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Abstract—We study a class of discrete memoryless broadcast
interference channels (DM-BICs), where one of the broadcast
receivers is subject to the interference from a point-to-point
transmission. A general achievable rate regionR based on
rate splitting, superposition coding and binning at the broad-
cast transmitter and rate splitting at the interfering tran smit-
ter is derived. Under two partial order broadcast conditions
interference-oblivious less noisy and interference-cognizant less
noisy, a reduced form ofR is shown to be equivalent to the region
based on a simpler scheme that uses only superposition coding
at the broadcast transmitter. Furthermore, the capacity regions
of DM-BIC under the two partial order broadcast conditions
are characterized respectively for the strong and very strong
interference conditions.

I. I NTRODUCTION

Broadcast channel and interference channel are two impor-
tant classes of multi-user channels that have drawn consider-
able research attention in the past few decades, mostly due
to their simplicity as a fundamental building block and their
close relevance to practical communication networks. While
complete characterizations are not available, there have been
significant advances on these topics in the information theory
literature. Notably the best general achievable schemes for the
two channels are respectively given by Marton [1] and Han-
Kobayashi [2], which are capacity achieving for some subclass
channels or under various conditions, such as the ones in [3]-
[6].

Motivated by an recent interest in a heterogeneous cellular
network design paradigm [7], we explore a multi-user channel
that combines the broadcasting and interference features,i.e.
broadcast interference channel (BIC). Specifically we envision
a communication scenario where a macro base station (BS)
broadcasts to two macro users, one of which is interfered by a
point-to-point transmission from a femto BS to a femto user.
While the BIC studied presents a simplified version of what
might happen in practice, we believe that a fundamental under-
standing of this simpler channel is crucial for characterizing
the trade-offs in heterogeneous networks.

Variations of BIC have been previously studied by Shang
and Poor in [8], for a different interference profile where
interference is from the broadcast transmitter to the point-to-
point receiver, and in [9], for the Gaussian BIC where both
of the broadcast receivers are subject to interference. Even
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though the channel studied in this paper has a more restrictive
interference profile than that in [9], we address the more
general discrete memoryless channel and provide more general
classes of common strategies as well as capacity regions under
some conditions. Specifically, we derive an achievable rate
region R based on rate splitting, superposition coding and
binning at the broadcast transmitter and rate splitting at the in-
terfering transmitter. This region is a natural generalization of
Marton’s region [1] for a DM-BC. We then define two partial
order broadcast conditions,interference-oblivious less noisy
and interference-cognizant less noisy. Under these conditions,
a reduced form ofR is shown to be equivalent to the region
based on a simpler scheme that uses only superposition coding
at the broadcast transmitter. Furthermore, if interference is
strong for the interference-oblivious less noisy DM-BIC, the
capacity region is given by the aforementioned two equivalent
rate regions. Interestingly, for the interference-cognizant less
noisy DM-BIC, we argue that the strong but not very strong
interference condition does not exist and in this case, we obtain
the capacity region for the very strong interference.

This paper is organized as the follows. The channel model
is introduced in Section II, followed by the derivation ofR
in Section III. For DM-BIC with two partial order broadcast
conditions, the equivalence of rate regions is presented in
Section IV and the capacity regions are derived in Section
V. This paper is concluded in Section VI.

Notation: Let φ denote a constant. The notation convention
follows [10].

II. CHANNEL MODEL

A discrete memoryless broadcast interference channel is
denoted by(X1 × X2, p(y1, y2, y3|x1, x2),Y1 × Y2 × Y3),
whereXi, i = 1, 2, are the input alphabets,Yj , j = 1, 2, 3,
are the output alphabets andp(y1, y2, y3|x1, x2) is the chan-
nel transition probability. In this paper, we concentrate on
a specific interference profile, wherep(y1, y2, y3|x1, x2) =
p(y1|x1)p(y2|x1, x2)p(y3|x2). As shown in Fig 1, while trans-
mitter 1 wishes to broadcast to receivers 1, 2 , the second
receiver is interfered by transmitter 2 who wishes to commu-
nicate with receiver 3.

Definition 1: A (M1,M2,M3, n) code consists of message
setsWj = {1, ...,Mj}; two encoding functionsX1 : (W1 ×
W2) → Xn

1 , X2 : W3 → Xn
2 and three decoding functions

gj : Y
n
j → Wj , j = 1, 2.3.
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Fig. 1: Channel Model

The messagesWj are uniformly fromWj . The average error
probability for the(M1,M2,M3, n) code is

Pe = Pr(g1(Y
n
1 ) 6= W1 or g2(Y

n
2 ) 6= W2 or g3(Y

n
3 ) 6= W3).

Definition 2: Rates of a(M1,M2,M3, n) code are defined
asRj =

log
2
(Mj)
n

for j = 1, 2, 3.
Rates(R1, R2, R3) are said to beachievableif there exists a

sequence of(M1,M2,M3, n) codes withPe → 0 asn → ∞.
An achievable rate region is the set of all achievable rates for
a given coding scheme. The capacity region is the closure of
the union of all achievable rate regions.

III. A CHIEVABLE RATE REGION FOR AGENERAL DM-BIC

In this section, we derive an achievable rate region for a
general DM-BIC, where the broadcast transmitter employs rate
splitting, superposition coding and binning and the interfering
transmitter employs rate splitting.

Theorem 1:R is an achievable rate region for DM-BIC,
whereR is the closure of all(R1, R2, R3) satisfying

R1 ≤ I(V1;Y1|Q)

R2 ≤ I(V2;Y2|U2, Q)

R3 ≤ I(X2;Y3|Q)

R1 +R2 ≤ I(V1;Y1|U1, Q) + I(V2;Y2|U2, Q)−

I(V1;V2|U1, Q)

R1 +R2 ≤ I(V1;Y1|Q) + I(V2;Y2|U1, U2, Q)−

I(V1;V2|U1, Q)

R2 +R3 ≤ I(V2, U2;Y2|Q) + I(X2;Y3|U2, Q) (1)

R1 +R2 +R3 ≤ I(V1;Y1|U1, Q) + I(V2, U2;Y2|Q)+

I(X2; Y3|U2, Q)− I(V1;V2|U1, Q) (2)

R1 +R2 +R3 ≤ I(V1;Y1|Q) + I(V2, U2;Y2|U1, Q)+

I(X2; Y3|U2, Q)− I(V1;V2|U1, Q) (3)

R1, R2, R3 ≥ 0

for some functionX1 = f(U1, V1, V2) and joint distribution

PQ,U1,V1,V2,U2,X2

= p(q)p(u1|q)p(v1|q, u1)p(v2|q, u1)p(u2|q)p(x2|u2, q),

such that

I(V1;Y1|U1, Q) + I(V2;Y2|U1, U2, Q)− I(V1;V2|U1, Q) ≥ 0.
(4)

Proof: The proof is relegated to App. A. Here we provide
a sketch. The messages for receivers 1, 2 are split into common
and private parts respectively. Common messages are carried
by the cloud signalU1, which is decoded at bothY1 andY2.
The private message carriersV1, V2, which are only decoded
at their respective intended receivers and treated as noise

elsewhere, are superimposed uponU1, where binning is used
to allow arbitrary dependence betweenV1 and V2. At the
interfering transmitter, rate splitting is employed to alleviate
interference by receiver 2 decoding the common signalU2

while treating the private as noise.
Remark 1:Constraint (4) on the choice of joint input

distributions is a direct consequence of the nonnegativityof
some intermediate rates, which are eventually eliminated using
Fourier-Motzkin procedure.

