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Abstract

The prospect of base station (BS) cooperation leading to joint combining at widely separated antennas has

led to increased interest in macrodiversity systems, whereboth sources and receive antennas are geographically

distributed. In this scenario, little is known analytically about channel capacity since the channel matrices have a

very general form where each path may have a different power.Hence, in this paper we consider the ergodic sum

capacity of a macrodiversity MIMO system with arbitrary numbers of sources and receive antennas operating over

Rayleigh fading channels. For this system, we compute the exact ergodic capacity for a two-source system and a

compact approximation for the general system, which is shown to be very accurate over a wide range of cases.

Finally, we develop a highly simplified upper-bound which leads to insights into the relationship between capacity

and the channel powers. Results are verified by Monte Carlo simulations and the impact on capacity of various

channel power profiles is investigated.

Index Terms

Macrodiversity, MIMO, MIMO-MAC, Capacity, Sum-rate, Network MIMO, CoMP, DAS, Rayleigh fading.

I. INTRODUCTION

With the advent of network multiple input multiple output (MIMO) [1], base station (BS) collaboration

[2] and cooperative MIMO [3], it is becoming more common to consider MIMO links where the receive

array, transmit array or both are widely separated. In thesescenarios, individual antennas from a single

effective array may be separated by a considerable distance. When both transmitter and receiver have

distributed antennas, we refer to the link as a macrodiversity MIMO link. Little is known analytically
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about such links, despite their growing importance in research [4]-[7] and standards where coordinated

multipoint transmission (CoMP) is part of 3GPP LTE Advanced.

Some analytical progress in this area has been made recentlyin the performance analysis of linear

combining for macrodiversity systems in Rayleigh fading [8], [9]. However, there appears to be no

work currently available on the capacity of general systemsof this type. Similar work includes the

capacity analysis of Rayleigh channels with a two-sided Kronecker correlation structure [10]. However, the

Kronecker structure is much too restrictive for a macrodiversity layout and such results cannot be leveraged

here. Also, there is interesting work on system capacity forparticular cellular structures, including Wyner’s

circular cellular array model [6] and the infinite linear cell-array model [7]. Despite these contributions,

the general macrodiversity model appears difficult to handle. The analytical difficulties are caused by the

geographical separation of the antennas which results in different entries of the channel matrix having

different powers with an arbitrary pattern. Also, these powers can vary enormously when shadowing and

path loss are considered. Note that this type of channel model also occurs in the work of [11].

In this paper, we consider a macrodiversity MIMO multiple access channel (MIMO-MAC) where all

sources and receive antennas are widely separated and all links experience independent Rayleigh fading.

For this system, we consider the ergodic sum capacity, underthe assumption of no channel state infor-

mation (CSI) at the transmitters. For two sources, we derivethe exact ergodic sum capacity. The result is

given in closed form, but the details are complicated and formore than two sources, it would appear that

an exact approach is too complex to be useful. Hence, we develop an approximation and a bound for the

general case. The first technique is very accurate, but the functional form is awkward to interpret. Hence,

a second, less accurate but simple bound is developed which has a familiar and appealing structure. This

bound leads to insight into capacity behavior and its relationship with the channel powers. In [12], we

presented a preliminary study of this problem, which focussed on the approximation for the general case.

In this paper, we have extended the conference version to include the exact two source results, correlated

channels, full mathematical details (see Sec. III), a motivation for the approximate analysis (see Appendix

D) and a much wider range of scenarios, power profiles and discussion in the results section.

Note that, the methodology developed is for the case of arbitrary powers for the entries in the channel

matrix. There is no restriction due to particular cellular structures. Hence, the results and techniques may

also have applications in multivariate statistics.

The rest of the paper is laid out as follows. Section II describes the system model and Sec. III gives some
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mathematical preliminaries required in the analysis. Section IV provides an exact analysis for the case of

two source antennas. Sections V and VI consider the case of arbitrary numbers of sources and develop

accurate approximations and bounds on capacity. Results and conclusions appear in Secs. VII and VIII.

II. SYSTEM MODEL

Consider a MIMO-MAC link withM base stations andW users operating over a Rayleigh channel

where BSi hasnRi
receive antennas and useri hasni antennas. The total number of receive antennas is

denotednR =
∑M

i=1
nRi

and the total number of transmit antennas is denotedN =
∑W

i=1
ni. An example

of such a system is shown in Fig. 1, where three BSs are linked by a backhaul processing unit (BPU)

and communicate with multiple, mobile users. All channels are considered to be independent since the

correlated channel scenario can be transformed into the independent case as shown in Sec. II-A. The

system equation is given by

rrr =HsHsHs+nnn, (1)

whererrr is theCnR×1 receive vector,sss is the combinedCN×1 transmitted vector from theW users,nnn is an

additive white Gaussian noise vector,nnn ∼ CN (000, σ2III), andHHH ∈ CnR×N is the composite channel matrix

containing theW channel matrices from theW users. The ergodic sum capacity of the link depends on

the availability of channel state information (CSI) at the transmitter side. In particular, if no CSI at the

transmitter is assumed, the corresponding ergodic sum capacity is [3, pp. 57]

E {C} = E

{

log2

∣

∣

∣

∣

III +
1

σ2
HHHHHHH

∣

∣

∣

∣

}

, (2)

whereE {|si|2} = 1, i = 1, 2, . . . , N , is the power of each transmitted symbol. It is convenient tolabel

each column ofHHH ashhhi, i = 1, 2, . . . , N , so thatHHH = (hhh1,hhh2, . . . ,hhhN ). The covariance matrix ofhhhk

is defined byPPP k = E
{

hhhkhhh
H
k

}

andPPP k = diag(P1k, P2k, . . . , PnRk). Hence, theikth element ofHHH is

CN (0, Pik). Using this notation, we can also expresshhhk ashhhk = PPP
1

2

kuuuk, whereuuuk ∼ CN (000, III). Note that,

for convenience, all the power information is contained in thePPP k matrices so that there is no normalization

of the channel and, in (2), the scaling factor in the capacityequation is simply1/σ2.

A. Correlated Channels

Consider the general scenario where sources and/or BSs havemultiple co-located antennas for trans-

mission and reception. Here, spatial correlation may be present due to the co-located antennas [13], [14].
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Fig. 1. A network MIMO system with a 3 sector cluster. To reduce the clutter, only paths from a single source are shown.

If a Kronecker correlation model is assumed, then the composite channel matrix is given by

HHH=





RRR
1

2

r1 000
...

000 RRR
1
2

rM









HHHw,11 ... HHHw,1W

...
...

...
HHHw,M1 ... HHHw,MW









RRR
1

2

t1 000
...

