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Abstract—This paper provides a general construction method
for multiple-input multiple-output multiple access channel codes
(MIMO MAC codes) that have so called generalized full rank
property. The achieved constructions give a positive answer to the
question whether it is generally possible to reach the so called
pigeon hole bound, that is an upper bound for the decay of
determinants of MIMO-MAC channel codes.

I. I NTRODUCTION

In MIMO MAC the DMT optimality criteria can be given
by splitting the whole error probability space to separate error
events and then giving a criteria for each event separately.In
the case where each user is in error, the criteria given in [2]
closely resembles that of the classical NVD condition used in
single user case. This criteria would give us a natural goal if
we would like to build DMT achieving codes. Unfortunately in
[5] it was proved that this criteria is too tight in the case where
the codes of the single users are lattice space-time codes.
The pigeon hole boundin [5] proves that, irrespective of the
code design, the determinants of the overall code matrices will
decay with a polynomial speed.

In [3] it was proved that the two user single antenna code
(BB-code) given in [9] do achieve the pigeon hole bound. In
this paper we are giving a wast generalization of BB-code to
general MAC-MIMO. The codes we will build fulfill the so
calledgeneralized rank criteriaand do reach the pigeon hole
bound.

The single user codes we are using are based on themulti-
blockcodes from division algebras [6]. This approach has been
taken in several recent papers on MIMO-MAC. However, in
these papers the full rank criteria has been achieved by using
either transcendental elements [9] or algebraic elements with
high degree [4]. Both of these methods make it extremely
difficult to measure the decay of the codes and likely lead to
bad decay.

Instead of the usual algebraic independence strategy we
will use valuation theoryto achieve the full rank condition.
This technical tool allows us to use algebraic elements with
low degree. By applying Galois theoretic method of Lu et al.
[5] and methods from Diophantine approximation, originally
introduced by Lahtonen et al. in [3], we will prove that our
codes achieve good decay and in particular reach the pigeon
hole bound.

As a warm up we discuss, when it is possible to achieve
the generalized full rank condition for two users, each having
a single transmit antenna. In particular these results clarify

the construction of BB-code in [9]. Then in Section IV we
will give our general construction and state that such an
construction always exists and that each code does fulfill the
generalized rank criteria. In Section V we analyze the decay
of the constructed codes. In particular Theorem 5.4 gives a
general lower bound and Corollary 5.5 shows that our codes
achieves the pigeon hole bound. In the last section we give
few explicit examples of our codes.

II. D ECAY FUNCTION, MULTIUSER CODE, AND OTHER

DEFINITIONS

In this paper we are considering MIMO MAC code design
in the Rayleigh flat fading channel. We suppose that we have
U users, each havingnt antennas and that the receiver has
nr antennas and complete channels state information. We also
suppose that the fading for each user stays stable forUnt

time units. Let us refer to the channel matrix of theith user
with Hi ∈ Mnr×nt

and let us suppose that each of these have
i.i.d complex Gaussian random variables with zero mean and
unit variance as coefficients. In this scenario the base station
receives

Y =

U
∑

i=1

HiXi +N,

where,Xi ∈ Mnt×Unt
(C), is the transmitted codeword from

the ith user, andN ∈ Mnr×ntU (C) presents the noise having
i.i.d complex Gaussian random variables as coefficients.

In this scenario multiuser MIMO signal is aUnt × Unt

matrix where the rows(j − 1)nt + 1, (j − 1)nt + 2, . . . , (j −
1)nt + nt representjth user’s signal (j = 1, . . . , U ).

We suppose that each user applies a lattice space-time code
L j ⊆ Mnt×Unt

, j = 1, . . . , U . We also assume that each
user’s lattice is of full rankr = 2Un2

t , and denote the basis
of the latticeL j by Bj,1, . . . , Bj,r. Now the code associated
with the jth user is a restriction of latticeL j

L j(Nj) =

{

r
∑

i=1

biBj,i|bi ∈ Z,−Nj ≤ bi ≤ Nj

}

,

whereNj is a given positive number.
Using these definitions theU -user MIMO MAC codeis

(L1(N1), L2(N2), . . . , LU (NU )).
For a matrix M(X1, . . . , XU ) = (XT

1 , X
T
2 , . . . , X

T
U )

T

whereXj ∈ L j(Nj) that jth user has sent, we define

D(N1, . . . , NU ) = min
Xj∈Lj(Nj)\{0}

|detM(X1, . . . , XU )| .
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This is called thedecay function. In the special caseN1 =
. . . = NU = N we write

D(N) = D(N1 = N, . . . , NU = N).

