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Abstract—This paper provides a general construction method the construction of BB-code in [9]. Then in Sectibnl IV we
for multiple-input multiple-output multiple access channel codes will give our general construction and state that such an
(MIMO MAC codes) that have so called generalized full rank  ¢4nstryction always exists and that each code does fuléill th
property. The achieved constructions give a positive answ¢o the . L .
question whether it is generally possible to reach the so def generalized rank criteria. In Sch@ V we analyze the _decay
pigeon hole bound, that is an upper bound for the decay of Of the constructed codes. In particular Theofeni 5.4 gives a
determinants of MIMO-MAC channel codes. general lower bound and Corollary b.5 shows that our codes

achieves the pigeon hole bound. In the last section we give
. INTRODUCTION few explicit examples of our codes.

In MIMO MAC the DMT optimality criteria can be given
by splitting the whole error probability space to separatere
events and then giving a criteria for each event separdtely.
the case where each user is in error, the criteria giveflin [2]In this paper we are considering MIMO MAC code design
closely resembles that of the classical NVD condition used in the Rayleigh flat fading channel. We suppose that we have
single user case. This criteria would give us a natural goalli users, each having, antennas and that the receiver has
we would like to build DMT achieving codes. Unfortunately irf2» @ntennas and complete channels state information. We also
[5] it was proved that this criteria is too tight in the caseendh suppose that the fading for each user stays stablel/tor
the codes of the single users are lattice space-time cod#®€ units. Let us refer to the channel matrix of ik user
The pigeon hole boundh [5] proves that, irrespective of theWith H; € My, «,, and let us suppose that each of these have

code design, the determinants of the overall code matrides vii-d complex Gaussian random variables with zero mean and

Il. DECAY FUNCTION, MULTIUSER CODE, AND OTHER
DEFINITIONS

decay with a polynomial speed. unit variance as coefficients. In this scenario the basénstat
In [3] it was proved that the two user single antenna codeceives U
(BB-code) given in[[9] do achieve the pigeon hole bound. In Yy — ZHiXi TN,

this paper we are giving a wast generalization of BB-code to

general MAC-MIMO. The codes we will build fulfill the so here X ¢ M C) s th itted cod dqf
called generalized rank criterijand do reach the pigeon holeVNere,Ai € nexUn, (C), is the transmitted codeword from

bound theith user, andV € M,, ., (C) presents the noise having
The.single user codes we are using are based omtht- i.i.d complex Gaussian random variables as coefficients.
block codes from division algebras|[6]. This approach has beenIn this scenario multiuser MIMO signal is 8n, x Uny

taken in several recent papers on MIMO-MAC. However, ifpatrix where the rowgj — L)n; + 1, (j — 1)ne +2,..., (j —

these papers the full rank criteria has been achieved by USM%JF e repre.:,ﬁnttyth ur.?ers 5'9”6}!1: 1|’ tt U). i q
either transcendental elemerits [9] or algebraic elemeitts w, € Suppose that each user applies a latlice space-ime code

high degreel[[4]. Both of these methods make it extreme% € Mn,xyn,,j = 1,...,U. We also assume that each

i=1

difficult to measure the decay of the codes and likely lead ers Iatt!ce is of full rank = 2Un7, and denote the t.)aS'S

bad decay. of the latticeL ; by B, 1,..., B, . Now the code associated
Instead of the usual algebraic independence strategy W

will use valuation theoryto achieve the full rank condition. r

This technical tool allows us to use algebraic elements with ~ L;(IV;) = {Z biBj,i|bi € Z, —N; < b; < Nj} ;

low degree. By applying Galois theoretic method of Lu et al. =1

[5] and methods from Diophantine approximation, origipallwhereN; is a given positive number.

introduced by Lahtonen et al. inl[3], we will prove that our Using these definitions thé&-user MIMO MAC codeis

codes achieve good decay and in particular reach the pigdbn(N1),L2(N2),...,Ly(Ny)).

hole bound. For a matrix M(Xy,...,Xy) = (X{,X7,....X})T
As a warm up we discuss, when it is possible to achievehere X; € L;(N;) that jth user has sent, we define

the generalized full rank condition for two users, each havi .

a single transmit antenna. In particular these resultsfglar DNy, ..., Nu) = X].GL%;\{O} [det M(X5,...., Xl

ith the jth user is a restriction of lattice ;
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This is called thedecay functionIn the special cas&vV; =
... = Ny = N we write

