
Ry + R3 < ny,

which implies that B B B )
max{Rl,nl —n0+R0,n1—n2+R2} S?’Ll —Rg. (46)

From Fig.[19, we see that this guarantees that,if~ 0, then
n(ﬁk) S ny — Rg (47)

for k € {0,1,2}, where for a binary vectof: we use the notatiom(u) to denote the smallest index
i such thatu; = 1 with the convention that(0) = +oco. Moreover, we see from the same figure that
n(’dg) >ny — Rg.

We now remove the dependence®fon the private signaii;. SinceG,, is lower triangular with unit
diagonal (so that bits are only shifted downwards), we ha\@,.u;) = n(u,). Hence,

Goﬁo @ Gl (fbl @ 113) @ GQ’ELQ — 0
can hold only if
n(éoﬁo ® Giu; B Gzﬁz) = n(G1u3)
= n(us)
> ny — R37
where we have used thatus) > n; — Rs. Furthermore, we have fai; # 0 that
Goty ® G (6, ® u3) ® Gauy =0

can hold only if(wg, wy, ws) # (0,0, 0).
Defining the sets

B' (6o, @y, Us) = {(g0,91,92) € (1,2]° : n(Gotig ® Gty ® Gotiz) > ny — Rs}
and

u = Z/_l(no,no - Ro) X Z/_{(nlanl - Rl) X a(n2,n2 - R2)>



34

we hence have
BCB 2 U B! (g, @y, Us).
(@o,a1,a2)€U’'\{(0,0,0)}

We can then upper bound B) using the union bound
u(B) < u(B') < > p( B (o, 1, Us)). (48)

(o, a1,a2)€U’\{(0,0,0)}
Observe that the right-hand side does not depend on thagsignalus;. We continue by analyzing each
term in the summation on the right-hand side[of] (48) seplgrate
Since we are integrating with respect to Lebesgue measeré@vy;, g-) € (1, 2]%, we can equivalently
assume thajy, g1, g» are independent and uniformly distributed over2]. The bits in the binary expansion
([gr)i)2 ., of these numbers are then binary random variables with thewimg properties.[gx]; = 0

1=—00

for i < —1, [gx]o = 1, and ([gx];)._, are i.i.d.Bernoulli(1/2) (see, e.g.,[[26, Exercise 1.4.20]). The

lower-triangular Toeplitz matrbGy, is then constructed from these binary random variablese Nt
this implies that the three matric€s,, G, G are independent and identically distributed.

Fix a binary vectora and consider the producu for someG = Gy, u = u;, and with addition
again overZ,. We now describe the distribution ¢fa. SinceG is lower triangular with unit diagonal,
(Gu); = 0 wheneverl < i < n(a), and (Gu),&) = 1. Moreover, the component{&za); for n(u) <
i < ny are i.i.d.Bernoulli(1/2).

Assume first that

n(to) < n(ur) < n(uz) < oo. (49)

The summand in((48) can be written as
p(B' (g, y,m2)) = > )Y P(Gottg = by & by @ by)P(G16; = by)P(Gatty = by), (50)
bg:n(b3)>n1—R3 by b2

where the probabilities are computed with respect to thelaanmatricesG,. Using thatn(Gay) =
n(uy), the three factors inside the summation are nonzero only if

n(by @ by @ bs) = n(uy),
n(by) = n(u),
n(bs) = n(us).

From this, we obtain that
n(tug) = n(b; @ by @ by)

> min{n(b;), n(bs), n(bg)}7

> min{n(u),n(us),n; — R3}

= n(u),

where for the last equality we have uséd](49) and that- R is larger thann(u,) by (47). Since
n(ag) < n(u;) by (49), this shows that(b, & by & b3) = n(ug) can hold only ifn(ug) = n(a,).
If these conditions on tha@;, and b, are satisfied, then

P(Gottg = by @ by @ b3)P(Grat; = b)P(Gatiy = by) = 9—(n1—n(0))—(n1—n(@1))—(n1—n(@2))
Substituting this into[(50) shows that
n(B' (@, w1, ay)) < 2f i)

whenevem(u,) = n(u,), and
M(B/('a(], ’ljlq, '&2)) =0
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otherwise.
Assume more generally thét,, us, us) # (0,0,0). Then a similar argument shows that

(B (g, Wy, ay)) < 9fts—ni+ming n(ay) 51)
whenever there are two distinct indicksk’ achieving the minimunminy, n(uy), and
(B (g, wy, us)) =0 (52)

otherwise. In particular, the sét'(u,, u, us) has measure zero whenever at least two ofithare equal
to zero.
Setting
U'(n~,n*) 2 Un™,n")\ {0},

we can then rewrite_(48) as

By Y > > (B (w0, a, 1))

ﬂoGZ;{'(TLo,no—Ro) ﬂlel?{’(nl,m—}?l) ﬂQEZ:{/(HQ,nQ—RQ)

+ > > p(B'(0, 1w, u,))

U eZ)’(m,nl—Rl) ﬁzea’(ng,nz—éz)

+ > S u(B(,0, 1))

w0 €U’ (no,no—Ro) 2€U’ (n2,n2—R2)
1/ — _
+ E E (B (wo, uy,0)).
wo €U’ (no,no—Ro) @1€U’ (n1,n1—R1)

By (52), the setB’ has measure zero whenever there is only a single minimizimg). Together with
the assumptiom; > ny > no, this shows that we can restrict the lower boundaries of &tgl# in the
various sums. For example

Z Z Z (B (@, a1, 0))

ﬂoGZ)’(no,no—Ro) uy GZ/_{’(TLl ,TL1—R1) ﬂQGZ/_{,(TLQ,TLQ—RQ)

— > > > (B (g, wy, a)),

wo €U’ (no,no—Ro) w1 €U’ (no,n1—R1) G2 €U’ (n2,n2—Ra)

where we have changéd (n,,n; — R;) to U'(ng,n; — R;), and similarly for the other three summations.
Together with[(51) this yields that

M(B/) < Z Z Z 2Rg—n1+mink n(ty)

€U’ (ng,no—Ro) w1 €U’ (ng,n1—R1) a2 €U’ (na,na—Ra)

+ Z Z 2R3—n1 “+ming n(tg)

ﬂléa'(ng,nl—él) ﬂQEZ:{/(HQ,nQ—RQ)

