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Abstract

The prospect of base station (BS) cooperation leading t@ mambining at widely separated antennas has
led to increased interest in macrodiversity systems, wheth sources and receive antennas are geographically
distributed. In this scenario, little is known analytigalibout channel capacity since the channel matrices have a
very general form where each path may have a different pdwesrce, in this paper we consider the ergodic sum
capacity of a macrodiversity MIMO system with arbitrary nuens of sources and receive antennas operating over
Rayleigh fading channels. For this system, we compute tlaetergodic capacity for a two-source system and a
compact approximation for the general system, which is shtawbe very accurate over a wide range of cases.
Finally, we develop a highly simplified upper-bound whichds to insights into the relationship between capacity
and the channel powers. Results are verified by Monte Canmbalations and the impact on capacity of various

channel power profiles is investigated.

Index Terms

Macrodiversity, MIMO, MIMO-MAC, Capacity, Sum-rate, Netwk MIMO, CoMP, DAS, Rayleigh fading.

I. INTRODUCTION

With the advent of network multiple input multiple output [MO) [1], base station (BS) collaboration
[2] and cooperative MIMOL[3], it is becoming more common toxsmer MIMO links where the receive
array, transmit array or both are widely separated. In tlses@arios, individual antennas from a single
effective array may be separated by a considerable distAben both transmitter and receiver have

distributed antennas, we refer to the link as a macrodigeMiMO link. Little is known analytically
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about such links, despite their growing importance in resedd]-[7] and standards where coordinated
multipoint transmission (CoMP) is part of 3GPP LTE Advanced

Some analytical progress in this area has been made redenthye performance analysis of linear
combining for macrodiversity systems in Rayleigh fading, [f2]. However, there appears to be no
work currently available on the capacity of general systahshis type. Similar work includes the
capacity analysis of Rayleigh channels with a two-sidedni€pier correlation structure [10]. However, the
Kronecker structure is much too restrictive for a macrodiitg layout and such results cannot be leveraged
here. Also, there is interesting work on system capacityp#sticular cellular structures, including Wyner’s
circular cellular array model [6] and the infinite linear leatray model[[7]. Despite these contributions,
the general macrodiversity model appears difficult to han@lhe analytical difficulties are caused by the
geographical separation of the antennas which resultsfiereint entries of the channel matrix having
different powers with an arbitrary pattern. Also, these pmwcan vary enormously when shadowing and
path loss are considered. Note that this type of channel hadsie occurs in the work of [11].

In this paper, we consider a macrodiversity MIMO multiplecegs channel (MIMO-MAC) where all
sources and receive antennas are widely separated andkalldkperience independent Rayleigh fading.
For this system, we consider the ergodic sum capacity, utideassumption of no channel state infor-
mation (CSI) at the transmitters. For two sources, we ddheeexact ergodic sum capacity. The result is
given in closed form, but the details are complicated andrfore than two sources, it would appear that
an exact approach is too complex to be useful. Hence, we @esl approximation and a bound for the
general case. The first technique is very accurate, but tinetifunal form is awkward to interpret. Hence,
a second, less accurate but simple bound is developed whila familiar and appealing structure. This
bound leads to insight into capacity behavior and its refethip with the channel powers. In_[12], we
presented a preliminary study of this problem, which foedssn the approximation for the general case.
In this paper, we have extended the conference version led@dhe exact two source results, correlated
channels, full mathematical details (see $et. IIl), a naitn for the approximate analysis (see Appendix
D) and a much wider range of scenarios, power profiles anduskson in the results section.

Note that, the methodology developed is for the case of rargitpowers for the entries in the channel
matrix. There is no restriction due to particular cellulaustures. Hence, the results and techniques may
also have applications in multivariate statistics.

The rest of the paper is laid out as follows. Secfion Il désgithe system model and Sec. 11l gives some



mathematical preliminaries required in the analysis. iBedV]provides an exact analysis for the case of
two source antennas. Sectidns V VI consider the casebitfaaly numbers of sources and develop

accurate approximations and bounds on capacity. Resulte@mclusions appear in Se€s. VIl dnd VIII.

[l. SYSTEM MODEL

Consider a MIMO-MAC link with M base stations antl’ users operating over a Rayleigh channel
where BSi hasnpg, receive antennas and usenasn; antennas. The total number of receive antennas is
denotedny = Y°, np, and the total number of transmit antennas is dendted >!", n,. An example
of such a system is shown in Fig. 1, where three BSs are linked backhaul processing unit (BPU)
and communicate with multiple, mobile users. All channets eonsidered to be independent since the
correlated channel scenario can be transformed into thepentlent case as shown in Sec. lll-A. The

system equation is given by
r=Hs+n, (1)

wherer is theC"=*! receive vectors is the combined’¥*! transmitted vector from th&’ userspn is an
additive white Gaussian noise vectar~ CN (0,0%I), andH € C"**" is the composite channel matrix
containing thell/ channel matrices from thB’” users. The ergodic sum capacity of the link depends on
the availability of channel state information (CSI) at thensmitter side. In particular, if no CSI at the

transmitter is assumed, the corresponding ergodic suncitapa [3, pp. 57]

1
E{C’}:E{log2 I+—2HHH }, (2)

o
where £ {|s;|°} =1, i=1,2,..., N, is the power of each transmitted symbol. It is convenieriahel
each column ofH ash;, i = 1,2,..., N, so thatH = (hy, h,,...,hy). The covariance matrix ok,

is defined byP, = E{hkhf} and P, = diag(Px, Po, - - ., Pupr)- Hence, theik™ element ofH is
CN (0, Py). Using this notation, we can also exprégsash; = P2uy, whereu, ~ CN (0,I). Note that,
for convenience, all the power information is containedhi@P, matrices so that there is no normalization

of the channel and, in2), the scaling factor in the capagifyation is simplyl /o2.

