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On Linear Index Coding for Random Graphs

Ishay Haviv∗ Michael Langberg†

Abstract

A sender wishes to broadcast an n character word x ∈ F
n (for a field F) to n receivers

R1, . . . , Rn. Every receiver has some side information on x consisting of a subset of the char-

acters of x. The side information of the receivers is represented by a graph G on n vertices in

which {i, j} is an edge if and only if Ri knows xj. In the index coding problem the goal is to

encode x using a minimum number of characters in F in a way that enables every Ri to retrieve

the ith character xi using the encoded message and the side information. An index code is lin-

ear if the encoding is linear, and in this case the minimum possible length is known to be equal

to a graph parameter called minrank (Bar-Yossef et al., FOCS’06). Several bounds on the mini-

mum length of an index code for side information graphs G were shown in the study of index

coding by Bar-Yossef et al. (FOCS’06), Lubetzky and Stav (FOCS’07), Alon et al. (FOCS’08), and

Blasiak et al. (manuscript, arXiv’10). However, the minimum length of an index code for the

random graph G(n, p) is far from being understood.

In this paper we initiate the study of the typical minimum length of a linear index code for

G(n, p) over a field F. First, we prove that for every constant size field F and a constant p, the

minimum length of a linear index code for G(n, p) over F, i.e., the minrank of G(n, p) over F,

is almost surely Ω(
√

n). Second, we introduce and study the following two restricted models of

index coding:

1. A locally decodable index code is an index code in which the receivers are allowed to query

at most q characters from the encoded message. We prove that the minimum length of

a linear locally decodable index code for G(n, p) over F with q queries is almost surely

Ω̃( n
q ) assuming that q = Ω̃(n

1
3 ). In particular, for locally decodable index codes with

some q = o(
√

n) we get an ω(
√

n) lower bound.

2. A low density index code is a linear index code in which every character of the word x

affects at most q characters in the encoded message. Equivalently, it is a linear code whose

generator matrix has at most q nonzero entries in each row. We prove that in order to

show an ω(
√

n) lower bound on the minimum length of a linear index code for G(n, p)
over F it suffices to show such a lower bound on the length of a low density index code

for G(n, p) over F with some q = ω(1). In addition, we prove that the minimum length of

a low density index code for G(n, p) over F is almost surely at least n1−ε for q = 2 and at

least n
2
3−ε for q = 3 for any sufficiently small constants p and ε > 0.
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1 Introduction

In the index coding problem, a sender wishes to broadcast an n character word x ∈ F
n (for a finite

field F) to n receivers R1, . . . , Rn in a way that enables every Ri to retrieve the ith character xi.

Every receiver has some side information on x. The side information is represented by a directed

graph G on the vertex set [n] = {1, 2, . . . , n} in which a vertex i is connected to a vertex j if and only

if the receiver Ri knows xj. Given a side information graph G, the goal is to find a coding scheme

of minimum length, by which every receiver Ri is able to retrieve xi given the encoded message

and the side information that it has on x according to G. The settings are naturally extended to

undirected graphs in which an edge {i, j} meas that Ri knows xj and Rj knows xi.

For example, assume that every receiver Ri knows xj for every j ∈ [n] \ {i}. The corresponding

side information graph is the complete graph on the vertex set [n]. In this case, broadcasting the

sum ∑i∈[n] xi over F enables every receiver Ri to retrieve xi, and hence the minimum message

length required here is 1.

The study of index coding was initiated by Birk and Kol in [6] and further developed by Bar-

Yossef, Birk, Jayram and Kol in [5]. This research is motivated by applications, such as video

on demand and wireless networking, in which a network transmits information to clients, and

during the transmission every client misses some of the information. At this step, the clients have

side information on the transmitted information, and the network is interested in minimizing the

broadcast length in a way that enables the clients to decode their target (see, e.g., [23]).

Research on index coding is motivated by several questions in theoretical computer science.

For example, index coding is a natural version of the one-way communication complexity problem of

the indexing function studied in [14]. In this problem, Alice is given an n bit string x, sends a single

message to Bob, and Bob, given an index i, should be able (possibly probabilistically) to discover

xi. The goal is to minimize the length of Alice’s message. The index coding problem over F2 is

equivalent to this question once we restrict Bob to act deterministically and allow him to use some

side information on x, depending on i. The study of index coding is also motivated by the more

general problem of network coding, introduced by Ahlswede et al. [1]. El Rouayheb et al. showed

in [10] that network coding instances can be efficiently reduced to index coding instances. Hence,

understanding index coding capacities is motivated by applications in computational complexity

regarding deciding and approximating the network coding problem (see [16, 15]).

For a graph G and a field F we denote by β1(G) the minimum length of an index code for G

over F. This graph parameter is well-known to be related to several classical graph parameters.

Indeed, for an undirected graph G, β1(G) is bounded from below by α(G), the maximum size of

an independent set in G, as follows from the fact that an independent set in G corresponds to a

set of receivers with no mutual information. On the other hand, β1(G) is bounded from above by

χ(G), the clique cover number of G, as follows from broadcasting the sum over F of the characters

corresponding to the vertices in every clique in an optimal clique cover.