Remark 2:With U1 = V1 = φ, X1 = V2 andR1 = 0, R
reduces to the compact Han-Kobayashi region [12] for a one-
sided interference channel. WithX2 = U2 = φ andR3 = 0,
R reduces to the most general form of Marton’s region with
private message sets for a general DM-BC [11]. Notice that
with U2 = φ, the constraint (4) reduces to

I(V1;Y1|U1, Q) + I(V2;Y2|U1, Q)− I(V1;V2|U1, Q) ≥ 0,
(5)

which applies to Marton’s region. However a closer ex-
amination reveals that (5) is unnecessary. For some joint
distribution that violates (5), we haveR1, R2 ≤ I, where
I = min{I(U1;Y1), I(U1;Y2)}. Clearly(R1, R2) is contained
in Marton’s region for some other joint distribution that
satisfies (5). Therefore removing constraint (5) does not really
enlarge the region.

IV. EQUIVALENCE OF RATE REGIONS FOR THEDM-BIC
UNDER PARTIAL ORDER BROADCAST CONDITIONS

Here we concentrate on DM-BIC under two partial order
broadcast conditions: interference-oblivious less noisyand
interference-cognizant less noisy, which will be defined next.

Definition 3: In a DM-BIC, receiver 2 is said to be
interference-oblivious less noisythan receiver 1, denoted by
Y1 ≺o Y2, if I(U1;Y1) ≤ I(U1;Y2) for all p(u1, x1)p(x2)
such thatU1 → (X1, X2) → (Y1, Y2).

Definition 4: In a DM-BIC, receiver 1 is said to be
interference-cognizant less noisythan receiver 2, denoted by
Y1 ≻c Y2, if I(U1;Y1) ≥ I(U1;Y2|X2) for all p(u1, x1)p(x2)
such thatU1 → (X1, X2) → (Y1, Y2).

Remark 3:We can interpretY1 ≺o Y2 as the follows:
receiver 2 isless noisythan receiver 1 [4], even though no
particular action is taken by receiver 2 to deal with interfer-
ence. Similarly,Y1 ≻c Y2 can be interpreted as the follows:
even if interferenceX2 is provided to receiver 2, receiver
1 is still less noisy. Also note that degradedness (physical
or stochastic, which are the same in broadcast channel [10,
Theorem 15.6.1]) implies the partial order conditions and
hence is stricter. For example,Y2 being degraded with respect
to Y1, i.e. X1 → Y1 → Y2 holds for all p(x1, x2), implies
Y1 ≻c Y2, but not vice versa.

The first class of schemes we consider is a specialization
of R, given in the following two Corollaries.

Corollary 1: R1 is an achievable rate region for DM-BIC
with Y1 ≺o Y2, whereR1 is the closure of all(R1, R2, R3)



satisfying

R1 ≤ I(U1;Y1)

R3 ≤ I(X2;Y3)

R1 +R2 ≤ I(U1;Y1) + I(X1; Y2|U1, U2) (6)

R1 +R2 +R3 ≤ I(U1;Y1) + I(X1, U2;Y2|U1)+

I(X2;Y3|U2) (7)

R1, R2, R3 ≥ 0

for somePU1,X1,U2,X2
= p(u1)p(x1|u1)p(u2)p(x2|u2).

Proof: Fix Q = φ. SpecializingR with X1 = V2, V1 =
U1 and removing redundant inequalities due toY1 ≺o Y2, we
obtainR1.

Corollary 2: R2 is an achievable rate region for DM-BIC
with Y1 ≻c Y2, whereR2 is the closure of all(R1, R2, R3)
satisfying

R2 ≤ I(U1;Y2|U2) (8)

R3 ≤ I(X2;Y3)

R1 +R2 ≤ I(X1;Y1|U1) + I(U1;Y2|U2) (9)

R2 +R3 ≤ I(U1, U2;Y2) + I(X2;Y3|U2) (10)

R1 +R2 +R3 ≤ I(X1;Y1|U1) + I(U1, U2;Y2) + I(X2; Y3|U2)

R1, R2, R3 ≥ 0

for somePU1,X1,U2,X2
= p(u1)p(x1|u1)p(u2)p(x2|u2).

Proof: A direct specialization ofR will result in some
extra inequalities that are harder to remove. Hence we take
an indirect approach, where the specialization is done for an
equivalent region ofR. The details are provided in App. B.

Notice that to deriveRi, i = 1, 2, we fix the time-
sharing r.v.Q. In principle, we could have keptQ intact when
specializingR, but the following proposition asserts that there
is no benefit doing so. Since time-sharing always results in a
region no smaller than convex hull operation, it follows that
taking convex hull is also unnecessary.

Proposition 1: Time-sharing does not enlargeRi, i = 1, 2.
Proof: The proof is relegated to App. C.

Next we present two achievable rate regions,R(i), i = 1, 2,
which are solely based on superposition coding (i.e. no rate
splitting at the broadcast transmitter), where the cloud center
carries only receiveri’s message. Since the proofs are stan-
dard, they are omitted for conciseness.

Theorem 2:R(1) is an achievable rate region for DM-BIC
with Y1 ≺o Y2, whereR(1) is the closure of all(R1, R2, R3)
satisfying

R1 ≤ I(U1;Y1)

R2 ≤ I(X1;Y2|U1, U2)

R3 ≤ I(X2;Y3)

R2 +R3 ≤ I(X1, U2;Y2|U1) + I(X2;Y3|U2)

R1, R2, R3 ≥ 0

for somePU1,X1,U2,X2
= p(u1)p(x1|u1)p(u2)p(x2|u2).

Theorem 3:R(2) is an achievable rate region for DM-BIC
with Y1 ≻c Y2, whereR(2) is the closure of all(R1, R2, R3)

satisfying

R1 ≤ I(X1;Y1|U1)

R2 ≤ I(U1;Y2|U2)

R3 ≤ I(X2;Y3)

R2 +R3 ≤ I(U1, U2;Y2) + I(X2;Y3|U2)

R1, R2, R3 ≥ 0

for somePU1,X1,U2,X2
= p(u1)p(x1|u1)p(u2)p(x2|u2).