A. Correlated Channels

Consider the general scenario where sources and/or BSsnimatiple co-located antennas for trans-

mission and reception. Here, spatial correlation may begmiedue to the co-located antenrias [13]] [14].



Fig. 1. A network MIMO system with a 3 sector cluster. To regldhe clutter, only paths from a single source are shown.

If a Kronecker correlation model is assumed, then the coitgpohannel matrix is given by

R: 0 H.,.. . Ho.w\/R: 0
H= . . . . .

. P .. ; 3)

0 RT%M H,,, .. H,,w 0 Rt%w
where theC"#*" matrix, H,, ;, has iid elements since all the channel powers from #éster BS i are
the same. The matriR,; is the receive correlation matrix at BSand the matrixR,, is the transmit
correlation matrix at sourck as defined in [13]. Using the spectral decompositid®s,= <I>mAm-<I>Z and
Ry, = ®,.A, @) and substituting({3) intd{2) it is easily shown that the aiyawith the channel in[{3)

is statistically identical to the capacity with channel

1

Ar%l 0 H’w,ll Hw,lW A?l 0
H= Lo : . (4)
0 AT%M H, . .. H,uw 0 At%W
1 1 . . . .
Denoting [(4) byH = A?H ,A?, we see that correlation is equivalent to a scaling of thencbhby the
relevant eigenvalues i, andA,. In particular, the(u,v)th element ofH has powet\, ,,,A; ., Py, Where
P,, is the single link power from transmit antenmato receive antenna. Hence, correlation can be

handled by the same methodology developed in $eds. 1V-\th saiiitably scaled power valus

I1l. PRELIMINARIES

In this section we derive some useful results which will bedusextensively throughout the paper.

Arbitrary fixed transmit power control techniques can alsohiandled in the same way as for the correlated scenario.



Lemma 1. Let X be ann x n complex random matrix with,

E{|Xul} E{[Xw2*}

E{|Xal} E{[X2|*}

A=E{XoX} 2 , (5)
E{|Xul} E{[Xnl*}
whereo represents the Hadamard product. With this notation, tHieWeng identity holds.
E{|X"X|} = perm(4), (6)
whereperm(.) is the permanent of a square matrix defined(in! [15].
Proof: From the definition of the determinant of a generic matix= {X; s}, ,_, ,, we have
E{|X"X|} = E{ > sgn(o) HXUZ.,Z-] x [Z sgriu) HXM,Z-] } , ©)
o =1 “w i=1
whereo = (01, 09,...,0,) iS @ permutation of the integefls. .., n, the sum is over all permutations,

and sgiic) denotes the sign of the permutation. The permutatignin the second summation dfl(7)
is defined similarly. Since all the elements Xf are independent, the only terms giving non-zero value
expectations ar§["_, X,., [, X» ., Where permutatiom = b. Hence, using the permanent definition
in [15] we have
E{|X"X[} = ] Ac.i=perm(4). (8)
o 1=1

u
Corollary 1. Let X be anm xn random matrix withF {X o X} = A, whereA is anm x n deterministic
matrix andm > n. Then, the following identity holds.

E{|X"X|} = Perm(A), 9)

where PernjA) is the permanent of the rectangular matdikas defined in[[15].

Proof: Using the Cauchy-Binet formula for the determinant of thedoict of two rectangular matrices,

we can expanc]X Hx \ as a sum of products of two square matrices. Each productuzregnatrices



can be evaluated using Leminla 1. The resulting expressia@eis ® be the permanent of the rectangular

matrix, A, which completes the proof. [ ]

Corollary 2. Let X be anm xn random matrix withF {X o X} = A, whereA is anm x n deterministic

matrix andm > n. If the m x m deterministic matrix2 is diagonal, then the following identity holds.

E{|X"sX|} = Perm(ZA). (10)

Proof: The result follows directly from Lemmia 1, and the fact o X2 = X for any diagonal
matrix. [ |
Next, we give a definition for the elementary symmetric fimct(esf) of degreek in n variables,

X1, Xo,..., X, [16]. Lete, (X1, Xo, ..., X,,) be thek! degree esf, then

er (X1, Xo, ..., X)) = > Xy, ... X, (11)

1<h <lo<-<lp<n
It is apparent from[(11) that) (X, X5,..., X,,) = 1 ande, (X1, Xs,..., X,,) = X1 X5... X,,. In general,
the esf of degreé in n variables, for any < n, is formed by adding together all distinct productskof

distinct variables.

Lemma 2. [16] let X be ann xn complex symmetric positive definite matrix with eigenvalue. . ., \,.

Then, the following identity holds.
er (A1, Aoy ) =T (X)) (12)

where

> [ X 1<k<n

Try (X) =41 k=0 (13)

0 k> n,

\

whereoy, ,, is an ordered subset ¢f.} = {1,...,n} of length%k and the summation is over all such subsets.