If we have a U -user code with decay function
D(N1, . . . , Nn), such that D(N1, . . . , Nn) 6= 0 for all
N1, . . . , NU ∈ Z+, we say that the code satisfies(gener-
alized) rank criterion.

III. 2- USER CODE

In [9] Badr and Belfiore introduced a2-user single antenna
MAC code where the matrix coefficients were from the field
Q(i,

√
5). In the following we give a complete characteriza-

tion of when their construction method leads to codes with
generalized full rank property.

Theorem 3.1:Let K/Q andL/K be two field extensions
of degree2 and a, b, c, d ∈ L. Let alsoσ be the non-trivial
element in the Galois groupGal(L/K). Define

C =

{(

ax bσ(x)
cy dσ(y)

)

|x, y ∈ O∗
L

}

.

There exists a matrix inC with zero determinant if and only
if

∣

∣

∣

∣

N(a) N(b)
N(c) N(d)

∣

∣

∣

∣

= 0, (1)

where the functionN = NL/K denotes the norm of extension
L/K.

Proof: Assume first that we have a matrix

(

ax bσ(x)
cy dσ(y)

)

with zero determinant. This means thatadxσ(y) =
bcσ(x)y, which gives N(a)N(d)N(x)N(σ(y)) =
N(b)N(c)N(σ(x))N(y). Continuing we getN(a)N(d) =
N(b)N(c) i.e. N(a)N(d)−N(b)N(c) = 0.

Assume then thatN(a)N(d)−N(b)N(c) = 0. If b or c is
zero thenN(a)N(d) = 0 i.e. a or d is zero and then for all
x, y ∈ OL we have

∣

∣

∣

∣

ax bσ(x)
cy dσ(y)

∣

∣

∣

∣

= 0.

OtherwiseN(adbc ) = 1. Then by Hilbert 90 we have some
z ∈ L such thatadbc = σ(z)

z . Then writez = w
n with w ∈ O∗

L

and n ∈ Z. This gives ad
bc = σ(w)

w i.e. adw − bcσ(w) = 0.
This means that the determinant of

(

aw bσ(w)
c1 dσ(1)

)

is zero.

IV. M ULTI ACCESS CODE WITH SEVERAL TRANSMISSION

ANTENNAS

A. Construction ofU -user code fornt transmission antennas

From now on we concentrate on the scenario where we
haveU ∈ Z+ users and each user hasnt ∈ Z+ transmission
antennas. Throughout this section we assumeK to be an
imaginary quadratic extension ofQ with class number1, L
is a cyclic Galois extension ofK of degreeUnt, such that
L = K(α) with α ∈ R, σ a generating element inGal(L/K)
andp ∈ OK an inert prime inL/K. We also defineτ = σU

andF to be the fixed field ofτ . So we have[L : F ] = nt,
[F : K] = U , Gal(L/F ) =< τ >, andGal(F/K) =< σF >
whereσF is a restriction ofσ in F . Let v = vp be thep-
adic valuation of the field L. In this section, when we say that
L/K, p, andσ are suitable we mean that they are as above.

Due to the space limitations, we skip the proof of the
following proposition.

Proposition 4.1:For every complex quadratic fieldK, hav-
ing class number 1, and for anyU and for anynt we have
a suitable degreentU extensionL/K, prime p ∈ OK and
automorphismσ ∈ Gal(L/K).