000 RRR
1
2

tW



 , (3)

where theCnRk
×ni matrix,HHHw,ik, has iid elements since all the channel powers from userk to BS i are

the same. The matrixRRRri is the receive correlation matrix at BSi and the matrixRRRtk is the transmit

correlation matrix at sourcek as defined in [13]. Using the spectral decompositions,RRRri = ΦΦΦriΛΛΛriΦΦΦ
H
ri and

RRRtk = ΦΦΦtkΛΛΛtkΦΦΦ
H
tk and substituting (3) into (2) it is easily shown that the capacity with the channel in (3)

is statistically identical to the capacity with channel

HHH=





ΛΛΛ
1

2

r1 000
...

000 ΛΛΛ
1

2

rM









HHHw,11 ... HHHw,1W

...
...

...
HHHw,M1 ... HHHw,MW









ΛΛΛ
1

2

t1 000
...

000 ΛΛΛ
1

2

tW



 . (4)

Denoting (4) byHHH = ΛΛΛ
1

2

rHHHwΛΛΛ
1

2

t , we see that correlation is equivalent to a scaling of the channel by the

relevant eigenvalues inΛΛΛr andΛΛΛt. In particular, the(u, v)th element ofHHH has powerΛΛΛr,uuΛΛΛt,vvPuv, where

Puv is the single link power from transmit antennav to receive antennau. Hence, correlation can be

handled by the same methodology developed in Secs. IV-VI, with suitably scaled power values1.

III. PRELIMINARIES

In this section we derive some useful results which will be used extensively throughout the paper.

1Arbitrary fixed transmit power control techniques can also be handled in the same way as for the correlated scenario.
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Lemma 1. LetXXX be ann× n complex random matrix with,

AAA=E {XXX ◦XXX} ,





















E {|X11|
2} E {|X12|

2} . . .

E {|X21|2} E {|X22|2} . . .

. . . . . . . . .

E {|Xn1|2} E {|Xn2|2} . . .





















, (5)

where◦ represents the Hadamard product. With this notation, the following identity holds.

E
{∣

∣XXXHXXX
∣

∣

}

= perm(AAA) , (6)

whereperm(.) is the permanent of a square matrix defined in [15].

Proof: From the definition of the determinant of a generic matrix,XXX = {Xi,k}i,k=1...n
, we have

E
{∣

∣XXXHXXX
∣

∣

}

= E

{[

∑

σ

sgn(σ)
n
∏

i=1

X̄σi,i

]

×

[

∑

µ

sgn(µ)
n
∏

i=1

Xµi,i

]}

, (7)

whereσ = (σ1, σ2, . . . , σn) is a permutation of the integers1, . . . , n, the sum is over all permutations,

and sgn(σ) denotes the sign of the permutation. The permutation,µ, in the second summation of (7)

is defined similarly. Since all the elements ofXXX are independent, the only terms giving non-zero value

expectations are
∏n

i=1
X̄ai,i

∏n

i=1
Xbi,i, where permutationa = b. Hence, using the permanent definition

in [15] we have

E
{∣

∣XXXHXXX
∣

∣

}

=
∑

σ

n
∏

i=1

Aσi,i = perm(AAA) . (8)

Corollary 1. LetXXX be anm×n random matrix with,E {XXX ◦XXX} = AAA, whereAAA is anm×n deterministic

matrix andm > n. Then, the following identity holds.

E
{∣

∣XXXHXXX
∣

∣

}

= Perm(AAA) , (9)

where Perm(AAA) is the permanent of the rectangular matrixAAA as defined in [15].

Proof: Using the Cauchy-Binet formula for the determinant of the product of two rectangular matrices,

we can expand
∣

∣XXXHXXX
∣

∣ as a sum of products of two square matrices. Each product of square matrices
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can be evaluated using Lemma 1. The resulting expression is seen to be the permanent of the rectangular

matrix,AAA, which completes the proof.

Corollary 2. LetXXX be anm×n random matrix with,E {XXX ◦XXX} = AAA, whereAAA is anm×n deterministic

matrix andm > n. If them×m deterministic matrixΣΣΣ is diagonal, then the following identity holds.

E
{∣

∣XXXHΣΣΣXXX
∣

∣

}

= Perm(ΣΣΣAAA) . (10)

Proof: The result follows directly from Lemma 1, and the fact thatΣΣΣ
1

2 ◦ΣΣΣ
1

2 = ΣΣΣ for any diagonal

matrix.

Next, we give a definition for the elementary symmetric function (esf) of degreek in n variables,

X1, X2, . . . , Xn [16]. Let ek (X1, X2, . . . , Xn) be thekth degree esf, then

ek (X1, X2, . . . , Xn) =
∑

1≤l1<l2<···<lk≤n

Xl1 . . .Xlk . (11)

It is apparent from (11) thate0 (X1, X2, . . . , Xn) = 1 anden (X1, X2, . . . , Xn) = X1X2 . . .Xn. In general,

the esf of degreek in n variables, for anyk ≤ n, is formed by adding together all distinct products ofk

distinct variables.

Lemma 2. [16] let XXX be ann×n complex symmetric positive definite matrix with eigenvaluesλ1, . . . , λn.

Then, the following identity holds.

ek (λ1, λ2, . . . , λn) = Trk (XXX) , (12)

where

Trk (XXX) =



























∑

σ

∣

∣XXXσk,n

∣

∣ 1 ≤ k ≤ n

1 k = 0

0 k > n,

(13)

whereσk,n is an ordered subset of{n} = {1, . . . , n} of lengthk and the summation is over all such subsets.

XXX σk,n
denotes the principal submatrix ofXXX formed by taking only the rows and columns indexed by

σk,n.
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In general,XXX µℓ,n

σℓ,n
denotes the submatrix ofXXX formed by taking only the rows and columns indexed

by σℓ,n and µℓ,n respectively, whereσℓ,n and µℓ,n are lengthℓ subsets of{1, 2, . . . , n}. If either σℓ,n

or µℓ,n contains the complete set (i.e.,σℓ,n = {1, 2, . . . , n} or µℓ,n = {1, 2, . . . , n}), the corresponding

subscript/superscript may be dropped. Whenσℓ,n = µℓ,n, only one subscript/superscript may be shown for

brevity.

Next, we present three axiomatic identities for permanentswhich are required in Sec. V.