X ,,, denotes the principal submatrix of formed by taking only the rows and columns indexed by

Uk,n-



In generaI,Xg;f:: denotes the submatrix oX formed by taking only the rows and columns indexed
by 0., and p,,, respectively, wherer,,, and p,, are length/ subsets of{1,2,...,n}. If either o,

or 1., contains the complete set (i.ey,, = {1,2,...,n} or u.,, = {1,2,...,n}), the corresponding
subscript/superscript may be dropped. When = 1.,,,, only one subscript/superscript may be shown for
brevity.

Next, we present three axiomatic identities for permanemtich are required in Set.]V.

o Axiom % Let A be an arbitraryn x n matrix, then
Y Perm((A)or) =Y Perm((A)oO’m> —1. (14)
« Axiom 2 Let A be an arbitraryn x n matrix, then
S Perm((A)%m) =Y Perm((4)™"). (15)
« Axiom 3 For an empty matrixA,

Perm(A) = 1. (16)

IV. EXACT SMALL SYSTEM ANALYSIS

In this section, we derive the exact ergodic sum capacit@)ridr the N = 2 case. This corresponds to

two single antenna users or a single user with two distribatgennas. Here, the channel matrix becomes

|

1 1 -
I+— <I+ﬁh1hf ) hohi!

H = (hy,h,y) and it is straightforward to writd [2) as

E{C}In2= E{ln

+E{m }

20+ Cs. (17)

1, um
I+ —hihy

Both C; andC;, can be expressed as scalars [17]) [18, pp. 48], so the caamtysis simply requires
1Y
Cl =F<In|(1 + ghl h1 y (18)

-1
C,=E {m <1+i2h§ (I+i2h1h{f) h2> } . (19)
o g



In order to facilitate our analysis, it is useful to avoid tbgarithm representations ih_(18) and|(19). We

exchange logarithms for exponentials as follows. First,n@te the identity,

1:/ e~“dt, for a>0. (20)
0

a

Now equation[(20) can be used to fihda as below:

Ona _ / et dt, (21)

da 0

Ina a [e%S)
/ dlna = / e “dtda, (22)
0 1 Jo
o ,—t _ ,—at
Ina = / £ (23)
0 t

This manipulation is useful because there are many resuiishwcan be applied to exponentials of
guadratic forms, whereas few results exist for logarithAsan example, using (23) ih (IL8) gives

- (1+;1§hfh1>t

C - E / at \ 24)
; n

Note thata = 1 + J%hfhl has been used in_(23). Siee> 1, it follows that the integrand in(24) is
non-negative. Also, the expected valug,, is clearly finite and so, by Fubini’s theorem, the order of
expectation and integration ifi_(24) may be interchangedndJthe Gaussian integral identity![9], the

expectation in[(24) can be computed to give

oo —t —t
C) = / S (25)
.t

whereX; = I + 5 P;. Hence, the log-exponential conversion inl(23) leads to aageable integral for

(. Using the same approach and applyingl (23)d (19) gives

o otk (T sk h
Co=E / 67—6 t dt S (26)
0




The expectation in[(26) has to be calculated in two stagest, Fhe expectation ovér, can be solved

using the Gaussian integral identity [9] and, with some gificptions, we arrive at

00—t et <O'2 -+ h{{}h)
Cy= / S dt, (27)
o £ (02 + h{fzglhl)

where¥, = I+ ;—QPQ. Interchange of the expectation and integralid (27) foddmm the same arguments

used forC;. Equation[(2F7) can be further simplified to give

Cy = / T g, {1 / ¥ PR hy dt} . 28)
ot t[Es B R N <a2 +hf2;1h1)
Defining the third term in[(28) a$,, the ergodic sum capacity, (C) = C; + C5, becomes
E{C}:i{ifa —Ib} (29)
In 2 — F ’

where

[e’e] e—t e—t )
1, = — = dt. 30
* /o ( t B (30)

Substituting forS), in 30) and expandingt |Z,|) " gives

nR 00 G_t
I, = i / dt, 31
k ; Nik 0 + + % ( )
where
n 1
ST — (32)
Hl;ﬁz ( P”f)

Note that the firse~*/t term in [30) cancels out with one of the terms in the partiattion expansion
leaving only the linear terms shown in the denominatorLof).(3he integrals in[(31) can be solved in

closed form[[19] to give

Z mkepﬂv Ey <

In order to computd, we use([9, Lemma 1] to give

/ / et OF {6—9121 9222}
|22 91

) | (33)

zk

dbydt, (34)

01=0
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wherez; = hi'P,2;'h, and z, = 0% + 'S, h,. The expectation in(34) can be solved as[inh [9], and

with some manipulations we arrive at

00008
w=-[f
) )y 96,

In Appendix[A, I, in ([35) is calculated in closed form and the final result isegivoy

_ 2 2
eata@g

I +tP; + 0,P, Py + 0,P)|

] dfodt. (35)

"R MR TR £ biki _Nbikl
h=- |PP2 {ZZZ " >} .