+ Z Z 2R:;—n1+mink n(ag)

ﬂoéa'(ng,no—éo) ﬂQEZ:{/(HQ,nQ—RQ)

+ Z Z 2R:;—n1+mink n('ak)

ﬂoEZ;{'(no,no—Ro) ﬂlélx_{’(no,nl—él)

We consider each of the four terms in turn.
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For the first term, we have

Z Z Z 217%3—711—|—min;C n(uyg)

’l_l,OEZ/_l’(no,no—Ro) ﬁlea’(no,Tn—Rﬂ ﬁzEﬂ’(nz,TLQ—RQ)
ni

= Z Z Z Z 2R3_”1+i]l{min;c n(ag)=1}

i=ni1—no+1 ﬁoéa'(no,no—éo) U Eal(no,nl—}?l) EQEH/(HQ,HQ—RQ)
n1

<y % > LY

i=n1—no+1 ﬁoEZx_{’(nl —’H—Lno—Ro) ﬁ1ea’(n1—i+l,n1—R1) ﬁgelx_{’(nz,ng—ﬁig)
Using that
—r, —_pt
U'(n”,n )< 2"

the right-hand side can be further upper bounded by

ni

E 2n1—n0+Ro—i+1 . 2R1—i+1 . 2R2 . 2R3—n1+i

i=ni1—no+1
ni

— 9Ro+Ri+R2+R3—no+2 Z 9—i
i=ni1—no+1
< 2R0+R1+R2+R3—n1+2.
We can upper bound the remaining three terms in a similaidaslyielding
M(B,) < 2R3+2 (QR()+R1+R2—H1 + 2R1+R2—n1 4 2R0+R2_n0 4 2R0+R1—n1)
< 16 - 2R3+max{Ro+R1+R2—n17Ro+R2—nO}‘
This shows that if
Ry + Ry + Ry + Ry < ny — log(16/9),
Ro + RQ + Rg < Nng — 10g(16/5),
and (in order to guarantek (46)) if
Ry + Ry < ny,

then
u(B) < p(B') <4,

completing the proof of the lemma. [ |

B. Decoding Conditions for the Gaussian Channel

In this section, we analyze a “generic” receiver for the Garscase. To this end, we prove a variation
of a well-known result from Diophantine approximation eallGroshev’s theorem (see, e.Q.,/[27, Theorem
1.12)).

Define

Un~ ) E{ue[-1,1]:[u=0Vie{l,....,ny —n"}U{n  —n"+1,.. }},
where we assume that the binary expansion @ind —u is identical. Set
U =S U(no,no — R(]) X U(nl,nl — R1> X Z/{(ng,ng — Rg) X Z/{(Rg,(])

U is the set of real numbers such that their binary expansishen viewed as vectors of length, are
in the set/ as illustrated in Figl_19 in Sectidn VIHA. Thu#{ is the direct translation of the sét of
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possible channel inputs for the deterministic setting ® @aussian setting. The next lemma states that
if the channel inputs are chosen fram) then the resulting minimum constellation distance as vese
at the receivers is large for most channel gdins g1, g2).

Lemma 12. Let ng, ni,ny € Z, such thatn; > ny > n,, and letRy, R,, Ry, R3 € Z . Define the event

B(ug, uy, uz,us) = {(g0, 91, 92) € (14" : |gouo + g1 (us + uz) + goua| < 277"},

and set
Bé U B(UQ,Ul,Uz,Ug).

(ug,u1,uz,u:;)EM\{(O,O,O,O)}
For any ¢ € (0, 1] satisfying
Ry + Ry + Ry + Ry < ny — 6 — log(6552/4),
Ry + Ry + Rs < ng — 6 — log(6552/6),
Ry + Rz < ny — 6,

we have
n(B) < 6.

Lemmal12 is the equivalent for the Gaussian channel of Lehilirfarlthe deterministic channel. Note
that, except for the constants, the conditions on the ratélse two lemmas are identical.
We now prove Lemmal9 in Sectién VIIA using Lemind 12.

Proof of Lemm&19:We will use Lemma_T2 witd /2 instead ofo and the same rate allocations as in
the deterministic case, see Figs] 11 12 in Se€fion| IVeB.H,,, C (1,4]* be the collection of triples
(9mo, 9m1, gm2) SUCh that decoding is successful at receiverDefine B,, as the collection of channel
gains (h,..) C (1,2]**? such that the correspondirig,.;) are in B,,. Finally, let B denote the union of
B; and B,. Following the same arguments as in the proof of Leniina 7 framial1ll presented in
Section VII-A, it can be shown that if the decoding condisan Lemmd P are satisfied, then Lemma 12
guarantees that .

p3(Bm) < 6/2

for m € {1,2}.

The next lemma allows us to transfer this statement abouptbductsg,,. of channel gains to the
corresponding statement about the original channel gains For ease of notation, the statement of the
lemma useg,, as a shorthand fog,,, as defined in[(13) for some fixed value mf € {1, 2}.

Lemma 13. Let B C (1,4]® be a subset of channel gaitig,, g1, g») such thatus(B) < 4. Define
B £ {(hy) € (1,2)*: (g0, 91, 92) € B}
Thenpuy(B) < 6.

The proof of Lemmd 13 is reported in Appendix E. Applying Lemi3 to the sets3, and B,
corresponding to the outage events defined above, thisamgiat

114(By) < 6/2.

Hence,
pa(B) < pa(Bi) + pa(B2) < 6,

proving Lemmd B. [ |
We continue with the proof of Lemniall2. Instead of directlalgming the setB in the statement of
Lemma[12, it will be convenient to work with an equivalent $¢ote thatB(ug, uy, us, u3z) can be written
as
B(ug, u, ug,uz) = {(go, g1, 92) € (1, 4] : [go2" ug + 12" (w1 + uz) + 22" us| < 2°}.
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By the definition ofi/ (see also Fig. 19 in Sectidn VI[}A), we can decompose

2"y = Ayqo,
2Muy = Ajq,
2"y = Abqo,
2" uz = g3,

with .
Al & 2me—Fx
for k € {0,1,2} and
qr € {_Qku_Qk + 17"'7Qk - 17Qk}
for k € {0, 1, 2,3}, where
Qr £ 2™
We now remove the dependence®fon uz. We can further rewrite3 using the triangle inequality as

Blug, u1, ug, us) = {|Ajgoqo + Argrq1 + 9103 + Ag20a| < 2°}
C {|Abgodo + Algrar + Abgage] < 2° + 27572}
C {|Ab9090 + A1g1q1 + Asgoq0| < B’}
< B,(CJO, a1, ¢2),
where all sets are defined ovgp, g1, 92) € (1, 4]%, and where we have defined

B/ é 2R3+6.