In [5], Bar-Yossef et al. identified an algebraic graph parameter, called minrank1 and denoted

by minrkF(G), which upper bounds β1(G). Interestingly, they proved that the minrank of a graph

G over F equals the minimum length of a linear index code for G over F (i.e., an index code whose

encoding function is linear). They also proved that their upper bound is tight and is equal to

β1(G) for several graph families for the binary field F2. This includes directed acyclic graphs,

perfect graphs, odd holes (undirected odd-length cycles of length at least 5) and odd anti-holes

(complements of odd holes). These results raised the question whether the minrank parameter

characterizes the minimum length of general index codes. This question was answered in the

1See Definition 2.1.
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negative by Lubetzky and Stav [18], who showed that for any ε > 0 and a sufficiently large n

there is an n vertex graph G with β1(G) ≤ nε and minrkF2
(G) ≥ n1−ε (see [3] for additional

counterexamples). We note that the proof in [18] uses a property of the minrank (see also [12]),

saying that for every field F and an n vertex undirected graph G,

minrkF(G) · minrkF(G) ≥ n. (1)

The first to define the minrank parameter was Haemers [11, 12], who related it to what is

known as the Shannon capacity of graphs introduced in [22]. Haemers showed that for every field

F and an undirected graph G, α(G) ≤ c(G) ≤ minrkF(G), where c(G) stands for the Shannon

capacity of G. He also showed that there are graphs for which the minrank upper bound on the

Shannon capacity is tighter than the one given by the well-known Lovász θ-function introduced

in [17]. We note that calculating the minrank of a given input graph is known to be NP-hard [21],

as opposed to the efficiently computable Lovász θ-function.

The following theorem summarizes some of the bounds mentioned above.

Theorem 1.1 ([11, 12, 5]). For every field F and an undirected graph G,

α(G) ≤ β1(G) ≤ minrkF(G) ≤ χ(G).

All the inequalities in the above statement are known to be strict for certain graphs. This makes

the task of understanding β1(G) challenging. A fundamental parameter to study in this context

is the typical value of β1(G) for random graphs G. This question was raised by Lubetzky and Stav

in [18] for the well-known random graph G(n, 1
2), where G(n, p) denotes the random undirected

graph with n vertices and edge probability p. In this paper we focus on linear index codes and

study the following question:

What is the typical minimum length of a linear index code for the random graph G(n, p) over F?

Equivalently, we are asking for the typical minrank over F of the random graph G(n, p).

Let us start with some bounds yielded by Theorem 1.1. Both the independence number and

the clique cover number of G(n, p) are well understood (see [9] for the former and [8, 19] for the

latter). For a constant edge probability p, we obtain that almost surely (i.e., with probability that

tends to 1 as n tends to infinity),

(1 ± o(1)) · 2 log n

log 1
1−p

≤ minrkF(G(n, p)) ≤ (1 ± o(1)) ·
n log 1

p

2 log ((1 − p)n)
.

In short, for a constant p, almost surely, Ω(log n) ≤ minrkF(G(n, p)) ≤ O( n
log n ). The gap between

these lower and upper bounds is exponential, and, surprisingly, no better bounds are known to

hold almost surely for G(n, p). Yet, it is plausible to expect the minrank of G(n, p) to be much

higher than the Ω(log n) lower bound, since the bound in (1) implies that the expected minrank

of G(n, p) is Ω(
√

n) for p = 1
2 (and hence for any p ≤ 1

2 as well). To see this, notice that if

G is distributed according to G(n, 1
2) then so is its complement, and hence the probability that

minrkF(G) ≥ √
n is at least 1

2 . We note, though, that any ω(
√

n) lower bound on the expectation

above would imply an ω(
√

n) lower bound which holds almost surely, as follows from the large

deviation inequality for vertex exposure martingale (see, e.g., [4], Chapter 7). Understanding

the true value of minrkF(G(n, p)) and, more specifically, the question whether one can show an

ω(
√

n) lower bound on it, are the driving force of this work.

3



1.1 Our Contribution

In the current paper we study the typical minimum length of a linear index code for the ran-

dom graph G(n, p) over a field F. We start by showing that an Ω(
√

n) lower bound holds with

probability that (exponentially) tends to 1 as n tends to infinity (and not only in expectation). In

addition, the bound holds for every constant size field F and a constant edge probability p.2

Theorem 1.2. For every constant size field F and a constant p ∈ (0, 1), almost surely

minrkF(G(n, p)) = Ω(
√

n).

Observe that Theorem 1.2 implies that the random graph G(n, 1
2 ) almost surely has an ex-

ponential gap between its independence number and its minrank over any constant size field.

In [2], Alon conjectured that the Shannon capacity of G(n, 1
2) satisfies c(G(n, 1

2)) = O(log n) al-

most surely. This, if true, would imply an exponential gap between the Shannon capacity and the

minrank upper bound of Haemers [12] on it for a typical graph G(n, 1
2 ).

In the attempt to understand where the minrank of G(n, p) exactly lies in the range from
√

n

to n
log n we introduce and study two natural restricted models of index coding.

Locally decodable index coding. In our first model we study index codes in which the decoders

are allowed to query a limited number of characters from the encoded message. More precisely,

these are index codes in which the sender maps x ∈ F
n to an encoded message, and each of the

receivers should be able to recover xi using at most q queries to the encoded message and the

information that the receiver has on x according to the side information graph. The following

theorem says that every linear locally decodable index code for G(n, p) over F with q significantly

smaller than
√

n almost surely has length much higher than
√

n. The Ω̃ notation is used to hide

factors which are logarithmic in n.

Theorem 1.3. For every constant size field F and a constant p ∈ (0, 1), if there exists a linear index code

of length ℓ for G(n, p) over F, such that every decoding function queries at most q = Ω̃(n
1
3 ) characters

from the encoded message, then almost surely ℓ = Ω̃( n
q ).

We note that a locally decodable index code is a natural analogue of the widely studied object

known as locally decodable codes introduced by Katz and Trevisan [13]. Roughly speaking, locally

decodable codes enable a probabilistic decoding of any character of the original message by look-

ing at a limited number of characters in a possibly corrupted encoded message.

Low density index coding. The second model we study consists of linear index codes in which

every character of the word x (that the sender wishes to broadcast) affects a limited number, say

q, of characters in the encoded message. Such codes are generated by generator matrices in which

every row has at most q nonzero entries, thus we call them low density generator matrix index codes

(or, in short, low density index codes).