=1 k#i l#i,k

where Mbikl, sz‘kl’ J; and &;,; are given in[(91),[(95),[(72) and_(82) respectively. Them, final result

becomes

E{C}_T{i e (F)

k=1 =1

ii i Eikl ( bikr Nbl’“’)] } . (37)

=1 k#i l#i,k

V. APPROXIMATE GENERAL ANALYSIS

In this section, we present an approximate ergodic sum rapaaity analysis for the case where
ng > N > 2. Extending this toN > ng is a simple extension of the current analysis. We use the

following notation for the channel matrix,

H- (ﬁN, hN) (38a)
= (Hx-1.hy o1, hy) (38b)
= <ﬁk7hk e 7hN—17hN> (38¢)
= (hy,ho, ... hy), (38d)

where theny x (k — 1) matrix, H;, comprises thé: — 1 columns to the left of,, in H. Using the same

representation as ih_(IL7), the ergodic sum capacity is defiyel3] as,

N
E{C}m2£) ¢y, (39)
k=1
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} (40)
Lo (1 (1) o)

Applying (23) to [41) gives

where

-1
C.=F {m I+i2 <I+i2ﬂkﬂf) hihl
(o (o

ol + ﬁ,ljffk ) " 42)
‘ ;

00—t et
- [ e
0o ! £ 5] ‘0—2I+Hk SO,
whereX;, = I + 5 P;. In order to calculate the second term [in](42), the followaxpectation needs to

be calculated,

_ 1 ‘0’2I+HkHINIk}
et) = g P b (43)
k )021+Hk N Hk‘

Exact analysis off;, (t) is cumbersome, and even thé = 2 case (see thé, calculation in [3b)) is

complicated. Hence, we employ a Laplace type approximd@6h so thatlj (t) can be approximated
by
~ H ~
Ik(t)2|2‘ ) e 17 .
K E{‘a I+H'S; Hk)}

(44)

Note that the Laplace approximation is better known foromtf scalar quadratic forms [20]. However,
the identity in both the numerator and denominator[of (43) ba expressed as the limit of a Wishart
matrix as in [22]. This gived (43) as ratio of determinantsradtrix quadratic forms which in turn can be
decomposed to give a product of scalar quadratic forms appeAdix D and[[23]. Hence, the Laplace
approximation for[(43) has some motivation in the work[of][20can also be thought of as a first order

delta expansion [24]. From AppendiX B, the expectation i mumerator of((44) is given by
~ H ~ k_l k i—1
E{|o* + H, Hy| =3 3" Perm((@,) ) (o2) ", (45)
=0 o
where@, is defined in[(100). From Appendix C, the expectation in theodeinator of [(44) is given by

=8

o2l + ﬁfzglﬁk‘} - an t o, (46)
=0
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where, is given in [110). Thereforel,, (t) becomes

I () ~ % (47)
_ © (@) (48)

Pkng Z?ZRO (gpi—ilﬂ,> t!
© (@) (49)

kg LI (E+ wr)’

where

ZZ Perm((Q,)7*) (63" (50)

=0 o
Note thatwy, > 0 for all [, k from Descartes’ rule of signs as all the coefficients of thenamoial in the

denominator of[(48) are positive. Also note that, frdam (110§ have® (Q.) = ¢ro- Applying (49) in
@2) gives

ooe—t SOkO €_t
oo~ [ i dt. (51)
ot Prengt L5t +wr)

Using a partial fraction expansion for the product in theateimator of the second term df (51) gives

1 Cko Cri
7 = , 52
tHl:Rl (t+wkl Z t+ wi (52)
where
1 Pkng
= — — 53
o Huil Wk, Pko ( )
and
1
Crt = T (54)
Wil Hu# (wku Wkl)
Applying (52) in [42) gives
nRr 00
C, ~ 20 / Sk gy (55)
Pkng l ~ Jo T+ wy
= Yko ZCkle klEl (A)kl). (56)

Phnr 17
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Then, applying[(56) in[(39) gives the final approximate eigalim rate capacity as

N ng
AL 1 ko Wil
E{C} = o 321 <<leR ;21 Crie“ " By (wkl)> . (57)

Note the simplicity of the general approximation in](57) iongparison to the two-user exact results in

@D).

VI. A SiMmpLE CAPACITY BOUND

In this section, we derive an extremely simple upper-bowndHe ergodic capacity in2). This provides
a simpler relationship between the average link powers agadec sum capacity at the expense of a loss

in accuracy. Using Jensen’s inequality [[21] ane- Uiz equation[(R) leads to
E{C} <log, (E{|{I+~7H"H|}). (58)
From AppendiXB, [(58) can be given as

N
E{C} < log, (Z > Perm(P”Y) v‘) : (59)

=0 o
N .
= log, (Z W) . (60)
=0

whereP = (Py). The simplicity of [59) is hidden by the permanent form. Foral systems, expanding
the permanent reveals the simple relationship between piperubound and the channel powers. For
ng =N =2 andng = N = 3, (60) gives the upper bounds in_{61) and](62) respectivetgsé bounds
show the simple pattern where cross products.ofhannel powers scale thg” term. Hence, at low
SNR where they term is dominantlog, (1 + Pr¥), wherePr = >, %", Py, is an approximation td_(60).
Similarly, at high SNR, the/" term is dominant antbg, (1 + Perm(P) 7N) is an approximation. These
approximations show that capacity is affected by the sunhefchannel powers at low SNR, whereas at

high SNR, the cross products of powers becomes important.