Setting
B/é U B/(q07q17q2)7

q0,91,92€7Z:
(90,91,92)7#0,
lgr | <QrVE

we then have
ps(B) < ps(B').
The next lemma analyzes the get with Aj = 1.
Lemma 14. Let g € (0,1], Ay, Ay € N, and @y, @1, Q2 € IN. Define the event

B'(q0, 01, G2) £ {(90>91>92) S (174]3 D 1g0q0 + Arg1qn + Asgage| < 5}7

and set
B/é U Bl(QOana%)-
q0,91,92€7Z:
(90,91,92)7#0,
lgr | <QrVE
Then

QoQs Az@%}
Al ’ Al

QoQ: A1Q% })
Ay T A

w(B') <5048 <2 min {Q2, %} + min {Q1Q27

+ 2min {Ql, i—?} + min {QQQI?
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with

max{Qo, A2Q2 } }
Ay ’
Q> 2 min {Q,, gmxtQo, i) 3
Ay
Remark:The special case of Lemnall4 with, = Ay = 1, Qy = Q1 = Q2 = Q, andQ —

corresponds to the (converse part of) Groshev's theoreep esg.,[[27, Theorem 1.12]. Hence, Lemima 14
extends Groshev’'s theorem to asymmetric and non-asyretiings.

Q1 £ min {Ql,S

Before we present the proof of Lemind 14, we show how to proverha 12 with the help of Lemmall4.
Proof of Lemmd_12: We consider the three casel < min{A4}, A%}, A} < min{Aj, A%}, and
A} <min{Aj, A} separately.
Assume first thatd{; < min{ A}, A,}. Define
Ay 21,
A, A A/l/A6 _ 21:20—1?1—no—|rn17
A, A A/2/AE) _ 2R0—R2—no+n2’
5 A Bl/A/O _ 2R()+R3—no+6.
Note thatA;, A, € N, and that5 € (0, 1] if
Ry + R < ng— 6, (53)
as required by Lemmia 1L14. The quantiti®s and Q, in LemmalI# can be upper bounded as

Q1 < 8max{Qq, A2Q:}/A; = 8Qo /Ay,
sinceng > no implies thatQ)y, > A»Q», and as

Q2 < Q.

Applying Lemma[14 yields then
1(B) < pu(B')
AyQ3 ~
< 5043 (2Q2 + i% + 2% + Q2Q1)
1 1

Az@% Qo Qon)

A, +2A—1+8 A,

AQ3 Qo Qo@z}
Al ’Al’ Al

_ Q@2

_66525max{Q2, i }

where we have used thgt, > 1 and thatA;Q- < Q, implying

AQ3 _ Qo
A T A
Substituting the definitions of, A, and(Qy, yields that

< 5043 (2Q2 n

< 66523 max {Qz,

,U(B) < 6652 - 2R0+R3—n0+6 max {2}_%2’ 2R1+R2+n0_n1 }
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Together with [5B), this shows that if
R1 + Ro + RQ + Rg S ny — 6 — 10g(6652/5),
Ry + Ry + R3 < ng — 6 — 1og(6652/6),
Ro + Rg S Nog — 6,

then
u(B) < 6.

Sinced € (0,1] and R, > 0, the third condition is redundant and can be removed, shptia result in
Lemmal[12. We point out that the third condition in Lemma 12 a$ active if Aj < min{A/, AL}. This
is consistent with it not appearing in the derivation here.

Assume next thatl] < min{Aj, A,}. Define

Ao A AE)/A/l _ Q—Ro+}?1+no—n1’
A &1,
Ay A Aé/All _ 2R1—R2—n1+n2’
ﬁ é ﬁ//A/l — 2l§1+1i23—n1+6.
Note thatAg, A, € N, and that5 € (0, 1] if
R1 -+ Rg S ny — 6 (54)

We can hence apply Lemnial14 by appropriately relabelingcésd{i.e., by swapping indicgsand 1).
The quantities), and @), can be upper bounded as

N _ A
(o = min {Qo, 8max{Q;10 2Q2}} < Qo,
and
~ max{Q1, AoQo}
()2 = min {Q278 1, } < Q2.
Applying Lemma[14 yields then that
u(B) < (B

<5044 (2Q2 + QoQ2 + 2Qo + Q2©0)

< 5048(2Qs + QoQz + 200 + Q2 Qs
< 30248Q0Q>.
Substituting the definitions of and )y, yields that
u(B) < 3024 - 9Ro+R1+Ro+R3+6-n1
Together with [[(54), this shows that if
Ry + Ry + Ry + Rz < ny — 6 — log(3024/9),
Ry + R3 <n; —6,

then
w(B) <.
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Since§ € (0,1] and Ry, R, > 0, the second condition is redundant and can be removed, spaWe
result in Lemma 12. As can be verified, the second and thirditons in Lemma 12 are not active when
A} < min{ A}, AL}, consistent with them not appearing in the derivation here.

Finally, assume thatl, < min{A;, A}}. Define

Ao A AB/A; _ Q—Ro+}?2+no—n27
A, A A/l/A/Z _ 2—31+32+n1—n2’
Ay 21,
B é ﬁ//A; — 2R2+R3—TL2+6.
Note thatAg, A; € N, and that5 € (0, 1] if
Rz -+ Rg S Mo — 6 (55)

We can hence apply Lemnmall4 by relabeling indices as befoi® t{ine by swapping indices and 2).
The quantities), and@; can be upper bounded as