In deriving the most general regionR, we used rate
splitting, superposition coding and binning at the broadcast
transmitter. RegionsRi, i = 1, 2, are derived fromR when
binning is stripped off but rate splitting and superposition
kept intact. While bothRi and R(i) rely on superposition
coding, there is a subtle difference. Despite the fact that both
schemes’ cloud centers carry receiveri’s message, the one
for Ri could also carry receiverj’s (j 6= i, j = 1, 2) common
message, which could be potentially helpful to reduce the self-
interference due to the fact that part of the broadcast signal
intended for receiverj is essentially interference from receiver
i’s perspective. It is apparent that the superposition-only-based
rate regions are not larger than the ones based on superposition
and rate splitting, since the latter includes the former as a
special case. This can be also verified by explicitly checking
that the inequalities definingR(i) induce those inRi, but not
vice versa. Hence at first sight it seems thatRi is strictly larger
thanR(i). However, if we consider the no interference case,
i.e. U2 = X2 = φ, R3 = 0, Ri cannot be strictly larger than
R(i) since the latter is the capacity region of a less noisy (or
degraded) DM-BC [11]. The pitfall of the previous argument is
that it only considers a specific input distribution. It is true that
for some givenPU1,X1,U2,X2

, Ri is strictly larger, however
once we consider allPU1,X1,U2,X2

, we will show that they
are indeed equivalent.

Theorem 4:Ri = R(i), i = 1, 2.

A. Proof of Theorem 4

Before proving Theorem 4, we need the following defini-
tions and lemmas.

Definition 5: Let R
n
c be a convex subset ofRn, a n-

dimensional Euclidean space. A pointX ∈ R
n
c is an extreme

point (ExP)iff wheneverX = tY + (1 − t)Z, t ∈ (0, 1) and
Y 6= Z, this implies eitherY 6∈ R

n
c or Z 6∈ R

n
c .

Definition 6: An ExP X ∈ R
n
c is said to bedominant

(DExP) iff there does not exist another ExPY ∈ R
n
c , Y 6= X ,

such thatX ≤ Y element-wise.
Remark 4: In the literature, the term “dominant extreme

points” are sometimes referred as corner points. The intention
of choosing the former terminology is to emphasize the
connection to convex set.

Let Rn be an-dimensional convex rate region, of which the
set of all DExPs is denoted byΩ. Further letco(Ω) denote
the convex hull ofΩ:

co(Ω) =

{

m
∑

i=1

αiRi

∣

∣

∣

∣

∣

Ri ∈ Ω, αi ∈ [0, 1],
m
∑

i=1

αi = 1,m = 1, 2, ...

}

.



Lemma 1:R ∈ Rn iff there exists someR′ ∈ co(Ω) such
thatR ≤ R

′ element-wise.
Proof: For the “if” part, since DExPs are achievable, so

is their convex combination, specificallyR′ is achievable. If
R ≤ R

′, R is also achievable. For the “only if” part, for a
convex regionRn, any achievable rate can be expressed as a
convex combination of some ExPs, i.e. there exists someRi ∈
Ψ, αi ∈ [0, 1] and an integerm such thatR =

∑m

i=1 αiRi,
whereΨ denotes the set of all ExPs forRn. Now replacing
any non-dominantRi that constitutesR by its corresponding
DExP and keeping convex coefficientsαi intact, we obtain
R

′ ∈ co(Ω), whereR ≤ R
′.

Lemma 1 suggests that a rate region is completely described
by its DExPs. When comparing different rate regions, it
suffices to consider their sets of DExPs, which will be given
in the follows forRi andR(i), i = 1, 2, respectively.

Lemma 2:For aPU1,X1,U2,X2
, DExPs ofR2 are given by:

A =
(

I(X1;Y1|U1), I(U1; Y2|U2), min{I(X2;Y3), I(U2; Y2)+

I(X2;Y3|U2)}
)

B =
(

I(X1;Y1|U1), min{I(U1; Y2|U2), [I(U1, U2;Y2)− I(U2;Y3)]
+},

I(X2;Y3|U2) + min{I(U2; Y3), I(U1, U2;Y2)}
)

C =
(

I(X1;Y1|U1) + min{I(U1;Y2|U2), [I(U1, U2;Y2) − I(U2;Y3)]
+},

0, I(X2; Y3|U2) + min{I(U2; Y3), I(U1, U2;Y2)}
)

D =
(

I(X1;Y1|U1) + I(U1;Y2|U2), 0, min{I(X2; Y3), I(U2;Y2)+

I(X2;Y3|U2)}
)

Proof: The proof is relegated to App. D.
Lemma 3:For aPU1,X1,U2,X2

, R(2) has two DExPsA, B
as in Lemma 2.

Proof: The proof is relegated to App. E.
Lemma 4:For aPU1,X1,U2,X2

, DExPs ofR1 include

E =
(

I(U1;Y1), I(X1; Y2|U1, U2), min{I(X2;Y3), I(U2;Y2|U1)+

I(X2; Y3|U2)}
)

F =
(

I(U1;Y1), min{I(X1; Y2|U1, U2), [I(X1, U2;Y2|U1)−

I(U2;Y3)]
+}, I(X2;Y3|U2) + min{I(U2; Y3),

I(X1, U2;Y2|U1)}
)

G =
(

0, I(U1; Y1) + I(X1;Y2|U1, U2), min{I(X2; Y3), I(U2;Y2|U1)

+ I(X2;Y3|U2)}
)

.

Furthermore, if PU1,X1,U2,X2
satisfies I(U2;Y3) ≤

I(U1;Y1) + I(X1, U2;Y2|U1), there are two more DExPs

H =
(

0, I(U1;Y1) + I(X1;Y2|U1, U2) + min{0, I(U2;Y2|U1)

− I(U2;Y3)}, I(X2;Y3)
)

I =
(

I(U1; Y1) + min{0, I(X1, U2;Y2|U1)− I(U2; Y3)}},

[I(X1;Y2|U1, U2) + min{0, I(U2; Y2|U1)− I(U2; Y3)}]
+,

I(X2;Y3)}
)

.

Otherwise ifI(U2;Y3) > I(U1;Y1)+ I(X1, U2;Y2|U1), there
is one more DExP

J =
(

0, 0, I(U1;Y1) + I(X1, U2; Y2|U1) + I(X2; Y3|U2)
)

.

Proof: The proof is relegated to App. F.
Lemma 5:For aPU1,X1,U2,X2

, R(1) has two DExPsE, F
as in Lemma 4.

Proof: The proof is exactly the same as Case 1 forR1.

Proof of Theorem 4:We will first proveR2 = R(2) and
thenR1 = R(1). Let P = PU1,X1,U2,X2

. We usePUi=φ to
denote the same distribution except thatUi = φ.
1. Proof ofR2 = R(2)

From Lemma 2 and 3, for a givenP , R2 has two more
DExPs thanR(2). However, forPU1=U2=φ, A becomesA′ =
( I(X1;Y1), 0, I(X2;Y3) ) and it can be shownC,D ≤ A′

due toY1 ≻c Y2. Therefore if we take the union of regions
for the two distributionsP andPU1=U2=φ, bothR2 andR(2)

will have identical DExPs. By Lemma 1,R2 = R(2).
2. Proof ofR1 = R(1)

This part is more involved, but the idea is essentially the
same. We first showG is redundant. Given anyP , consider
another joint distributionPU1=φ. ThenE andF become

E′ =
(

0, I(X1;Y2|U2), min{I(X2; Y3), I(U2;Y2) + I(X2; Y3|U2)}
)

F ′ =
(

0, min{I(X1;Y2|U2), [I(X1, U2;Y2)− I(U2;Y3)]
+},

I(X2;Y3|U2) + min{I(U2; Y3), I(X1, U2;Y2)}
)

.