Now we are ready for our construction. Letxj ∈ OL for
all j = 1, . . . , nt. DefineM = M(x1, x2, . . . , xnt

) to be


















x1 pτ(xnt
) pτ2(xnt−1) . . . pτnt−1(x2)

x2 τ(x1) pτ2(xnt
) . . . pτnt−1(x3)

x3 τ(x2) τ2(x1) . . . pτn−1(x4)
...

...
...

...
xnt−1 τ(xnt−2) τ2(xnt−3) . . . pτnt−1(xnt

)
xnt

τ(xnt−1) τ2(xnt−2) . . . τnt−1(x1)



















i.e. a matrix representation of an element in the cyclic algebra
(L/F, τ, p). The following lemma proofs that(L/F, τ, p) is a
division algebra.

Lemma 4.2:Let xj ∈ OL for all j = 1, . . . , nt such that
xl 6= 0 for somel andmin(v(x1), . . . , v(xnt

)) = 0. Then we
have

det(M(x1, x2, . . . , xnt
)) 6= 0

and
v(det(M(x1, x2, . . . , xnt

))) ≤ nt − 1.

Proof: Write M = M(x1, x2, . . . , xnt
) and N =

NL/F . Assume first thatv(x1) = 0. Then the determinant
is N(x1) + py for some y ∈ OL and hence we have
v(det(M)) = min(v(N(x1)), v(py)) = 0. Assume then that
v(x1), v(x2), . . . , v(xl−1) > 0 andv(xl) = 0 with 1 < l ≤ nt.
Notice that in this case all the other elementsa of matrix
M than those in the left lower corner block of side length
nt − l + 1 have v(a) > 0. Either they have coefficientp
or they are automorphic images of elementsx1, x2, . . . , xl−1.
Now det(M) = ±pl−1N(xl) + plz for some z ∈ OL

since all the other terms except±pl−1N(xl) have at most
nt − l factors from this left lower corner and hence at least
nt − (nt − l) = l terms have factorp. This gives that
v(det(M)) = min(v(pl−1N(xl)), v(p

lz)) = l − 1 ≤ nt − 1.



Definition 4.1: Define Mj = M(xj,1, xj,2, . . . , xj,nt
) for

all j = 1, . . . , U . In our multi access system the codeCj of
jth user consists ofnt × Unt matricesBj =
(

Mj, σ(Mj), σ
2(Mj), . . . , p

−kσj−1(Mj), . . . , σ
U−1(Mj)

)

wherek is any rational integer strictly greater thanU(nt−1)
2

andxj,l 6= 0 for somel. Herek is same for all users. The the
whole codeCU,nt

consists of matrices

A =











B1

B2

...
BU











,

whereBj ∈ Cj for all i = 1, . . . , U . This means that the
matricesA ∈ CU,nt

have form










p−kM1 σ(M1) . . . σU−1(M1)
M2 p−kσ(M2) . . . σU−1(M2)

...
...

...
MU σ(MU ) . . . p−kσU−1(MU )











.

We will skip the proof of the following proposition, stating
that each of the single user codes satisfies the NVD condition
and are therefore DMT optimal.

Proposition 4.3:Let CU,nt
∈ CU,nt

andCj be thejth users
code in the systemCU,nt

for somej ∈ 1, . . . , U . Then the
code Cj is a 2Un2

t -dimensional lattice code with the NVD
property.

The code depends on how we did chooseL/K, p, σ,
and k, so to be precise, we can also refer toCU,nt

with
CU,nt

(L/K, p, σ, k). Let us call the family of all such codes
CU,nt

(L/K, p, σ, k) (i.e. codes constructed with any suitable
L/K, p, σ, andk) by CU,nt

. That is

CU,nt
=

⋃

L/K,p,σ,k

{CU,nt
(L/K, p, σ, k)}

whereL/K, p, σ, andk are any suitable ones.
According to Proposition 4.1 we can always find suitable

L/K, p, σ, andk for anyU ∈ Z+ andnt ∈ Z+. We therefore
have the following theorem.

Theorem 4.4:For any choice ofU ∈ Z+ andnt ∈ Z+ we
haveCU,n 6= ∅.