D(N)=D(N;y=N,...,Ny =N).
If we have a U-user code with decay function
D(Ny,...,Nyp), such that D(Ny,...,N,) # 0 for all

Ny,...,Ny € Z,, we say that the code satisfieggener-
alized) rank criterion

Ill. 2-USER CODE

In [9] Badr and Belfiore introduced 2Zxuser single antenna
MAC code where the matrix coefficients were from the fiel

IV. MULTI ACCESS CODE WITH SEVERAL TRANSMISSION
ANTENNAS

A. Construction of/-user code fom; transmission antennas

From now on we concentrate on the scenario where we
haveU € Z, users and each user hage Z, transmission
antennas. Throughout this section we assulneto be an
imaginary quadratic extension @ with class numbet, L
is a cyclic Galois extension of of degreeUn,, such that
L = K(a) with @ € R, o a generating element i@al(L/K)
andp € Ok an inert prime inL/K. We also define = oV
and F' to be the fixed field ofr. So we haveL : F] = ny,
[F:K]=U,Gal(L/F)=<7>,andGal(F/K) =< op >
whereop is a restriction ofs in F. Let v = v, be thep-
@dic valuation of the field L. In this section, when we say that

Q(i,V5). In the following we give a complete characterizay, /i, p, ando are suitable we mean that they are as above.
tion of when their construction method leads to codes with Due to the space limitations, we skip the proof of the

generalized full rank property.

Theorem 3.1:Let K/Q and L/K be two field extensions
of degree2 anda,b,c,d € L. Let alsoc be the non-trivial
element in the Galois grou@al(L/K). Define

o={(5 5 Jrecr)

following proposition.

Proposition 4.1:For every complex quadratic field, hav-
ing class number 1, and for arly and for anyn, we have
a suitable degree.U extensionL/K, primep € Ok and
automorphisnv € Gal(L/K).

Now we are ready for our construction. Lej € Oy, for
all j=1,...,n. DefineM = M (z1,22,...,2,,) to be

There exists a matrix il with zero determinant if and only vr o opr(an,)  pri(@n,1) .. pTM T (@)
if 3 m(x1)  pri(wn,) .. pTTH(@s)
‘ N(a) N(b) ’ =0 ) o T o) P ()
N(c) N(d) | 7 : : : :
) ) Tn,o1 T(Tn,—2) T3HTp,—3) ... pri(my,)
where the functionV = Ny, denotes the norm of extension Zn, (@) T2(Tn,_2) ... T M(z)

L/K.
Proof: Assume first that we have a matrix

( ax bo(x) )
cy doly)
with zero determinant. This means thatdzo(y) =
beo(x)y, which gives N(a)N(d)N(z)N(o(y)) =
N(b)N(c)N(o(x))N(y). Continuing we getN(a)N(d) =
N()N(c)i.e. N(a)N(d) — N(b)N(c) = 0.

Assume then thalV (a)N(d) — N(b)N(c) =0.If borcis
zero thenN(a)N(d) = 0 i.e. a or d is zero and then for all
x,y € O we have

ax bo(x)
cy do(y)

o

i.e. a matrix representation of an element in the cyclic algebra
(L/F,T,p). The following lemma proofs thatl/F, 7, p) is a
division algebra.

Lemma 4.2:Let x; € O for all j = 1,...,n, such that
x; # 0 for somel andmin(v(xy),...,v(z,,)) = 0. Then we
have

det(M(z1,22,...,2n,)) #0

and
v(det(M (21, 22,...,2n,))) < np — 1.

Proof: Write M = M(x1,22,...,2,,) and N =
Np,p. Assume first that(x;) = 0. Then the determinant
is N(x1) + py for somey € Op and hence we have
v(det(M)) = min(v(N(z1)),v(py)) = 0. Assume then that
v(x1),v(x2),...,v(z—1) > 0andv(x;) = 0with 1 < I < ng.
Notice that in this case all the other elementof matrix

OtherwiseN(%) = 1. Then by Hilbert 90 we have someM than those in the left lower corner block of side length

z € L such thated = 2Z) Then writez = 2 with w € O}
andn € Z. This gives& = 2% je qdw — beo(w) = 0.
This means that the determinant of