The region, specified by DExPsE′ andF ′, can be alternatively
described by the following inequalities (this can be verified by
settingU1 = φ in R1)

R3 ≤ I(X2;Y3)

R2 ≤ I(X1;Y2|U2)

R2 +R3 ≤ I(X1, U2;Y2) + I(X2;Y3|U2)

R2, R3 ≥ 0, R1 = 0

Using the factI(U1;Y1) ≤ I(U1;Y2) due toY1 ≺o Y2, it can
be checked thatG is contained in the above region. HenceG

is redundant.
Next we will show thatH , I either reduce to other DExPs

or are redundant if we consider all input distributions. Let
us first focus onH . If I(U2;Y3) < I(U2;Y2|U1), G =
(

0, I(U1;Y1)+ I(X1;Y2|U1, U2), I(X2;Y3)
)

andH = G. If
δ : I(U2;Y2|U1) ≤ I(U2;Y3) < I(X1, U2;Y2|U1), we have

F =
(

I(U1;Y1), I(X1, U2;Y2|U1)− I(U2;Y3), I(X2;Y3)
)

H =
(

0, I(U1;Y1) + I(X1, U2;Y2|U1)− I(U2;Y3), I(X2;Y3)
)

Notice that for anyP , if condition δ holds, then forPU1=φ,
δ still holds. Hence if we letU1 = φ, F becomesF ′ =
(

0, I(X1, U2;Y2) − I(U2;Y3), I(X2;Y3)
)

andH ≤ F ′ due
to Y1 ≺o Y2. If I(X1, U2;Y2|U1) ≤ I(U2;Y3) ≤ I(U1;Y1) +
I(X1, U2;Y2|U1), by settingU2 = φ we have

G
′ =

(

0, I(U1;Y1) + I(X1;Y2|U1), I(X2;Y3)
)

≥ H.

We now considerI. If I(U2;Y3) ≤ I(U2;Y2|U1), I =
E. If I(U2;Y2|U1) < I(U2;Y3) < I(X1, U2;Y2|U1),
I = F . If I(X1, U2;Y2|U1) ≤ I(U2;Y3) ≤ I(U1;Y1) +
I(X1, U2;Y2|U1), I reduces to

I =
(

I(U1;Y1) + I(X1, U2;Y2|U1)− I(U2;Y3), 0, I(X2;Y3)
)



If we further let U1 = X1 and U2 = φ, E becomesE′ =
(

I(X1;Y1), 0, I(X2;Y3)
)

. Clearly,I ≤ E′.
At last, we considerJ . For anyP , settingU1 = U2 = φ,

E becomes

E
′ =

(

0, I(X1;Y2), I(X2;Y3)
)

.

Clearly, J < E′ due to the conditionI(U1;Y1) +
I(X1, U2;Y2|U1) < I(U2;Y3) and henceJ is redundant.

To summarize, even though for a specificP , R1 could have
more DExPs thanR(1), if we consider all possibleP , they will
have exactly the same set of DExPs given byE andF . By
Lemma 1,R1 = R(1).

V. CAPACITY REGIONS UNDER THESTRONG/VERY

STRONG INTERFERENCECONDITION

In this section, capacity regions of DM-BIC withY1 ≺o Y2

andY1 ≻c Y2 are established respectively for the strong and
very strong interference conditions defined in the following.

Definition 7: Interference is said to bestrong if for all
p(x1)p(x2), I(X2;Y2|X1) ≥ I(X2;Y3).

Definition 8: Interference is said to bevery strongif for all
p(x1)p(x2), I(X2;Y2) ≥ I(X2;Y3).

Remark 5:The intuition behind these definitions, which are
the same as the regular interference channel [13], is that by
conditioning on the intended signal, whose decoding is assured
to be successful by design, the interfered receiver sees a better
channel than interference’s own receiver. This suggests that the
interfered receiver should be able to decode the interference
along with its intended signal, by performing a joint decoding
if interference is strong. If further interference is very strong,
successive interference cancellation decoding suffices, where
interference is decoded first. Evidently very strong condition
is stricter than the strong condition.

Theorem 5:The capacity region of DM-BIC withY1 ≺o

Y2 and the strong interference condition is the closure of all
(R1, R2, R3) satisfying

R1 ≤ I(U1;Y1)

R2 ≤ I(X1;Y2|U1, X2)

R3 ≤ I(X2;Y3)

R2 +R3 ≤ I(X1, X2;Y2|U1)

R1, R2, R3 ≥ 0

for somePU1,X1,X2
= p(u1)p(x1|u1)p(x2).

Proof: The proof is relegated to App. G.
Remark 6:The capacity region takes two different forms.

The one given in Theorem 5 is identical toR(1) with U2 = X2.
An alternative form is given byR1 with U2 = X2.

When receiver 2 is interference-oblivious less noisy than
receiver 1, for any sensible coding schemeX1 should always
be decodable at receiver 2 (otherwise, none of the broadcast
receivers can do so). Hence the strong condition, originated
from interference channel, naturally carries over to DM-BIC
with Y1 ≺o Y2. However, this is not the case for DM-BIC
with Y1 ≻c Y2, which will be discussed next.

Theorem 6:The capacity region of DM-BIC withY1 ≻c Y2
and the very strong interference condition is the closure ofall
(R1, R2, R3) satisfying

R1 ≤ I(X1;Y1|U1)

R2 ≤ I(U1;Y2|X2)

R3 ≤ I(X2;Y3)

R1, R2, R3 ≥ 0

for somePU1,X1,X2
= p(u1)p(x1|u1)p(x2).

Proof: The achievability follows those forR(2) andR2,
all with with U2 = X2. The converse proof is standard.

Remark 7:Similarly to Theorem 5, the capacity region
takes two forms, one given in Theorem 6, which is essentially
R(2) with U2 = X2, and another given byR2 with U2 = X2.

It is not difficult to see that strong condition in Definition
7 does not fit well for DM-BIC withY1 ≻c Y2. The reason is
that if X1 is the intended signal for receiver 2, i.e.X1 always
decodable at receiver 2, then byY1 ≻c Y2, receiver 1 can
decode it as well. Hence the two receivers will always decode
the same set of messages, which clearly does not represent the
most general case. In fact, we claim that the strong but not
very strong interference condition does not exist for DM-BIC
with Y1 ≻c Y2. The argument is as the follows.