• Axiom 1: Let AAA be an arbitrarym× n matrix, then

∑

σ

Perm((AAA)µ0,n) =
∑

σ

Perm
(

(AAA)σ0,m

)

= 1. (14)

• Axiom 2: Let AAA be an arbitrarym× n matrix, then

∑

σ

Perm
(

(AAA)σk,m

)

=
∑

σ

Perm((AAA)σk,n) . (15)

• Axiom 3: For an empty matrix,AAA,

Perm(AAA) = 1. (16)

IV. EXACT SMALL SYSTEM ANALYSIS

In this section, we derive the exact ergodic sum capacity in (2) for theN = 2 case. This corresponds to

two single antenna users or a single user with two distributed antennas. Here, the channel matrix becomes

HHH = (hhh1,hhh2) and it is straightforward to write (2) as

E {C} ln 2 = E

{

ln

∣

∣

∣

∣

III +
1

σ2
hhh1hhh

H
1

∣

∣

∣

∣

}

+E

{

ln

∣

∣

∣

∣

∣

III+
1

σ2

(

III+
1

σ2
hhh1hhh

H
1

)−1

hhh2hhh
H
2

∣

∣

∣

∣

∣

}

, C1 + C2. (17)

Both C1 andC2 can be expressed as scalars [17], [18, pp. 48], so the capacity analysis simply requires

C1 = E

{

ln

(

1 +
1

σ2
hhhH1 hhh1

)}

, (18)

C2 = E

{

ln

(

1+
1

σ2
hhhH2

(

III+
1

σ2
hhh1hhh

H
1

)−1

hhh2

)}

. (19)
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In order to facilitate our analysis, it is useful to avoid thelogarithm representations in (18) and (19). We

exchange logarithms for exponentials as follows. First, wenote the identity,

1

a
=

∫ ∞

0

e−atdt, for a > 0. (20)

Now equation (20) can be used to findln a as below:

∂ ln a

∂a
=

∫ ∞

0

e−atdt, (21)

∫ ln a

0

d ln a =

∫ a

1

∫ ∞

0

e−atdtda, (22)

ln a =

∫ ∞

0

e−t − e−at

t
dt. (23)

This manipulation is useful because there are many results which can be applied to exponentials of

quadratic forms, whereas few results exist for logarithms.As an example, using (23) in (18) gives

C1 = E











∫ ∞

0

e−t − e
−

(

1+
1

σ2
hhh

H

1 hhh1

)

t

t
dt











. (24)

Note thata = 1 + 1

σ2hhh
H
1 hhh1 has been used in (23). Sicea ≥ 1, it follows that the integrand in (24) is

non-negative. Also, the expected value,C1, is clearly finite and so, by Fubini’s theorem, the order of

expectation and integration in (24) may be interchanged. Using the Gaussian integral identity [9], the

expectation in (24) can be computed to give

C1 =

∫ ∞

0

e−t

t
−

e−t

t |ΣΣΣ1|
dt, (25)

whereΣΣΣ1 = III + t
σ2PPP 1. Hence, the log-exponential conversion in (23) leads to a manageable integral for

C1. Using the same approach and applying (23) in (19) gives

C2 = E











∫ ∞

0

e−t

t
−
e
−t− t

σ2
hhh

H

2

(

III+ 1

σ2
hhh1hhh

H

1

)

−1

hhh2

t
dt











. (26)
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The expectation in (26) has to be calculated in two stages. First, the expectation overhhh2 can be solved

using the Gaussian integral identity [9] and, with some simplifications, we arrive at

C2=

∫ ∞

0

e−t

t
− Ehhh1







e−t
(

σ2 + hhhH1 hhh1

)

t |ΣΣΣ2|
(

σ2 + hhhH1 ΣΣΣ
−1

2 hhh1

)







dt, (27)

whereΣΣΣ2 = III+ t
σ2PPP 2. Interchange of the expectation and integral in (27) follows from the same arguments

used forC1. Equation (27) can be further simplified to give

C2 =

∫ ∞

0

e−t

t
−

e−t

t |ΣΣΣ2|
dt− Ehhh1







1

σ2

∫ ∞

0

e−thhhH1 PPP 2ΣΣΣ
−1

2 hhh1

t |ΣΣΣ2|
(

σ2 + hhhH1 ΣΣΣ
−1

2 hhh1

)dt







. (28)

Defining the third term in (28) asIb, the ergodic sum capacity,E (C) = C1 + C2, becomes

E {C} =
1

ln 2

{

2
∑

k=1

Iak − Ib

}

, (29)

where

Iak =

∫ ∞

0

(

e−t

t
−

e−t

t |ΣΣΣk|

)

dt. (30)

Substituting forΣΣΣk in (30) and expanding(t |ΣΣΣk|)
−1 gives

Iak =

nR
∑

i=1

ηik

∫ ∞

0

e−t

t+ σ2

Pik

dt, (31)

where

ηik =
P nR−1

ik
∏nR

l 6=i (Pik − Plk)
. (32)

Note that the firste−t/t term in (30) cancels out with one of the terms in the partial fraction expansion

leaving only the linear terms shown in the denominator of (31). The integrals in (31) can be solved in

closed form [19] to give

Iak =

nR
∑

i=1

ηike
σ2

PikE1

(

σ2

Pik

)

. (33)

In order to computeIb we use [9, Lemma 1] to give

Ib = −

∫ ∞

0

∫ ∞

0

e−t

|ΣΣΣ2|

∂E
{

e−θ1z1−θ2z2
}

∂θ1

∣

∣

∣

∣

∣

θ1=0

dθ2dt, (34)
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wherez1 = hhhH1 PPP 2ΣΣΣ
−1

2 hhh1 and z2 = σ2 + hhhH1 ΣΣΣ
−1

2 hhh1. The expectation in (34) can be solved as in [9], and

with some manipulations we arrive at

Ib = −

∫ ∞

0

∫ ∞

0

∂

∂θ1

[

e−σ2t−σ2θ2

|III + tPPP 2 + θ1PPP 1PPP 2 + θ2PPP 1|

]

θ1=0

dθ2dt. (35)

In Appendix A, Ib in (35) is calculated in closed form and the final result is given by

Ib = −
1

|PPP 1PPP 2|







nR
∑

i=1

nR
∑

k 6=i

nR
∑

l 6=i,k

ξikl

(

M̃bikl − Ñbikl

)

Ji







, (36)

whereM̃bikl , Ñbikl , Ji and ξikl are given in (94), (95), (72) and (82) respectively. Then, the final result

becomes

E {C} =
1

ln 2

{

2
∑

k=1

nR
∑

i=1

ηike
σ2

PikE1

(

σ2

Pik

)

+
1

|PPP 1PPP 2|





nR
∑

i=1

nR
∑

k 6=i

nR
∑

l 6=i,k

ξikl

(

M̃bikl − Ñbikl

)

Ji











. (37)

V. APPROXIMATE GENERAL ANALYSIS

In this section, we present an approximate ergodic sum rate capacity analysis for the case where

nR ≥ N > 2. Extending this toN ≥ nR is a simple extension of the current analysis. We use the

following notation for the channel matrix,

HHH =
(

H̃HHN ,hhhN

)

(38a)

=
(

H̃HHN−1,hhhN−1,hhhN

)

(38b)

=
(

H̃HHk,hhhk . . . ,hhhN−1,hhhN

)

(38c)

=
...

