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~ Abstract—We study a class of discrete memoryless broadcast though the channel studied in this paper has a more regtricti
interference channels (DM-BICs), where one of the broadcas interference profile than that i ][9], we address the more
:f;rfs“éfirsssk')sn Sl,i\bjzztné?althgct:?é?/gglrgnf:tefr?en;]i oan 7‘%"'8;‘;‘5’“& general discrete memoryless channel and provide moreaener
rate splitting, superposition coding and binning at the braad- classes of common stra’_te_gles as well as capacity regiorey und
cast transmitter and rate splitting at the interfering tran smit- Some conditions. Specifically, we derive an achievable rate
ter is derived. Under two partial order broadcast conditions region R based on rate splitting, superposition coding and
interference-oblivious less noisy and interference-cognizant less  pinning at the broadcast transmitter and rate splitting@tin-
naisy, a reduced form of R is shown to be equivalent to the region e fering transmitter. This region is a natural generditizaof
based on a simpler scheme that uses only superposition codin Marton’s region|[1] for a DM-BC. We then define two partial
at the broadcast transmitter. Furthermore, the capacity regions g x o : e part
of DM-BIC under the two partial order broadcast conditions ~Order broadcast conditiongjterference-oblivious less noisy
are characterized respectively for the strong and very strag andinterference-cognizant less noisynder these conditions,
interference conditions. a reduced form ofR is shown to be equivalent to the region
based on a simpler scheme that uses only superpositiongcodin
) _at the broadcast transmitter. Furthermore, if interfeeeisc
Broadcast channgl and interference channel are two |m_pg{r—0ng for the interference-oblivious less noisy DM-Bl@gt
tant classes of multi-user channels that have drawn cansi pacity region is given by the aforementioned two equivale
able research attention in the past few decades, mostly qug, regions. Interestingly, for the interference-cogntzdess
to their simplicity as a fundamental building block and the'noisy DM-BIC, we argue that the strong but not very strong

close relevance to practical communication networks. hije(ference condition does not exist and in this case, wainb
complete characterizations are not available, there haea by, . capacity region for the very strong interference

s_ignificant advances on these topics in_ the informationrtheo This paper is organized as the follows. The channel model
literature. Notably the best general achievable scheme$€o i< introduced in Section Il, followed by the derivation &

two chann_els are_respectively given Py _Marton [1] and Hagy section 111. For DM-BIC with two partial order broadcast
Kobayashil[2], which are capacity achieving for some Slmz:Iaconditions, the equivalence of rate regions is presented in

channels or under various conditions, such as the onés-in [§]3c:tion IV and the capacity regions are derived in Section

[6]- V. This paper is concluded in Section VI.

Motivated by an recent interest in a heterogeneous Ce”marNotation Let ¢ denote a constant. The notation convention
network design paradigml[7], we explore a multi-user Chhn%||OWS [10]

that combines the broadcasting and interference featiees,
broadcast interference channel (BIC). Specifically we sioni [I. CHANNEL MODEL

a communication scenario where a macro base station (BSh giscrete memoryless broadcast interference channel is
broadcasts to two macro users, one of which is interfered bya, oieq by (X1 X Xo,p(y1, y2, ysla1, a2), V1 X Vo X Vs)

point-to-point transmission from a femto BS to a femto us€ihere v i — 1.2 are the input alphabetd);, j — 1,2,3
While the BIC studied presents a simplified version of whajs the gutput élp;habets apdyr, v, ys| 1 I;) is the chan-
might happen in practice, we believe that a fundamentalundge| ransition probability. In this paper, we concentrate o
standing of this simpler channel is crucial for charactegz , specific interference profile, wheggy,, ys, ys|a1, a2) =

th?/tradt?'OﬁS :anr;(e;tehrogenbeous netv\_/orkf. wdied by Sh p(y1]1)p(ye|z1, T2)p(ys|xe). As shown in FigIL, while trans-
ariations o ave been previously studied by shafdiiar 1 wishes to broadcast to receivers 1, 2 , the second

and Poor in [[3], for a different interference profile whergg ejver is interfered by transmitter 2 who wishes to commu-
interference is from the broadcast transmitter to the pwint ..o with receiver 3.

point receiver, and in_[9], for the Gaussian BIC where both pafinition 1: A (M, Ma, My, n)
of the broadcast receivers are subject to interferencen Ev&isy, — 5l e enc
J )

I. INTRODUCTION

code consists of message
., M;}; two encoding functionsX; : (W; x
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W — X Wor— » elsewhere, are superimposed ugon where binning is used
Transmitter 1 p W T
WZ:I X<1n i o N to allow arbitrary dependence betwe&h and V,. At the
) W2 interfering transmitter, rate splitting is employed toeslhte
. > A . interference by receiver 2 decoding the common sighal
Wy e X7 ’| Prax, |_ {recever s} 1 while treating the private as noise. [ |
_ crame Remark 1:Constraint [(#) on the choice of joint input
Fig. 1: Channel Model distributions is a direct consequence of the nonnegativity

some intermediate rates, which are eventually eliminasébu
Fourier-Motzkin procedure.

The messager are uniformlyfroij_. The average error  Remark 2: With Uy=Vi=06¢ X, =VeandR, =0, R
probability for the(My, My, M3, n) code is reduces to the compact Han-Kobayashi region [12] for a one-
P, = Pr(gi(Y{") # Wy o go(YJ) # Wa or gs(Yi) # Ws). sided interference channel. Witk, = Us = ¢ and R3 = 0, _

‘R reduces to the most general form of Marton’s region with

Definition 2: Rates of a(M,, M, M3z, n) code are defined private message sets for a general DM-BC| [11]. Notice that
asR; = 22280 for j =1,2,3. with U, = ¢, the constraint{4) reduces to

Rates(R;1, R2, R3) are said to bachievablef there exists a
sequence ofM;, Ms, M3,n) codes withP, — 0 asn — oo. I(Vi;Y1|U1, Q) + I(Va; Ya|Uy, Q) — I(Vh; Va|Up, Q) > 0,

An achievable rate region is the set of all achievable rates f (5)
a given coding scheme. The capacity region is the closure of _ _
the union of all achievable rate regions. which applies to Marton’s region. However a closer ex-

amination reveals thaf(5) is unnecessary. For some joint
[1l. ACHIEVABLE RATE REGION FOR AGENERAL DM-BIC  (istribution that violates[{5), we hav&;, R, < I, where
In this section, we derive an achievable rate region forla= min{I(U1;Y1),I(U1;Y>2)}. Clearly (R, R2) is contained
general DM-BIC, where the broadcast transmitter emploes ran Marton’s region for some other joint distribution that
splitting, superposition coding and binning and the irggrfy  satisfies[(b). Therefore removing constraint (5) does raityre

transmitter employs rate splitting. enlarge the region.
Theorem 1:R is an achievable rate region for DM-BIC,

whereR is the closure of all( 11, Ry, 5) satisfying IV. EQUIVALENCE OF RATE REGIONS FOR THEDM-BIC