VII. NUMERICAL AND SIMULATION RESULTS

For the numerical results, we consider three distributed B&h either a single receive antenna or
two antennas. For a two-source system, we parameterizeystens by three parameters [8].) [9]. The

average received signal to noise ratio is definedoby Pr/c?. In particular for a two-source system,
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E{C} <log, (1 + 7 (P11 + Piz + Po1 + Paz) + 7% (P11 Pog + P12P21)) . (61)

E{C} <logy (147 (P11 + P12 + Pi3 + P21 + Pas + Poz + P31 + P3y + Ps3)
+ 4% (P11 Pay + P11 P33 + Pa1 Pia + P21 Psy + P31 Pio + P31 Pag + Py Pas + P11 Py + Por Pis
+ Po1 P33+ P31 P13 + P31 Pog + PraPog + PraPsg + Pag Pi3 + Paa Pz + P3a P13 + P3a Pa3)
+ 4° (P11 P22 P33 4 P11 Pag Psy + P13y Pa1 Ps3 + Pia Py Pog + PysPay Psy + P13 Py Pyy)) .

(62)

p = (Tr(Py) + Tr(P5)) /o*. The total signal to interference ratio is defineddsby Tr (P;) /Tr (P3). The
spread of the signal power across the three BS locationssisveed to follow an exponential profile, as
in [22], so that a range of possibilities can be covered wiily @mne parameter. The exponential profile

is defined by
Py = K, (o) o', (63)
for receive location € {1, 2,3} and source: where
Ki(a)=Tr(Py)/(1+a+0a?), k=12, (64)

and o > 0 is the parameter controlling the uniformity of the powersoas the antennas. Note that as
a — 0 the received power is dominant at the first locationpdsecomes largéa > 1) the third location

is dominant and asx — 1 there is an even spread, as in the standard microdiverséyaso. Using
these parameters, eight scenarios are given in Table | éocdbe of two single antenna users. In Eig. 2,
we explore the capacity of scenarios S1-S4 whege= 3. The capacity result i (37) agrees with the
simulations for all scenarios, thus verifying the exactlgsia. Furthermore, the approximation in {(57)
is shown to be extremely accurate. All capacity results ateemely similar except for S1, where both
sources have their dominant path at the first receive antétera, the system is largely overloaded (two
strong signals at a single antenna) and the performancees.ldhe similarity of S3 and S4 is interesting
as they represent very different systems. In S3, the twosumer essentially separate with the dominant
channels being at different antennas. In S4, both usersg@wver equally spread over all antennas so the
users are sharing all available channels. Figuire 3 folldvessame pattern with S6 (the overloaded case)
being lower and the other scenarios almost equivalent. gn[F,ithe overall capacity level is reduced in
comparison to Fig.]2 as= 10 implies a weaker second source.

Figures 4 and]5 show results for a random drop scenario With- nr = 3,WW = N = 3 andnp =
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6, M =3,W = N = 6 respectively. In each random drop, uniform random locatiare created for the
users and lognormal shadow fading and path loss are coadiadnerecsr = 8dB (standard deviation
of shadow fading) and = 3.5 (path loss exponent). The transmit power of the sourcesalkedso that
all locations in the coverage area have a maximum received §ater tharsdB, at least95% of the
time. The maximum SNR is taken over the 3 BSs. Hence, each ghauces a differenP matrix and
independent channels are assumed. The excellent agrebetaren the approximation ia_(57) and the
simulations in both Fid.]4 and Fifgl 5 is encouraging as thmatestrates the accuracy 6f{57) over different
system sizes as well as over completely different sets afiradlgpowers. Note that at high SNR, Fid. 5
gives much higher capacity values than [Eig. 4 since ther® aeeeive antenna rather than 3. In this high
SNR region, they" term in [60) dominates and capacity can be approximateddyy(1 + Perm(P)¥").
With ng = N = 3 there are 6 cross products in PgtR) whereas withny = N = 6 there are 720 cross
products. Hence, the bound clearly demonstrates the teméfincreased antenna numbers. In practice
there is a trade-off between the costs of increased cobdibor between possibly distant BSs and the
resulting increase in system capacity. In FIgs.[2 - 5, at INRShe capacity is controlled b¥r. Hence,
sincep = Pr/o?, all four drops have similar performance at low SNR and djeeast higher SNR where
the channel profiles affect the results. The upper bound asdcated approximations are shown in Figs.
and[Y both for a two user scenario (S3) and a random drop.dnl@;ithe upper bound is shown
for scenario S3 as well as the high and low SNR approximatidhse results clearly show the loss in
accuracy resulting from the use of the simple Jensen boupndelkr, the bound is quite reasonable
over the whole SNR range. The low SNR approximations areeqeiasonable below 0 dB and the high
SNR version is as accurate as the bound above 15 dB. In Fignilaisresults are shown for a random
drop with M = ng = 6,W = N = 6. Here, similar patterns are observed but the low and high SNR
approximations become reasonable at more widely spreadv@Ni@s. For example, the low SNR results
are accurate below 0 dB and the high SNR results are poor anttiind 30 dB. In contrast, the upper
bound is reasonable throughout. Hence, although there mtieeable capacity error at high SNR, the
cross-product coefficients in_(61) arid {62) are seen to axpiee large majority of the ergodic capacity

behavior.