Note that the codeCU,1 = CU,1(L/K, p, σ, 1) ∈ CU,1,
a code forU users each having one transmission antenna,
consists of matrices of form















p−1x1 σ(x1) σ2(x1) . . . σU−1(x1)
x2 p−1σ(x2) σ2(x2) . . . σU−1(x2)
x3 σ(x3) p−1σ2(x3) . . . σU−1(x3)
...

...
...

...
xU σ(xU ) σ2(xU ) . . . p−1σU−1(xU )















.

Note also that the codeC1,nt
= C1,nt

(L/K, p, σ, k) ∈
C1,nt

is a usual single user code multiplied byp−k.

Theorem 4.5:Let CU,nt
∈ CU,nt

. The codeCU,nt
is a full

rate code and satisfies the generalized rank criterion.
Proof: Let A ∈ CU,nt

= CU,nt
(L/K, p, σ, k). We

may assume thatmin(v(xj,1), . . . , v(xj,nt
)) = 0, for all

j = 1, . . . , U , because otherwise we can divide extrap’s off.
That does not have any impact on whetherdet(A) = 0 or not.
The determinant ofA is

p−kUnt

U
∏

l=1

det(σl−1(Ml)) + y

where v(y) ≥ −k(Unt − 2). We know that
v(σl−1(det(Ml))) = v(det(Ml)) becausep is from K,
i.e. from the fixed field ofσ, and det(Ml) 6= 0 for all l.
Therefore

v(p−kUnt

U
∏

l=1

det(σl−1(Ml))) = −kUn+
U
∑

l=1

v(det(Ml))

that is less or equal than−kUnt+U(nt−1) = U(nt−1−knt)
by 4.2. But if we would havedet(A) = 0 then

v(y) = v(p−kUnt

U
∏

l=1

det(σl−1(Ml)))

and hencev(y) ≤ U(nt − 1− knt) implying −k(Unt − 2) ≤
U(nt− 1−knt). This gives2k ≤ U(nt− 1) i.e. k ≤ U(nt−1)

2
a contradiction.

Remark 4.1:Using multiblock codes from division algebras
as single user codes in the MIMO MAC scenario has been
used before for example in [9], [4] and [5]. In [9] the full
rank condition for codes withnt > 1 is achieved by using
transcendental elements. In [4] the same effect is achieved
with algebraic elements of high degree.

V. ON THE DECAY FUNCTION OF CODES INCU,nt

In this chapter we will prove an asymptotic lower bound
for the decay function of codes fromCU,nt

. In [3] the authors
give a general asymptotic upper bound for a decay function in
the case that only one user is properly using the codei.e. N1

can be anything butN2 = · · · = NU = 1 are restricted. We
will see that in this special case our codes have asymptotically
the best possible decay.

Lemma 5.1:Let CU,nt
= CU,nt

(L/K, p, σ, k) ∈ CU,nt
,

A ∈ CU,nt
, and letF be the fixed field ofτ = σU . Then

det(A) ∈ F .
Proof: As F is the fixed field of τ it is enough

to prove that τ(det(A)) = det(A). Write again Mj =
M(xj,1, xj,2, . . . , xj,nt

) and notice thatτ(Mj), after switching
first and last column and first and last row, is














xj,1 τ(xj,nt
) τ2(xj,nt−1) . . . τnt−1(xj,2)

pxj,2 τ(xj,1) pτ2(xj,nt
) . . . pτnt−1(xj,3)

pxj,3 τ(xj,2) τ2(xj,1) . . . pτnt−1(xj,4)
...

...
...

...
pxj,nt

τ(xj,nt−1) τ2(xj,nt−2) . . . τnt−1(xj,1)















.



Here we did an even number of row and column changes so
when calling the above matrixM ′

j we see thatτ(det(A)) is
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p−kM ′
1 σ(M ′

1) σ2(M ′
1) . . . σn−1(M ′

1)
M ′

2 p−kσ(M ′
2) σ2(M ′

2) . . . σn−1(M ′
2)

M ′
3 σ(M ′

3) p−kσ2(M ′
3) . . . σn−1(M ′

3)
...

...
...