R < 1(Vi; Y1|Q) UNDER PARTIAL ORDER BROADCAST CONDITIONS

Ry < I(Va;Ya|Us, Q) )

Rs < I(X2: Y3|Q) Here we concentrate on DM-BIC un_d_er two partla! order
Ri+ Ry < I(Vi; Ya|UL, Q) + I(Va; Ya|Us, Q) — broadcast conditions: interference-oblivious less naisyd

interference-cognizant less noisy, which will be definegtne
Definition 3: In a DM-BIC, receiver 2 is said to be
interference-oblivious less noighan receiver 1, denoted by

I(Va;Va|Un, Q)
Ri+ R < I(V1§Y1|Q) + I(V2§Y2|U17 U27Q)_

I(Vi; Va|UL, Q) . ' - :
Ry + Ry < 1(V2,U2; Y2|Q) + [(X2; Y3|U2, Q) (1) i/lljc;ih?t[,]:f—{ (&i’ ,};1()2)31((511,’}%). for &l v rujpiez)
Ri+ Rz + Rs < I(Vy; 1|Us, Q) + 1(V2, U2; Y2|Q)+ Definition 4: In a DM-BIC, receiver 1 is said to be
I(X2;Y3|U2, Q) = 1(V1; V2|UL, Q) @ interference-cognizant less noiflyan receiver 2, denoted by
Ri+ Ry + R3 < I(Vl; Y1|Q) + I(V27 Us; Y2|U17 Q)+ Y: = Y5, if I(Ul, Yl) > I(Ul, }/2|X2) for all p(ul, :Cl)p(arg)
1(X2;Y3|U2,Q) — I(Vi;V2|U1, Q) (3)  such thatl; — (X1, X2) — (Y7, Ya).
Ri,R2,R3 >0 Remark 3:We can interprety; <, Y5 as the follows:

for some functionX; = f(Uy, V4, V») and joint distribution receiver 2 isless noisythan receiver 1[[4], even though no
particular action is taken by receiver 2 to deal with interfe

PQ,uivi,va,Uz,Xs ence. Similarly,Y; =, Y5 can be interpreted as the follows:
= p(@)p(u1lg)p(v1lg, u1)p(valg, ur)p(uzlg)p(z2|uz, 9), even if interferenceX, is provided to receiver 2, receiver
such that 1 is still less noisy. Also note that degradedness (physical

or stochastic, which are the same in broadcast channgl [10,
I(Vi; Y1|Un, Q) + 1(Va; Y2|Un, U2, @) — 1(Vas V2| U1, Q) 20‘(4) Theorem 15.6.1]) implies the partial order conditions and
hence is stricter. For exampl&; being degraded with respect
Proof: The proof is relegated to ApplA. Here we provideg v;, i.e. X; — Y; — Y, holds for all p(x1, z2), implies
a sketch. The messages for receivers 1, 2 are splitinto commgq »_ v, but not vice versa.

and private parts respectively. Common messages aredarrieThe first class of schemes we consider is a specialization
by the cloud signal/;, which is decoded at both, andY>. of R, given in the following two Corollaries.

The private message carrie¥s, V>, which are only decoded Corollary 1: R; is an achievable rate region for DM-BIC
at their respective intended receivers and treated as noigth Y, <, Y, whereR, is the closure of all Ry, R, R3)



satisfying satisfying

R1 < I(Uy; Y1) Ry < I(X1;Y1|Uh)
Rs < I(X2;Y3) Ry < I(Us; Y2|U2)
Ri + Re < I(Ui; Y1) 4 I(X1; Yo | Uy, U2) 6) Rs < I(X2;Y3)
Ri+ R+ Ry < I(U; Y1) + I(X1, Usz; Ya|Ur)+ Rz + Rs < I(U1, U3 Ya) + 1(X2; Ys|Uz)
1(Xa; Y3|Us) 7 Ri,Ra,Rs >0
Ri,R2,R3 >0

for somePy, x,,v,,x, = p(w1)p(z1|ur)p(uz)p(x2|us).

In deriving the most general regio®, we used rate
for SomepUl:leUZ’X? :p(ul,)p,(:_cl|u1)p(,u2)p($2|u2)' splitting, superposition coding and binning at the broatica
Proof: Fix Q = ¢. SpecializingR with X1 = V2, Vi = yransmitter. Region®,, i = 1,2, are derived fromR when
U1 a_nd removing redundant inequalities duetio<, Yz, we binning is stripped off but rate splitting and superpositio
obtainR;. B kept intact. While bothR; and R(;) rely on superposition

Wit(rjlogniwé ﬁ%ésre%gzaigh{ﬁ\éaglgsﬁf éfeg'l(z?go;z?\éjlccoding, there is a subtle difference. Despite the fact tiod b

satisfying schemes’ cloud centers carry receiié&s message, the one
for R; could also carry receiver's (j # i, j = 1,2) common

Ry < I(U1; Y2|Us) (8) message, which could be potentially helpful to reduce tkfe se
Rs < I(X2;Y53) interference due to the fact that part of the broadcast kigna

Ri+ Ry < I(X1; YA |Uy) + I(Un; Ya|Us) (9) intended for. receiyej is essentially interference_from receiver

Ro + Rs < I(U1, Us; Ya) + I(Xo; Ya|Us) (10) 'S perspective. Itis apparent that the superposition-tiaiged

Ry + Ro + Rs < I(X1;YA|UL) + I(Ur, Us; Ya) + I(Xa; Ya|Uz) rate regions are not I_arger than the ones based on supé@posit
Ry Ro.Rs > 0 and rate splitting, since the latter includes the former as a

special case. This can be also verified by explicitly chegkin
that the inequalities defining ;) induce those irfR;, but not
for someP = . ) () e T
01,02, Xz = P()p(za[un Jp(u2)p(ra|us) vice versa. Hence at first sight it seems tRatis strictly larger

Proof: A direct specialization ofR will result in some : . .
. o anR;. However, if we consider the no interference case,
extra inequalities that are harder to remove. Hence we take

an indirect approach, where the specialization is done ffior LE. Uz = X5 = ¢, i3 = 0, R, cannot be strictly larger than