= (hhh1,hhh2, . . . ,hhhN) , (38d)

where thenR × (k − 1) matrix, H̃HHk, comprises thek− 1 columns to the left ofhhhk in HHH. Using the same

representation as in (17), the ergodic sum capacity is defined by [3] as,

E {C} ln 2 ,

N
∑

k=1

Ck, (39)
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where

Ck=E

{

ln

∣

∣

∣

∣

∣

III+
1

σ2

(

III+
1

σ2
H̃HHkH̃HH

H

k

)−1

hhhkhhh
H
k

∣

∣

∣

∣

∣

}

(40)

= E

{

ln

(

1 +
1

σ2
hhhHk

(

III +
1

σ2
H̃HHkH̃HH

H

k

)−1

hhhk

)}

. (41)

Applying (23) to (41) gives

Ck=

∫ ∞

0

e−t

t
− E







e−t

∣

∣

∣
σ2III + H̃HH

H

k H̃HHk

∣

∣

∣

t |ΣΣΣk|
∣

∣

∣
σ2III + H̃HH

H

k ΣΣΣ
−1

k H̃HHk

∣

∣

∣







dt, (42)

whereΣΣΣk = III + t
σ2PPP k. In order to calculate the second term in (42), the followingexpectation needs to

be calculated,

Ĩk (t) =
1

|ΣΣΣk|
E







∣

∣

∣
σ2III + H̃HH

H

k H̃HHk

∣

∣

∣

∣

∣

∣
σ2III + H̃HH

H

k ΣΣΣ
−1

k H̃HHk

∣

∣

∣







. (43)

Exact analysis of̃Ik (t) is cumbersome, and even theN = 2 case (see theIb calculation in (35)) is

complicated. Hence, we employ a Laplace type approximation[20], so thatĨk (t) can be approximated

by

Ĩk (t) ≃
1

|ΣΣΣk|

E
{∣

∣

∣
σ2III + H̃HH

H

k H̃HHk

∣

∣

∣

}

E
{∣

∣

∣
σ2III + H̃HH

H

k ΣΣΣ
−1

k H̃HHk

∣

∣

∣

} . (44)

Note that the Laplace approximation is better known for ratios of scalar quadratic forms [20]. However,

the identity in both the numerator and denominator of (43) can be expressed as the limit of a Wishart

matrix as in [22]. This gives (43) as ratio of determinants ofmatrix quadratic forms which in turn can be

decomposed to give a product of scalar quadratic forms as in Appendix D and [23]. Hence, the Laplace

approximation for (43) has some motivation in the work of [20]. It can also be thought of as a first order

delta expansion [24]. From Appendix B, the expectation in the numerator of (44) is given by

E
{∣

∣

∣
σ2III + H̃HH

H

k H̃HHk

∣

∣

∣

}

=

k−1
∑

i=0

∑

σ

Perm((QQQk)
σi,k−1)

(

σ2
)k−i−1

, (45)

whereQQQk is defined in (100). From Appendix C, the expectation in the denominator of (44) is given by

|ΣΣΣk|E
{∣

∣

∣
σ2III + H̃HH

H

k ΣΣΣ
−1

k H̃HHk

∣

∣

∣

}

=

nR
∑

l=0

t l ϕkl, (46)
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whereϕkl is given in (110). Therefore,̃Ik (t) becomes

Ĩk (t) ≃
Θ (QQQk)

∑nR

l=0
t l ϕkl

(47)

=
Θ (QQQk)

ϕknR

∑nR

l=0

(

ϕkl

ϕknR

)

t l
(48)

=
Θ (QQQk)

ϕknR

∏nR

l=1
(t+ ωkl)

, (49)

where

Θ (QQQk) =

k−1
∑

i=0

∑

σ

Perm((QQQk)
σi,k−1)

(

σ2
)k−i−1

. (50)

Note thatωkl > 0 for all l, k from Descartes’ rule of signs as all the coefficients of the monomial in the

denominator of (48) are positive. Also note that, from (110), we haveΘ (QQQk) = ϕk0. Applying (49) in

(42) gives

Ck ≃

∫ ∞

0

e−t

t
−

ϕk0

ϕknR

e−t

t
∏nR

l=1
(t+ ωkl)

dt. (51)

Using a partial fraction expansion for the product in the denominator of the second term of (51) gives

1

t
∏nR

l=1
(t + ωkl)

=
ζk0
t

−
nR
∑

l=1

ζkl
t+ ωkl

, (52)

where

ζk0 =
1

∏nR

u=1
ωku

=
ϕknR

ϕk0

(53)

and

ζkl =
1

ωkl

∏nR

u 6=l (ωku − ωkl)
. (54)

Applying (52) in (42) gives

Ck ≃
ϕk0

ϕknR

nR
∑

l=1

∫ ∞

0

ζkl
t+ ωkl

dt (55)

=
ϕk0

ϕknR

nR
∑

l=1

ζkle
ωklE1 (ωkl) . (56)
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Then, applying (56) in (39) gives the final approximate ergodic sum rate capacity as

E {C} ,
1

ln 2

N
∑

k=1

(

ϕk0

ϕknR

nR
∑

l=1

ζkle
ωklE1 (ωkl)

)

. (57)

Note the simplicity of the general approximation in (57) in comparison to the two-user exact results in

(37).

VI. A SIMPLE CAPACITY BOUND

In this section, we derive an extremely simple upper-bound for the ergodic capacity in (2). This provides

a simpler relationship between the average link powers and ergodic sum capacity at the expense of a loss

in accuracy. Using Jensen’s inequality [21] andγ̄ = 1

σ2 , equation (2) leads to

E {C} ≤ log2
(

E
{∣

∣III + γ̄HHHHHHH
∣

∣

})

. (58)

From Appendix B, (58) can be given as

E {C} ≤ log2

(

N
∑

i=0

∑

σ

Perm(PPP σi,N ) γ̄i

)

, (59)

= log2

(

N
∑

i=0

ϑiγ̄
i

)

. (60)

wherePPP = (Pik). The simplicity of (59) is hidden by the permanent form. For small systems, expanding

the permanent reveals the simple relationship between the upper bound and the channel powers. For

nR = N = 2 andnR = N = 3, (60) gives the upper bounds in (61) and (62) respectively. These bounds

show the simple pattern where cross products ofL channel powers scale thēγL term. Hence, at low

SNR where thēγ term is dominant,log2 (1 + PT γ̄), wherePT =
∑

i

∑

k Pik, is an approximation to (60).