...
M ′

U σ(M ′
U ) σ2(M ′

U ) . . . p−kσn−1(M ′
U )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Let us call the above matrixA′. We notice that matricesA
and A′ are exactly similar apart from the fact that inMj

elements in places(1, 2), (1, 3), . . . , (1, nt) have coefficient
p−k and elements in places(2, 1), (3, 1), . . . , (nt, 1) have not
coefficient p−k and in M ′

j these are vice versa. But this
does not change the value of the determinant because in the
expansion of the determinant each summand include a product
of same number of elements from columns that are congruent
to 1 modulont and from rows that are congruent to1 modulo
nt.

Theorem 5.2:[7] For any full-rateU -user lattice code, each
user transmitting withnt antennas there exists a constantk >
0 such that

D(N1 = N,N2 = N3 = · · · = NU = 1) ≤ k

N (U−1)nt
.

For the next theorem we need few definitions. Letp(x) =
p0 + p1x + · · · + pmxm ∈ Z[x] be a polynomial. Then
we say thatH(p(x)) = max{|pj|} is the height of the
polynomial p(x) and for an algebraic numberα we define
H(α) = H(φα) whereφα is the minimal polynomial ofα.
The next generalization of Liouville’s theorem can be found
from [8, p. 31].

Theorem 5.3:Let α ∈ R be an algebraic number of degree
κ, H(α) ≤ h, H(P ) ≤ H anddeg(P (x)) = m ∈ Z+. Then
eitherP (α) = 0 or

|P (α)| ≥ cm

Hκ−1

with c = 1
3κ−1hκ .

Now we are ready to give a lower bound for the decay
function of our codes. The proof can be seen as an extension
to the analysis given for BB-code in [3].

Theorem 5.4:For a codeCU,nt
∈ CU,nt

there exists con-
stantK > 0 such that

D(N1, N2, . . . , NU ) ≥
K

(N1N2 . . . NU )(U−1)nt
.

Especially

D(N) ≥ K

NU(U−1)nt
.

Proof: Let CU,nt
= CU,nt

(L/K, p, σ, k). Field ex-
tension L/Q has a basis S1 ∪ S2 where S1 =
{1, δ, δ2, . . . , δU−1, β, βδ, βδ2, . . . , βδU−1} is a basis ofF/Q
with δ ∈ R, K = Q(β) and β =

√−w for some positive
integerw. Notice that ifL = F thenS2 = ∅.

The ringOL has aZ-basis{γ1, . . . , γ2Unt
}. Each of these

basis elements can be presented as

γl =
∑

a∈S1∪S2

sl,aa,

wheresl,a ∈ Q for all l = 1, . . . , 2Unt anda ∈ S1 ∪ S2.
Let A ∈ CU,n be











p−kM1 σ(M1) . . . σU−1(M1)
M2 p−kσ(M2) . . . σU−1(M2)

...
...

...
MU σ(MU ) . . . p−kσU−1(MU )











andMj = M(xj,1, xj,2, . . . , xj,nt
) be















xj,1 pτ(xj,nt
) pτ2(xj,nt−1) . . . pτnt−1(xj,2)

xj,2 τ(xj,1) pτ2(xj,nt
) . . . pτnt−1(xj,3)

xj,3 τ(xj,2) τ2(xj,1) . . . pτnt−1(xj,4)
...

...
...

...
xj,nt

τ(xj,nt−1) τ2(xj,nt−2) . . . τnt−1(xj,1)















as usual.
Now for anyj = 0, . . . , Unt − 1 we have

σj(xm,h) =

2Unt
∑

l=1

um,h,lσ
j(γl)

whereum,h,l ∈ Z and |um,h,l| ≤ Nm for all m, h and l.
Then the determinantdet(A) is a sum consisting ofUnt!

elements of form

p−f
Unt
∏

j=0

σj(xmj ,hj
) = p−f

Unt
∏

j=0

(

2Unt
∑

l=1

umj ,hj,lσ
j(γl))

wheref ≤ kUnt andmj gets exactlynt times all the values
1, . . . , U andhj gets values from{1, . . . , nt}.