Oy = min {Qo, 8maX{Qj;A1Q1}

}SQm

and

Ql — min {thmaX{Qj;AoQo}}
max{Q2, AoQo}

<8 A,

o A0Qo

-8 A

sinceng > no implies ApQy > Q.
Applying Lemma14 yields then that

w(B) < u(B)
Q2 QQQO QQ Q2Q1
§5045(2A—0+ Ty )
Q2 QQQO QQ QQQO
< 5045(2A—0 S RS SR s )
Q2 Qon}‘

< 6552Bmax{A—, &
0 1

Substituting the definitions of, A, and(Qy, yields that

,U(B) < 6652 - 2R2+R3+6—N2 max {2R0+n2—n0’ 2R()+R1+n2—n1 }

Together with [(Bb), this shows that if
Rl + Ro + RQ + Rg S ny — 6 — 10g(6652/5),
Ry + Ry + R < ng — 6 — log(6652/6),
Ry + Rz < ny — 6,

then
n(B) <4,
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showing the result in Lemniall2. It can be verified that, uniikéhe other two cases, all three conditions
in Lemmal12 can be active whetf, < min{Aj, A}}. This is again consistent with the derivation here.
This proves Lemma12. [
It remains to prove Lemmia_ll4. The proof builds on an argumefi28].
Proof of Lemma_14:Define

B'g,e) 2 | Blw o e

qQoEZ:
lg0|<Qo

for (q1,¢2) # (0,0), and
B0,00%2 |J B(%.0,0).

q0€Z\{0}:
|901<Qo

For gy € (1,4], set

B;o(%’%) £ {(gbgz) € (174]2 : (90,91, 92) € Bl(Ql,CD)}-
Observe thatB’ (qi,¢2) is a subset olR? and that

g0
4

13(B' (g1, 42)) = / (B (1, 42))dgo.

go=1
We treat the cased;|q;| < As|go| and A;|q1| > As|ge| separately. Assume first;|q1| < As|go| and

As|ge| > 8max{Qo, A1Q1} + 1,

then
lgog0 + A191q1 + A292q2] > Asgalqe| — A191|a1] — go|qo]

> As|ge] — 4A1Q1 — 4Qo
>1

> B,

where we have used that < 1. Hence,us(B;, (q1,¢2)) = 0. We can therefore assume without loss of
generality that

Aglge] < 8max{Qo, A1Q1}
for any value ofg;. By a similar argument, we can assume that
Azlga| < 4Qo

for ¢ = 0.
The setB, (q1, ¢2) consists of at most

min{?)Qo, 7A2‘Q2|}

strips of slope—A;¢1/(A2¢2) and width23/(As|q2|) in the g, direction, including several partial strips
(see Fig[2D). The area of this set is at most

/ 2 .
p2(By,(q1,¢2)) < 3+ 2 -min{3Qo, 7As|¢|}
Az\CI2|
< 428 min {A?|22| , 1}. (56)
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(1,4) (4,4)

g2

\\

(17 1) g1 (47 1)

Fig. 20. lllustration of the seBj (1, —2) C (1,4]* with go = 1,¢q1 = 1,q2 = —2, A1 = A2 = 1, and3 = 0.2. In the figure, we assume
that Qo > Az|qz|. The set consists af0 < 7As|q2| = 14 strips of slopel/2 = —A1q1/(Az2q2).

We now consider the casé|q;| > As|ge| and ¢; # 0. As before, we can assume without loss of

generality that
Aplq| < 8max{Qo, A2Q2}

for any value ofg,, and that

Arlq| £4Qo
for ¢ = 0. By the same analysis as in the last paragraph, we obtain that
! . QO
<
p2(By, (g1, ¢2)) < 428 min {A1|q1| , 1}. (57)
Finally, when(q;,¢2) = 0 and gy # 0, thengg|qo| > 1 > 5, and hence
(B}, (0,0)) = 0. (58)

We can upper bound

M?’(B/) = Mg( U q1EZ: U q2E€7Z: UQOEZ:|qO\§QO B,(QOa q1, Q2))
l711<Q1 22|1<Q2  (q0,91,q2)#0

< Z Z p3(B'(q1,q2))

q1E€EZ:  q2€Z:
lg1|<Q1 [g2|<Q2

-> ¥/

qQ1EZ:  q2€Z: g0
lg1|<Q1 [g2]<Q2

4
/~L2(Bg/]0 (q1,62))dgo
=1

4
= Z 12(Bg, (0, g2))dgo

2€Z\{0}:|g2|<Qz ¥ 90=1
Az|q2|<4Qo
4

T Z Z / p2(By, (a1, 2))dgo

2€Z\{0}:]q21<Q2  q1€Z\{0}:]q1|<Qy Y 901
Azlg2|<8max{Qo,A1Q1} Ai|q1|<Az2|qz]

4
Y / a(B., (a1,0))dgo
go=1

@ €Z\{0}:]q1|<Q1
A1]q11<4Qo
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T Z Z / p2(By, (g1, g2))dgo

G €Z\{0}:]q11<Q1  2€Z\{0}:]q2|<Qs Y 901
A1lq1|<8max{Qo,A2Q2} Az|q2|<A1|qi]

4
[ (B, 0,0)dgo
g

0=1

Combined with [(56),[(87), and_(58), this yields
ps(B') < Z 126ﬁm1n{A§2|qZ| 1}

q2€Z\{0}:]g2|<Q2
A2|q2|<4Qo

: Q
+ Z Z 1265m1n{A2|22|,1}

@2€Z\{0}:q2|<Q2  q1€Z\{0}:]q1|<Q1
Azlg2|<8max{Qo,A1Q1} A1lq1|<Az|qz]

+ Y 1268min {Aﬁﬁm 1}

@1 €Z\{0}:{q1|<Q1
A1]q11<4Qo

: Qo
+ 3 3 1266m1n{A1|q1|,1}. (59)

q1€Z\{0}:|q1|<Q1  ¢2€Z\{0}:]q2|<Q2
Arlq1|<8max{Qo,A2Q2} Az|g2|<A1]qi|

We now upper bound the four terms in the right-hand sidé _df.(59
For the first term in[(59), observe that

HQQ € Z\ {0} : o] < @2, Aslqa| < 4Q0}‘ < 2m1n{Q2, QZ}

win {2, 1},
so that
S 1268min {& 1} < 100843 min {Qg, QO} (60)
i A2\Q2\ As
2€Z\{0}:]g2|<Q2
Az|q2|1<4Qo
For the second term i_(59), observe that
) A
{n € 2710} lal < Qu ulas] < Asll}| < 2mim {0, 22021},
and hence
A
Z min{—AQ0 ,1} {Ql, 2‘q2‘}min{AQ0 ,1}
@ E€Z\ 0}l | <@ 22| 22|
A1lq1|<Azge|
Qo Qo A2|CI2|
2 m ) ) _7
- {A2|QQ‘ Ql 1 Al }
Qo Asz|q]
{Qh 1 Al }

Moreover,

{2 € Z\ {0} : |g2] < Q2, Az]go| < 8max{Qo, A1Q1}} = {@2 € Z\ {0} : |g2] < Qz}
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with

maX{QOaAlQl}}.