Similarly, at high SNR, thēγN term is dominant andlog2
(

1 + Perm(PPP ) γ̄N
)

is an approximation. These

approximations show that capacity is affected by the sum of the channel powers at low SNR, whereas at

high SNR, the cross products ofN powers becomes important.

VII. N UMERICAL AND SIMULATION RESULTS

For the numerical results, we consider three distributed BSs with either a single receive antenna or

two antennas. For a two-source system, we parameterize the system by three parameters [8], [9]. The

average received signal to noise ratio is defined byρ = PT/σ
2. In particular for a two-source system,
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E {C} ≤ log
2

(

1 + γ̄ (P11 + P12 + P21 + P22) + γ̄2 (P11P22 + P12P21)
)

. (61)

E {C} ≤ log
2
(1 + γ̄ (P11 + P12 + P13 + P21 + P22 + P23 + P31 + P32 + P33)

+ γ̄2 (P11P22 + P11P32 + P21P12 + P21P32 + P31P12 + P31P22 + P11P23 + P11P33 + P21P13

+ P21P33 + P31P13 + P31P23 + P12P23 + P12P33 + P22P13 + P22P33 + P32P13 + P32P23)

+ γ̄3 (P11P22P33 + P11P23P32 + P12P21P33 + P12P31P23 + P13P21P32 + P13P22P31)
)

.

(62)

ρ = (Tr (PPP 1) + Tr (PPP 2)) /σ
2. The total signal to interference ratio is defined byς = Tr (PPP 1) /Tr (PPP 2). The

spread of the signal power across the three BS locations is assumed to follow an exponential profile, as

in [22], so that a range of possibilities can be covered with only one parameter. The exponential profile

is defined by

Pik = Kk (α)α
i−1, (63)

for receive locationi ∈ {1, 2, 3} and sourcek where

Kk (α) = Tr (PPP k) /
(

1 + α + α2
)

, k = 1, 2, (64)

andα > 0 is the parameter controlling the uniformity of the powers across the antennas. Note that as

α→ 0 the received power is dominant at the first location, asα becomes large(α≫ 1) the third location

is dominant and asα → 1 there is an even spread, as in the standard microdiversity scenario. Using

these parameters, eight scenarios are given in Table I for the case of two single antenna users. In Fig. 2,

we explore the capacity of scenarios S1-S4 wherenR = 3. The capacity result in (37) agrees with the

simulations for all scenarios, thus verifying the exact analysis. Furthermore, the approximation in (57)

is shown to be extremely accurate. All capacity results are extremely similar except for S1, where both

sources have their dominant path at the first receive antenna. Here, the system is largely overloaded (two

strong signals at a single antenna) and the performance is lower. The similarity of S3 and S4 is interesting

as they represent very different systems. In S3, the two users are essentially separate with the dominant

channels being at different antennas. In S4, both users havepower equally spread over all antennas so the

users are sharing all available channels. Figure 3 follows the same pattern with S6 (the overloaded case)

being lower and the other scenarios almost equivalent. In Fig. 3, the overall capacity level is reduced in

comparison to Fig. 2 asς = 10 implies a weaker second source.

Figures 4 and 5 show results for a random drop scenario withM = nR = 3,W = N = 3 and nR =
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6,M = 3,W = N = 6 respectively. In each random drop, uniform random locations are created for the

users and lognormal shadow fading and path loss are considered whereσSF = 8dB (standard deviation

of shadow fading) andγ = 3.5 (path loss exponent). The transmit power of the sources is scaled so that

all locations in the coverage area have a maximum received SNR greater than3dB, at least95% of the

time. The maximum SNR is taken over the 3 BSs. Hence, each dropproduces a differentPPP matrix and

independent channels are assumed. The excellent agreementbetween the approximation in (57) and the

simulations in both Fig. 4 and Fig. 5 is encouraging as this demonstrates the accuracy of (57) over different

system sizes as well as over completely different sets of channel powers. Note that at high SNR, Fig. 5

gives much higher capacity values than Fig. 4 since there are6 receive antenna rather than 3. In this high

SNR region, thēγN term in (60) dominates and capacity can be approximated bylog2
(

1 + Perm(PPP ) γ̄N
)

.

With nR = N = 3 there are 6 cross products in Perm(PPP ) whereas withnR = N = 6 there are 720 cross

products. Hence, the bound clearly demonstrates the benefits of increased antenna numbers. In practice

there is a trade-off between the costs of increased collaboration between possibly distant BSs and the

resulting increase in system capacity. In Figs. 2 - 5, at low SNR the capacity is controlled byPT . Hence,

sinceρ = PT/σ
2, all four drops have similar performance at low SNR and diverge at higher SNR where

the channel profiles affect the results. The upper bound and associated approximations are shown in Figs.

6 and 7 both for a two user scenario (S3) and a random drop. In Fig. 6, the upper bound is shown

for scenario S3 as well as the high and low SNR approximations. The results clearly show the loss in

accuracy resulting from the use of the simple Jensen bound. However, the bound is quite reasonable

over the whole SNR range. The low SNR approximations are quite reasonable below 0 dB and the high

SNR version is as accurate as the bound above 15 dB. In Fig. 7, similar results are shown for a random

drop with M = nR = 6,W = N = 6. Here, similar patterns are observed but the low and high SNR

approximations become reasonable at more widely spread SNRvalues. For example, the low SNR results

are accurate below 0 dB and the high SNR results are poor untilaround 30 dB. In contrast, the upper

bound is reasonable throughout. Hence, although there is a noticeable capacity error at high SNR, the

cross-product coefficients in (61) and (62) are seen to explain the large majority of the ergodic capacity

behavior.

VIII. C ONCLUSION

In this paper, we have studied the ergodic sum capacity of a Rayleigh fading macrodiversity MIMO-

MAC. The results obtained are shown to be valid for both independent channels and correlated channels,
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TABLE I
PARAMETERS FORFIGURES2 AND 3

Decay Parameter
Sc. No. User 1 User 2 ς

S1 α = 0.1 α = 0.1 1
S2 α = 0.1 α = 1 1
S3 α = 0.1 α = 10 1
S4 α = 1 α = 1 1
S5 α = 0.1 α = 0.1 10
S6 α = 0.1 α = 1 10
S7 α = 0.1 α = 10 10
S8 α = 1 α = 0.1 10
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Fig. 2. Exact, approximated and simulated ergodic sum capacity in flat Rayleigh fading for scenarios S1-S4 with parameters: nR = 3,
N = W = 2 and ς = 1.

which may occur when some of the distributed transmit/receive locations have closely spaced antennas.

In particular, we derive exact results for the two-source scenario and approximate results for the general

case. The approximations have a simple form and are shown to be very accurate over a wide range of

channel powers. In addition, a simple upper bound is presented which demonstrates the importance of

various channel power cross products in determining capacity.

