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Abstract

An achievable rate region for certain noisy three-user-pair interference channels is proposed.
The channel class under consideration generalizes the three-pair deterministic interference channel
(3-DIC) in the same way as the Telatar–Tse noisy two-pair interference channel generalizes the
El Gamal–Costa injective channel. Specifically, arbitrary noise is introduced that acts on the
combined interference signal before it affects the desired signal. This class of channels includes
the Gaussian case.

The rate region includes the best-known inner bound on the 3-DIC capacity region, dominates
treating interference as noise, and subsumes the Han–Kobayashi region for the two-pair case.

I. INTRODUCTION

The interference channel is one of the canonical models in network information theory, and has
withstood all attempts to solve it in general. In recent years, significant progress has been made
for the case with two sender–receiver pairs. The best known achievable rate region is achieved by
the Han–Kobayashi coding scheme [1], for which a compact formulation was given in [2]. Much
less is known in the case with more than two user pairs. Major lines of work exist in the areas of
interference alignment [3, 4], and deterministic models as pioneered in [5, 6]. The key idea in the
latter is to first investigate a simplified interference channel that does not contain noise, and then
proceed to transfer the insight to more practically relevant channels with noise.

In this paper, we apply this idea to the three-user-pair deterministic interference channel (3-DIC)
first introduced in [7]. We consider the noisy version of the 3-DIC depicted in Figures 1 and 2.
The channel consists of three sender–receiver alphabet pairs (Xl,Yl), loss functions glk that model
the links between each sender and receiver, and a conditional probability mass function (pmf) at
each receiver that maps the three impinging signals into the receiver observation Yl, for indices
k, l ∈ {1:3}. The pmfs have the special structure depicted in Figure 2 for the first receiver. They
consist of two deterministic stages, namely an interference combining function hl and a receiver
function fl. We assume that the functions hl and fl are injective in each argument, that is, they
become one-to-one when either one of their arguments is fixed. For example, for Y1 = f1(X11, S

′
1),

this assumption is equivalent to H(X11) = H(Y1 |S′1) and H(S′1) = H(Y1 |X11) for every pmf
p(x11, s

′
1). An example of a function that is injective in each argument (but not injective) is regular

addition. Deviating from the deterministic nature of the 3-DIC, we introduce noise between the
two combining stages. It acts on the combined interference signal Sl and is characterized by the
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Figure 1. Three-pair interference channel under consideration.
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Figure 2. Channel under consideration, as seen by the first receiver.

discrete memoryless channel p(s′l|sl). (Note that setting S′l = Sl for all l recovers the 3-DIC
setting.)

Each sender l wishes to convey an independent message Ml at rate Rl to its corresponding
receiver. We define a (2nR1 , 2nR2 , 2nR3 , n) code, probability of error, achievability of a rate triple
(R1, R2, R3), and the capacity region in the standard way (see [8]). The capacity region is not
known, but in this paper, we make progress towards characterizing it.

The channel model under consideration is interesting since it contains the Gaussian interference
channel as a special case. Characterizing its capacity region thus has immediate consequences for
practical wireless communications systems where simultaneous transmissions use the same radio
spectrum. Moreover, we follow along the footsteps of previous work in the case with two user
pairs. The capacity region of the two-pair version of 3-DIC was found in [9]. A modification of
this channel in which noise affects the interfering signal was studied in [10]. The authors establish
inner and outer bounds to the capacity region which differ only by a constant gap, akin to the
Gaussian case studied in [11].

Thus we are motivated to generalize the results for the 3-DIC to its own noisy cousin. Let us
briefly review the 3-DIC results. The best known achievable rate region is given in [12]. The
underlying scheme combines insights from the transmitter-centric view of communication with
disturbance constraints [13] and the receiver-centric view of interference decoding [14]. All results
of [12]–[14] are also contained and discussed in detail in [15].