Low density codes are usually not so useful in coding theory. The reason is that such codes

have minimum distance at most q, whereas, in most applications, one desires codes of large mini-

mum distance. However, for our purposes such codes turn to play a major role. More specifically,

our next theorem says that improving the
√

n lower bound on the length of low density index

codes for G(n, p) will imply such an improvement on the length of linear index codes for G(n, p)

2In fact, our proof provides a lower bound also for the case that |F| and p depend on n. For the full statement of this

theorem see Theorem 4.3.
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in general. This is quite surprising since low density index codes intuitively seem significantly

weaker than general linear index codes. We state this result here informally, and the formal state-

ment can be found in Section 6.

Theorem 1.4 (informal). Assume that every linear index code for G(n, p) over F, with at most q = ω(1)

nonzero entries in a row of its generator matrix, has length ω(
√

n) with high probability. Then, almost

surely, minrkF(G(n, p)) = ω(
√

n).

Theorem 1.4 motivates studying lower bounds on the length of low density index codes for

G(n, p). Observe that the minimum length of a low density index code with q = 1 for a graph G

equals the clique cover number χ(G). This implies a tight lower bound of Ω( n
log n ) for q = 1. We

are also able to prove ω(
√

n) lower bounds for low density index codes for q = 2 and q = 3, as

stated below.

Theorem 1.5. For every constant size field F and sufficiently small constants ε, p > 0,

1. every linear index code for G(n, p) over F, in which every character of the sent word affects at most

2 characters of the encoded message, almost surely has length at least n1−ε, and

2. every linear index code for G(n, p) over F, in which every character of the sent word affects at most

3 characters of the encoded message, almost surely has length at least n
2
3−ε.

1.2 Outline

The remainder of the paper is organized as follows. In Section 2 we provide some background

preliminaries needed throughout the paper. In Section 3 we show that the minimum length of an

index code for the (undirected) graph G(n, p) is similar to that of directed random graphs. This

enables us to simplify the presentation of our proofs by considering the directed random graph

model. In Section 4 we prove the Ω(
√

n) lower bound given in Theorem 1.2. In Section 5 we prove

our result on locally decodable index codes, and in Section 6 we prove our results on low density

index codes. The final Section 7 discusses some concluding remarks and open questions.

2 Preliminaries

In the index coding problem a sender wishes to broadcast a word x ∈ F
n (for a field F) to n

receivers R1, . . . , Rn. Every receiver Ri knows some fixed subset of the characters of x and is

interested solely in the character xi. An ℓ-index code for this setting is a length ℓ code over F, which

enables Ri to recover xi for every x ∈ F
n and i ∈ [n].

The index coding problem can be stated as a graph parameter. For a directed graph G and a

vertex v let N+
G (v) denote the set of out-neighbors of v in G, and for x ∈ F

n and S ⊆ [n] let x|S
denote the restriction of x to the coordinates of S. The setting of the definition of an index code is

characterized by the directed side information graph G on the vertex set [n] where (i, j) is an edge if

and only if the receiver Ri knows xj. An ℓ-index code for G over F is a function E : F
n → F

ℓ and

functions D1, . . . , Dn, so that for all i ∈ [n] and x ∈ F
n, Di(E(x), x|N+

G (i)) = xi. The definition of an

index code is naturally extended to undirected graphs by replacing every undirected edge by two

oppositely directed edges.

We say that the index code is linear if the encoding function E is linear. It is not difficult to see

that in the linear case it can be assumed, without loss of generality, that the linear function E is

homogenous. This means that there exist vectors e1, . . . , eℓ ∈ F
n such that every x ∈ F

n is mapped
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by E to E(x) = (〈e1, x〉, 〈e2, x〉, . . . , 〈eℓ, x〉). For example, for the binary field F2, every coordinate

of E(x) is the xor of a certain subset of the coordinates of x.

Bar-Yossef et al. [5] showed that the minimum length of a linear index code for G over F equals

minrkF(G), a graph parameter defined as follows.

Definition 2.1. Let A = (aij) be an n by n matrix over some field F. We say that A represents an n

vertex graph G over F if aii 6= 0 for all i, and aij = 0 whenever i 6= j and (i, j) is not an edge in G. The

minrank of a graph G over F is defined as

minrkF(G) = min{rankF(A) | A represents G over F}.

Let E : F
n → F

ℓ be a linear ℓ-index code for a graph G and identify it with its generator matrix

in F
n×ℓ. Denote the ith column of E by ei and denote span(E) = span(e1, . . . , eℓ). For a message

x ∈ F
n, the ith receiver is interested in xi. In order to discover xi the ith receiver is allowed to

use the codeword E(x) = (〈e1, x〉, 〈e2, x〉, . . . , 〈eℓ, x〉) and the side information that it has on x

according to G. It can be seen that the ith receiver is able to discover xi if and only if there exists

a vector in span(E) that is nonzero in the ith entry and is zero in all the entries that correspond to

non-neighbors of i. This motivates the following definition which will be useful throughout the

paper.

Definition 2.2. For a graph G on the vertex set [n], a vector v ∈ F
n satisfies a vertex i ∈ [n] if vi 6= 0

and vj = 0 for every j ∈ [n] \ {i} such that i is not connected to j in G.

Using this terminology, E is a linear index code for G if and only if every vertex i ∈ [n] is satisfied

by a vector in span(E).

We need the following simple claim, in which we use Bn(r) to denote the set of vectors in F
n

of Hamming weight (i.e., number of nonzero entries) at most r.

Claim 2.3. For every field F, n, ℓ, r ∈ N, and a basis E ∈ F
n×ℓ, the number of indices of coordinates that

are nonzero in at least one vector in span(E) ∩ Bn(r) is at most r · ℓ.

Proof: Consider the following process: start with i = 1, and at the ith step choose a vector vi ∈
span(E) ∩ Bn(r) that has a nonzero coordinate which is zero in all the previously chosen vectors

v1, . . . , vi−1. Clearly, the process does not terminate as long as there is a coordinate that is nonzero

in at least one vector in span(E) ∩ Bn(r) but is zero in all the chosen vi’s. Observe that for every

i, the vectors v1, . . . , vi are linearly independent. Therefore, the process terminates after at most

ℓ steps. At each step we have at most r new indices of nonzero coordinates since the vi’s are in

Bn(r). This implies that the number of indices of coordinates that are nonzero in at least one vector

in span(E) ∩ Bn(r) is at most r · ℓ.