(o b )

is zero. [ |

ny — 1 + 1 havewv(a) > 0. Either they have coefficient

or they are automorphic images of elementszs, ..., x;_1.
Now det(M) = =4p'~'N(z;) + p'z for somez € Oy
since all the other terms exceptp' !N (z;) have at most
n; — | factors from this left lower corner and hence at least

ny — (ny — 1) = [ terms have factop. This gives that
v(det(M)) = min(v(p' "IN (z;)),v(p'2)) =1 -1 < ny — 1.
|



Definition 4.1: Define M; = M (xj1,xj2,...,%jn,) for Theorem 4.5:Let Cy ., € €y,n,. The codeCy ,, is a full

all j =1,...,U. In our multi access system the cod@g of rate code and satisfies the generalized rank criterion.
jth user consists ofi; x Un; matricesB; = Proof: Let A € Cyn, = Cun(L/K,p,0,k). We
o _ may assume thatin(v(z;1),...,v(zn,)) = 0, for all
. . 2 . k_j—1 . U—-1 . VB ) ) 7yt T
(My, 0(M;),0° (M), ....p~ "7 (M), ..., 0" 7 (M) j=1,...,U, because otherwise we can divide extis off.
where k is any rational integer strictly greater th ";’1) That does not have any impact on whether(4) = 0 or not.
The determinant ofd is

andz;; # 0 for somel. Herek is same for all users. The the
whole codeCy ,,, consists of matrices U
p U [ det(o = (M) +y
B =1

A— B where v(y) > —k(Un; — 2). We know that
: 7 v(o!=(det(M;))) = wv(det(M;)) becausep is from K,
By i.e. from the fixed field ofo, and det(M;) # 0 for all .
. Theref
where B; € C; for all i = 1,...,U. This means that the erefore
matricesA € Cy,,, have form v v
v o(p~ U [ det(o' 1 (M) = —kUn + > v(det(M7))
p_k]\/fl O’(]\/fl) ... O'U_l(Ml) =1 =1
—k U-1
My pPo(Mz) ... o7 (M) that is less or equal thankUn,+U (n,—1) = U(n,—1—Fkny,)
: : : by[4.2. But if we would havelet(A) = 0 then
My o(My) ... p~FeU"H(My) U
We will skip the proof of the following proposition, stating v(y) =v(p~ U Hdet(alfl(Ml)))
that each of the single user codes satisfies the NVD condition =1
and are thgrefore DMT optimal. ' and hencei(y) < U(n, — 1 — kn,) implying —k(Un, —2) <
Proposition 4.3:Let Cy,,,, € €y, andC; be thejth users U(ns —1 — kny). This gives2k < U(n; —1) i.e. k < U(n.=1)
code in the systenCy ,,, for somej € 1,...,U. Then the a contradiction - - 2 -
. . 2- . . . . . . . . .
code(; is a 2Uni-dimensional lattice code with the NVD Remark 4.1:Using multiblock codes from division algebras
property. as single user codes in the MIMO MAC scenario has been

The code depends on how we did chodSgK, p, 0, sed before for example in[9].1[4] andl[5]. 1al[9] the full
and k, so to be precise, we can also refer @, With a0 condition for codes with, > 1 is achieved by using

Cun, (L/K,p, 0, k). I__et us call the family of _aII such C(_jdestranscendental elements. Inl [4] the same effect is achieved
Cun,(L/K,p,0,k) (i.e. codes constructed with any suitablg, .\ algebraic elements of high degree.
L/K, p, o, andk) by €y ,,,. That is

Q:Uﬂlt = U {CU-,nt(L/Kapv Uv k)}
L/K,p,o.k In this chapter we will prove an asymptotic lower bound
for the decay function of codes frody, ,,,. In [3] the authors

erreL{f(, pt' Ulsandk.?reiﬂaff{ suitable olnes. find suitab ive a general asymptotic upper bound for a decay function in
ceording to Fropositio we can aways Tind sultabif,e case that only one user is properly using the dadéV,

L/K,p,o,andk foranyU € Z, andn, € Z,. We therefore . anything bulV, — --- — Ny — 1 are restricted. We

ha¥ﬁ the fo'f‘g’!gg theorerr;n.. e q 7 will see that in this special case our codes have asympligtica
eorem 4.4:For any choice of/ € Z, andn; € Z, we . oo possible decay.