) ) . . . (iy since the latter is the capacity region of a less noisy (or
equivalent region ofR. The details are provided in Appl B'degraded) DM-BC[11]. The pitfall of the previous argument i

that it only considers a specific input distribution. It isdrthat

X S . for some givenP , R; is strictly larger, however
sharing r.v.Q. In principle, we could have kef} intact when once we gonsideUrhgr}D’gz’? " ; we wiﬁ sh(g)w that they
specializingR, but the following proposition asserts that ther%re indeed equivalent DALERa

is no benefit doing so. Since time-sharing _alwgys results in A Theorem 4R — R i — 1.9,
region no smaller than convex hull operation, it followsttha ! @) ’
taking convex hull is also unnecessary. A. Proof of Theorerfiil4
Proposition 1: Time-sharing does not enlarge;, i = 1, 2.
Proof: The proof is relegated to App.l]C.
Next we present two achievable rate regioRs;), i = 1,2,
which are solely based on superposition coding (i.e. no "AWBnensional Euclidean space. A poifite R” is anextreme

splitting at the broadcast transmitter), where the clouttere oint (ExP)iff wheneverX =tY + (1 —t)Z, t € (0,1) and
carries only receivei's message. Since the proofs are stal £ 7, this implies either” ¢ R or Z ¢ Rﬁ ’

dard, they are omitted for conciseness. Definition 6: An ExXP X € R} is said to bedominant

Theorem 2:R ;) is an achievable rate region for DM-BIC . ) "
with Y, <, Yz, whereR,;, is the closure of all Ry, Ry, ) (DEXP)iff there does not exist another EXPe R, Y # X,

Notice that to deriveR;, ¢ = 1,2, we fix the time-

Before proving Theorernl4, we need the following defini-
tions and lemmas.
Definition 5: Let R? be a convex subset aR"™, a n-

iofyi such thatX <Y element-wise.
satisfying i )
Remark 4:In the literature, the term “dominant extreme
Ry < I(Uy; Y1) points” are sometimes referred as corner points. The iiatent
Ra < I(X1; Ya|Uy, Us) of choosing the former terminology is to emphasize the
Rs < I(X2;Ys) connection to convex set.
_ Y . Let R™ be an-dimensional convex rate region, of which the
R + Ry < I(X1, Uz; Ya|Ur) + 1 (X53 Y |U2) set of all DExPs is denoted b§. Further letco(Q2) denote
Ri,R2,R3 >0 the convex hull of2:
for somePu, x,,v,,x, = p(ur)p(@1|ur)p(uz)p(w2|us). co() =3 iR [Ri € Qo €[0,1],> i =1,m=12,... .
Theorem 3:R () is an achievable rate region for DM-BIC P P

with Y7 . Ya, whereR ,) is the closure of al(Ry, Rs, R3)



Lemma 1:R € R" iff there exists som&R’ € co(2) such Proof: The proof is relegated to Appl F. ]

thatR < R’ element-wise. Lemma 5:For aPy, x, v,,x.,» R(1) has two DEXPs7, F
Proof: For the “if” part, since DExPs are achievable, s@as in Lemma4.

is their convex combination, specificalR’ is achievable. If Proof: The proof is exactly the same as Case 17%or.

R < R/, R is also achievable. For the “only if” part, for a ]

convex regionR", any achievable rate can be expressed as a Proof of Theorerl4:We will first prove R, = R(2) and

convex combination of some ExPs, i.e. there exists SBne thenR; = R(1)- Let P = Py, x,,,.x,- We USePy, =y t0

¥, ; € [0,1] and an integern such thatR = Y, &R, denote the same distribution except that= ¢.

where ¥ denotes the set of all ExPs f&®™. Now replacing 1. Proof of Ry = R2)

any non-dominanR;; that constituteR by its corresponding  From Lemmd R and]3, for a giveR, R, has two more

DExP and keeping convex coefficients intact, we obtain DExPs tharR ). However, forPy, —y,—4, A becomesA’ =

R’ € co(f2), whereR < R/. B ([(X1;Y7), 0, I(X2;Y3) ) and it can be show, D < A’
Lemma[l suggests that a rate region is completely descrikfigk toY; . V5. Therefore if we take the union of regions

by its DExPs. When comparing different rate regions, fbr the two distributions® andPy, —u,—¢, bothR2 andR )

suffices to consider their sets of DExPs, which will be givegill have identical DExPs. By Lemmid R, = R2)-

in the follows forR; andR;, i = 1,2, respectively. 2. Proof of Ry = Ry

Lemma 2:For aPuy,,x,,v,,x,» DEXPs of R, are given by:  Thjs Vp\)/artf_is mgr(\a,ényolv%d, t()jut th%_idea is essentia(ljly the
. same. We first show is redundant. Given ang, consider
A= (I(X“Yl‘Ul » 1(U1;Y2|U2), min{I(X2;Y3), I(U2;Y2)+ another joint distributiorPy;, —,. ThenE and F %pecome

I(XQ;YS‘UQ } .
) E = (0, 1(X1; Ya|Us), min{I(Xa;Y3), I(Us;Ya) +I(X2;Y3|U2)})
F' = (10, min{I(X13Y2[Us), [I(X1,Us3Y2) — I(Uz; Ya)] ",

)
)
B= (I(Xl;Yl\U1)7 min{/(U1; Y2|U2), [I(U1,Uz;Y2) — I(U2;¥3)] "},
I(X2;Y3|U2) + min{I(Uz; Y3), I(U17U2;Y2)})

)

I(X2;Y3|Us2) + min{I(Uz; Y3), I(X1,Us; Y2)}>-
C

(I(Xl;Y1\U1 + min{I(Uz; Y2|U2), [I(U1,Uz;Y2) — I(Ua; Y3)] 1}, ) . )
. The region, specified by DExHs andF”, can be alternatively
0, I(X2;Y¥3|U2) + min{I(Uz; Y3), (U1, U2;Y2)}> described by the following inequalities (this can be vedifisy

D= (I(XUYl‘Ul)+I(U1§Y2‘U2)7 0, min{I(X2;Y3), I(Uz;Y2)+ settingl, = ¢ in R1)
I(Xz;YS\U2)})

Proof: The proof is relegated to App.ID. ]
Lemma 3:For aPy, x, u,,x,: R(2) has two DExPs4, B
as in LemmaD.