Let G(n, p) denote the random undirected graph with n vertices and edge probability p, and

let ~G(n, p) denote the random directed graph with n vertices and edge probability p. We say that

G(n, p), resp. ~G(n, p), satisfies a graph property almost surely if the probability that G(n, p), resp.
~G(n, p), satisfies this property tends to 1 as n tends to infinity.

Throughout the paper we ignore floors and ceilings whenever appropriate as this does not

affect the asymptotic nature of our results.

3 G(n, p) versus ~G(n, p)

In this section we prove a lemma saying that the minimum length of an index code for G(n, p) and

the minimum length of an index code for ~G(n, p) behave similarly for constant edge probabilities.
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We start with the intuitive proof idea and then turn to the proof. In the directed graph ~G(n, p) the

probability that two vertices are connected by two oppositely directed edges is p2. Hence, ~G(n, p)

essentially contains a copy of G(n, p2). On the other hand, the probability that two vertices in
~G(n, p) are not connected at all is (1− p)2, so ~G(n, p) is essentially contained in G(n, 1− (1− p)2).

Therefore, a lower bound on the minimum length of an index code for ~G(n, p) for some constant

p implies a lower bound on that of G(n, p′) for some constant p′ and vice versa.

Lemma 3.1. For every field F, n, ℓ ∈ N and p ∈ (0, 1), let

P1 = Pr
[
There exists an ℓ-index code for G(n, p2) over F

]
,

P2 = Pr
[
There exists an ℓ-index code for ~G(n, p) over F

]
,

P3 = Pr [There exists an ℓ-index code for G(n, p(2 − p)) over F].

Then, P1 ≤ P2 ≤ P3.

In addition, the inequalities hold when we require the index codes in the three events to be linear, (q, ℓ)-

locally decodable for some q ∈ N, or (q, ℓ)-low density for some q ∈ N.3

Proof: We first show that P1 ≤ P2. For a directed graph G, let G̃ denote the undirected graph

on the vertex set of G in which two vertices are adjacent if and only if they are connected in G

by two oppositely directed edges. Observe that if G is distributed according to ~G(n, p) then G̃ is

distributed according to G(n, p2). For a graph G (directed or not) and ℓ ∈ N we denote by IG,ℓ the

indicator variable of the event “There exists an ℓ-index code for G over F”. Notice that for every

directed graph G we have IG,ℓ ≥ IG̃,ℓ, since every ℓ-index code for G̃ is an ℓ-index code for G as

well. We get that

P2 = ∑
G∈~G(n,p)

IG,ℓ · Pr [G] ≥ ∑
G∈~G(n,p)

IG̃,ℓ · Pr [G] = ∑
G′∈G(n,p2)

IG′,ℓ · Pr
[
G′] = P1,

where the second equality holds since the probability of a graph G′ according to the distribution

G(n, p2) equals the sum of the probabilities of all the graphs G satisfying G̃ = G′ according to the

distribution ~G(n, p).

The proof of the inequality P2 ≤ P3 is similar. For a directed graph G, let Ĝ denote the undi-

rected graph on the vertex set of G in which two vertices are adjacent if and only if they are

connected in G by at least one directed edge. Observe that if G is distributed according to ~G(n, p)

then Ĝ is distributed according to G(n, p(2 − p)) and that for every directed graph G we have

IG,ℓ ≤ IĜ,ℓ. We get that

P2 = ∑
G∈~G(n,p)

IG,ℓ · Pr [G] ≤ ∑
G∈~G(n,p)

IĜ,ℓ · Pr [G] = ∑
G′∈G(n,p(2−p))

IG′,ℓ · Pr
[
G′] = P3,

where the second equality holds since the probability of a graph G′ according to the distribution

G(n, p(2 − p)) equals the sum of the probabilities of all the graphs G satisfying Ĝ = G′ according

to the distribution ~G(n, p).

Finally, assume that the codes in the three events satisfy one (or more) of the properties men-

tioned in the statement of the lemma. It can be seen that an almost identical proof yields the

result, since the inequalities IG̃,ℓ ≤ IG,ℓ ≤ IĜ,ℓ remain true when we require the code to have such

a property in the definition of the event IG,ℓ.

3See Definitions 5.1 and 6.1.
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4 The Ω(
√

n) Lower Bound

In this section we prove that minrkF(G(n, p)) ≥ Ω(
√

n) almost surely. By Lemma 3.1 it suffices to

prove the lower bound for the directed random graph ~G(n, p). We start with some intuition. Fix

a linear ℓ-index code generated by E ∈ F
n×ℓ for certain ℓ = O(

√
n). Our goal is to show that the

probability that E is an index code for ~G(n, p) is exponentially small, so that applying the union

bound over all the codes E will give us the result. As mentioned before, if E is an index code for a

graph on the vertex set [n] then every vertex i is satisfied by a vector in span(E), i.e., there exists

a vector v ∈ span(E) such that vi 6= 0 and vj = 0 for all j 6= i for which (i, j) is not an edge in

G. It is not hard to verify that any vector in span(E) of Hamming weight r, whose ith entry is

nonzero, satisfies a vertex i with probability pr−1. Using this, we show that the probability that

at least n
2 vertices are satisfied by vectors of high Hamming weight is small (Lemma 4.1). On the

other hand, we use Claim 2.3 to show that at most n
2 vertices can be satisfied by vectors of low

Hamming weight (Lemma 4.2). This implies that with high probability there exists a vertex in the

graph which is not satisfied by any vector in span(E), and hence with such probability, E is not an

index code for the graph.