havecy ,, # 0. )
n B Lemma 5.1:Let Cy,, = Cun,(L/K,p,0,k) € Cuyp,,
Note that the cod&y, = Cui(L/K.p.o.1) € Cua 4 o ¢y “and letF be the fixed field ofr — oU. Then
a code forU users each having one transmission antenn&;lét(A) e F

consists of matrices of form

V. ON THE DECAY FUNCTION OF CODES INCy

Proof: As F is the fixed field of 7 it is enough
to prove that7(det(4)) = det(A). Write again M; =

plry o(m) o?(z) oV~ (zy) M(zj1,%j2,--.,2jn, ) and notice that (M), after switching
ro  plo(ze)  o%(x2) oV~ (x) first and last column and first and last row, is
T3 o(xs) plo?(x3) oV~ 1(x3) B
. . zir T(@in) (@) o T (@g2)
- - ) o prjz  T(zi1)  pr(wime,) .o pT T H(24)
Ty o(zy) c*(zy) ... p oV zy) pTj 3 7(z52) 73(z51) v pr™ N 4)

Note also that the cod€,, = Ci., (L/K,p,0,k) € : : : :
¢ ,, is a usual single user code multiplied py*. PTin, T(Tjno—1) T2 (@jm,—2) ... 7" Hxj1)



Here we did an even number of row and column changes soThe ring Oy, has aZ-basis{~1,...,7vun, }- Each of these
when calling the above matrix/; we see that(det(A)) is  basis elements can be presented as

pRML (M) G2(M!) ... o™ (M) N= > Sia0
My pro(My)  o*(Mz) ... o"T(My) €SSz
M}, o(Ms)  pFe?(Mz) ... o™ Y(Mji) | wheres,, cQforalll=1,...,2Un, anda € S; U Ss.
: : : : Let A e CU,n be
M, o (M) o?(Mp) ... pRomTH (M) p~ kM, o(My) . oV~ (M)
. . . M2 pikO'(MQ) - O'Uil(MQ)

Let us call the above matrid’. We notice that matricest ] ) )
and A’ are exactly similar apart from the fact that i, : : :
elements in places$l,?2),(1,3),...,(1,n,) have coefficient My o(My) ... p eV~ (My)
pk gn.d eIer_nkents in_plac/e{Q, 1),(3,1),. o (nt, 1) have not_ andM; = M(xj1, %52, ..., 2jn,) be
coefficient p~" and in M; these are vice versa. But this
does not change the value of the determinant because in the zj,1  p7(%jm,) P72 (Tjm,—1) ... pT™ Hxj2)
expansion of the determinant each summand include a prodyct zj2  7(z;,1) P (Ejn,) .. pT™ T2y 3)
of same number of elements from columns that are congruent ;3 7(7;2) (xj) . pm™ TN (wg)
to 1 modulon; and from rows that are congruenttanodulo : : :
n: " Tine T(@jn—1) T2 (Tjne—2) .. T Hag0)

Theorem 5.2:[7] For any full-rateU-user lattice code, each
user transmitting witl; antennas there exists a constant aS usual.

0 such that Now for anyj =0,...,Un: — 1 we have
k . 2Un, )
D(Ni=N,Ny=N3=---=Ny=1) < NO—Dne - 0 (Tm,n) = Z U, h,10” (V1)
=1

For the next theorem we need few definitions. pét) =
po + p1x + -+ + pmax™ € Zlz] be a polynomial. Then
we say thatH(p(z)) = max{|p;[} is the height of the 4oments of form
polynomial p(xz) and for an algebraic number we define Un, Uny 20U,

H(a) = H(¢a) Whereg, is the minimal polynomial ofx. —y H 09 (@, 1) = H(Z i, 1, 207 (1)
j=0

whereu,, »,; € Z and |uy, p,1| < Ny, for all m, h and!.
Then the determinantet(A) is a sum consisting of/n,!

The next generalization of Liouville’s theorem can be found p
from [8, p. 31]. )
Theorem 5.3:Let o € R be an algebraic number of degredvheref < kUn, andm; gets exactlyn, times all the values
%, H(a) < h, H(P) < H anddeg(P(z)) = m € Z*. Then 1,---,U andh; gets values fron{1,...,n;}.
either P(o) = 0 or Now substitutingy, = > ,cq,us, SLea gives that the
determinant is a sum consisting of elements of form