APPENDIX A

DERIVATION OF Ib

From (35),Ib can be written as

Ib =
∂Ĩb
∂θ1

∣

∣

∣

∣

∣

θ1=0

, (65)
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Fig. 3. Exact, approximated and simulated ergodic sum capacity in flat Rayleigh fading for scenarios S5-S8 with parameters: nR = 3,
N = W = 2 and ς = 10.

−5 0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

22

ρ [dB]

E
rg

od
ic

 C
ap

ac
ity

 b
its

/s
/H

z

 

 

Simulation
Analytical approximation

Fig. 4. Approximated and simulated ergodic sum capacity in flat Rayleigh fading forM = nR = 3, W = N = 3 and four random drops.

where

Ĩb = −

∫ ∞

0

∫ ∞

0

e−σ2t−σ2θ2

∏nR

i=1
(1 + tPi2 + θ1Pi1Pi2 + θ2Pi1)

dθ2dt. (66)

From (66),Lb becomes

Lb =

∫ ∞

0

∫ ∞

0

e−σ2t−σ2θ2

∏nR

i=1

(

θ1 +
θ2
Pi2

+ t
Pi1

+ 1

Pi1Pi2

)dθ2dt. (67)
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Fig. 5. Approximated and simulated ergodic sum capacity in flat Rayleigh fading fornR = 6, M = 3, W = N = 6 and four random
drops.
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Fig. 6. Ergodic sum capacity in flat Rayleigh fading for scenario S3 with parameters:M = nR = 3, W = N = 2 and ς = 1.

Defining

Lb = − |PPP 1PPP 2| Ĩb, (68)

we use a partial fraction expansion inθ1 to give

Lb =

nR
∑

i=1

∫ ∞

0

∫ ∞

0

Ai (θ2, t) e
−σ2t−σ2θ2

(

θ1 +
θ2
Pi2

+ t
Pi1

+ 1

Pi1Pi2

)dθ2dt, (69)
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Fig. 7. Ergodic sum capacity in flat Rayleigh fading for a random drop with parameters:nR = 6, M = 3 andW = N = 6.

where

Ai (θ2, t) =
1

∏nR

k 6=i (αikθ2 + βikt+ γik)
(70a)

αik =
1

Pk2

−
1

Pi2

(70b)

βik =
1

Pk1

−
1

Pi1

(70c)

γik = Rk − Ri (70d)

Ri =
1

Pi1Pi2

. (70e)

To compute (69), the following substitutions are employed

u = σ2t + σ2θ2 (71a)

vi =
t

Pi1

+
θ2
Pi2

. (71b)

The Jacobian of the transformation in (71b) can be calculated as

Ji = σ2

(

1

Pi2

−
1

Pi1

)

. (72)

Substituting (71b) and (72) in (69) gives

Lb =

nR
∑

i=1

∫ ∞

0

∫ u

Pi2σ
2

u

Pi1σ
2

Ai (u, vi) e
−u

Ji (vi + θ1 +Ri)
dvidu, (73)
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where

Ai (u, vi) =
1

∏nR

k 6=i (aikvi + biku+ γik)
(74a)

aik =
σ2

Ji
(αik − βik) (74b)

bik =
1

Ji

(

βik
Pi2

−
αik

Pi1

)

. (74c)

The termAi (u, vi) in (74a) can be written as a summation using partial fractions, to give

Ai (u, vi) =

nR
∑

k 6=i

Bik (u)

vi + qiku+ rik
, (75)

where

Bik (u) =
(aik)

nR−3

∏nR

l 6=i,k (ciklu+ dikl)
(76a)

cikl = bilaik − ailbik (76b)

dikl = aikγil − γikail (76c)

qik =
bik
aik

(76d)

rik =
γik
aik

. (76e)

Substituting (75) in (73) and simplifying gives

Lb =

nR
∑

i=1

nR
∑

k 6=i

∫ ∞

0

∫ u

Pi2σ
2

u

Pi1σ
2

Bik (u) e
−u

Ji

dvidu

(vi + θ1 +Ri) (vi + qiku+ rik)
. (77)

First, we integrate overvi in (77) to give

Lb =

nR
∑

i=1

nR
∑

k 6=i

∫ ∞

0

Cik (u, θ1) e
−u

Ji
ln





(

u
Pi2σ2 + θ1 +Ri

)

(λiku+ rik)
(

u
Pi1σ2 + θ1 +Ri

)

(µiku+ rik)



 du, (78)

where

Cik (u, θ1) =
Bik (u)

qiku+ rik − θ1 −Ri

(79a)

λik =
1

Pi1σ2
+ qik (79b)

µik =
1

Pi2σ2
+ qik. (79c)
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Let

Dik (u, θ1) = ln





(

u
Pi2σ2 + θ1 +Ri

)

(λiku+ rik)
(

u
Pi1σ2 + θ1 +Ri

)

(µiku+ rik)



 , (80a)

thenBik (u) in (76a) can be rewritten as the summation

Bik (u) =

nR
∑

l 6=i,k

ξikl
ciklu+ dikl

, (81)

where

ξikl =
(aikcikl)

nR−3

∏nR

z 6=i,k,l (dikzcikl − cikzdikl)
. (82)

Substituting (81) and (79c) in (78) gives

Lb =

nR
∑

i=1

nR
∑

k 6=i

nR
∑

l 6=i,k

∫ ∞

0

Dik (u, θ1)
ξikl
Ji

du

(ciklu+ dikl) (qiku+ rik − θ1 −Ri)
. (83)

Equation (83) can be further simplified to give

Lb =

nR
∑

i=1

nR
∑

k 6=i

nR
∑

l 6=i,k

ξikl (Mbikl −Nbikl)

Ji
, (84)

where

Mbikl =

∫ ∞

0

Dik (u, θ1)

f1 (θ1)

du

(u+ εikl)
, (85)

Nbikl =

∫ ∞

0

Dik (u, θ1)

f1 (θ1)

du

(u+ f2 (θ1))
, (86)

andεikl = dikl/cikl. Next, we introduce the following linear functions ofθ1:

f1 (θ1) = nikl − ciklθ1 (87)

f2 (θ1) = mikl −
θ1
qik
, (88)
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∂

∂θ1

[

Dik (u, θ1)

f1 (θ1)

]

θ1=0

=
cikl
n2

ikl

ln





(

u

Pi2σ
2 +Ri

)

(λiku+ rik)
(

u

Pi1σ
2 +Ri

)

(µiku+ rik)



+
1

nikl





Pi2σ
2

(

u+ σ2

Pi1

) −
Pi1σ

2

(

u+ σ2

Pi2

)



 (91)

M̃bikl
=

∂Mbikl

∂θ1

∣

∣

∣

∣

θ1=0

=

∫

∞

0

∂

∂θ1

[

Dik (u, θ1)

f1 (θ1)