Rg S I(XQ;YS)
Rz S I(X1;Y2|U2)
Rs+ R3 < I(X17U2;Y72) + I(XQ;Ygle)
R2,R3 >0, R1 =0

Proof: The proof is relegated to AppJE. . B Using the fact/(U;Y;) < I(Uy;Ys) due toY; <, Ys, it can
Lemma 4:For aPu, x;.v: Xz, DEXPS 0fRy include be checked that? is contained in the above region. HenGe

E= (I(U1;Y1), I(X1; Y2|Ut, Uz), min{I(X2;Y3), I1(Usz;Y2|U1)+ is redundant.

(X YalU Next we will show thatH, I either reduce to other DExPs

(X2; Y3 2)}> or are redundant if we consider all input distributions. Let
F = (I(U Y) min{I(X Y|U U) [I(X U. Y|U )_ us fiI’St fOCUS OnH. If I(UQ,Y},) < I(UQ,YVQ|U1), G =
e R, (0, I(Uy; Y1) + I(X1; Ya|Uy, Un), 1(X2;Y3)) andH = G. If
I(U2; Y3)] T}, 1(X2;Y3|U2) 4+ min{l(Uz; Y3), d: I(U; Ya|Ur) < I(Us;Ys) < I(X1,Us; Yo |Uy), we have

I(X1, Us; Ya[U1)} )
, F = (10 1), 1(X1, Uz ValUh) = [(U23 Ya), (X23Y3))
G= (0, I(U1; Y1) + 1(X1; Y2 |Ut, Uz), min{I(Xa;Y3), I(Usz; Ya|U1)
H = (0, I(U1; Y1) + I(X1,Us; Ya|Ur) — I(Uz; Ys), 1(X2;Y-
+I(X2;Y3|U2)}>. ( (Ur; Y1) + I(X1, Uz; Yo|Ur) (Uz;Ys), I(X2 3))
Furthermore, if Py, x,u,.x, satisfies I(Uy;Y;) < Notice that for anyP, if conditiond holds, then forPy,—g,

I(Uy; Y1) + I(X1,Us; Ya|Uy), there are two more DExPs ¢ still holds. Hence if we let; = ¢, F becomesF’ =
(0, I(Xy1,Us;Ys) — I(Us; Ys), 1(X2;Y3)) andH < F’ due

H= (0, I(Ur; Y1) + 1(X1; Y2|Us, U2) + min{0, I(U2;Y2|U1) to Y] <, Yo. If I(X1,Us; Ya|Ur) < I(Us; Ya) < I(Uy; Y1) +
(U2 Ya)}, T(X2;3)) (X, Ui Ya[Us), by settingl = ¢ we have

I = (I(U1; Y1) 4+ min{0, I(X1,Us;Ya|U1) — I(Us; Y3)}, G = (0, I(U; Y1) + I(X1;Ya|U), I(X2;Y3)) > H.

(1015 v2) + minfo, 1( |U1) = 1(U2; Y3)}}
[I(X1;Y2|U1,Uz2) + min{0, I(U2§Y2‘U1)_I(U2§Y3)H+v We now consider!. If I(U27Y'3) < I(UQ;YV2|U1), I =
1(x2;y3>}). E. If I(UyYs|U) < I(UyYs) < I(Xy1,Us;Ys|Uh),

L I = F. If I(X,Us;Y5|U1) < I(U;Y3) < I(Uy;Y7) +
Otherwise if1(Us; Y3) > I(Ur; Y1) + 1(X1,Uz; Ya|Ur), there (X, Uy; Y5|Uy), I reduces to
is one more DExP

J = (0, 0, I(Ul;Y1)+I(X1,U2;Y2‘U1)+I(X2;Y3‘U2)>. I= (I(U1§m)+I(X17U2§)@|U1) —I(UQ;Y?,), 0, I(XQ;Y;g))



If we further letU; = X; andU,; = ¢, E becomesE’ = Theorem 6:The capacity region of DM-BIC witfy; . Y5

(I(X1;Y1), 0, I(X2;Y3)). Clearly, I < E'. and the very strong interference condition is the closurallof
At last, we considet]. For anyP, settingl; = U, = ¢, (1, 2, Ry) satisfying
£ becomes R1 < I(Xq;Ya|Uh)
E = (o, I(X1;Ya), I(XQ;Y;,)). Ro < I(Us; Ya| X2)
R3 < I(X2;Y3)
Clearly, J < E’ due to the conditionI(U;;Y1) + Ri,R2,R3>0

I(X1,U;Ys|Uy) < I(Us;Y3) and henceJ is redundant.
To summarize, even though for a specificR, could have for somePuy, x, x, = p(u1)p(@1|u1)p(z2).

more DEXPs thafR ), if we consider all possibl@, they will Proof: The achievability follows those foR (o) and R,
have exactly the same set of DExPs givenByand F. By all with with U; = X,. The converse proof is standard. m
Lemmall, R, = R). [] Remark 7:Similarly to Theorem[5, the capacity region
takes two forms, one given in Theoréin 6, which is essentially
V. CAPACITY REGIONS UNDER THESTRONG/VERY R(2) with Uz = X3, and another given bR, with Uz = Xo.
STRONG INTERFERENCECONDITION It is not difficult to see that strong condition in Definition

i . . . . [1 does not fit well for DM-BIC withY; >, Y. The reason is

In this section, capacity regions of DM-BIC withh <, Y2 that if X is the intended signal for receiver 2, i.§; always

andY; . Y» are established respectively for the strong angbcogable at receiver 2, then B ». Ya, receiver 1 can
very strong interference conditions defined in the follogvin - 4ecode it as well. Hence the two receivers will always decode
Definition 7: Interference is said to betrong if for all  the same set of messages, which clearly does not represent th

p(z1)p(@2), 1(X2; Yo X1) > 1(X2; Y3). _ most general case. In fact, we claim that the strong but not
Definition 8: Interference is said to beery strongif for all  very strong interference condition does not exist for DNGBI
p(z1)p(e2), 1(X2;Y2) > I(X2;Ys). with Y7 >=. Y. The argument is as the follows.