The problem is to figure out what is the intended signal for
receiver 2. Once we find out such a signal, we can mimic
the strong condition in Definition 7, with modification of
conditioning on that signal instead ofX1. Suppose there exists
some strong condition, then interferenceX2 is required to be
decoded at receiver 2. Under this restriction, we have an upper
boundn(R2 +R3 − ǫn) ≤ I(W2,W3;Y

n
2 ). Along with other

straightforward upper bounds, by the same technique that we
used above to prove Theorem 5, we can show thatR(2) with
U2 = X2 is the capacity region. This implies that if there exists
some strong condition, then superposition coding with cloud
centerU1 carrying receiver 2’s message is capacity achieving.
Hence without loss of generality, we can view the cloud center
U1 as the intended signal for receiver 2, which in return gives
us the strong conditionI(X2;Y2|U1) ≥ I(X2;Y3), for all
p(u1)p(x1|u1)p(x2) such thatU1 → (X1, X2) → (Y2, Y3)
form a Markov chain. However, this condition always implies
the very strong condition (considerU1 = φ) and furthermore
the strong interference capacity region,R(2) with U2 = X2,
always reduces to the very strong capacity region given in
Theorem 6. In other words forY1 ≻c Y2, if interference is
strong, then it has to be very strong.

VI. CONCLUSION

In this paper, we devise a coding scheme combining rate
splitting, superposition coding and binning for a general DM-
BIC. The obtained achievable rate region is then specialized
to DM-BIC under two partial order broadcast conditions:
interference-oblivious less noisy and interference-cognizant
less noisy. By carefully inspecting the dominant extreme
points, the specialized rate region is shown to be equivalent to
that based on a simpler scheme that uses only superposition



coding at the broadcast transmitter. For the interference-
oblivious less noisy DM-BIC, if interference is strong, the
capacity region is given by the aforementioned two equivalent
rate regions. For the interference-cognizant less noisy DM-
BIC, we argue that the strong but not very strong interference
condition does not exist and in this case, we obtain the capacity
region for very strong interference.

APPENDIX A
PROOF OFTHEOREM 1

We will first obtain an achievable rate region̂R in Lemma
6. Then we proveR = R̂.

Lemma 6:R̂ is an achievable rate region for DM-BIC,
where R̂ is the closure of all(R1, R2, R3) satisfying all
inequalities definingR plus two more constraints

R3 ≤ I(V2, U2;Y2|U1, Q) + I(X2;Y3|U2, Q) (11)

R3 ≤ I(V1;Y1|U1, Q) + I(V2, U2;Y2|U1, Q) + I(X2; Y3|U2, Q)−

I(V1;V2|U1, Q). (12)

Proof:
Codebook generation:
Split Y1’s message into two parts:m1 and i. Sim-

ilarly for Y2, m2 and j. Generate 2n(R1c+R2c) inde-
pendent codewordsun

1 (m1,m2) with each symbol i.i.d
according to pU1

(·), m1 ∈ {1, 2, ..., 2nR1c}, m2 ∈
{1, 2, ..., 2nR2c}. For eachun

1 (m1,m2) generate2n(R1p+R′

1
)

conditionally independent codewordsvn1 (m1,m2, i, i
′) with

each symbol i.i.d according topV1|U1
(·|u1(m1,m2)), i ∈

{1, 2, ..., 2nR1p}, i′ ∈ {1, 2, ..., 2nR
′

1}. Similarly for each
un
1 (m1,m2), generate2n(R2p+R′

2
) conditionally independent

codewordsvn2 (m1,m2, j, j
′) with each symbol i.i.d accord-

ing to pV2|U1
(·|u1(m1,m2)), j ∈ {1, 2, ..., 2nR2p}, j′ ∈

{1, 2, ..., 2nR
′

2}.
Split Y3’s message into two parts:k and l. Generate2nT3

independent codewordsun
2 (k) with each symbol i.i.d accord-

ing to pU2
(·), k ∈ {1, 2, ..., 2nT3}. For eachun

2 (k) generate
2nS3 conditionally independent codewordsxn

2 (k, l) with each
symbol i.i.d according topX2|U2

(·|u2(k)), l ∈ {1, 2, ..., 2nS3}.
Encoding:
Given message quadruple(m1, i,m2, j), broadcast trans-

mitter tries to find a pair(i′, j′) such that

(vn1 (m1, m2, i, i
′), vn2 (m1,m2, j, j

′)) ∈ A
(n)
ǫ (V1, V2).

If there is one or more such pairs, choose one and send
xn
1 = fn(un

1 (m1,m2), v
n
1 (m1,m2, i, i

′), vn2 (m1,m2, j, j
′)),

where f(·) is a deterministic function. If there is no such
pair, an error is declared and a predefined codeword is sent.
Interference transmitter sends codewordxn

2 (k, l) for message
pair (k, l).

Without loss of generality, in the following we assume
(m1, i,m2, j, k, l) = (1, 1, 1, 1, 1, 1) is sent.

Decoding:
ReceiverY1 looks for (m̂1, m̂2, î, î

′) such that

(un
1 (m̂1, m̂2), v

n
1 (m̂1, m̂2, î, î

′), yn
1 ) ∈ A

(n)
ǫ (U1, V1, Y1).

If there is no such quadruple or some such quadruple with
eitherm̂1 6= 1 or î 6= 1 or both, an error is declared.

ReceiverY2 looks for (m̂1, m̂2, ĵ, ĵ
′, k̂) such that

(un
1 (m̂1, m̂2), v

n
2 (m̂1, m̂2, ĵ, ĵ

′), un
2 (k̂), y

n
2 ) ∈ A

(n)
ǫ (U1, V2, U2, Y2).

If there is no such tuple or some such tuple with eitherm̂2 6= 1
or ĵ 6= 1 or both, an error is declared.

ReceiverY3 looks for unique(k̂, l̂) such that

(un
2 (k̂), x

n
2 (k̂, l̂), y

n
3 ) ∈ A

(n)
ǫ (U2, X2, Y2).

If there is none or more than one such pair, an error is declared.
Analysis of error probability:
At broadcast encoder: Given (m1,m2, i, j), with high

probability there is at least one(i′, j′) pair such that
(vn1 (m1,m2, i, i

′), vn2 (m1,m2, j, j
′)) is jointly typical if R′

1+
R′

2 > I(V1;V2|U1) due to mutual covering lemma [11].
At receiverY1: Using standard techniques from [11], where

all error events are first determined using a joint pmf fac-
torization table and then analyzed individually using packing
lemma, it can be shown that the error probability at receiver
Y1 can be made arbitrarily small if

R1p +R
′

1 ≤ I(V1;Y1|U1)

R1c +R2c +R1p +R
′

1 ≤ I(V1;Y1).

At receiverY2: Similarly it can be shown that the error
probability at receiver 2 can be made arbitrarily small if

R2p +R
′

2 ≤ I(V2;Y2|U1, U2)

R2p +R
′

2 + T3 ≤ I(V2, U2;Y2|U1)

R1c +R2c +R2p +R
′

2 ≤ I(V2;Y2|U2)

R1c +R2c +R2p +R
′

2 + T3 ≤ I(V2, U2;Y2).