Q2 émiﬂ{@2,8 1,

Using these two facts, we can upper bound

: Q
3 3 126Bm1n{A2|22|,1}

@2€Z\{0}:]q2|<Q2  q1€Z\{0}:]|q11<Q1
Azlq2|<8max{Qo,A1Q1} Ai1]q1|<Az|qz|

<2526 > min {Ql, o Az"-’?'}

i A A
2€Z\{0}:]¢2|<Q2

<omp Y mn{o, %
4267\ {0}:]g2|< 0 b
A
< 5015 min {105, D22, 2% (61)
1 1
Similarly, for the third term in[(59),
Y 1268 min{ o ,1} < 10084 min {Ql, QO} (62)
- A1|CI1| Ay
@1 €Z\{0}:|q1|<Q1
A1]q1|<4Qo0
and for the fourth term
B S )2
3 Y 1268min {& 1} < 5048 min {QQQl, Qo1 AlQl} (63)
A1|CI1| Ay Ay
1€Z\{0}:1q1|<Q1  q2€Z\{0}:]q2|<Q2
A1|q11<8max{Qo,A2Q2} Asz|g2|<A1|qi|
i [Qo, 4:02)
~ i max ,
o émlﬂ{@l, 1?11 chi }
Substituting [(6D)-+(63) intd_(59) yields
. Vo A2
us(B') < 5(1008 min {QQ, QO} + 504 min {Qng, Qz?z) Z?Z}
_ A 32
+ 1008 min {Ql, QO} + 504 min {QQQl, QELQI, AAQl }),
2 2
completing the proof. [ |

VIIl. CONCLUSION

In this paper, we derived a constant-gap capacity apprdiomdor the Gaussian X-channel. This
derivation was aided by a novel deterministic channel modeld to approximate the Gaussian channel.
In the proposed deterministic channel model, the actiorisethannel are described by a lower-triangular
Toeplitz matrices with coefficients determined by the bitghie binary expansion of the corresponding
channel gains in the original Gaussian problem. This is imtrast to traditional deterministic models, in
which the actions of the channel are only dependent on tliggesmost-significant bit of the channel gains
in the original Gaussian problem. Preserving this depetelen the fine structure of the Gaussian channel
gains turned out to be crucial to successfully approximhate Gaussian X-channel by a deterministic
channel model.

Throughout this paper, we were only interested in obtairangonstant-gap capacity approximation.
Less emphasis was placed on the actual value of that constané meaningful capacity approximation
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at smaller values of SNR, this constant needs to be optimMecde sophisticated lattice codes (as opposed
to the ones over the simple integer lattice used in this pajpendd be employed for this purpose, see, e.g.,
[29]. Furthermore, all the results in this paper were detif@ all channel gains outside an arbitrarily
small outage set. Analyzing the behavior of capacity forncleh gains that are inside this outage set is
hence of interest. An approach similar to the one_in [30] dqérhaps be utilized to this end.

Finally, the analysis in this paper focused on the Gaussiathatinel as an example of a fully-
connected communication network in which interferencgrahent seems necessary. The hope is that
the tools developed in this paper can be used to help with taysis of more general networks
requiring interference alignment. Ultimately, the goabsld be to move from degrees-of-freedom capacity
approximations to stronger constant-gap capacity appratons.

APPENDIX A
VERIFICATION OF DECODING CONDITIONS

This appendix verifies that the rate allocation in SeclioAlYér the deterministic X-channel satisfies
the decoding condition§ (119) and {20) in Lemima 7.
Case | O < Nyg +ng < nll): Recall

N1 — Noa,

oy
ok
> [>

AP
R22 Nz — Nq2,

R 2 Ris & Ry £0.

juy]
NS
13

This choice of rates satisfids (19a) ahd (20a). Since thestharonly two relevant conditions in this case,
this shows that both receivers can recover the desired gessa
Case Il (111 < ni2 + ng < ng): Recall

P A
Ru = N1 — Nay,

—
Rgg = Ng2 — Ni2,

RS, & mip — RY),
RS 2 Riy 2 Ry 2 0.
At receiver one,[(19a) and (19b) are satisfied since
R(232 + RZ = n1z < Ny
Condition [19¢t) does not need to be checked here. At receinr(20a) is satisfied since
RS, + RS, = noy + nay — nyy < nop.

Conditions [[20b) and (20c) do not need to be checked hereceHeoth receivers can decode successfully.
Case Il 6122 < Mnig+no1 < npp+ %ngg): Recall

RZ = ni1 — Naa,

RZ £ Nag — N2,

R12 = (n12 + 2191 — N1 — n22)+,
R21 = (n21 + 21190 — ny1 — n22)+,
R(fl £ N2l — 1?52 - Rzl,

R% e N1o — RZ — ng.
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To check the decoding conditiorls {19) and](20), we first athae

max{ Ry, Rgﬁ = Rgz» (64a)
max{ng, R%} = R% (64b)

The first equality trivially holds ifR,; = 0. Assuming then thaR,, > 0, we have
Rz% - R21 = N2 — N2 — Rm-
If Ry, =0, then this is nonnegative. Assuming th&m, > 0, we obtain
RS, — Roy = 2ngs + nyy — 2(naz + nat) > 0,

where we have used that, > n,; and thatn; + %ngg > ni9 + noi. This proves[(64a). Using a similar

argument, it can be shown th&, — Ry, > 0, proving [64b). To check the decoding conditions] (19) at
receiver one, observe now that

Rgé ‘l‘ RlZ + Rlpl = N9,
satisfying [(19b). Moreover,
R% + RQCQ + ng -+ Rlpl = R% + N2
= 2n19 + Nap — Ngg — Ry
< nu
satisfying [19h). Finally, ifR,, > 0, then
Ry + R!fl = N1z + Ng1 — Nag,

satisfying [I9k); and ifR,, = 0, then [I9t) is irrelevant. Using a similar argument, it canshown that
the decoding condition$ (R0) at receiver two hold.