Remark 5:The intuition behind these definitions, which are The problem is to figure out what is the intended signal for
the same as the regular interference charinel [13], is that f@¢eiver 2. Once we find out such a signal, we can mimic
conditioning on the intended signal, whose decoding israssuthe strong condition in Definitioi] 7, with modification of
to be successful by design, the interfered receiver seettex be;onditioning on that signal instead &f,. Suppose there exists
channel than interference’s own receiver. This suggeatstle some strong condition, then interferen&e is required to be
interfered receiver should be able to decode the interéerenjecoded at receiver 2. Under this restriction, we have aemupp
along with its intended signal, by performing a joint decdi boundn (R, + Rs — €,,) < I(Wa, Ws; Y3'). Along with other
if interference is strong. If further interference is vetyosg, straightforward upper bounds, by the same technique that we
successive interference cancellation decoding sufficegrev ysed above to prove Theorémh 5, we can show ai with
interference is decoded first. Evidently very strong caadit (7, — X, is the capacity region. This implies that if there exists
is stricter than the strong condition. _ some strong condition, then superposition coding with @lou

Theorem 5:The capacity region of DM-BIC witht; <, g nterl; carrying receiver 2's message is capacity achieving.
¥, and the strong interference condition is the closure of Eﬂaence without loss of generality, we can view the cloud aente
(F1, Ra, Rs) satistying U, as the intended signal for receiver 2, which in return gives

Ry < I(Uy; Y1) us the strong conditiod (Xs; Y2|U1) > I(Xao;Ys), for all
Ry < I(X1; Ya|Ur, X2) p(ur)p(z1fui)p(z2) such thatly — (X1, X3) — (¥2,Y3)
Ry < I(X2;Y3) form a Markov chain.. I.-|owever,.this condition always implies
Ro + Rs < I(X1, Xa; Ya|Us) the very str_ong condition (con_3|déh = 0) an.d furthermore
Ri,Ra, R > 0 the strong interference capacity regidRy,) Wlth Ug_ = X_g, _
- always reduces to the very strong capacity region given in
for somePy, x,.x, = p(u1)p(z1 |u1)p(z2). Theorem[b. _In other words for; >. Ya, if interference is
Proof: The proof is relegated to ApplG. m strong, then it has to be very strong.

Remark 6:The capacity region takes two different forms.
The one given in Theoremm 5 is identical/® 1) with Uz = Xo.
An alternative form is given bjR, with Uz = Xo. In this paper, we devise a coding scheme combining rate
When receiver 2 is interference-oblivious less noisy tha;’plitting, superposition coding and binning for a generil-D
receiver 1, for any sensible coding scheiig should always BIC. The obtained achievable rate region is then speciilize
be decodable at receiver 2 (otherwise, none of the broada@stDM-BIC under two partial order broadcast conditions:
receivers can do so). Hence the strong condition, origihat@terference-oblivious less noisy and interference-aatt
from interference channel, naturally carries over to DMEBI |ess noisy. By carefully inspecting the dominant extreme
with Y1 <, Y. However, this is not the case for DM-BICpoints, the specialized rate region is shown to be equivaten
with Y7 . Y2, which will be discussed next. that based on a simpler scheme that uses only superposition

VI. CONCLUSION



coding at the broadcast transmitter. For the interference-ReceiverY; looks for (ml,mQ,j,j',l%) such that

oblivious less noisy DM-BIC, if interference is strong, the , . . Y - (n)
H H H H ' H ; ) 7” ’ vJ 7nk77L€A€nU7V7U7Y'

capacity region is given by the aforementioned two equivale' ! (1, 1ha), vz (i, e, 7, 77), s (k). y2) (U1, V2, Uz, Ya)

rate regions. For the interference-cognizant less noisy- DM there is no such tuple or some such tuple with eitfer# 1

BIC, we argue that the strong but not very strong interfeeenor j # 1 or both, an error is declared.

condition does not exist and in this case, we obtain the égpac ReceiverYs looks for unique(k, ) such that

region for very strong interference. (3 k), a2 (e, 1), y2) € A (Un, Xa, Ya).

APPENDIXA If there is none or more than one such pair, an error is detlare

PROOF OFTHEOREMII ) Analysis of error probability
We will first obtain an achievable rate regitin Lemma At broadcast encoderGiven (m;,ms,i,5), with high

6. Then we proveR = R. probability there is at least onéi’,j’) pair such that
Lemma 6:R is an achievable rate region for DM-BIC, (v (1my, mo, i, i'), v} (m1, ma, j, j')) is jointly typical if R} +
where R is the closure of all(Ry, Ry, R3) satisfying all g/ - 1(v;:1,|U;) due to mutual covering lemma [11].
inequalities defining? plus two more constraints IIAt receivery; Usin% stagdard t_ecf:jniqu_es from [11], thfere
. . all error events are first determined using a joint pmf fac-
Ry < I(V2, Uz Ya|U0, Q) 4 I(Xo; Y[ U2, Q) (1) torization table and then analyzed individu%lly Jusingp|:i|agk
Rs < I(Vi;Y1|U1, Q) + I(Va, U2; Y2|Ur, Q) + I(X2; Y3|U2,Q)~  |emma, it can be shown that the error probability at receiver

I(Vi; Va|UL, Q). (12) Y; can be made arbitrarily small if
Proof: Rip + R < I(Vi;Y1|Uh)
Codebook generation Ric + Rac + Rip + R < I(Vi;11).

. Split ¥1's message mFo two partsT(lRlafgz § .S'm' At receiver Ys: Similarly it can be shown that the error
llarly for Y;, my and j. Generate2"™ ") inde- propability at receiver 2 can be made arbitrarily small if
pendent codewordsu}(mi,me) with each symbol i.i.d ,

Rop + Ry < I(Va; Yo|Ur, Uz)

according to py,(-), m1 € {1,2,..,2"c} my €

{1,2,...,2"F>}, For eachu?(mi,my) generate2™(fipt171) Rop + Ry + T < I(Va, Ua; Y2|Un)
conditionally independent codeword§' (m,ms,4,i’) with Ric + Rac 4+ Rap + Ry < 1(Va; Ya|Uz)
each symbol i.i.d according toy, v, (-|ui(mi,m2)), i € Ric + Roc + Rop + Ry + T < 1(Va, Us; Ya).

{1,2,...2"fr}, i € {1,2,.. Qan}-_ Similarly for each At receiverYs: Similarly it can be shown that the error
ul(my,mz), generate2"(F2-FRz2) conditionally independent probability at receiver 3 can be made arbitrarily small if

n " 1 HE -
icnogdet\(/)volzdS‘vg ETJ’(T;J% 3) Wl;h eea?; §Ymb2oan|;L.? a;tfcoerd Sy < I(Xo: Va|U)

Vo|U \"[U1 1,1142)), 3 Ly eeey '

/ T: 3 < I(X2;Y3).