We extend the achievable rate region in [12] to the channel under consideration. It turns out
that the key properties of 3-DIC are preserved and allow us to apply the same coding scheme,
which consists of rate splitting, Marton coding, and superposition coding. The analysis of the
probability of error is more involved than in the deterministic case due to the noise. The resulting
inner bound to the capacity region includes all previous results for the 3-DIC. It simplifies to the
Han–Kobayashi inner bound when one of the three user pairs is not present. Finally, unlike the
interference decoding inner bound for the 3-DIC with noisy observations [14], the present bound
is larger than the one that results from using point-to-point random codes and treating interference
as noise.



3

II. ACHIEVABLE RATE REGION

In order to state the inner bound to the capacity region of the channel under consideration, we
need the following definitions. Fix a joint pmf for (Q,U1, X1, U2, X2, U3, X3) of the form

p = p(q) p(u1, x1|q) p(u2, x2|q) p(u3, x3|q).

Define the rate region R1(p) ⊂ R18
+ to consist of the rate tuples

(R10, R11, R12, R13, R̃12, R̃13, R20, R22, R23, R21, R̃23, R̃21, R30, R33, R31, R32, R̃31, R̃32) (1)

that satisfy

R̃12 −R12 + R̃13 −R13 ≥ I(X12;X13 |U1, Q), (2)

R̃12 −R12 + (R̃13 −R13)/2 ≤ I(X12;X13 |U1, Q), (3)

(R̃12 −R12)/2 + R̃13 −R13 ≤ I(X12;X13 |U1, Q), (4)

R̃12 ≥ R12, (5)

R̃13 ≥ R13, (6)

and

∀i ∈ {1:5}, j ∈ {1:3}, k ∈ {1:3} : ∃j′, k′ :

r1i + r21j′ + r31k′ + I(S1;S′1 | c21j′ , c31k′ , Q)

≤ I(X1, X2, X3;Y1 | c1i, c21j , c31k, Q) + t1i. (7)

In (7), symbols like r1i, c1i, and t1i are placeholders for the terms specified in Tables 1, 2, and 3,
respectively. For example, for i = 3, j = 3, and k = 2, condition (7) becomes

R̃13 + R11 + min
{
I(S1;S′1 |U3, Q),

R20 + I(S1;S′1 |U2, U3, Q),

R20 + R̃21 + I(S1;S′1 |X2, U3, Q),

R̃31 + I(S1;S′1 |X3, Q),

R20 + R̃31 + I(S1;S′1 |U2, X3, Q),

R20 + R̃21 + R̃31

}
≤ I(X1, X2, X3;Y1 |U1, X12, U3, Q)

+ I(X12;X13 |U1, Q). (8)

Similarly, define the regions R2(p) and R3(p) by making the subscript replacements 1 7→ 2 7→
3 7→ 1 and 1 7→ 3 7→ 2 7→ 1 in the definition of R1(p), respectively.

Define a Fourier–Motzkin elimination operator FM that maps a convex 18-dimensional set of
rate vectors of the form (1) to a 3-dimensional region by letting Rl =

∑3
ν=0 Rlν , for l ∈ {1:3},

and projecting on the coordinates (R1, R2, R3). Let S denote the convex hull of S .
We are now ready to state the main result as follows.

i r1i c1i t1i

1 R11 {U1, X12, X13} 0

2 R̃12 +R11 {U1, X13} I1
3 R̃13 +R11 {U1, X12} I1
4 R̃12 + R̃13 +R11 {U1} I1
5 R10 + R̃12 + R̃13 +R11 ∅ I1

Table 1. Shorthand notation for terms related to transmitter 1. The term I1 stands for I(X12;X13 |U1, Q).
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j c21j j′ r21j′ c21j′

1 {X2} 1 0 {X2}

2 {U2} 1 0 {U2}
2 R̃21 {X2}

3 ∅ 1 0 ∅
2 R20 {U2}
3 R20 + R̃21 {X2}

Table 2. Shorthand notation for terms related to transmitter 2.

k c31k k′ r31k′ c31k′

1 {X3} 1 0 {X3}

2 {U3} 1 0 {U3}
2 R̃31 {X3}

3 ∅ 1 0 ∅
2 R30 {U3}
3 R30 + R̃31 {X3}

Table 3. Shorthand notation for terms related to transmitter 3.