Case IV @1 + %nm <niz+ng < %nm): Recall

R!fl £ ni1 — Nai,

RS} £ Ngo — N2,

R21 £ Ln12 - %nzﬂ,

Rm £ Rlcl £ an - %n22j7
RSZ é Moo — N91.

To check the decoding conditions, note first that
max{ Ry, R5,} = R5,,
max{ Ry, R} = RY;,
since

3ngs > niz + Ny
by assumption. For receiver one, we then have
RS, + RS, + Rip + RY, < nyy,
satisfying [19R). Moreover,
RS, + Ris + Ry <yt + 2nas — nay < myo,
where we have used,; + %nm < nio + ng1. Hence [(19b) is satisfied. Finally,

" 5P 1
Ris + Ryp <yt — 5noe < ngg + Ngp — Mg,
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where we have again used; + %nm < mia + n91. Hence [(19c) is satisfied. Together, this shows that
decoding is successful at receiver one. At receiver two, axeh

RS, + RS, + Ry + RS, < ngo,

satisfying [20R), and - _ _
R% + Ro1 + R;} < noy,

satisfying [(20b). Finally,

5 5P 1
Ro1 + Ry < 5nge < nyg + ngy — nay,

where we have usead;; + %nm < nio +ng;. Hence [(20c) is satisfied. Together, this shows that degodin
is successful at receiver two.
Case V €7’L22 < Nig +n9; < njp + ngg): Recall
Ri £ gy — nat,
RS} £ Nag — N2,
R £ Rlcl £ L%nzl - %nmJ,
Ry £ RSZ £ L%nlz - %nmj-
For decoding at receiver one, we need to verify the decodimglitions [19). We have
RY + R3, + Rip + RY) < nay,
satisfying [19k). Moreover,
RS, + Ris + Ry} < nup+ iz — 2(na1 + niz) < naa,
where we have usedln;; < 3ng < nis + ngy This satisfies[(I9b). Finally

Ry + Ry < nyy — (g + nay)
= N1 + Nz + No1 — %(nm +na1)
< nyp + nig + ngr — 2N
< nyg + nap — Nag,
where we have used that, + ny; > %nm. Hence [(19c) is satisfied. A similar argument shows that the
decoding conditiond (20) at receiver two hold. Hence deupd successful at both receivers.

APPENDIX B
PROOF OFLEMMA [8/IN SECTION[V-BI

Throughout this proof, we make use of the fact that, for thedutated) deterministic X-channél (17),
the definition of capacity imposes that

(T _
all) & (@)L,

is only a function ofw,,y.
We start with [[26k). Defing,, as the contribution of the second transmitter at the firstivec, i.e.,

N . (0
512 = G2 (u%) @ G (u%) .
Let 555 denote the contribution of the second transmitter at therskceceiver, i.e.,

— A — — — —_
829 = Gytioy ® Gyptya.
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Similarly, we defines;; ands,; as the contributions of the first transmitter at the first agxbsad receivers,
respectively. With this, we can rewrite the received veetbreceiverm as
gm = Sm1 D Sma-

For block lengthT’, we have

T(Rys — &) < I (was; y2 )
< ](w 2ay2 312 vu§1)>ug1)>w12)
- I(w22, yz 312 ‘ "_‘g 777121 7w12)
= I(w22, 322 ,512 ‘ w12)
= I(w22, 312 ‘ w12) + I(w227 522 ‘ 312 ,wlg)
<H 312 }wlg + H( 322 }312 ,Wi2), (65)

where the first step follows from Fano’s inequality. In agidit using again Fano’s inequality,
T(Ri1 + Ria — €) < I(wir, wia; Q%T))

< I (w11, wiz, war; Q@)

= H(’Q;ET)) — H(’Q;ET) ‘ w1, w127w21)

= H(g") - H(s1 | wio). (66)
Adding (65) and[(66) yields

T(Ry + Ryg + Ryy —2¢) < H(y%T)) + H(.s22 } 312 ,wlg)
For the first term on the right-hand side, we have
H(y%T)) S Tmax{nll, ’nlg}.

For the second term, recall thﬁ\g) is a function of onlyw;, and hence

H 522 } 512 ,wlg) < H(ég) ‘ §§2 ,ug))

Gy ((z?())“) )

SinceG,,;, is lower triangular with nonzero diagonal, it is invertipleplying that
H( ‘ 312 =w12) < H(u22 ‘ (ﬁ§2)(T))
= H((u22)(T) } (ﬁgz)(T))

< (ngy —nia) ™.

Together, this shows that
T(Rll + R12 + RQQ — 25) S Tmax{nll, 7’L12} + H((’a;z)(T) } (’U,22)(T)) (67)
< T'(max{ni1, ni2} + (no2 — ni2)™).
Therefore, ag” — oo ande — 0, we have[(26a). Similarly, we can prove (26k), (26c), dndl(26
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We now establish the upper bourd (P6e). Starting with Faimgguality,
T(Ryy+ Rz —¢) < I(wn,wm; 37§T))

< I (win, wia; gy, gé?v way)

= [(w11>w12a y§ )7 ‘ w21)

= ](wn,wm, 821 ‘ w21) + I(wn, Wr2; yl ‘ 321 ,w21)

< H( 521 } Wa1 +H( ‘ 821 ,w21) - ( (7 ‘ 821 7w217w117w12)

= H (5% | wa) + H (5" | 821 Lwn) = H(gt" | 85w, wir, wio, wly), wy))

= H(sy | wa) + H(gy | 85 wa) — H(8% [ wio). (68)

Similarly, we have
T(Ryy + Roy —¢) < H(s12 | wiz) + H( } 312 ,’LU12) H(§§? } Wor). (69)
Adding (68) and[(69), we obtain
T(Ruy + Rz + Roy + R — 2¢) < H (9" | 88, wa1) + H (95" | 8%, wio)
< H(g" | s ay) + H(gs" | 81, ayy)).
where in the last line we have used th‘;{fg is only a function ofw,,;. For the first term, we obtain

using invertibility of the matrice€z,,.,

H( | 5.0l

= H(ﬂgT) ‘ ("111)@) 7;?)