{1,2,..., 2"}, 5+ S3 < I(X2;Y3)
Split Y3’s message into two parté and /. Generate2"’5 Collecting all inequalities, applying Fourier-Motzkinirak

independent codewords; (k) with each symbol i.i.d accord- ination with Ry = Ri. + Rip, B2 = Ra. + Ry, and
ing to pu,(+), k € {1,2,...,2"73}. For eachul(k) generate R3 = T3 + S3, and finally including a time sharing variable,

2n5s conditionally independent codeword§ (k, 1) with each we obtain an achievable rate regith [ |
symbol i.i.d according te x, 1, (-|uz2(k)), I € {1,2,...,2"%}. Proposition 2: Inequalities [(I) and[{12) are redundant.
Encoding ThereforeR = R.
Given message quadruplen,, i, mo, j), broadcast trans- Proof: To prove that [(T1) and {12) are redundant, we
mitter tries to find a pai(i', ') such that follow the argument used if [12] to simply the Han-Kobayashi
(W} (ma, ma,i,i),v5 (M1, ma, §,5)) € A™ (Vi, Va). region. Fix time-sharing r.\Q. DenoteP = Py, v, vs,0,,Xo-

. . We first prove that[(1l1) is redundant. For a givEn we
If there is one or more such pairs, choose one and seg, that if rate triple(R1, Ro, Rs) satisfies all inequalities

ot = f(uf(my, me), vf (m1, ma,4,4),v5 (m1, ma, §,5)), in R except [(11L), then(R1, Ry, R3) € 7?/73 _.. Hence by
where f(-) is a deterministic function. If there is no SUChime-sharing, [(T1) is redundant. vame

pair, an error is declared and a predefined codeword is sentf (1) is violated, we have
Interference transmitter sends codewefdk,!) for message

pair (k, 1) Ry > I(V2,Uz; Ya|Ur) + I(X2; Y3|Uz) (13)
Without loss of generality, in the following we assumef (R;, Ry, R3) satisfies all inequalities i except[(IL), then
(my,4,ma, 5, k1) = (1,1,1,1,1,1) is sent. it can be shown thatR;, R», R3) satisfies the following
geco_dln%/ 00K for (fe e 3 Hh Ry < I(Vi; 1)
eceiverY; looks for (my,7he, 1,¢") such that Ro < [(Va; Va) (14)
(u} (1701, 1), o] (1a, 12, 4,7), 1) € AT (Ur, Vi, YA). R3 < I(X2;Ys)
If there is no such quadruple or some such quadruple with Bi + By < I(Vi; Y1|Uh) + 1(Va; Y2) — 1(V4; V2| U) (15)
eitherriy # 1 or : # 1 or both, an error is declared. Ry + Ry < I(Vi; Y1) + 1(Va; Ya|Ur) — I(Vi; V2[Ur),  (16)



where [14) is obtained froni](1) and {13}, (15) frohh (2) and APPENDIXC

(13), (16) from [[B) and[(13). Notice that the above region is PROOF OFPROPOSITIONT]
exactlyRp,, _,. Hence[(1ll) is redundant. In the followingwe  prgf:
assume[(1l1) has already been removed. We prove forR,. The case ofR, follows similarly.

The case ofi(112) is a little bit involved due to the constraint | ¢t () take two values 1, 2 with probability anda, 0 <
(@). Let us first consider the following two statemenB: ., < 1 penote two sets of U, Xi, Ui, Xi,Y{,Y{) where
satisfies((4)P satisfies[(4) wheré/, is removed. If the latter ; — 1 o For() = 7, definel;. = Ui, Us.o = Ui, X1 = X,
statement is true, so is the former, but not vice versa. In the, _ Xi,V; = Y{ andYs = Y2z Then we have Markov chain
following, we will first focus on a class dP satisfying both.

We p?ove that[{I2) is redundant usir?g a simfﬁargargumeg[?,’:grlb[%’eUf,’s@f)in_e)q(u);h’tﬁ%_) (1, ¥2).
for (L1). If (I2) is violated, we have b

Loyly o =172, v2) — . < V).
Rs > I(Vl;Y1|U1,Q) +I(‘/2,U2;Y2|U1) +I(X2;Y3|U2)— aI(Ulyyl ) +aI(U1:Y1 ) I(ULQ’Y2|Q) = I(Ul,QanYé)

I(Va; Va|Uh). (17) For the 2nd inequality iIrR4,
If (R1, Ra, R3) satisfies all inequalities iR except[[IR), then al (X33 Ys) + al(X3;Y5)
(R1, R2, Rs) € Rp,,_,. Again to obtain[(I4), we us€l(1) and = 1(X2;Y3|Uz2,q,Q) + 1(U2,q; Y3|Q)
(I7) and have < I(X2;Y3|Uz,0,Q) + I(Uz,q,Q; Ys) = I(X2;Ys)
Ry < I(Va;Ya2) — I(V1; Y1|Ur) + I(Va; Ya|Ur) — I(Vi; Va|Ur)] Similarly, we can show that the convex combinations of
< I(Va; Ya), the right-hand sides of the 3rd, 4th inequalities™ are

respectively less or equal to
where the last inequality is due to the fact thatsatisfies U V) 4 1 VolUs 0. U
(@) wherelU, is removed. Similarly[(1I5) follows froni{2) and (U1, @i V1) + I(X13V2|U0, V20, Q)
@) and m) from[(B) andj(l?). Hence by time-shari (15$U1,Q7 Q; Yl) + I(Xh Us,q, Q; Y2|U1,Q7 Q) + I(X2§ Y2|U2,Q7 Q)

is redundant for this class 6?. o Redefinel; = (Ui, @) andlz = (U2,0,Q). We see
wimgﬁtt vUve ;‘oecus on a class oF satisfying {#) but notl{4) ¢ the time-sharing region is always contained witfiln
2, L.€. fOf SomePUl,X17U2,X2' -
I(VisVi|Uy) + (Vs YalUh) = (Vi ValU) < 0. (18)
APPENDIXD
As we can see, an attempt to repeat what we have done PROOF OFLEMMA [Z]

previously fails in this case sincBy,— is not a valid joint

input distribution. However, a careful examination m(183
reveals the truth that this particul@r is simply a bad choice
for the binning coding because the penalty tefth; V2 |U;)

arising from having correlated inputs is so large that W?)
might have done better provided no binning coding is used. ,” .,
Hence we considePy,—v,, where essentially we only make (R}, Ry for k,1=1,2,3 andk <.

use of superposition and the binning aspect is not pres%rpngngSNgn ggf%;i}:r:er\?vr?iilr:ng;Igiq]yoaﬂlr?gsﬁ SIQSI?/iEE)t(E:
resulting in I(Vy;V2|U;) = 0. From [18), especially two y ! y 9

derived conditions(Vi; i |U1) — I(Vi:Va|Uy) < 0O and system of linear equations given by some active constraints
(Ve ValU) — I(VA: V1|’U1) 1< 0 it clén2be1 checked that °n @PProach to finft is to consider all possible combinations
2;Ya|Ur) — 1(V1; V2|Uy ,