VIIl. CONCLUSION

In this paper, we have studied the ergodic sum capacity ofydelRih fading macrodiversity MIMO-

MAC. The results obtained are shown to be valid for both iraelent channels and correlated channels,
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TABLE |
PARAMETERS FORFIGURESZIAND [3

Decay Parameter
Sc. No.|User 1l |User2 | ¢
S1 a=01|a=01|1
S2 a=01|a=1 1
S3 a=01|a=10 | 1
S4 a=1 a=1 1
S5 a=01|a=01|10
S6 a=01|a= 10
S7 a=01|a=10 |10
S8 a=1 a=0.1]10
18 T T
Simulation
16[| . — - Analytical approximation
® Exact ) L

Ergodic Capacity bits/s/Hz

0 5 10 15 20 25 30
p [dB]

Fig. 2. Exact, approximated and simulated ergodic sum dgpacflat Rayleigh fading for scenarios S1-S4 with paramgter = 3,

N =W =2and¢ = 1.

which may occur when some of the distributed transmit/recécations have closely spaced antennas.
In particular, we derive exact results for the two-sourcenscio and approximate results for the general
case. The approximations have a simple form and are showe i@ty accurate over a wide range of

channel powers. In addition, a simple upper bound is pregewhich demonstrates the importance of

various channel power cross products in determining capaci

APPENDIX A

DERIVATION OF I

From (35%),I, can be written as

L=t (65)

01=0
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16 ‘
Simulation 57
14| -—-—- Analytical approximation \
® Exact 1

= =
o [N}
T T

Ergodic Capacity bits/s/Hz
©

0 5 10 15 20 25 30
p [dB]

Fig. 3. Exact, approximated and simulated ergodic sum dgpacflat Rayleigh fading for scenarios S5-S8 with paramgter = 3,
N =W =2 ands = 10.

22 ‘ ‘
| | — Simulation
Analytical approximation

Ergodic Capacity bits/s/Hz

-5 0 5 10 15 20 25 30
p [dB]

Fig. 4. Approximated and simulated ergodic sum capacityanRayleigh fading folMl = ng = 3, W = N = 3 and four random drops.

where

~ 00 oo 6—0'2t—0'292
I, = — - dBydt. 66
’ /0 /0 [ (1 +tPy+ 6, P1 Py + 0:P;) 2 (66)

From (66), L, becomes

00 00 6—0'2t—0'292
L, — / / dbsdt. (67)
0 OH?ji(@l—i-g—fQ-l-PL“ L )

Pi1 Pia
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35 ‘ ‘
— Simulation
‘‘‘‘‘ Analytical approximation /]

30

Ergodic Capacity bits/s/Hz

-5 0 5 10 15 20 25 30
p [dB]

Fig. 5. Approximated and simulated ergodic sum capacity ah Rayleigh fading fomg = 6, M = 3, W = N = 6 and four random
drops.

18 ‘ ‘
Simulation
1611 e Exact

————— Analytical approx.
I -—*— Simplified approx. /
-=6—High SNR approx.
-—0—Low SNR approx.

-

i
N
.

[
N
T

Ergodic Capacity bits/s/Hz

10} )
e
./
8 ./'e 7
./
(<2
6 7 1
/O/
a4t e 1
2, .
- - 1 1 1 1
-10 -5 0 5 10 15 20 25 30

p [dB]

Fig. 6. Ergodic sum capacity in flat Rayleigh fading for scem&3 with parametersM =nr =3, W = N =2 and¢ = 1.
Defining
Ly = — |P1Ps| I, (68)

we use a partial fraction expansionfipto give

nR 00 0O Az 6) ,t 6—0215—0292
Ly=)Y_ /0 /0 ( (62,) dbydt, (69)

. B 4t 1
i=1 01 + Pig - Pi Pilpi2>




w
o

— Simulation

L= — Analytical approx.
-—#*— Simplified bound
| | - —¢—- High SNR approx
-—0—Low SNR approx.

w
o

N
ol

N
o
T

Ergodic Capacity bits/s/Hz
[
(9]

=
o
T

10 15 20 25 30
p [dB]

Fig. 7. Ergodic sum capacity in flat Rayleigh fading for a ramddrop with parametersir =6, M =3 andW = N = 6.

where
Ay (02,4) = !
e HZ;ZZ (b + Bint + i)

11
Y Pe P
1 1

Bik = =5 —
Pa F
Yik = R, — R

1
Ri — .
Py Py

To compute[(69), the following substitutions are employed

u= ot + o%0,

t+92
Py P

V; =

The Jacobian of the transformation [n_(¥1b) can be caladlate

1 1
.= 2 —
J, =0 (B’ Pﬂ).