Now substituting γl =
∑

a∈S1∪S2
sl,aa gives that the

determinant is a sum consisting of elements of form

p−f
Unt
∏

j=0

(

2Unt
∑

l=1

umj ,hj,l

∑

a∈S1∪S2

sl,aσ
j(a)).

We also write

σj(a) =
∑

a∈S1∪S2

tj,aa

where tj,a ∈ Q for all j, a and find that
p−f

∏Unt

j=0 (
∑2Unt

l=1 umj,hj ,l

∑

a∈S1∪S2
sl,aσ

j(a)) can be
written as a sum of elements of form

K1p
−f

∑

a∈S1∪S2

uaa

where K1 ∈ Q is some constant,ua ∈ Z, and ua =
O((N1 . . .NU )

nt).
Writing also p using basisS1 ∪ S2 we see that the whole

determinantdet(A) can be written as a sum of elements of
form

∑

a∈S1∪S2

u′
aa



multiplied by some constantK2 and here we haveu′
a ∈ Z,

andu′
a = O((N1 . . . NU )

nt).
On the other hand we know thatdet(A) ∈ F so by

uniqueness of basis representation we know thatdet(A) is
a sum consisting of elements of form

∑

a∈S1

u′
aa =

U−1
∑

m=0

u′
δmδm + β

U−1
∑

m=0

u′
δmβδ

m

and hence

| det(A)| = |K2||
U−1
∑

l=0

Hlδ
l + β

U−1
∑

l=0

Jlδ
l|,

whereHl, Jl ∈ Z and |Hl|, |Jl| are of sizeO((N1 · · ·NU )
nt)

for all l = 0, . . . , U − 1.
Using the fact thatδ is real we get

| det(A)| ≥ K2

2
(|

U−1
∑

l=0

Hlδ
l|+ |

U−1
∑

l=0

Jlδ
l|).

Now using 5.3 and noticing thatdeg(δ) = U we have

| det(A)| ≥ K

(N1 · · ·NU )(U−1)nt
,

whereK is some positive constant.

Corollary 5.5: For a codeCU,nt
∈ CU,nt

there exists
constantsk > 0 andK > 0 such that

k

N (U−1)nt
≤ D(N1 = N,N2 = . . . = NU = 1) ≤ K

N (U−1)nt
.

VI. EXAMPLES

Let us now give few examples of our general code con-
structions. In table Table 1 we have collected some examples
of suitable fieldsK andL and inert primesp, fulfilling the
conditions of Proposition 4.1. IfK = Q(i) thenpiOK refers
to the inert prime and ifK = Q(

√
−3) thenp√−3OK is inert.

The inert primes and fieldsL are found by looking at totally
real subfields ofQ(ζm)/Q and then composing them with the
field K.

TABLE I

[L : K] L pi p√
−3

3 K(ζ7 + ζ−1

7
) 2 + i

√

−3

4 K(ζ17 + ζ4
17

+ ζ
−4

17
+ ζ

−1

17
) 2 + i

√

−3

5 K(ζ11 + ζ
−1

11
) 1 + i 2 +

√

−3

6 K(ζ13 + ζ
−1

13
) 1 + i 2 +

√

−3

7 K(ζ29 + ζ12
29

+ ζ
−12

29
+ ζ

−1

29
) 1 + i

√

−3

A. Actual examples

We get a codeC3,1 = C3,1(Q(i, ζ7 + ζ−1
7 ), 2 + i, σ, 1) i.e.

3-user code with each user having 1 antenna by settingL =

K(ζ7+ ζ−1
7 ), K = Q(i), p = 2+ i, andGal(L/K) =< σ >.

Now the actual code consists of matrices




p−1x σ(x) σ2(x)
y p−1σ(y) σ2(y)
z σ(z) p−1σ2(z)





wherex, y, z ∈ O∗
L.