]

θ1=0

du

(u+ eikl)
(92)

Ñbikl
=

∂Nbikl

∂θ1

∣

∣

∣

∣

θ1=0

=

∫

∞

0

∂

∂θ1

[

Dik (u, θ1)

f1 (θ1)

]

θ1=0

du

(u+mikl)
+

∫

∞

0

[

Dik (u, θ1)

f1 (θ1)

]

θ1=0

1/qik

(u+mikl)
2
du (93)

M̃bikl
=

cikl
n2

ikl

[

H1

(

Ri, εikl,
1

Pi2σ2

)

+H1 (rik, εikl, λik)−H1

(

Ri, εikl,
1

Pi1σ2

)

−H1 (rik, εikl, µik)

]

+
ε′
ikl

nikl

[

e
σ
2

Pi1 E1

(

σ2

Pi1

)

− eεiklE1 (εikl)

]

−
ε′′
ikl

nikl

[

e
σ
2

Pi2 E1

(

σ2

Pi2

)

− eεiklE1 (εikl)

]

, (94)

Ñbikl
=

cikl
n2

ikl
qik

[

H2

(

Ri,mikl,
1

Pi2σ2

)

+H2 (rik,mikl, λik)−H2

(

Ri,mikl,
1

Pi1σ2

)

−H2 (rik,mikl, µik)

]

+
cikl
n2

ikl

[

H1

(

Ri,mikl,
1

Pi2σ2

)

+H1 (rik,mikl, λik)−H1

(

Ri,mikl,
1

Pi1σ2

)

−H1 (rik,mikl, µik)

]

+
m′

ikl

nikl

[

e
σ
2

Pi1 E1

(

σ2

Pi1

)

− emiklE1 (mikl)

]

−
m′′

ikl

nikl

[

e
σ
2

Pi2 E1

(

σ2

Pi2

)

− emiklE1 (mikl)

]

, (95)

where

nikl = rikcikl − diklqik −
cikl
Ri

(89)

mikl =
γik
bik

−
1

qikRi

. (90)

Next, we can differentiateMbikl andNbikl and integrate overu to give the final result along with (65) and

(68). Hence, from (87) and (80a) we get (91). Substituting (91) in (85) and (86) we get (92) and (93).

(92) and (93) can be solved in closed form to give (94) and (95), where we have used the two integrals

defined as follows

H1 (a, b, c) =

∫ ∞

0

e−t ln (ct + a)

t+ b
dt (96)

H2 (a, b, c) =

∫ ∞

0

e−t ln (ct + a)

(t + b)2
dt (97)



23

and the constants are given by

ε′ikl =
1

(

εikl −
σ2

Pi1

) , ε′′ikl =
1

(

εikl −
σ2

Pi2

) ,

m′
ikl =

1
(

mikl −
σ2

Pi1

) , m′′
ikl =

1
(

mikl −
σ2

Pi2

) .

Both H1 andH2 can be solved in closed form as

H1 (a, b, c) = eb
[

E1 (b) ln c +D1

(a

c
− b, b

)]

,

H2 (a, b, c) = ln c

[

1

b
− ebE1 (b)

]

− 2ebD1

(a

c
− b, b

)

+
1

(

a
c
− b
)

[

ebE1 (b)− e
a
cE1

(a

c

)]

,

whereD1(a, b) is defined by

D1(a, b) =

∫ ∞

b

e−t ln (t+ a)

t
dt, for b 6= 0.

APPENDIX B

CALCULATION OF E
{∣

∣

∣
σ2III + H̃HH

H

k H̃HHk

∣

∣

∣

}

Let λ1, λ2, . . . , λk−1 be the ordered eigenvalues ofH̃HH
H

k H̃HHk. SincenR ≥ (k − 1), all eigenvalues are non

zero. Then,

E
{∣

∣

∣
σ2III + H̃HH

H

k H̃HHk

∣

∣

∣

}

= E

{

k−1
∏

i=1

(

σ2 + λi
)

}

=E

{

k−1
∑

i=0

Tri
(

H̃HH
H

k H̃HHk

)

(

σ2
)k−i−1

}

, (98)

where (98) is from (11) and Lemma 2. Therefore, the building block of this expectation isE
{

Tri
(

H̃HH
H

k H̃HHk

)}

.

From Lemma 2

Tri
(

H̃HH
H

k H̃HHk

)

=
∑

σ

∣

∣

∣

∣

(

H̃HH
H

k H̃HHk

)

σi,k−1

∣

∣

∣

∣

. (99)

Therefore, from Lemma 1,

E
{

Tri
(

H̃HH
H

k H̃HHk

)}

=
∑

σ

Perm((QQQk)
σi,k−1) ,
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where thenR × (k − 1) matrix,QQQk, is given by

E
{

H̃HHk ◦ H̃HHk

}

= QQQk. (100)

Note that summation in (100) has
(

k−1

i

)

terms. Then, the final expression becomes

E
{∣

∣

∣
σ2III + H̃HH

H

k H̃HHk

∣

∣

∣

}

=
k−1
∑

i=0

∑

σ

Perm((QQQk)
σi,k−1)

(

σ2
)k−i−1

. (101)

APPENDIX C

CALCULATION OF |ΣΣΣk|E
{∣

∣

∣
σ2III + H̃HH

H

k ΣΣΣ
−1

k H̃HHk

∣

∣

∣

}

A simple extension of (45) allows the expectation in the denominator of (44) to be calculated as

E
{∣

∣

∣
σ2III + H̃HH

H

k ΣΣΣ
−1

k H̃HHk

∣

∣

∣

}

=

k−1
∑

i=0

ψki (t)
(

σ2
)k−i−1

, (102)

where

ψki (t) =
∑

σ

Perm
((

ΣΣΣ−1

k QQQk

)σi,k−1
)

, (103)

and from (14)

ψk0 (t) = 1.