Theorem 1 (Achievable rate region). The region

R = FM

{⋃
p

(
R1(p) ∩R2(p) ∩R3(p)

)}
,

where p = p(q) p(u1, x1|q) p(u2, x2|q) p(u3, x3|q), is achievable in the interference channel under
consideration.

The regions R1(p), R2(p), and R3(p) in the theorem represent decodability conditions at the
first, second, and third receiver, correspondingly. The regions and their intersection are generally
nonconvex. By the time-sharing argument, we are allowed to convexify, as shown in the theorem.
This convex hull operation is nontrivial even for a fixed pmf p, and therefore, it is not automatically
achieved by including Q. Due to the explicit convex hull operation, the Fourier–Motzkin reduction
FM cannot be evaluated symbolically.

A. Coding scheme

We outline the coding scheme that attains the inner bound of Theorem 1. To simplify the
notation, we omit the time-sharing auxiliary random variable Q throughout this section.

Codebook generation: The transmitter codebooks are generated as in [12], inspired by commu-
nication with disturbance constraints [13]. The intuition is that the interference channel under
consideration is sufficiently deterministic in nature such that the results from the deterministic case
of communication with disturbance constraints still apply. In particular, disturbance is measured
before the combining functions hl, and thus before the noise appears.

Fix a pmf p(u1, x1) p(u2, x2) p(u3, x3). Consider the first transmitter. Split the rate as R1 =
R10 + R11 + R12 + R13, and define the auxiliary rates R̃12 ≥ R12 and R̃13 ≥ R13. Let ε′ > 0,
and define the set partitions

{1:2nR̃12} = L12(1) ∪ · · · ∪ L12(2nR12),

{1:2nR̃13} = L13(1) ∪ · · · ∪ L13(2nR13),
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where L12(·) and L13(·) are indexed sets of size 2n(R̃12−R12) and 2n(R̃13−R13), respectively.
1) For each m10 ∈ {1:2nR10}, generate un1 (m10) according to

∏n
i=1 p(u1i).

2) For each l12 ∈ {1 : 2nR̃12}, generate xn12(m10, l12) according to
∏n
i=1 p(x12i |u1i(m10)).

Likewise, for each l13 ∈ {1 : 2nR̃13}, generate a sequence xn13(m10, l13) according to∏n
i=1 p(x13i |u1i(m10)).

3) For each triple (m10,m12,m13), let S(m10,m12,m13) be the set of all pairs (l12, l13)
from the product set L12(m12) × L13(m13) such that (xn12(m10, l12), xn13(m10, l13)) ∈
T (n)
ε′ (X12, Z13 |un1 (m10)).

4) For each (m10, l12, l13) and m11 ∈ {1:2nR11}, generate a sequence xn1 (m10, l12, l13,m11)
according to

∏n
i=1 p(x1i |u1i(m10), x12i(l12), x13i(l13)), if (l12, l13) ∈ S(m10,m12,m13).

Otherwise, generate it according to Unif(Xn1 ).
5) Draw a random pair uniformly from S(m10,m12,m13) and denote it as (l

(m10,m12,m13)
12 ,

l
(m10,m12,m13)
13 ). If S(m10,m12,m13) is empty, use (1, 1) instead.

Codebooks for the second and third transmitter are generated analogously by applying the subscript
replacements 1 7→ 2 7→ 3 7→ 1 and 1 7→ 3 7→ 2 7→ 1 in each step of the procedure.

Encoding: To send message m1 = (m10,m12,m13,m11), transmit

xn1 (m10, l
(m10,m12,m13)
12 , l

(m10,m12,m13)
13 ,m11).

Decoding: The receivers use simultaneous non-unique decoding [8]. The first receiver observes
yn1 . Define the tuple

T (m10,m12,m13,m11,m20, l21,m30, l31)

=
(
un1 (m10), xn12(m10, l

(m10,m12,m13)
12 ),

xn13(m10, l
(m10,m12,m13)
13 ),

xn1 (m10, l
(m10,m12,m13)
12 , l

(m10,m12,m13)
13 ,m11),

un2 (m20), xn21(m20, l21), un3 (m30), xn31(m30, l31),

sn1 (m20, l21,m30, l31), yn1

)
.