We get a codeC2,2 = C2,2(Q(
√
−3, ζ17 + ζ417 + ζ−4

17 +
ζ−1
17 ),

√
−3, σ, 2) i.e. 2-user code with each user having 2

antennas by settingL = K(ζ17 + ζ417 + ζ−4
17 + ζ−1

17 ), K =

Q(
√
−3), p =

√
−3, k = 2 > U(nt−1)

2 , andGal(L/K) =<
σ >. Now the actual code consists of matrices









p−2x1 p−1σ2(x2) σ(x1) pσ3(x2)
p−2x2 p−2σ2(x1) σ(x2) σ3(x1)
y1 pσ2(y2) p−2σ(y1) p−1σ3(y2)
y2 σ2(y1) p−2σ(y2) p−2σ3(y1)









wherex1, x2, y1, y2 ∈ OL andx1 6= 0 or x2 6= 0 andy1 6= 0
or y2 6= 0.

VII. C ONCLUSION

We gave a general construction for MIMO MAC codes
satisfying the generalized rank criteria and gave a lower bound
for their decay. As a corollary we got that all our codes do
achieve the pigeon hole bound.

ACKNOWLEDGEMENT

The research of T. Ernvall is supported in part by the
Academy of Finland grant 131745. The research of R.
Vehkalahti is supported by the Academy of Finland grants
131745 and 252457. The authors would like to thank Jyrki
Lahtonen for suggesting this problem.

REFERENCES

[1] D. Tse, P. Viswanath, and L. Zheng, “Diversity and multiplexing tradeoff
in multiple-access channels,”IEEE Trans. Inf. Theory, vol. 50, no. 9,
pp. 1859–1874, 2004.

[2] P. Coronel, M. Gärtner, and H. Bölcskei, Selective-fading
multiple-access MIMO channels, “Diversity-multiplexingtradeoff
and dominant outage event regions”, preprint available at
http://www.nari.ee.ethz.ch/commth/pubs/p/CGB09 .

[3] J. Lahtonen, R. Vehkalahti, H.-F. Lu, C. Hollanti, and E.Viterbo, “On the
Decay of the Determinants of Multiuser MIMO Lattice Codes”,Proc.
2010 IEEE Inf. Theory Workshop, Cairo, Egypt, Jan. 2010.

[4] H.-F. Lu, R. Vehkalahti, C. Hollanti, J. Lahtonen, Y. Hong, and E.
Viterbo, “New Space-Time Code Constructions for Two-User Multiple
Access Channels”,IEEE J. Selected Topics in Signal Processing: Man-
aging Complexity in Multiuser MIMO System, vol. 3, no. 6, pp. 939-957,
Dec. 2009.

[5] H. F. Lu, C. Hollanti, R. Vehkalahti, J. Lahtonen, “DMT Optimal
Code Constructions for Multiple-Access MIMO Channel”,IEEE Trans.
Inform. Theory, vol. 57, no. 6, pp. 3594–3617, Jun. 2011.

[6] H. F. Lu, “Constructions of multi-block space-time coding schemes
that achieve the diversity-multiplexing tradeoff”,IEEE Trans. Inform.
Theory, vol. 54, no. 8, pp. 3790–3796, Aug. 2008.

[7] H.-F. Lu, J. Lahtonen, R. Vehkalahti, and C. Hollanti, “Remarks on the
criteria of constructing MAC-DMT optimal codes”,Proc. 2010 IEEE
Inf. Theory Workshop, Cairo, Egypt, Jan. 2010.

[8] Andrei B. Shidlovskii,Transcendental numbers, Studies in mathematics,
vol. 12, Walter de Gruyter, Berlin, New York, 1989.

[9] M. Badr and J.C. Belfiore, “Distributed space-time blockcodes for
the non-cooperative multiple-access channel”,Proc. 2008 International
Zurich Seminar on Communication, Zurich, Germany, Mar. 2008, pp.
132-135.

http://www.nari.ee.ethz.ch/commth/pubs/p/CGB09

	I Introduction
	II Decay function, multiuser code, and other definitions
	III 2-user code
	IV Multi access code with several transmission antennas
	IV-A Construction of U-user code for nt transmission antennas

	V On the decay function of codes in CU,nt
	VI Examples
	VI-A Actual examples

	VII Conclusion 
	References