j=0 I=1

Cm
|P(a)] =2 = Unt 2Uny _
" P TICY tmpag Y 51007 (@),
W|th c = ﬁ 7=0 =1 a€S1USs
Now we are ready to give a lower bound for the decay We also write
function of our codes. The proof can be seen as an extension ;
to the analysis given for BB-code inl[3]. o’ (a) = Z tjaa
Theorem 5.4:For a codeCy,, € €y, there exists con- a€51US,
stantK > 0 such that WhereU tia 2U€ Q for all ja _and find that
K p_j ]-_-[]:nOt( l:]’.nt uTT'Lj,h]‘,l ZaESHUSg Slvao-J (a)) can be
D(Ny1,Na,...,Ny) > (NiNs .. Ng)T—Dme written as a sum of elements of form
. Kip— u
Especially P esz;s Hall
K a 1 2
D(N) > NUT Dy where K; € Q is some constanty, € Z, and u, =
. O((Ny...Ny)™).

Proof: Let Cyn, = Cun (L/K,p,0,k). Field ex-  writing alsop using basisS; U S» we see that the whole
tension L/Q has a basisS; U S where Si = determinantdet(A) can be written as a sum of elements of
{1,6,6%,...,0Y=1,3,86,36%,...,56Y"1} is a basis o /Q  form
with § € R, K = Q(p) and 5 = /—w for some positive Z ula

integerw. Notice that if L = F then Sy = 0. a€S1US>



multiplied by some constank’; and here we have/, € Z,
andu; = O((Nl .. .NU)nt).

On the other hand we know thatet(4) € F so by
uniqueness of basis representation we know thafA) is
a sum consisting of elements of form

Zu a= Zuém(?m—i-ﬂZuémﬂ(S

a€S1

and hence
U-—1 U-—1
| det(A)| = K| Y Hi' + 8 Jid'),
=0 =0

whereH,, J; € Z and|H;|, |J;| are of sizeO((N-
forall/=0,...,U — 1.
Using the fact thab is real we get

.. NU)nt)

K(<7+<;1)!

Now the actual code consists of matrices

K =Q(i),p=2+1,andGal(L/K) =< 0 >.

ptz o(x) 02(1?)
y  ploly)  o*(y)
z a(z) p 102( )

wherez,y, z € O;.

We get a codeCyr = Co2(Q(V=3,¢17 + (i + (7t +

{1}1),\/—3,0, 2) i.e. 2-user code with each user having 2
antennas by settin@ K(Cw + 4“17 + {1; +¢G), K =
QV=-3),p=vV-3k=2>

o >. Now the actual code conS|sts of matrices

(m—

, andGal(L/K) =

p a1y
p 2wy
Y1
Y2

D 10'2(562)
P 20.2( 1)
pa’(y2)

a*(y1)

po®(x2)
o3(x1)

p 103(3/2)

(y1)

o(z1)
U(,Tg)
p2o(y1)

pPo(y2) pi0’

p "o

wherexy, xa,y1,y2 € Op andx; # 0 or o # 0 andy; # 0

| det(A

ZH161|+|Z Ji8')).

Now using[5.8 and noticing thateg(d) =

K
SNy T

U we have

det
[ det(A)| 2
where K is some positive constant.
[ ]
Corollary 5.5: For a codeCy,,, € €y, there exists

constants: > 0 and K > 0 such that

k

N = D=

N, Ny =

VI. EXAMPLES

Let us now give few examples of our general code con-
structions. In table Table 1 we have collected some examples

of suitable fieldsK and L and inert primes, fulfilling the
conditions of Proposition 4.1. 1K = Q(i) thenp; Ok refers
to the inert prime and if{’ = Q(v/—3) thenp ,—Ox is inert.
The inert primes and field§ are found by looking at totally
real subfields of3(¢,,)/Q and then composing them with the
field K.

TABLE |
[L: K] L i D=3
3 K({r+¢ 0 2+i /=3
4 K(Gr+ ¢+ ¢+ ¢ 244 V=3
5 (C11+C111) 1+i 2+4+/-3
6 (413+C1 b 144 243
7 K(Co+ 24+ +6G)) 1+ /=3

A. Actual examples

We get a code’s 1 = C31(Q(4,¢7 + ¢ 1), 2 +14,0,1) i.e.
3-user code with each user having 1 antenna by sefting

or y2 # 0.

VII. CONCLUSION
We gave a general construction for MIMO MAC codes

satisfying the generalized rank criteria and gave a lowendo
for their decay. As a corollary we got that all our codes do
achieve the pigeon hole bound.
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