The following lemma bounds from above the probability that the graph ~G(n, p) has an index

code for which many vertices are satisfied by vectors of high Hamming weight.

Lemma 4.1. For every field F and n, r, s ∈ N, the probability that there exist a linear ℓ-index code E ∈
F

n×ℓ for ~G(n, p) over F and s vertices, each of which is satisfied by a vector in span(E) \ Bn(r), is at most
(

n

s

)
· |F|nℓ ·

(
|F|ℓ · pr

)s
.

Proof: Fix a linear ℓ-index code E for ~G(n, p) over F and a set S ⊆ [n] of s vertices. The probability

that a vertex i is satisfied by a fixed vector y ∈ span(E) \ Bn(r) is at most pr. To see this, notice

that every vertex (except i) which corresponds to a nonzero entry of y must be a neighbor of i, and

this happens independently with probability p. Taking the union bound over all the vectors in

span(E) \ Bn(r), we get that the probability that a vertex is satisfied by a vector in span(E) \ Bn(r)

is at most |F|ℓ · pr. Hence, by the independence of the edges in ~G(n, p), the probability that every

vertex in S is satisfied by a vector in span(E) \ Bn(r) is at most
(
|F|ℓ · pr

)s
. Now, apply the union

bound over all the matrices E and sets S to get the desired bound.

Now we turn to deal with vertices which are satisfied by vectors of low Hamming weight and

to bound from above their number.

Lemma 4.2. For every field F, a graph G, and a linear ℓ-index code for G over F, at most n
2 vertices in G

are satisfied by vectors of Hamming weight at most n
2ℓ .

Proof: Let E ∈ F
n×ℓ be a generator matrix of a linear ℓ-index code for G over F. By Claim 2.3, the

number of indices of coordinates that are nonzero in at least one vector in span(E) ∩ Bn(
n
2ℓ ) is at

most n
2 . Recall that a vector which satisfies a vertex i must have the ith entry nonzero. Hence, the

number of vertices that can be satisfied by vectors in span(E) of Hamming weight at most n
2ℓ is at

most n
2 .

The Ω(
√

n) lower bound follows from combining Lemmas 4.1 and 4.2.

Theorem 4.3. For every field F and p ∈ (0, 1), almost surely

minrkF(G(n, p)) = Ω
(√

n ·

√
log 1

p

log |F|
)

.
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Proof: Take ℓ ≤ √
n ·

√
log 1

p

8 log |F| . By Lemma 3.1, it suffices to prove that minrkF(~G(n, p)) ≥ ℓ almost

surely. Let G be a graph distributed according to ~G(n, p). Let A denote the event that there exist

a linear ℓ-index code E for G over F and n
2 vertices in G, each of which is satisfied by a vector in

span(E) \ Bn(
n
2ℓ ). By Lemma 4.1,

Pr [A] ≤
(

n
n
2

)
· |F|nℓ ·

(
|F|ℓ · p

n
2ℓ

) n
2 ≤ 2n · |F| 3

2 nℓ · p
n2

4ℓ = |F|−Ω(nℓ).

On the other hand, by Lemma 4.2, there is no linear ℓ-index code E for G over F and n
2 vertices in

G, each of which is satisfied by a vector in span(E) ∩ Bn(
n
2ℓ ). This implies that almost surely there

is no linear ℓ-index code for G over F.

5 Locally Decodable Index Codes

In this section we study locally decodable index codes defined as follows.

Definition 5.1. A (q, ℓ)-locally decodable index code is an ℓ-index code in which the query complexity

of the decoding is at most q. This means that for every i the decoding function Di of the ith receiver queries

at most q characters from the encoded message.

Remark 5.2. For every graph G, the minimum ℓ for which there is a (1, ℓ)-locally decodable index code for

G over F is the clique cover number χ(G) of G.

The following theorem shows a lower bound on the length of a linear locally decodable index

code for G(n, p) over F. Although more involved, its proof follows the nature of the proof given

for Theorem 4.3.

Theorem 5.3. For every constant size field F and a constant p ∈ (0, 1), there exist constants c1, c2 > 0

such that if ℓ ≤ c1 · n2/3

(log n)1/3 and q ≤ c2 · n
ℓ·log ℓ

then almost surely there is no linear (q, ℓ)-locally decodable

index code for G(n, p) over F.

Proof: Let ℓ and q be as in the theorem and define r = 10ℓ·log |F|
log 1

p

. By Lemma 3.1, it suffices to show

that almost surely there is no linear (q, ℓ)-locally decodable index code for ~G(n, p) over F. For a

graph G distributed according to ~G(n, p) consider the following two events:

• A1: there exist a linear ℓ-index code E for G and n
4 vertices in G, each of which is satisfied by

a vector in span(E) \ Bn(r).

• A2: there exist a subspace W ⊆ F
n and a set S of n

4 vertices in G such that

1. W is spanned by ℓ vectors of Hamming weight in ( n
2ℓ , r], and

2. there exists a set U ⊆ W of ℓ vectors such that every vertex in S is satisfied by a vec-

tor which is a linear combination of at most q vectors in U and has Hamming weight

greater than n
2ℓ .

The following lemma reduces the lower bound in the theorem to analyzing the probabilities of

A1 and A2.

Lemma 5.4. If there is a linear (q, ℓ)-locally decodable index code E for G over F then at least one of A1

and A2 occurs.

9



Proof: Let e1, . . . , eℓ ∈ F
n be the vectors for which every x ∈ F

n is mapped by E to E(x) =

(〈e1, x〉, 〈e2, x〉, . . . , 〈eℓ, x〉). By Lemma 4.2, there are at most n
2 vertices in G that are satisfied by

vectors in span(E) of Hamming weight at most n
2ℓ . Assume that A1 does not occur. This implies

that there exists a set S of n
4 vertices in G which are satisfied by vectors in span(E) with Hamming

weight in ( n
2ℓ , r] (and are not satisfied by any other vectors in span(E)). Let y′1, . . . , y′n

4
be vectors

that satisfy the vertices in S, and let W be their linear span. Notice that W is spanned by ℓ of these

vectors, thus Item 1 of event A2 holds. Since W ⊆ span(E), the subspace span(E) equals the direct

sum W ⊕ V for some subspace V ⊆ F
n. Thus, for every j ∈ [ℓ], the vector ej can be uniquely

written as ej = wj + vj for some wj ∈ W and vj ∈ V.