(o) 23
1 (G ((agym) @ G2 ((uym) @ (1ym))

Since the matrice&,,,, are lower triangular, this last term is upper bounded by

/\,..

T max{nis,n1; — Moy }-
By an analogous argument,
H( ‘ 812 ,'u,§2)) < Tmax{nay, nag — Nz}
Together, this shows that
T(Ri1 + Ria + Rt + Rap — 2¢) < T'(max{ni2,n11 — no1} + max{na;, naz — nia}),

proving (26€) as’ — oo ande — 0. Similarly, we can prove (Z25f).
We now establish the bound (26g). By Fano’s inequality,

T(Ra1 + Rao — €) < I(wa, was; 'géT))
< [(w21,w22;’$7§ ) (ug,)™ , W)
= I (war, was; Qé ) (us,) " ‘ wy2)
= I(wgl, Way; (@S,) ) ‘ w12) + I(w217 Wao; y2 ‘ w12, (u22)(T))
= H((u22) ) + I(w21,w22, sg), y2 ‘ W12 (ugz)(T))
I(Sg)v yz ‘ W12, 7~U21, W22, (UC )(T))
= H((u$,) ) + H(g5" | wia, (u5) ) - H((a$)™). (70)
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Moreover, using again Fano’s inequality,
T(Ryy — ) < I(wyy; Q%T))

< I (wyy; g\ w1z, war, Was)

= I(wyy; 37§T) } Wiz, Way, W)

= H(QSI) | w12, war, was)

= H(al)

= H((ﬂ%)(n) + H((ﬁi)(ﬂ ‘ (afl)(T))- (71)
Adding (70) and[(7) yields

T(R11 4+ Ro1 + Rop — 2¢)
< H(gy" | wia, (@) ™) + H (@)™ | () ™) + H((as,)™)
< T(max{ngl, Moo — N1} + (11 — n21)+) + H(('&%Z)(T)).
Combined with [(6l7) derived earlier, we obtain
T(2Ry1 + Riz + Ry + 2Ry — 4e)
< T'(max{ni, nio} + max{no, naz — naa} + (1 — na1) )
+ H((a5)™) + H((ak)" | (a5,)™)
= T(max{nll, nis} + max{noi, ngs — nio} + (n11 — n21)+) + H((ﬁgg)(T)).
Since (u9) ™ is a deterministic function ofu,,, we have
H((222)™) < H(wa) =T Ro. (72)
From (72), we obtain
T(2R11 + Ris + Roy + Ry — 4¢) < T(max{nlla Ny} + max{ngr, ng2 — Nia} + (N1 — n21)+).
Letting 7' — oo ande — 0 yields the upper bound (2pg). Similarly, we can prdve [2@%5j). u
Remark:Equation [(7R) is a key step in the derivation of the outer lb(#6g). If we had used the

standard bound? ((@2)™) < T max{nss, n }, we would have obtained a looser bound tHan (26g).

APPENDIX C
ANALYSIS OF MISMATCHED ENCODERS ANDDECODERS

The proof of Theorernl6 in Sectidn VI}A assumes that the peecignnel gains,,,, are available at all
encoders and decoders. Here we assume instead that theselchains are only known approximately
at any node in the network. As we will see, the only effect aé tthange in available channel state
information is to decrease the minimum constellation distaseen at the receivers.

Formally, assume both transmitters and receivers have andgss to estimates,, of h,,. satisfying

| Nk — ?Lmk| < g & Q7 MKk Nmk (73)
In other words, all transmitters and receivers have ac@easiax,, ;. n.,,-bit quantization of the channel
gains. Since we know a priori that,, € (1, 2], we can assume without loss of generality tha}, € (1, 2]
as well.

Each transmitte forms the modulated symbal,,, from the message,,,. From these modulated
signals, the channel inputs

a .
x1 = hoouy + hygua;,

. R
Ty = hortia + hiruag
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are formed. In other words, the transmitters treat the eséichchannel gaina,,, as if they were the
correct ones; the encoders are thus mismatched. The miodugabcess fromoy;, to uy;, is the same as
in the matched case analyzed in Secfion VI-A. Siffeg,| < 2 and |u,,x| < 1/4, the resulting channel
input x;, satisfies the unit average power constraint at the traressitt

The channel output at receiver one is

y1 = 2" hyywy + 2" hiowe + 21
= (h11ﬁ222nuu11 + hlziLlemum) + (512h112"11U21 + h12ﬁ112"12u(2:2) + (hmiLllQ"mU;g + 21),

As in the matched case, the received signal consists ofedesignals, interference signals, and signals
treated as noise. For the third term treated as noise, we have

|hioha2M2ub,| < 1, (74)
since
2m2yf, € [0,1/4).
The demodulator at receiver one searches($of, 512, $19) Minimizing
|y1 - ;L11H22§11 - iL12;L21=§12 - ingiL11§10|.

Note that the entire demodulation process depends soletlieorstimated channel gaiﬁsl,c and not on
the actual channel gairs,,,. Furthermore, the demodulator is the maximum-likelihoetledtor only if
the estimated channel gains coincide with the actual chayaies. Thus, the demodulator is mismatched.

We now analyze the probability of error of this mismatchedhddulator. There are two contributions
to this probability of error. One is due to noise, the othee die to mismatched detection. Set

A n A A
v = hi1heesit — higho1s12 — h12h11810>

and defineo similarly, but with respect tqs;;, 512, $12)-
We need to upper bound

P(0=q|v=4q(q1))
with ¢(q, () as defined in in Section VIJA. Let’ be the minimum distance between any two noiseless
estimated received signals (as assumed by the mismatchestid&@tor using:,,.;), i.e., between any two
possible values of. Let d be the maximum distance between the noiseless receivedl gign- z; —
hiohi12™2ub, and the estimated receivedsignal with the same channel inputs. Then
P(o =G |v=q(4,0) <Pz + |hiohi12M2uby| +d > |(|d'/2)
<P(z > [(d/2—-d—1), (75)

where we have use@([74). A
We start by upper bounding the mismatch distaicé/e have

CZ é max ‘]Algg2nllull(h11 - ]AZH) —+ 5212"1%12(}112 — ]Allg)