At receiverY3: Similarly it can be shown that the error
probability at receiver 3 can be made arbitrarily small if

S3 ≤ I(X2; Y3|U2)

T3 + S3 ≤ I(X2; Y3).

Collecting all inequalities, applying Fourier-Motzkin elim-
ination with R1 = R1c + R1p, R2 = R2c + R2p and
R3 = T3 + S3, and finally including a time sharing variable,
we obtain an achievable rate region̂R.

Proposition 2: Inequalities (11) and (12) are redundant.
ThereforeR = R̂.

Proof: To prove that (11) and (12) are redundant, we
follow the argument used in [12] to simply the Han-Kobayashi
region. Fix time-sharing r.v.Q. DenoteP = PU1,V1,V2,U2,X2

.
We first prove that (11) is redundant. For a givenP , we

show that if rate triple(R1, R2, R3) satisfies all inequalities
in R̂ except (11), then(R1, R2, R3) ∈ R̂PU2=φ

. Hence by
time-sharing, (11) is redundant.

If (11) is violated, we have

R3 > I(V2, U2;Y2|U1) + I(X2;Y3|U2) (13)

If (R1, R2, R3) satisfies all inequalities in̂R except (11), then
it can be shown that(R1, R2, R3) satisfies the following

R1 ≤ I(V1;Y1)

R2 ≤ I(V2;Y2) (14)

R3 ≤ I(X2;Y3)

R1 +R2 ≤ I(V1;Y1|U1) + I(V2; Y2)− I(V1;V2|U1) (15)

R1 +R2 ≤ I(V1;Y1) + I(V2;Y2|U1)− I(V1;V2|U1), (16)



where (14) is obtained from (1) and (13), (15) from (2) and
(13), (16) from (3) and (13). Notice that the above region is
exactlyR̂PU2=φ

. Hence (11) is redundant. In the following we
assume (11) has already been removed.

The case of (12) is a little bit involved due to the constraint
(4). Let us first consider the following two statements:P
satisfies (4);P satisfies (4) whereU2 is removed. If the latter
statement is true, so is the former, but not vice versa. In the
following, we will first focus on a class ofP satisfying both.

We prove that (12) is redundant using a similar argument
for (11). If (12) is violated, we have

R3 > I(V1; Y1|U1, Q) + I(V2, U2;Y2|U1) + I(X2; Y3|U2)−

I(V1;V2|U1). (17)

If (R1, R2, R3) satisfies all inequalities in̂R except (12), then
(R1, R2, R3) ∈ R̂PU2=φ

. Again to obtain (14), we use (1) and
(17) and have

R2 ≤ I(V2;Y2)− [I(V1;Y1|U1) + I(V2;Y2|U1)− I(V1;V2|U1)]

≤ I(V2;Y2),

where the last inequality is due to the fact thatP satisfies
(4) whereU2 is removed. Similarly (15) follows from (2) and
(17) and (16) from (3) and (17). Hence by time-sharing, (12)
is redundant for this class ofP .

Next we focus on a class ofP satisfying (4) but not (4)
without U2, i.e.

I(V1;Y1|U1) + I(V2;Y2|U1)− I(V1; V2|U1) < 0. (18)

As we can see, an attempt to repeat what we have done
previously fails in this case sincePU2=φ is not a valid joint
input distribution. However, a careful examination of (18)
reveals the truth that this particularP is simply a bad choice
for the binning coding because the penalty termI(V1;V2|U1)
arising from having correlated inputs is so large that we
might have done better provided no binning coding is used.
Hence we considerPU1=V1

, where essentially we only make
use of superposition and the binning aspect is not present
resulting in I(V1;V2|U1) = 0. From (18), especially two
derived conditionsI(V1;Y1|U1) − I(V1;V2|U1) < 0 and
I(V2;Y2|U1) − I(V1;V2|U1) < 0, it can be checked that
R̂P ⊆ R̂PU1=V1

for this class of joint distributions. Then by a
similar argument for (11), it can be shown that any rates that
violate (12) automatically fall intoR̂PU1=V1,U2=φ

. Hence by
time-sharing, (12) is redundant.

APPENDIX B
PROOF OFCOROLLARY 2

Proof:
Consider a regioñR which is the same aŝR in Lemma 6,

App. A, except that (12) is removed. Since (11) and (12) are
redundant by Proposition 2, App. A, we havêR = R̃ = R.
Now fix Q, evaluateR̃ with X1 = V1, V2 = U1 to obtain a
region specified by the same inequalities definingR2 plus one
extra inequality,

R3 ≤ I(U2;Y2|U1) + I(X2;Y3|U2).

Using the same argument in Proposition 2, App. A, we can
show that this inequality is redundant.

APPENDIX C
PROOF OFPROPOSITION1

Proof:
We prove forR1. The case ofR2 follows similarly.
Let Q take two values 1, 2 with probabilityα and ᾱ, 0 ≤

α ≤ 1. Denote two sets of(U i
1, X

i
1, U

i
2, X

i
2, Y

i
1 , Y

i
2 ) where

i = 1, 2. ForQ = i, defineU1,Q = U i
1, U2,Q = U i

2, X1 = X i
1,

X2 = X i
2, Y1 = Y i

1 andY2 = Y i
2 . Then we have Markov chain

(Q,U1,Q, U2,Q) → (X1, X2) → (Y1, Y2).
For the 1st inequality inR1,

αI(U1
1 ;Y

1
1 ) + ᾱI(U2

1 ;Y
2
1 ) = I(U1,Q;Y2|Q) ≤ I(U1,Q, Q;Y2).

For the 2nd inequality inR1,

αI(X1
2 ;Y

1
3 ) + ᾱI(X2

2 ;Y
2
3 )

= I(X2;Y3|U2,Q, Q) + I(U2,Q;Y3|Q)

≤ I(X2;Y3|U2,Q, Q) + I(U2,Q, Q;Y3) = I(X2;Y3)

Similarly, we can show that the convex combinations of
the right-hand sides of the 3rd, 4th inequalities inR1 are
respectively less or equal to

I(U1,Q, Q;Y1) + I(X1;Y2|U1,Q, U2,Q, Q)

I(U1,Q, Q;Y1) + I(X1, U2,Q, Q;Y2|U1,Q, Q) + I(X2;Y2|U2,Q, Q)

RedefineU1 = (U1,Q, Q) and U2 = (U2,Q, Q). We see
that the time-sharing region is always contained withinR1

for somePU1,X1,U2,X2
.

APPENDIX D
PROOF OFLEMMA 2

Proof: We will use the following notations.Ω denotes
the set of all DExPs ofR2. For some predefinedR′

1, denote
R2(R

′
1) = {(R2, R3) : (R′

1, R2, R3) ∈ R2} and the corre-
sponding set of all DExPsΩ(R′

1). Similarly, we could also
defineR2(R

′
i) andΩ(R′

i) for i = 2, 3, andR2(R
′
k, R

′
l) and

Ω(R′
k, R

′
l) for k, l = 1, 2, 3 andk < l.