Rp C Ry, _,, for this class of joint distributions. Then by aof active constraints whose corresponding system of linear

similar argument for[(11), it can be shown that any rates th%gua_mons admits a unique solution and the_n compare _the
obtained ExPs one by one. There are totally eight ineqesliti

Proof: We will use the following notationsQ2 denotes
he set of all DExPs ofR,. For some predefine®), denote
Ra(R}) = {(Ra, R3) : (R}, Ra,R3) € R2} and the corre-
onding set of all DExPS)(R}). Similarly, we could also
fineR2(R;) andQ(R}) for i = 2,3, andRs(R},, R;) and

;:?\';’fha(%ﬁ)ga&%;nizt'rcﬂznfj;n'tmmml:v1,U2:¢- Hence t:y in Ro making this approach tedious. Fortunately, we can make
' ' use the property of DExPs to simply the procedure and make
APPENDIXB it more systematic so that we don't overlook any DEXxP.
PROOF OFCOROLLARY [2 Let R} denote the largest admissildie in R,. Then DExPs
Proof: can be sorted into four categories:

Consider a regiork which is the same a& in Lemma®, Case 1R}, Ry, R3) € Q for someR; < R}, i =2,3
App.[A, except that[(12) is removed. Sin¢el(11) and (12) afease 2:(Ry, k3, R3) €  for someR; < R}, i=1,3
redundant by Propositidd 2, Appl A, we hale= R = R. Case 3:(Ry, Ry, R}) € Q2 for someR; < R}, i=1,2
Now fix Q, evaluateR with X; = Vi, Vo = U; to obtain a Case 4:(Ri, Ry, R3) € Q for someR; < R}, i=1,2,3
region specified by the same inequalities defiriigplus one  Note that Case 1, 2, 3 are not mutually exclusive. The point
extra inequality, of a such division is, by considering Case 1, 2, 3, a higher

dimensional £ = 3) problem can be reduced to a lower one
R < 1(Uz; Ya|Ur) + 1(X2; Ys|Ua). (n = 1 orn = 2) and for the irreducible Case 4, the additional
Using the same argument in Propositldn 2, App. A, we caonstraintsk; < R} will simplify the problem. This point will
show that this inequality is redundant. B be made clear as we proceed in the following.



Case 1:

The largest admissibl&; = I(X1;Y1|U1) + I(Ur; Y2|Us)
is obtained by setting®. = 0in (9). Fixing R} = R}, R, = 0,
the following two statements are equivalent

( /laR/27R3) €N R3 € Q( IlaR/Q)

SinceR2 (R}, R}) is one dimensional, we ha'(R}, R}) =
{SUPRSERQ(RQ,R;)R3} {min{I(Xy;Y3),1(Us;Y2) +
I(X5;Y3|Uz)}}, which gives usD.

Case 2:

The Iargest admissibl®; = 1(Uy;Y>|Us) is given by [8).

Fixing R, = R%, we have(Ry, R}, R3) € Q iff (R1,R3) €
Q(RY%) and
R2(R3) =
(R1,R3) : R1,R3 >0, Ry <I(X1;Y1|U1) £ a
Rs < min{I(Xg;Yg), I(UQ;)/z) + I(XQ;Ygle)} =)
is two dimensional. It is easy to see tHatR}) = {(a,b)}
yielding A.
Case 3:
The largest admissibleR; is given by R; =

min{I(Xg;Yg), I(U1,Us;Ys) + I(XQ;Y3|U2)}. If
Ry = I(X9;Y3), fixing Ry = R; and we have
R2(R3) =

(R1,R2) : R1,R2 Z 0

Rz S min{I(Ul;Yg|U2), I(U1,U2;)/2) — I(UQ;YS)} é C

Ri+ R < I(X1;Y1|Ur) + min{I(Uy; Y2|U2),

I(U1,Us;Yz) = I(U2; Y3)} 2 d

Note thatl (Uy, Us; Y2) — I(Us; Y3
to seeQ(R%) = {(d — ¢,c), (d,0)

B, = (I(X1;YV1|U1), min{I(U1;Y2|U2),
(U2
(

, resulting in two DEXPs:

I(Ul,UQ;Yg)—
$Y3)}, 1(X2;Y3))
= (I X1;Y1|U1) +min{I(U1;Y2|U2),
I(UQ;Y3)} 0 I(XQ;Y:;))
If B3 = I(U,Us;Yo) +I(X2,Y3|U2) which is given by
(I10) by settingR, = 0, fixing R, = 0, Ry = R} and we
obtain Ry (R, Ry) = {R1 0< R < I(Xl,Y1|U1 } and
Q(Rh, Ry) = {I(X1;Y1|U1)}. Hence we obtain one DExXP

El = (I(X1;Y1|U1), 0, I(Ul,UQ;Yg) +I(X2;Y3|U2)).

I(U17 UQ;YQ)—

Combing the two cases, we rewrif# and E’ collectively as
B andC’ and E’ collectively asC.

Case 4:
Under the condition?; < R}, i =1,2,3, Ro is given by

R1 <I(X1;YY1|U1)+I(U1;Y2|U2) (19)
Ry < I(Us; Y2|Uz2) (20)
Rs < min{I(X2;Y3), I(Ur,Us;Y2)+
I(XQ;Y3|U2)} (21)
Ri + Ry < I(X1; Ya1|Ur) + I1(Un; Y2|U2) (22)
Ry + R3 < I(U1,Uz; Ya) + I(Xa; Y3|U2) (23)
Ri+ Ro+ R < I(X1; Yi|Ur) + I(U1, Uz; Ya)+
I(Xo; Y3|Us) (24)
Ri,R2,R3 > 0. (25)

> 0 in this case. It is easy

R3 R3
T, T,
T T
R, R,
@ (b)
Fig. 2

As mentioned before, DExPs are the solutions of systems of
linear equations given by some active constraints. Hence we
first consider all possible combinations of active constgi
defining dominant faces, i.d. (27)-(24) and then add adtuitio
active constraints froni (25) as needed to ensure the negulti
system has a unique solution.