+ 192" gy (hay — han) + hui 22uSy (hay — ﬁlz)‘

<4.2.2m0 1.
<2, (76)

where we have use@({[73), that,,,| < 1/4, and that|/h,;| < 2.
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We continue by lower bounding the distanéebetween the estimated received signal (i.e., as assumed
by the mismatched detector) generated by the cofrgetsio, s19) and by any other triplés),, s}s, s1¢)-
By the triangle inequality,

d, é min (811 — 8,11) + ingilgl(Slg — 8/12) + ingiLll(Slo — 8,10)}

(s11,512,510)
! ! /
#(511,512>510)

Z ( min ) ‘hnhgg(sll — 8/11) + h12h21(812 — 8/12) + h12h11(810 — 8/10)‘ -3 5/2
511,512,510
#(511,512+510)

>d—8, (77)
whered denotes the minimum distande 34) in the matched case agzadah Section VI-A. Here we
have used that

|s11 — 8,11||iL112L22 — hithgs| < 2"“_1|(iL11 — hll)(hm — hao) + h22(illl — hy1) + hll(iL22 — haa)|
<gmu—lig. ¢
<5/2

by (73), and similarly for the other two terms.
Combining [76) and{47) shows that

0| d' /2 —d—1>|l|(d—8)/2 —
By (78), this implies
P(o=q|v=q(G0) <Pz >|d-8)/2-3). (78)
APPENDIX D

PROOF oFLEMMA [I0OIN SEcTIONVI-B]

The inequalities[(44a)=(44f) have been already proved 8) [lemma 5.2, Theorem 5.3]. Here we
present the proof for inequalitiels (444g)—(44j). First, vetablish the bound (449).
Define s,.x[t] as the contribution of transmittér at receiverm corrupted by receiver noisg,[t], i.e.,

Smk [t] £ 9nmk hmkl'k[t] + Zm [t]
For block lengthT’, we have

T(Ry —¢) 7~U227yz )

IA I/\

w (1)
227312 5127% ,w12

I(
I(
I(U)227 y2 512 ‘ xl w12)
I(w227322 ,812 } w12
I(wgg7 312 ‘ w12) + I(wgg7 322 } 312 ,wlg)

= h(sg ‘ wlg) — h( ) + h(522 ‘ 512 ,w12) — h(zéT)), (79)
where the first step follows from Fano’s inequality. Agaiorfr Fano’s inequality, we have

T(Ryy + Riz — ) < I(win, wis; y@)

7~U11,7~U1277~U21,?/§ ))
Y1 ) yl } w11>w12>w21)
y§T ) (512 ‘ w12) (80)

<I(
= h(y;
=



Adding (79) and[(80) yields
T(Ry1 + Rig + Rog — 26) < h(y%T)) — h(z%T)) + h 522 } 512 ,’LUlg) h(zéT)).
Using Fano’s inequality at receiver two, we have
T(Ra1 + Ry — €) < I(war, wao; yéT))
< I (war, was; yéT)a sg), wi2)

(T)

= [(w217 W2, yg 785721) ‘ ’UJ12)

_ oD (T) | (T)
= I(w21,w227812 } w12 + [(w21>w22,?/2 ‘ 512 >7~U12)

= h(sg) ‘ wl?) - h( ) + h( } 512 >7~U12) h(sglp) ‘ w21)'

Moreover, Fano’s inequality at receiver one yields

TRy —¢) <I(w11,y1 )
I(wu,% 7321 7w127w217w22)
I('wll y1 >$21 ‘ 7~U12>7~U21>7~U22)
I(w117 511 >$21 } w12,w21,w22)
s g w — h(sD D)
11 ) 21 12,w21,w22 S11 7521 W11, W12, W21, Wa2

S91 ‘ ’w21) + h(sn ‘ 321 ,wgl) h(z?),zg)).

= h(sh

Je

Adding (82) and[(8B) yields
T(Ry1+Ro1 + Rop — 2¢)

= h(sg) ‘ wi2) — h( ) + h( ‘ 312 ,wlg) + h(sll ‘ 321 ,w21) - h(ng),zéT) .

Adding (84) and[(81) derived earlier, we obtain
T(2R11 + R12 + R21 + 2R22 — 48)
S h(yET)) — Qh(ZgT)) -+ h(822 ‘ 812 ,w12) — h( (T)) + h(Sgg) ‘ wlg)
+ h(yéT) ‘ sg),wlg) + h(s11 ‘ 521 ,wgl) — h(z%T),zéT)).

Since
h(sg) ‘ wlg) + h(sg) ‘ sg),wlg) — h(ng), (T) ) = I(w22; sg), sg) ‘ wlg)
< H(wag)
- TR22>
we obtain from [(8b) that
T(2R11 + Ri2 + Ro1 + Ry — 4e)
< h(y%T)) — Qh(zfp)) — h( ) + h(y } 812 ,wlg) + h 511 } 821 ,wgl)

< h(?/gT)) - h(Z§T)) + h(yz ‘ 312 ) - h( <2 ) + h( S11 ‘ 521 ) - h( gT))

< zlo (1+22n11h2 _'_22n12h2 ) +ZIO <1+22n21h2 +%
=508 11 12) T 5 108 2T T omn 2
T 22n11 h2
=1 (1 711>
+ 2 og + 1 + 22%21 h’%l
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(81)

(82)

(83)

(84)

(85)

(86)
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where the last inequality follows from the fact that i.i.da@sian random variables maximize conditional
differential entropy. Lettingl" — oo ande — 0 proves [(44D). Inequalities (44h)—(#4j) can be proved
similarly. m

Remark:We point out that, as in the deterministic cage] (86) is a key t the derivation of the outer
bound for the Gaussian X-channel.

APPENDIX E
PROOF OFLEMMA [I3IN SECTIONVII-B]

By Fubini’'s theorem, we have fon = 1

2 2 2 2
:u4(B) = / / / / :“-B(hlla h127 h217 h22)dh22dh21dh12dhll
h11=1 J hi2=1 J ha1=1 J hao=1
2 2 2 2
[ [ [ tauhua buiha, haha) dhssdhasdhiad
h11=1 J hi2=1 J ha1=1 J hao=1

2 4 4 4
= / / / / 15(g0, 91, 92) 95 *h1i dg1dgadgodhi
hi11=1 Jgo=1 Jgo=1 J g1=1
2

< / ,U3(B)dhll
h11=1
< 4.

The situation is analogous fon = 2. [ |
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