R2 is given by a system of linear inequalities. Since DExPs
are ExPs by definition, which can be found by solving the
system of linear equations given by some active constraints,
one approach to findΩ is to consider all possible combinations
of active constraints whose corresponding system of linear
equations admits a unique solution and then compare the
obtained ExPs one by one. There are totally eight inequalities
in R2 making this approach tedious. Fortunately, we can make
use the property of DExPs to simply the procedure and make
it more systematic so that we don’t overlook any DExP.

Let R∗
i denote the largest admissibleRi in R2. Then DExPs

can be sorted into four categories:
Case 1:(R∗

1, R2, R3) ∈ Ω for someRi ≤ R∗
i , i = 2, 3

Case 2:(R1, R
∗
2, R3) ∈ Ω for someRi ≤ R∗

i , i = 1, 3
Case 3:(R1, R2, R

∗
3) ∈ Ω for someRi ≤ R∗

i , i = 1, 2
Case 4:(R1, R2, R3) ∈ Ω for someRi < R∗

i , i = 1, 2, 3
Note that Case 1, 2, 3 are not mutually exclusive. The point

of a such division is, by considering Case 1, 2, 3, a higher
dimensional (n = 3) problem can be reduced to a lower one
(n = 1 or n = 2) and for the irreducible Case 4, the additional
constraintsRi < R∗

i will simplify the problem. This point will
be made clear as we proceed in the following.



Case 1:
The largest admissibleR∗

1 = I(X1;Y1|U1) + I(U1;Y2|U2)
is obtained by settingR2 = 0 in (9). FixingR′

1 = R∗
1, R′

2 = 0,
the following two statements are equivalent

(R′
1, R

′
2, R3) ∈ Ω ⇐⇒ R3 ∈ Ω(R′

1, R
′
2).

SinceR2(R
′
1, R

′
2) is one dimensional, we haveΩ(R′

1, R
′
2) =

{

supR3∈R2(R′

1
,R′

2
) R3

}

=
{

min{I(X2;Y3), I(U2;Y2) +

I(X2;Y3|U2)}
}

, which gives usD.
Case 2:
The largest admissibleR∗

2 = I(U1;Y2|U2) is given by (8).
Fixing R′

2 = R∗
2, we have(R1, R

′
2, R3) ∈ Ω iff (R1, R3) ∈

Ω(R′
2) and

R2(R
′

2) =
{

(R1, R3) : R1, R3 ≥ 0, R1 ≤ I(X1;Y1|U1) , a

R3 ≤ min{I(X2;Y3), I(U2;Y2) + I(X2;Y3|U2)} , b

}

is two dimensional. It is easy to see thatΩ(R′
2) =

{

(a, b)
}

yielding A.
Case 3:
The largest admissibleR3 is given by R∗

3 =
min

{

I(X2;Y3), I(U1, U2;Y2) + I(X2;Y3|U2)
}

. If
R∗

3 = I(X2;Y3), fixing R′
3 = R∗

3 and we have

R2(R
′

3) =


















(R1, R2) : R1, R2 ≥ 0

R2 ≤ min{I(U1;Y2|U2), I(U1, U2;Y2)− I(U2;Y3)} , c

R1 +R2 ≤ I(X1;Y1|U1) +min{I(U1;Y2|U2),

I(U1, U2;Y2)− I(U2;Y3)} , d



















.

Note thatI(U1, U2;Y2)−I(U2;Y3) ≥ 0 in this case. It is easy
to seeΩ(R′

3) =
{

(d− c, c), (d, 0)
}

, resulting in two DExPs:

B
′ =

(

I(X1;Y1|U1), min{I(U1;Y2|U2), I(U1, U2;Y2)−

I(U2;Y3)}, I(X2; Y3)
)

C
′ =

(

I(X1;Y1|U1) + min{I(U1;Y2|U2), I(U1, U2;Y2)−

I(U2;Y3)}, 0, I(X2;Y3)
)

If R∗
3 = I(U1, U2;Y2) + I(X2;Y3|U2), which is given by

(10) by settingR2 = 0, fixing R′
2 = 0, R′

3 = R∗
3 and we

obtainR2(R
′
2, R

′
3) =

{

R1 : 0 ≤ R1 ≤ I(X1;Y1|U1)
}

and
Ω(R′

2, R
′
3) =

{

I(X1;Y1|U1)
}

. Hence we obtain one DExP

E
′ =

(

I(X1;Y1|U1), 0, I(U1, U2;Y2) + I(X2;Y3|U2)
)

.

Combing the two cases, we rewriteB′ andE′ collectively as
B andC′ andE′ collectively asC.

Case 4:
Under the conditionRi < R∗

i , i = 1, 2, 3, R2 is given by

R1 < I(X1;Y1|U1) + I(U1;Y2|U2) (19)

R2 < I(U1;Y2|U2) (20)

R3 < min{I(X2;Y3), I(U1, U2;Y2)+

I(X2; Y3|U2)} (21)

R1 +R2 ≤ I(X1;Y1|U1) + I(U1;Y2|U2) (22)

R2 +R3 ≤ I(U1, U2;Y2) + I(X2;Y3|U2) (23)

R1 +R2 +R3 ≤ I(X1;Y1|U1) + I(U1, U2;Y2)+

I(X2; Y3|U2) (24)

R1, R2, R3 ≥ 0. (25)

(a) (b)

Fig. 2

As mentioned before, DExPs are the solutions of systems of
linear equations given by some active constraints. Hence we
first consider all possible combinations of active constraints
defining dominant faces, i.e. (22)-(24) and then add additional
active constraints from (25) as needed to ensure the resulting
system has a unique solution.

If (22), (23), (24) are all active, from (23), (24) we get
R1 = I(X1;Y1|U1) and further with (22), we getR2 =
I(U1;Y2|U2), which violates (20). If only (22), (23) are active,
since the corresponding system of linear equations does not
have a unique solution (more variables than equations), we
choose one additional active constraint from (25). However,
the obtained solution violates either (19), (20) or (21). Wecan
proceed similarly for the remaining six possible combinations
and none of them yields a valid DExP. Overall we conclude
that there is no DExP in Case 4.

APPENDIX E
PROOF OFLEMMA 3

Proof: We use the same notations from the proof of
Lemma 2, which are now defined overR(2) instead ofR2.
As we can see,R1 is disassociated withR2, R3. Hence the
DExPs of R(2) is of the form (R∗

1, R2, R3), whereR∗
1 =

I(X1;Y1|U1). Fixing R′
1 = R∗

1, we have

R(2)(R
′

1) =











(R2, R3) : R2, R3 ≥ 0

R2 ≤ I(U1;Y2|U2) , a, R3 ≤ I(X2;Y3) , b

R2 +R3 ≤ I(U1, U2;Y2) + I(X2;Y3|U2) , c











.