If B2), (23), [24) are all active, fron (23)[(P4) we get
Ry = I(Xy;Y1|Uy) and further with [(2R), we geRy =
I(Uy; Y2|Us), which violates[(2D). If only[(22)[(23) are active,
since the corresponding system of linear equations does not
have a unique solution (more variables than equations), we
choose one additional active constraint frdml (25). However
the obtained solution violates eitheér{19),1(20)[or (21). ¢&a
proceed similarly for the remaining six possible combioasi
and none of them yields a valid DExP. Overall we conclude
that there is no DExP in Case 4. ]

APPENDIXE
PROOF OFLEMMA [3]

Proof: We use the same notations from the proof of
Lemmal2, which are now defined ov&; 2) instead ofR..
As we can seeR; is disassociated witlR,, Rs;. Hence the
DExPs of R(,) is of the form (R7, Ry, R3), where R} =
I(X1; Y1|Us). Fixing R} = R}, we have

(RQ,RS) : R27R3 Z 0

Ry < I(U; Ya|U2) £ a, Rs < I(Xo;Y3)

A
Ly
Ry + R3 < I(U1,Us; Ya) + I(Xo; Ya|U2) 2 ¢

R)(R1) =

If ¢ > b, i.e. [(Ur,Us;Ya) > I(Us; Y3), Reay(R}) is de-
picted in Fig[2.(a) and2(R}) = {11, T2} = {(a, min{b,c —
a}), (min{a,c — b}, b)}, yielding two DExPs.A and

B/ = (I(X1;YV1|U1)7 min{I(U1;Y2|U2)7 I(Ul,UQ;YQ)—

I(U2;Y3)}, I(Xz;Y3))~

If ¢ <b,ie I(Uy,UsYs) < I(Us;Y3), Reay(R)) is de-
picted in Fig[2.(b) and2(R}) = {T1,T5} = {(a, min{b, c —
a}),(0,c)}, yielding one more DEXP oRy)

c = (I(Xl;Y1|U1), 0, I(Ul,Ug;Yg)+I(X2;Y3|U2)).

Note thatB’ andC’ can be rewritten collectively aB. ®



APPENDIXF Proof of Theorenl5:
PROOF OFLEMMA [4] The achievable schemes are given by the coding schemes
Proof: Since the argument is similar to that of Lemmd0r R1 in Corollary[l andR ;) in Theoreni respectively, all

2, we use the same notations, which are now defined oVéth U2 = Xo.

. _ 1—1
R, instead ofR,. Again the DExPs can be sorted into four FOr the converse, we defiig = (W, Y, ). For somer,,
) . such thatlim,, .., €, = 0, by Fano’s inequality, we have
categories. We next discuss case by case.

Case 1: n(R1 — €n) < I(W1;Y7")
The largest admissibl®&; = I(Uy;Y1). Fixing R} = Rj, n n
we have(R], Ry, R3) € Q iff (R, R3) € Q(R]) and =3 I(Was Yaalyy ™) <) I(Us YA ,).
(R27R3) : R27R3 Z 0 =1 =1
Ri(R}) ={ Rz < I(Xy;Ya|Ur,Us), Ry < I(X2;Y3) ) To boundR,, we proceed as the follows
Ry 4 Ry < I(X1,Us; Ya|Ur) + I(X2; Y3|U2) n(Ra — €n) < I(Wa; Y| W1, X5
Similar to the proof of LemmA]3, there are two DExXP5:F. n -
Case 2: < ZI(XI,ﬁ)/Z,”WhXZ,h)/QZ )
The largest admissibl®; = I(Uy; Y1) 4 I(Xy; Ya|Uy, Us) =t
is obtained by setting?; = 0 in (@). Fixing R} = 0 and = ZI(Xu;Yz,iIWth,i) — I(YE ™Y Yau|[Wh, Xa)
RIQ = RS, we haveRl( Il,R/Q) = {Rg 10 < Ry < i=1
Eg;;{tfgﬁ,m I(Uy; Ya|Uy) + I(X2; Y3|Uz) } }, resulting in @ S 10606 VW, X ) — 0K Yo 95, X )
Case 3: o
The largest admissibl&; = min{/(X2;Y3), [(Uy;Y1) + =3 I(X1,5;Ya,|Ui, X2,0),
I(Xl,Ug,nglUl)+I(X2,YEJ,|U2)} i=1
Lt I(Uz;Ys) < I(Us Y1) + I(X0, Uz Ya|Uh), RS = where (a) follows from Lemmdy.
I(X2;Y3). Fixing R = R3, we have “Now we consider upper-bound fét, + R;. The strong con-
Ru(R}) = dition implies I(X3; Y3'|XT) > I(X3;Y3"), [13, Lemmal.
3 Proceeding,

(R1,R2) : R1,Ry >0, Ri < I(U;;Y1) £ a

n(Re + Rz — €,) < I(Wa;Yy") + I(W3; Y35
Ry + Ry < I(Uy; Y1) + I(X1; Ya Uy, U2)+ (e + Tt )= 1) + 1 (W)

(®)

min{0, I(Usz;Ya|Ur) — I(Ua;Y3)} = b < TV W) + (X353
Note thatb > 0 in this case. This case is similar to that in = I(X1,i, Xo,i; Yo, [ Wi, Y37 )
LemmalB and we can show i=1

n

D IF I(UxYs) < I(Xy,U Y2|Uh), QR3) = =3 I(X1, Xoi; Ya i Wh) — I(Ya "5 Ya W)

{(Ov b)v (CL, b— a)}

=1
2) If I(X1, U Ya|Us) < I(U;Ys) < I(UpYh) + o ™ -
I(X1,Us; Ya|Uy), Q(RS) = {(0,b), (b,0)} <Y I(Xu, Xo,i; Yau W) — I(Y ™ Yai|[Wh)
Finally, we collectively write the obtained DExPs as =
H= (o, b, R;§), 7= (min{a,b}7 b—a]t, R;§). =" I(X14, Xa i3 Ya,i|Ud),

i=1

2. If I(Uy;Y3) > I(U; Y1) + I(X1,Uz; Yo|Uy), R =
I(Ul,}/l) + I(Xl,UQ,}/Q|U1) + I(XQ,}/3|U2), which is ob-
tained by settingR; = Rz = 0 in (@). In this case we find Finally, we haven(Rs — e,) < Z?:l [(Xo.s:Yay). The

one DEXxPJ. . !
Case 4:Similar to that for Lemm&l2, it can be shown thaEJrOO]c is complete by redefining = (Ug, Q). Xji=X; for
there is no DEXP in this case. j=1,2,andY;; =Y, forl =1,2,3, whereQ is a uniformly

distributed r.v. on(1, ..., n). [ |

where (b) is due to the strong condition an@d) is due to
LemmalT.

APPENDIXG
PROOF OFTHEOREM[G REFERENCES

To prove the converse, we use the technique proposedinK. Marton, “A coding theorem for the discrete memoryldsadcast
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