Substituting [(71b) and (72) in (69) gives

L i /00/13;2 A; (u, vi) e dvidu
b= .
i=1 70 /5y Ji (Vi + 01 + Ry)
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(70a)

(70b)
(70c)

(70d)

(70e)

(71a)

(71b)

(72)

(73)



where

1
Ai u,v;) = n
(w2) [13Z; (amvi + biru + 7ir)
2

Qi = % (aik - @k)

b-:l Biw _ ik
P\ Py Py

The termA; (u, v;) in (74d) can be written as a summation using partial frastita give

Ay (u,05) = Z Biy, (u)

"z Vi + g+ iy

where

(aik)nR_g

B I_IZ,Z;C (Cirrtr + diry)

Cikl = bi@i, — airbig

ikt = QiYit — VikQil

bi
Qik = —
ik
Vik
ik — —.
ik

Substituting [(7b) in[(Z3) and simplifying gives

I _ii/m/#ﬁ B (u)e ™ dv;du
'L —Jy ) -, Ji (04 R) (v + quu+ i)

First, we integrate over; in (74) to give

Lb _ ”ZR ”ZR /oo Czk (u, 91) e v I <# —+ ‘91 + RZ)()\zku + Tz'k) "
i=1 ki 0 J (Pfc# + 6, + Ri)(uiku + 7ik)
where
Cir (u,01) =
k (w:61) Qi + 1 — 01 — R;
1
Ak = Poo? + Qik
1

ik = + Qik-
ik Pyo® Qik
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(74a)

(74b)

(74c)

(75)

(76a)

(76b)
(760)

(76d)

(76e)

(77)

(78)

(79a)
(79b)

(79c)



Let
(ﬁ + 91 + Rz)()\zku —+ Tik)

Dz’k (u, 91) = ln
(# + 91 -+ RZ>(,ulku + Tz'k)

)

then By, (u) in (76a) can be rewritten as the summation

S Eikl

B, = —_—
e (u) Cirit + digg

I£ik

where

(aikcikl)nR_g

T[22, ) (diksCing — Cirodira)
z#i4,k,l

Substituting [(811) and(79c) i (V8) gives

Sikl =

nR NR NR
&kl du

L DZ 9 .

" ;;l;/ (1, 61) Ji (Cirw + digt) (v + 1 — 61 — R;)

Equation [[(8B) can be further simplified to give

i i i Sini Mblu Nbim)’

1=1 k#i l#ik

where

M / D,k U 91 du
bt fi(0h) (u+em)

N / Dy (u, 6y) du
bt f(01) (u+ f2(61))

ande;,; = diy/ciy- Next, we introduce the following linear functions 6f:

f1 (91) = Nik — Cir1bh

0
fo (61) = magy — —,

qik

21

(80a)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)
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0 [Dik (u,@l)] _ Cikl (Pig_gz + Ri) (Nigu + i) N 1 Piyo? ~ Po? -
s | )

961 | f1(61) ik (# + Ri) (piku + 71 Mkl | (u+ g—i) (u + g;
~ 8Mb /OO 0 |:D1k (u,@l)} du
M ) _ ikl — _ 92
biki 891 9:=0 0 891 f1 (91) 6,=0 (U + eikl) ( )
~ 8Nb, > 0 Dik (u, 91) du > Dik (u, 6‘1) 1/qik
T -/ o (93)
T80 gy Jo 001 | F1(01) Jgo (wtmia)  Jo U 01 oo (ut mim)?
~ Czkl 1
My, = |:H1 <R17Ezkla 2 ) + Hi (Tik, €ikts i) — Hi (Ri,aikl, m) — H;y (Tikaaikl,,uik):|
1kl ?
4 ekt Ezkl E _ 851ME (E ) — i elg_iE 02 — esiklE (E' ) (94)
. Hl 1 \&kl ikl 1 HQ 1 \Cikl 3
~ Cikl 1 1
Ny, = 2 Ho | Ry, myp, Prao? + Ho (i, mikt, Nike) — Ho | Ris mig, Po?) Hy (Tik, Mk, ik
Cikl 1 1
+ n2_ [H1 (Ri,mikh m) + Hi (rik, Makt, i) — Hi <Ri7mikl7 m) — H;y (Tikamiklvﬂik):|
M | £ o’ : mih, [ 22 o? »
L i1 | — Mk E 3 — P2 |y — Mk E i R 95
+ Nkl [e o (Pil ¢ 1 (miwt) Nkl e Py ¢ 1 (mata) (®5)
where
Cikl
Niki = TikCikl — AikiQik — é (89)
(2
Vik 1
Mgl = — — : (90)
’ bik Gir R

Next, we can differentiatd/,.,, and N,,,, and integrate ovet to give the final result along witth_(65) and
(€8). Hence, from[(87) and (80a) we gkt](91). Substituting) (@ (83) and [(86) we gef (92) and (93).
(92) and [(9B) can be solved in closed form to givel (94) and, (@bkere we have used the two integrals
defined as follows

* et (ct + a)
H, (a,b,¢) = / € niara)y (96)
1(a;b,0) 0 t+b

Hy (a,b,¢) = /0 h %dt 97)



23

and the constants are given by

1 , 1

/ _ —
R R A 2\
<5z’kl - Pﬂ) (&kl - P_z-z)

1 1
/o /—
My = 7N Mk = o\
ag ag
(mikl - pﬂ> (mikl - Pi2)

Both H; and H, can be solved in closed form as

H, (a,b,c) =¢° [El (b)Inc+ D, <% — b, b)} ;

1

(¢-0)