If c ≥ b, i.e. I(U1, U2;Y2) ≥ I(U2;Y3), R(2)(R
′
1) is de-

picted in Fig. 2.(a) andΩ(R′
1) = {T1, T2} = {(a,min{b, c−

a}), (min{a, c− b}, b)}, yielding two DExPs,A and

B
′ =

(

I(X1;Y1|U1), min{I(U1;Y2|U2), I(U1, U2;Y2)−

I(U2;Y3)}, I(X2;Y3)
)

.

If c < b, i.e. I(U1, U2;Y2) < I(U2;Y3), R(2)(R
′
1) is de-

picted in Fig. 2.(b) andΩ(R′
1) = {T1, T3} = {(a,min{b, c−

a}), (0, c)}, yielding one more DExP ofR(2)

C
′ =

(

I(X1;Y1|U1), 0, I(U1, U2;Y2) + I(X2; Y3|U2)
)

.

Note thatB′ andC′ can be rewritten collectively asB.
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Proof: Since the argument is similar to that of Lemma
2, we use the same notations, which are now defined over
R1 instead ofR2. Again the DExPs can be sorted into four
categories. We next discuss case by case.

Case 1:
The largest admissibleR∗

1 = I(U1;Y1). Fixing R′
1 = R∗

1,
we have(R′

1, R2, R3) ∈ Ω iff (R2, R3) ∈ Ω(R′
1) and

R1(R
′

1) =











(R2, R3) : R2, R3 ≥ 0

R2 ≤ I(X1;Y2|U1, U2), R3 ≤ I(X2;Y3)

R2 +R3 ≤ I(X1, U2;Y2|U1) + I(X2;Y3|U2)











.

Similar to the proof of Lemma 3, there are two DExPs:E, F .
Case 2:
The largest admissibleR∗

2 = I(U1;Y1) + I(X1;Y2|U1, U2)
is obtained by settingR1 = 0 in (6). Fixing R′

1 = 0 and
R′

2 = R∗
2, we haveR1(R

′
1, R

′
2) =

{

R3 : 0 ≤ R3 ≤
min{I(X2;Y3), I(U2;Y2|U1) + I(X2;Y3|U2)}

}

, resulting in
point G.

Case 3:
The largest admissibleR∗

3 = min{I(X2;Y3), I(U1;Y1) +
I(X1, U2;Y2|U1) + I(X2;Y3|U2)}.

1. If I(U2;Y3) ≤ I(U1;Y1) + I(X1, U2;Y2|U1), R∗
3 =

I(X2;Y3). Fixing R′
3 = R∗

3, we have

R1(R
′
3) =











(R1, R2) : R1, R2 ≥ 0, R1 ≤ I(U1;Y1) , a

R1 +R2 ≤ I(U1;Y1) + I(X1;Y2|U1, U2)+

min{0, I(U2;Y2|U1)− I(U2;Y3)} , b











.

Note thatb ≥ 0 in this case. This case is similar to that in
Lemma 3 and we can show

1) If I(U2;Y3) ≤ I(X1, U2;Y2|U1), Ω(R′
3) =

{(0, b), (a, b− a)}
2) If I(X1, U2;Y2|U1) < I(U2;Y3) ≤ I(U1;Y1) +

I(X1, U2;Y2|U1), Ω(R′
3) = {(0, b), (b, 0)}

Finally, we collectively write the obtained DExPs as

H =
(

0, b, R
∗

3

)

, I =
(

min{a, b}, [b − a]+, R
∗

3

)

.

2. If I(U2;Y3) > I(U1;Y1) + I(X1, U2;Y2|U1), R∗
3 =

I(U1;Y1) + I(X1, U2;Y2|U1) + I(X2;Y3|U2), which is ob-
tained by settingR1 = R2 = 0 in (7). In this case we find
one DExPJ .

Case 4:Similar to that for Lemma 2, it can be shown that
there is no DExP in this case.
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To prove the converse, we use the technique proposed in
[14]. Specifically, we need the following lemma that can be
easily proved using the same arguments for [14, Lemma 1].

Lemma 7: In a DM-BIC with Y1 ≺o Y2, if W →
(Xn

1 , X
n
2 ) → (Y n

1 , Y n
2 ) form a Markov chain, then the

following holds:

I(Y i−1
2 ;Y2,i|W ) ≥ I(Y i−1

1 ;Y2,i|W ), 1 ≤ i ≤ n.

Proof of Theorem 5:
The achievable schemes are given by the coding schemes

for R1 in Corollary 1 andR(1) in Theorem 2 respectively, all
with U2 = X2.

For the converse, we defineUi = (W1, Y
i−1
1 ). For someǫn

such thatlimn→∞ ǫn = 0, by Fano’s inequality, we have

n(R1 − ǫn) ≤ I(W1;Y
n
1 )

=
n
∑

i=1

I(W1; Y1,i|Y
i−1
1 ) ≤

n
∑

i=1

I(Ui; Y1,i).

To boundR2, we proceed as the follows

n(R2 − ǫn) ≤ I(W2;Y
n
2 |W1, X

n
2 )

≤

n
∑

i=1

I(X1,i;Y2,i|W1, X2,i, Y
i−1
2 )

=

n
∑

i=1

I(X1,i;Y2,i|W1, X2,i)− I(Y i−1
2 ;Y2,i|W1, X2,i)

(a)

≤
n
∑

i=1

I(X1,i; Y2,i|W1, X2,i)− I(Y i−1
1 ;Y2,i|W1, X2,i)

=
n
∑

i=1

I(X1,i;Y2,i|Ui, X2,i),

where(a) follows from Lemma 7.
Now we consider upper-bound forR2+R3. The strong con-

dition implies I(Xn
2 ;Y

n
2 |Xn

1 ) ≥ I(Xn
2 ;Y

n
3 ), [13, Lemma].

Proceeding,

n(R2 +R3 − ǫn) ≤ I(W2;Y
n
2 ) + I(W3;Y

n
3 )

(b)

≤ I(Xn
1 ;Y

n
2 |W1) + I(Xn

2 ;Y
n
2 |Xn

1 )

=
n
∑

i=1

I(X1,i, X2,i;Y2,i|W1, Y
i−1
2 )

=
n
∑

i=1

I(X1,i, X2,i;Y2,i|W1)− I(Y i−1
2 ;Y2,i|W1)

(c)

≤
n
∑

i=1

I(X1,i, X2,i; Y2,i|W1)− I(Y i−1
1 ;Y2,i|W1)

=
n
∑

i=1

I(X1,i, X2,i;Y2,i|Ui),

where (b) is due to the strong condition and(c) is due to
Lemma 7.

Finally, we haven(R3 − ǫn) ≤
∑n

i=1 I(X2,i;Y3,i). The
proof is complete by redefiningU = (UQ, Q), Xj,i = Xj for
j = 1, 2, andYl,i = Yl, for l = 1, 2, 3, whereQ is a uniformly
distributed r.v. on(1, ..., n).
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