We claim that the set U = {w1, . . . , wℓ} satisfies the requirement in Item 2 of event A2. Indeed,

for every vertex z ∈ S there exist a set J ⊆ [ℓ] of size at most q and coefficients aj ∈ F for j ∈ J

such that z is satisfied by the vector wz = ∑j∈J aj · ej ∈ W which has Hamming weight in ( n
2ℓ , r].

Notice that wz = ∑j∈J aj · wj + ∑j∈J aj · vj, where ∑j∈J aj · wj ∈ W and ∑j∈J aj · vj ∈ V. Since a

vector in span(E) can be uniquely written as a sum of a vector in W and a vector in V, we must

have wz = ∑j∈J aj · wj. This yields that the vertex z is satisfied by the vector wz which is a linear

combination of at most q vectors in U and has Hamming weight greater than n
2ℓ . We conclude that

A2 occurs, and we are done.

We turn to prove that each of A1 and A2 occurs with probability exponentially small in n, and

this implies, by the union bound, that there is no linear (q, ℓ)-index code for G almost surely.

By Lemma 4.1 and the definition of r,

Pr [A1] ≤
(

n
n
4

)
· |F|nℓ ·

(
|F|ℓ · pr

) n
4 ≤ 2n · |F|nℓ ·

(
|F|ℓ · |F|−10ℓ

) n
4
= |F|−Ω(nℓ).

To bound from above the probability of A2, we use the union bound over all the subspaces W,

sets S and sets U. The number of subspaces W is at most the number of spanning sets, which is

bounded by ((n
r) · |F|r)ℓ, by Item 1 of event A2. The number of sets S is (n

n
4
), and the number of

sets U ⊆ W of size ℓ is at most |F|ℓ2
. The probability that a vertex in S is satisfied by a vector of

Hamming weight greater than n
2ℓ is at most p

n
2ℓ , and we take the union bound over all the vectors

that can be written as a linear combination of at most q vectors in U, whose number is at most

(ℓq) · |F|q. Recall that r = Θ(ℓ) and observe that

Pr [A2] ≤
((n

r

)
· |F|r

)ℓ

·
(

n
n
4

)
· |F|ℓ2 ·

((
ℓ

q

)
· |F|q · p

n
2ℓ

) n
4

≤ 2O(ℓ2 log n+n+ℓ2+nq log ℓ)−Ω( n2

ℓ
) = 2−Ω( n2

ℓ
),

where the last equality follows from our assumptions on ℓ and q for an appropriate choice for c1

and c2.

6 Low Density Generator Matrix Index Codes

In this section we study low density generator matrix index codes (or, in short, low density index

codes). As will be presented in detail shortly, to obtain our lower bounds (in Section 6.2) we use

proof techniques that differ significantly from those previously presented. A formal definition of

low density index codes follows.

Definition 6.1. A (q, ℓ)-low density index code is a linear ℓ-index code in which every character of the

sent word affects at most q characters in the encoded message. Equivalently, it is a linear ℓ-index code whose

generator matrix has at most q nonzero entries in a row.
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Remark 6.2. For every graph G, the minimum ℓ for which there is a (1, ℓ)-low density index code for G

over F is the clique cover number χ(G) of G.

6.1 The Reduction to q = ω(1)

The following theorem shows that in order to prove an ω(
√

n) lower bound on the minimum

length of a linear index code for G(n, p) over a field F, it is enough to prove such a lower bound

on the length of a low density index code for G(n, p) over F for some q = ω(1). For simplicity, we

state and prove the result for the directed graph ~G(n, p), but using Lemma 3.1 one can obtain a

similar result for the undirected random graph G(n, p).

Theorem 6.3. For every field F and p ∈ (0, 1), if the probability that ~G(n, p) has a (q, ℓ)-low density

index code over F is 2−ω(n) for some q = ω(1) and ℓ = ω(
√

n), then the minimum length of a linear

index code for ~G(n, p) over F is almost surely ω(
√

n).

Proof: Fix F and p ∈ (0, 1). We start by rephrasing the assumption in the theorem statement to

allow a more structured proof. Namely, it follows from the theorem’s assumption that there exists

a non-decreasing function g : N → (0, ∞) satisfying g(n) = ω(1) such that the probability that
~G(n, p) has a (g(n)2,

√
n · g(n))-low density index code over F is at most 2−8n. We will prove that

almost surely there is no linear ℓ-index code for ~G(n, p) over F for ℓ =
√

n · f (n), where f : N →

(0, ∞) is the function defined by f (n) = min( 1
2 ,

√
log 1

p

16 log |F| ) · g(⌈ n
4 ⌉). Notice that ℓ = ω(

√
n) and

hence the theorem will follow.

Let G be a graph distributed according to ~G(n, p), and consider the following two events:

• A1: there exists a set of n
4 vertices in G whose induced subgraph has a ( 16 f (n)2·log |F|

log 1
p

, ℓ)-low

density index code.

• A2: there exist a linear ℓ-index code E for G and n
2 vertices in G, each of which is satisfied by

a vector in span(E) \ Bn(
4ℓ·log |F|

log 1
p

).

First, we claim that every graph G that has a linear ℓ-index code must satisfy at least one of

the events A1 and A2. To see why, consider a graph G that has a linear ℓ-index code E ∈ F
n×ℓ and

does not satisfy A2. Observe that G has a set S of n
2 vertices that are satisfied by vectors in span(E)

of Hamming weight at most
4ℓ·log |F|

log 1
p

. Take a maximal linearly independent subset of the n
2 vectors

which satisfy the vertices in S and restrict them to the coordinates that correspond to vertices in S.