Hy(a,b,c) =Inc E N (b)} —2¢"D, (% — b, b) + [ebEl (b) —e< F, (2)] ;

where D, (a, b) is defined by

[ee} —tl
Dl(a,b):/ Wdt, for b0,
b

APPENDIX B

CALCULATION OF E{‘O’ZI +fIkaIk‘}

Let A, Ao, ..., A1 be the ordered eigenvaluesﬁifﬁk. Sinceng > (k — 1), all eigenvalues are non

zero. Then,

k—1
1 ) :E{ (UM.)}

o
_ E{Z Tr, (HfHk) (02)’“""1} , (98)

where [98) is from[(I11) and Lemrh& 2. Therefore, the buildilegk of this expectation i& {Tri (ﬁkHﬁk) }

B

From LemmdR

(99)

Therefore, from Lemmal 1,
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where theng x (k — 1) matrix, @,, is given by
E {fIk o ﬂk} ~Q,. (100)

Note that summation in_(100) he(§;1) terms. Then, the final expression becomes

E{)021+I§Tfﬁk‘} ZZ Perm((Q,)"* ") (o 2)I‘H_l. (101)

APPENDIX C

CALCULATION OF |X;| E {‘021 +fIf2;1f1k’}

A simple extension of_(45) allows the expectation in the deimator of (44) to be calculated as

E { ‘021 L H S, ‘ }:ki e (1) (02)7 7 (102)
i=0
where
Ui (t ZPerm Q)T (103)
and from [(14)
Uro (1) =1

The term in [[I0B) can be simplified usirlg{15) to obtain

Perm((Qk){k 1})

@Dki (t) = Z ’<2k) Jing (104)
Then,
k-1 4
Bl B { |01 + B SO H =)0 6 (1) (03) (105)
=0

whereg&y; (t) = |Xx| Ux; (t). From [104), we obtain

6 (1) = 3 |(®0, ., | Pem((QuY) (106)
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whereag,,,,_; ., iS the compliment o#; ,,,,. Therefore, it is apparent that; (¢) is a polynomial of degree
ng — i. Clearly || E{’021+ﬁ52;1ﬁk’} is a polynomial of degree, sincey, (t) = |Zx| is the
highest degree polynomial term inin (I03). Then,

}(2’“)5%% :nf (%)IT” ((Pk)c.,nMnR) (107)

=0

Hence, applying[{107) if(106),

i (1) = ZHRZ_Z (%)l T, <(Pk>5nR7iynR> Perm((QQf,ﬁZ?) :

o =0

and ¢y, (t) becomes
nr—i t l
Eri (t) = lz_; (;) Drli (108)
nR

(109)

Il
[
<>
T
=

where

@kli = ZTU (<Pk>6”R*iv”R> Perm<(Qk)i]:v;11?}> ’

and from [14),510 simplifies to give

o = Tr (Py) .
Equation [(10B) follows from[(108) due to the fact that

Tr, <(Pk) ) =0 for [>ng—1.

6'7LR72',7LR
Therefore, [(102) can be written as
Bl B {|o®1 + B.S B = t s (02)
which in turn can be given as

Sl B |0 + s |} = i t ou,
=0
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where

k-1
PRl = Z Dkli (Uz)k_l_z_l . (110)
i=0

APPENDIX D

EXTENDED LAPLACE TYPE APPROXIMATION

Note the well-known fact thaz?l = £ {AHA}, for an iid complex Gaussian matrix ensembde,of
CN (0, "—;) random variables, wherd is ax x k — 1 matrix as in [22]. This result can be rewritten in

the limit to giveo?I = lim_ {A" A}, Using this in [4B) gives

I, (t) = — lim E _ . , (111)
[Bel oo ] |47 A + Hfz,;lHk)
A" gl (A
—|2—1|11mE K - k)<H"21 : (112)
k| K—o0 H _% A
BB
- L im B M , (113)
| D] rroo ‘Bk EkBk‘
S i -4 _ (A Us
whereX,, = diag <I,2k ) andB;, = (H . Using the well-known fact
k
k—1 B e -1 .y
|B{'By| =[] bi: (I — By, <B,WBM> B,“.) by;. (114)
=1
from standard linear algebra, whdig is the:*” column of B;, we can approximaté (11.3) by
~ ~ H ~ -1
~ . b’ (I - B, (BLB.) BZ) by,
I, (t) ~ = JJE2 , (115)

_ _ o~ ~H - ~ -1 . g_
o1 |2 (Ek ~5$.By, (BZE}kB,ﬂ) BZZQ b
whereb,; and B, correspond to a large but finite value «af Approximation [115) assumes that the terms
in the product in[(114) are independent. This is only true mlg contains iid elements. However, in the

macrodiversity case, all the elementsbgf are not iid. Nevertheless, part bf; (the contribution fromA)

is iid. This motivates the approximation in (115). Next, waply the standard Laplace type approximation
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[20] in (115) to give

~ ~H ~ -1 .
) 1 B {bg (I - By, (BB BZ) bk,}

I (t) ~ - : (116)
~ ~ H ~ -1 .
. E {Hf;f bi! (I - By (BL.By) BZ) bm}
= : (117)
|2k 1.0 (e o« b (e b )\ ! pie
BT b (S - SeBi (BuZiBy)  BuSy ) by
_ 1 E{|B/Bi|} (118)

Hence, a combination of approximate independence, theatampproximation for quadratic forms and

the limiting version in[(1111) gives rise to the approximatissed in Sed. V. The accuracy of this approach

is numerically established in the simulation results in.S4€
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