The term in (103) can be simplified using (15) to obtain

ψki (t) =
∑

σ

Perm
(

(QQQk)
{k−1}
σi,nR

)

∣

∣

∣
(ΣΣΣk)σi,nR

∣

∣

∣

. (104)

Then,

|ΣΣΣk|E
{∣

∣

∣
σ2III + H̃HH

H

k ΣΣΣ
−1

k H̃HHk

∣

∣

∣

}

=
k−1
∑

i=0

ξki (t)
(

σ2
)k−i−1

, (105)

whereξki (t) = |ΣΣΣk|ψki (t). From (104), we obtain

ξki (t) =
∑

σ

∣

∣

∣
(ΣΣΣk)σ̄nR−i,nR

∣

∣

∣
Perm

(

(QQQk)
{k−1}
σi,nR

)

, (106)
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whereσ̄nR−i,nR
is the compliment ofσi,nR

. Therefore, it is apparent thatξki (t) is a polynomial of degree

nR − i. Clearly |ΣΣΣk|E
{∣

∣

∣
σ2III + H̃HH

H

k ΣΣΣ
−1

k H̃HHk

∣

∣

∣

}

is a polynomial of degreenR, sinceξk0 (t) = |ΣΣΣk| is the

highest degree polynomial term int in (105). Then,

∣

∣

∣
(ΣΣΣk)σ̄nR−i,nR

∣

∣

∣
=

nR−i
∑

l=0

(

t

σ2

)l

Trl
(

(PPP k)σ̄nR−i,nR

)

. (107)

Hence, applying (107) in (106),

ξki (t) =
∑

σ

nR−i
∑

l=0

(

t

σ2

)l

Trl
(

(PPP k)σ̄nR−i,nR

)

Perm
(

(QQQk)
{k−1}
σi,nR

)

,

and ξki (t) becomes

ξki (t) =

nR−i
∑

l=0

(

t

σ2

)l

ϕ̂kli (108)

=

nR
∑

l=0

(

t

σ2

)l

ϕ̂kli, (109)

where

ϕ̂kli =
∑

σ

Trl
(

(PPP k)σ̄nR−i,nR

)

Perm
(

(QQQk)
{k−1}
σi,nR

)

,

and from (14),ϕ̂kl0 simplifies to give

ϕ̂kl0 = Trl (PPP k) .

Equation (109) follows from (108) due to the fact that

Trl
(

(PPP k)σ̄nR−i,nR

)

= 0 for l > nR − i.

Therefore, (102) can be written as

|ΣΣΣk|E
{∣

∣

∣σ2III + H̃HH
H

k ΣΣΣ
−1

k H̃HHk

∣

∣

∣

}

=

k−1
∑

i=0

nR
∑

l=0

t l ϕ̂kli

(

σ2
)k−l−i−1

,

which in turn can be given as

|ΣΣΣk|E
{∣

∣

∣
σ2III + H̃HH

H

k ΣΣΣ
−1

k H̃HHk

∣

∣

∣

}

=

nR
∑

l=0

t l ϕkl,
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where

ϕkl =

k−1
∑

i=0

ϕ̂kli

(

σ2
)k−l−i−1

. (110)

APPENDIX D

EXTENDED LAPLACE TYPE APPROXIMATION

Note the well-known fact that,σ2III = E
{

AAAHAAA
}

, for an iid complex Gaussian matrix ensemble,AAA, of

CN
(

0, σ
2

κ

)

random variables, whereAAA is a κ× k − 1 matrix as in [22]. This result can be rewritten in

the limit to giveσ2III = lim
κ→∞

{

AAAHAAA
}

. Using this in (43) gives

Ĩk (t) =
1

|ΣΣΣk|
lim
κ→∞

E







∣

∣

∣
AAAHAAA + H̃HH

H

k H̃HHk

∣

∣

∣

∣

∣

∣
AAAHAAA+ H̃HH

H

k ΣΣΣ
−1

k H̃HHk

∣

∣

∣







, (111)

=
1

|ΣΣΣk|
lim
κ→∞

E















∣

∣

∣

(

AAAH , H̃HH
H

k

)(

AAA
˜HHHk

)∣

∣

∣

∣

∣

∣

∣

(

AAAH , H̃HH
H

k ΣΣΣ
− 1

2

k

)

(

AAA
ΣΣΣ

−

1
2

k

˜HHHk

)∣

∣

∣

∣















, (112)

=
1

|ΣΣΣk|
lim
κ→∞

E

{
∣

∣BBBH
k BBBk

∣

∣

∣

∣BBBH
k Σ̄ΣΣkBBBk

∣

∣

}

, (113)

whereΣ̄ΣΣk = diag
(

III,ΣΣΣkΣΣΣkΣΣΣk
− 1

2

)

andBBBk =
(

AAA
˜HHHk

)

. Using the well-known fact

∣

∣BBBH
k BBBk

∣

∣ =

k−1
∏

i=1

bbbHki

(

III − B̃BBki

(

B̃BB
H

kiB̃BBki

)−1

B̃BB
H

ki

)

bbbki, (114)

from standard linear algebra, wherebbbki is the ith column ofBBBk, we can approximate (113) by

Ĩk (t) ≃
1

|ΣΣΣk|

k−1
∏

i=1

E















bbbHki

(

III − B̃BBki

(

B̃BB
H

kiB̃BBki

)−1

B̃BB
H

ki

)

bbbki

bbbHki

(

Σ̄ΣΣk − Σ̄ΣΣkB̃BBki

(

B̃BB
H

kiΣ̄ΣΣkB̃BBki

)−1

B̃BB
H

kiΣ̄ΣΣk

)

bbbki















, (115)

wherebbbki andBBBk correspond to a large but finite value ofκ. Approximation (115) assumes that the terms

in the product in (114) are independent. This is only true when bbbki contains iid elements. However, in the

macrodiversity case, all the elements ofbbbki are not iid. Nevertheless, part ofbbbki (the contribution fromAAA)

is iid. This motivates the approximation in (115). Next, we apply the standard Laplace type approximation
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[20] in (115) to give

Ĩk (t) ≃
1

|ΣΣΣk|

k−1
∏

i=1

E

{

bbbHki

(

III − B̃BBki

(

B̃BB
H

kiB̃BBki

)−1

B̃BB
H

ki

)

bbbki

}

E

{

bbbHki

(

Σ̄ΣΣk − Σ̄ΣΣkB̃BBki

(

B̃BB
H

kiΣ̄ΣΣkB̃BBki

)−1

B̃BB
H

kiΣ̄ΣΣk

)

bbbki

} , (116)

≃
1

|ΣΣΣk|

E

{

∏k−1

i=1
bbbHki

(

III − B̃BBki

(

B̃BB
H

kiB̃BBki

)−1

B̃BB
H

ki

)

bbbki

}

E

{

∏k−1

i=1
bbbHki

(

Σ̄ΣΣk − Σ̄ΣΣkB̃BBki

(

B̃BB
H

kiΣ̄ΣΣkB̃BBki

)−1

B̃BB
H

kiΣ̄ΣΣk

)

bbbki

} , (117)

=
1

|ΣΣΣk|

E
{∣

∣BBBH
k BBBk

∣

∣

}

E
{∣

∣BBBH
k Σ̄ΣΣkBBBk

∣

∣

} . (118)

Hence, a combination of approximate independence, the Laplace approximation for quadratic forms and

the limiting version in (111) gives rise to the approximation used in Sec. V. The accuracy of this approach

is numerically established in the simulation results in Sec. VII.
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