The matrix with these restricted vectors as columns has at most ℓ columns and consists of at most

ℓ · 4ℓ·log |F|
log 1

p

= 4n· f (n)2·log |F|
log 1

p

nonzero entries. This implies that this matrix has at least n
4 rows each of

which has at most
16 f (n)2·log |F|

log 1
p

nonzero entries. Restricting the matrix to these n
4 rows, we get that

A1 holds.

Now, we turn to bound from above the probabilities of the events A1 and A2. Clearly, every

induced subgraph of ~G(n, p) on n
4 vertices is distributed according to ~G( n

4 , p). Therefore, the

probability that it has a (g(⌈ n
4 ⌉)2,

√
n

2 · g(⌈ n
4 ⌉))-low density index code over F is at most 2−8· n

4 =

2−2n. Using the definition of f and the union bound taken over the subsets of [n] of size n
4 , we

obtain

Pr [A1] ≤
(

n
n
4

)
· 2−2n ≤ 2−n.

11



By Lemma 4.1,

Pr [A2] ≤
(

n
n
2

)
· |F|nℓ ·

(
|F|ℓ · p

4ℓ·log |F|
log 1

p
) n

2 = |F|−Ω(nℓ).

By the union bound the probability that at least one of the events occurs is smaller than 2−Ω(n),

thus, with such probability, ~G(n, p) has a linear ℓ-index code.

6.2 The Lower Bounds for q ∈ {2, 3}
The following theorem says that every index code for G(n, p) whose generator matrix has at most

3 nonzero entries in a row has length ω(
√

n).

Theorem 6.4. For every field F and a sufficiently small ε > 0 there exists a p′ = p′(|F|, ε) > 0 such that

for any p ∈ (0, p′) the following holds almost surely.

1. If there is a (2, ℓ)-low density index code for G(n, p) over F then ℓ ≥ n1−ε.

2. If there is a (3, ℓ)-low density index code for G(n, p) over F then ℓ ≥ n
2
3−ε.

The approach in the proof of Theorem 6.4 is different from the one taken in the previous proofs.

As before, fix a linear index code for ~G(n, p) and denote its generator matrix by E ∈ F
n×ℓ. Assume

that every row of E consists of at most q nonzero entries for q ∈ {2, 3}. Let i be a vertex and let A

denote the set of rows in E that correspond to non-neighbors of i. We are asking if there exists a

vector v ∈ span(E) which satisfies i (i.e., vi 6= 0 and vj = 0 for all j 6= i to which i is not connected).

One can show that there exists such a vector if any only if the ith row of E cannot be written as a

linear combination of a subset of the rows in A. The reason is that such a subset of rows enforces

any vector in span(E) all of whose entries corresponding to rows in A are zero, to have zero in the

ith entry as well, and in particular not to satisfy i.

In our proof we show that every matrix E ∈ F
n×ℓ has many small sets F of rows which are

minimally linearly dependent (where minimality is with respect to containment). As we will show

later on, this can be achieved using the assumption that E has low density (at most q nonzero

entries in a row). Notice that if the ith row of E belongs to such F, then the ith row of E can be

written as a linear combination of |F| − 1 rows of E. If all the vertices that correspond to these

rows are non-neighbors of i then i has no satisfying vector in span(E). Therefore, the probability

that i has a satisfying vector is at most 1 − (1 − p)|F|−1.

Our construction of minimally linearly dependent row sets of E is based on a result of Naor

and Verstraëte [20]. They studied the maximum size of a set of vectors in F
N with Hamming

weight at most q in which every subset of size k is linearly independent over F. For F2, this is the

minimum number of edges of size at most q in a hypergraph on N vertices which does not contain

an even cover4 of size at most k. We now add the notion of a dependence set and use it to state

the result of [20]. We note that we use their result only for q ∈ {2, 3}, as for larger q our approach

does not improve upon the Ω(
√

n) bound given in Theorem 4.3.

Definition 6.5. A subset of F
N is a k-dependence set if it is a linearly dependent set over F whose size is

at most k.

Theorem 6.6 ([20]). For every field F, q ∈ N and k ≥ 8, there exists a constant c = c(|F|, q, k) > 0

for which the following holds for every N ∈ N. Every subset5 of F
N of at least c · N

q
2+

⌈q/3⌉
2⌊k/8⌋ vectors with

Hamming weight at most q, contains a k-dependence set.

4An even cover is a non-empty set of edges such that every vertex belongs to an even number of them.
5Throughout this section we allow multiplicities in the vector sets.
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Equipped with Theorem 6.6 we are ready to state and prove a lemma on the existence of many

small dependence sets in a given set of vectors. The basic idea in constructing these sets is to apply

Theorem 6.6 iteratively. However, it turns out (as will be explained later) that in order to avoid

dependencies in our probability analysis we need every two dependence sets of the construction

to share at most one element. In what follows we add the notion of 1-intersecting family of sets

and then state and prove our lemma.

Definition 6.7. A family F of sets is 1-intersecting if every distinct A, B ∈ F share at most one common

element.

Lemma 6.8. For every field F, q ∈ N, a sufficiently small ε > 0 and a sufficiently large N ∈ N the

following holds. For every set A ⊆ F
N of at least N

q
2+2ε vectors with Hamming weight at most q, there

exists a 1-intersecting family F ⊆ P(A) of k-dependence sets for some k ≤ 5q
ε that satisfies

|F| ≥ Ω
(

N
q
2+2ε log N · ε

k log k

)
.

Proof: Let A be a set of vectors in F
N with Hamming weight at most q and assume that |A| ≥

N
q
2+2ε. Let k be the smallest integer so that ε ≥ ⌈q/3⌉

2⌊k/8⌋ , and notice that k ≤ 5q
ε for any small enough

ε.