Declare that m̂1 = (m̂10, m̂12, m̂13, m̂11) has been sent if it is the unique message such that

T (m̂10, m̂12, m̂13, m̂11, m̊20, l̊21, m̊30, l̊31) ∈ T (n)
ε (U1, X12, X13, X1, U2, X21, U3, X31, S1, Y1)

for some m̊20, l̊21, m̊30, l̊31.

Analysis of error probability: Each triple (i, j, k) in (7) corresponds to a certain error event,
the probability of which must asymptotically vanish. This can be ensured by any one of several
conditions, indexed by j′ and k′. The details are deferred to the appendix.

B. Discussion

Different (j′, k′) in (7) correspond to various ways of interference signal saturation, as first
discussed in [14]. Saturation takes place when the total number of interfering codewords exceeds
the number of distinguishable sequences, and thus it is not possible to decode the interfering
messages. This is illustrated by the example in (8). Let us compare the first and the last terms in
the min expression, i.e.,

I(S1;S′1 |U3, Q) and R20 + R̃21 + R̃31.

In the noiseless case, S′1 equals S1, and the first term becomes H(S1 |U3, Q). In logarithmic
scale, this is the size of the set of typical interfering sequences that can appear under the error
event in question (i = 3, j = 3, k = 2). Saturation occurs if the interfering rate R20 + R̃21 + R̃31
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exceeds this quantity, and thus increasing the rates does not further increase the set of observed
interference sequences. On the other hand, when noise is present, we have

I(S1;S′1 |U3, Q) = H(S1 |U3, Q)−H(S1 |U3, S
′
1, Q)

≤ H(S1 |U3, Q),

which implies that saturation starts to occur at lower rates than in the noiseless case. Loosely
speaking, each interfering sequence takes up more of the observed signal space due to channel
noise. Along similar lines, the remaining terms in the min expression in (8) correspond to
other modes of (partial) saturation. Thus, we can interpret the choice of (j′, k′) in condition (7)
as switching between different regimes of saturation, and treating the saturated sequences as
i.i.d. noise as appropriate. Keep in mind, however, that the entire inner bound is achieved by the
same simultaneous non-unique typicality decoder. The distinction of saturation regimes appears
only through different ways of analyzing the error probability of the same decoding rule.

It is interesting to note that Theorem 1 contains the following three special cases.

1) 3-DIC inner bound: It is not hard to see that Theorem 1 subsumes previously known results
for the 3-DIC case where S′l = Sl for all l. The inequalities in (7) for a given triple (i, j, k) are
implied by the conditions in [12, Corollary 1]. In fact, Theorem 1 slightly improves upon the
results in the deterministic case: For example, comparing the min terms in [12, equation (19)]
with those in (8) reveals that terms such as H(X21 |U2, Q) + H(X31 |U3, Q) can be replaced by
H(S1 |U2, U3, Q). The improvement comes from the refined proof technique in the appendix.

2) Point-to-point codes with treating interference as noise: Inspecting (7), note that

I(X1, X2, X3;Y1 | c1i, c21j , c31k, Q)

− I(S1;S′1 | c21j′ , c31k′ , Q)

= H(Y1 | c1i, c21j , c31k, Q)

−H(Y1 |X1, X2, X3, c1i, c21j , c31k, Q)︸ ︷︷ ︸
H(S′

1 |S1,Q)

− H(S′1 | c21j′ , c31k′ , Q)︸ ︷︷ ︸
H(Y1 |X1,c1i,c21j′ ,c31k′ ,Q)

+H(S′1 |S1, c21j′ , c31k′ , Q)︸ ︷︷ ︸
H(S′

1 |S1,Q)