We construct a family F ⊆ P(A) of k-dependence sets as follows. Start with F = φ and

A′ = A. As long as |A′| ≥ N
q
2+

3
2 ε, add to F a k-dependence set F ⊆ A′, whose existence is

guaranteed by Theorem 6.6 using our choice of k, and continue with A′ \ F. Notice that in this

way we collect at least |A|
2k k-dependence sets. Now, partition A into k sets A1, . . . , Ak of size |A|

k

each, so that no F which was added to F in the previous step shares more than one element in

common with some Ai. To achieve this, partition the elements of every such F into the k sets,

at most one element in each Ai, and then partition the remaining elements in a way that all the

Ai’s have (roughly) the same size. We continue recursively with the Ai’s and add the new k-

dependence sets to the same F .

In the second iteration of the recursion we get at least
|Ai|
2k ≥ |A|

2k2 new k-dependence sets from

every Ai, so their total number is at least
|A|
2k . In the ith iteration of the recursion there are ki−1

sets of size |A|
ki−1 each. Each of them contributes at least |A|

2ki k-dependence sets to F and their total

contribution is at least |A|
2k . Notice that the recursion does not terminate as long as the sets are of

size at least N
q
2+

3
2 ε, and hence the recursion depth is at least logk N

ε
2 . In each iteration we add to

F at least |A|
2k k-dependence sets, so the final F satisfies

|F| = Ω
( |A|

2k
· logk N

ε
2

)
= Ω

(
N

q
2+2ε log N · ε

k log k

)
.

Finally, observe that in every level of the recursion we get disjoint k-dependence sets. Also,

notice that the recursion is always applied to sets with intersection size at most 1 with every k-

dependence set that was previously added to F . This implies that F is 1-intersecting.

Now we turn to prove Theorem 6.4.

Proof of Theorem 6.4: Let q ∈ {2, 3}, fix a (q, ℓ)-low density index code for G(n, p) over F with

ℓ = n
2
q −ε

, and denote its generator matrix by E ∈ F
n×ℓ. The number of nonzero entries in a row

of E is at most q. Let A be the set of rows of E (possibly with multiplicities). This is a set of

vectors in F
ℓ with Hamming weight at most q. Notice that |A| = n = ℓ

1
2
q −ε = ℓ

q
2+2ε′ for some

13



ε′ > ε
2 . By Lemma 6.8, there is a 1-intersecting family F ⊆ P(A) of k-dependence sets for some

k ≤ 5q
ε′ ≤ 15

ε′ ≤ 30
ε such that |F| ≥ Ω(n log ℓ · ε2

log 1
ε

). Assume, without loss of generality, that the

sets in F are minimal (i.e., do not contain any proper linearly dependent subset). For simplicity,

let us think of every set F ∈ F as a subset of [n] that consists of the indices of the rows in F.

For every k-dependence set F ∈ F and i ∈ F, the vertex i must be connected to a least one of

the other vertices in F. Otherwise, a satisfying vector of i has zeros in all the entries with indices

in F \ {i}. Such a vector must have a zero in the ith entry as well, since the row that corresponds

to vertex i can be written as a linear combination of the other rows in F. This yields that the vector

does not satisfy i. Therefore, with probability (1 − p)|F|−1 ≥ (1 − p)k−1 the vertex i is not satisfied

by any vector in span(E).

Now, we apply this argument to every set F ∈ F and an arbitrarily chosen vertex i ∈ F and

we bound from above the probability that i is satisfied by a vector in span(E). Observe that these

events are independent, since if i is the vertex that was chosen from the sets F1 and F2 then the sets

F1 \ {i} and F2 \ {i} are disjoint because F is 1-intersecting. So the probability that every vertex in

the graph is satisfied by a vector in span(E) is at most (1− (1− p)k−1)|F |. Taking the union bound

over at most
(
(ℓq) · |F|q

)n
generator matrices with at most q nonzero entries in a row, we obtain

that the probability that there exists a (q, ℓ)-low density generator matrix index code for G(n, p)

over F is at most

((
ℓ

q

)
· |F|q

)n
· (1 − (1 − p)k−1)|F | ≤ 2qn(log ℓ+log |F|) · (1 − (1 − p)

30
ε )

Ω

(
n log ℓ· ε2

log 1
ε

)

.

To complete the proof, notice that for any small enough p (depending only on |F| and ε) the above

tends exponentially to zero as n tends to infinity.

7 Concluding Remarks and Open Questions

In this paper we initiated the study of index coding for the random graph G(n, p) over a field

F and introduced two new models of index coding – locally decodable index coding and low

density index coding. We proved several lower bounds on the length of linear index codes for

G(n, p) (Theorems 4.3, 5.3, 6.4) and showed that in order to improve the Ω(
√

n) lower bound it

suffices to improve it for low density index codes (Theorem 6.3).

The main task left for further work is to obtain tighter bounds on the minimum length of index

codes for the random graph G(n, p) over a field F. More specifically, it is an open question if there

exists an index code for G(n, p) (linear or not) shorter than the one achieved by the clique cover.

It is interesting if our lower bounds can be extended to general (non-linear) index codes. It would

be nice to understand better how the limit on the number of queries affects the length of locally

decodable index codes for G(n, p). We hope that the new notion of low density index codes and

Theorem 6.3 will be found useful in understanding the minrank of G(n, p) over F.

Another challenging research direction is to study the vector capacity of the random graph

G(n, p) (see [18, 3, 7]). Here, the sender wishes to broadcast a word x of n blocks, each of t bits, to

n receivers. The ith receiver is interested in the ith block and has side information consisting of a

subset of the other blocks according to G(n, p). Denoting by βt the minimum number of bits that

has to be transmitted, we are interested in limt→∞
βt

t . This limit represents the average communi-

cation cost per bit in each block (for long blocks), and it will be very interesting to compare it to β1

of a typical random graph.
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