= I(X1, c21j′ , c31k′ ;Y1 | c1i, c21j , c31k, Q),

where the last step relies on the Markov chains c21j − c21j′ −Y1 and c31k − c31k′ −Y1. Therefore,
an equivalent way to write condition (7) is

∀i ∈ {1:5}, j ∈ {1:3}, k ∈ {1:3} : ∃j′, k′ :

r1i + r21j′ + r31k′ ≤ I(X1, c21j′ , c31k′ ;Y1 | c1i, c21j , c31k, Q) + t1i. (9)

This implies that Theorem 1 includes the achievable rate region attained by point-to-point random
codes and treating interference as noise. To see this, set Ul = Xl, let R12 = R̃12 = R13 = R̃13 =
R11 = 0 and R10 = R1, and likewise for the other transmitters. Only the cases with i = 5 remain,
and we choose j′ = k′ = 1. Then condition (9) is implied by

∀j ∈ {1:3}, k ∈ {1:3} : R1 ≤ I(X1;Y1, c21j , c31k |Q).

Among these, j = k = 3 is most stringent, leading to

R1 ≤ I(X1;Y1 |Q),

which is the rate achievable by using point-to-point (non-layered) random codes and treating
interference as noise. The same inclusion does not hold in the case of the interference decoding
inner bound for the 3-DIC with noisy observations studied in [14], where the noise in the channel
acts on Yl instead of Sl. In that case, the saturation effects are exploited without taking the noise
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into account, which leads to an artificial separation between the channel noise and the combined
interference even if the latter is to be treated as noise. In the present case, however, since the noise
directly affects the combined interference signal Sl, saturation and noise can be treated jointly as
discussed above, and the inefficiency of artificially separating them is avoided.

3) Han–Kobayashi inner bound: Finally, when one of the three user pairs is not present, say,
the third one (X13 = X23 = X3 = ∅), Theorem 1 recovers the Han–Kobayashi inner bound for
the interference channel that consists of the first and second user pair.

To see this, we can simplify the coding scheme as follows. Consider the first transmitter. The
Marton penalty term I(X12;X13 |U1, Q) in conditions (2), (3), and (4) vanishes and we can thus
choose R̃12 = R12 and R̃13 = R13, and furthermore, R13 = 0. The codebooks then have the
structure of a superposition code with three layers, namely un1 (at rate R10), xn12 (at rate R12),
and xn1 (at rate R11), as depicted in Figure 3(a).

∅

un1

xn12
xn1

pU1 pX12|U1
pX1|U1,X12

2nR10

2nR12

2nR11

(a) With R̃12 = R12 and R̃13 = R13 = 0.

∅

un1

xn12 xn1

2nR10

2nR12

pU1 pX12|U1
pX1|U1,X12

(b) Additionally setting R11 = 0.

Figure 3. Codebook structure for the first transmitter, when third user pair is not present.

Note that there are constraints in choosing the conditional distributions underlying the superposi-
tion code, since x12 is tied to x1 by the channel definition. To implement a general superposition
code with two layers as in the Han–Kobayashi scheme, let R11 = 0. For each xn12 sequence, only
a single xn1 sequence is generated, see Figure 3(b). Since the xn1 sequences are drawn conditioned
on both xn12 and un1 , this is the same as generating a superposition codebook with layers un1 (at
rate R10) and xn1 (at rate R12).

The receivers in the general scheme perform simultaneous non-unique decoding and will thus
act correctly even when the codebook structure is simplified in this fashion. The conditions in
Theorem 1 simplify to the conditions in the Han–Kobayashi region.
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APPENDIX

ERROR PROBABILITY ANALYSIS

The analysis proceeds analogously to [12] (and more completely, [15]). In particular, conditions (2)
to (6) arise from analyzing the error events related to codebook generation. As an example for an
error event arising at the decoder, consider

E =
{(

Un
1 (1), Xn

12(1, L
(1,1,m13)
12 ), Xn

13(1, l13), Xn
1 (1, L

(1,1,m13)
12 , l13,m11),

Un
2 (m20), Xn

21(m20, l21), Un
3 (1), Xn

31(1, l31), Sn1 (m20, l21, 1, l31), Y n
1

)
∈ T (n)

ε

for some m13 6= 1, l13 /∈ L13(1),m11,m20 6= 1, l21, l31 6= L
(1,1,1)
31

}
. (10)

As a representative special case, we show that the condition indexed by i = 3, j = 3, and k = 2
in Theorem 1 as detailed in (8) implies that the probability of this event vanishes asymptotically.
In particular, we are going to show the case j′ = 2, k′ = 1, i.e., we prove that convergence is a
consequence of the second min term in (8). Using the union bound as in [15, Section 5.2.2], the
relevant probability satisfies

P(E ∩ Eeq | Ece ) ≤ 2n(R̃13+R11+R20+H(U2|U1,X12,U3,Y1)−H(U2)) P2, (11)

where Ece denotes that no encoding error has occurred (ensured by conditions (2) to (6)), Eeq is
defined as in [15], and

P2 = P
{

(un1 , x
n
12, X

n
13(1, l13), Xn

1 (1, L
(1,1,1)
12 , l13,m11),

un2 , X
n
21(m20, l21), un3 , X

n
31(1, l31), yn1 ) ∈ T (n)

ε

for some l21, l31 6= L
(1,1,1)
31

∣∣ Ece , un1 , xn12, un2 , un3 , yn1 },
where (un1 , x

n
12, u

n
2 , u

n
3 , y

n
1 ) ∈ T (n)

ε . We bound P2 as follows.

P2 ≤ P
{

(un1 , x
n
12, X

n
13(1, l13), Xn

1 (1, L
(1,1,1)
12 , l13,m11),

un2 , u
n
3 , y

n
1 ) ∈ T (n)

ε

∣∣ Ece , un1 , xn12, un2 , un3 , yn1 },

http://purl.stanford.edu/sy560th1179
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where the probability is increased by omitting parts of the typicality requirement. This step
replaces the application of Corollary A.2 in [15] and simplifies the proof. It also leads to the
slight improvement in the deterministic case as discussed above. The following steps are fairly
conventional.

P2 ≤
∑

(xn
13,x

n
1 )∈T

(n)
ε (X13,

X1 |un
1 ,x

n
12,u

n
2 ,u

n
3 ,y

n
1 )

P
{
Xn

13(1, l13) = xn13,

Xn
1 (1, L

(1,1,1)
12 , l13,m11) = xn1

∣∣
Ece , un1 , xn12, un2 , un3 , yn1

}
≤

∑
(xn

13,x
n
1 )∈T

(n)
ε (X13,

X1 |un
1 ,x

n
12,u

n
2 ,u

n
3 ,y

n
1 )

P{Xn
13(1, l13) = xn13 |Un

1 (1) = un1}

P{Xn
1 (1, L

(1,1,1)
12 , l13,m11) = xn1 |

un1 , x
n
12, x

n
13}

≤ 2n(H(X13,X1 |U1,X12,U2,U3,Y1)

· 2n(−H(X13 |U1)−H(X1 |U1,X12,X13)).

Substituting back into (11), we have

P(E ∩ Eeq | Ece ) ≤ 2n(R̃13+R11+R20)

· 2n(H(U2|U1,X12,U3,Y1)−H(U2))

· 2n(H(X13,X1 |U1,X12,U2,U3,Y1)

· 2n(−H(X13 |U1)−H(X1 |U1,X12,X13))

= 2n(R̃13+R11+R20)

· 2n(−I(X12;X13 |U1)−H(Y1 |U1,X12,U3))

· 2nH(S′
1 |U2,U3),

which tends to zero as n→∞ if

R̃13 + R11 + R20 + H(S′1 |U2, U3) < H(Y1 |U1, X12, U3) + I(X12;X13 |U1).

Noting that

H(S′1 |U2, U3, S1) = H(S′1 |S1),

H(Y1 |U1, X12, U3, X1, X2, X3) = H(S′1 |S1),

and subtracting this term from both sides of the last inequality leads to

R̃13 + R11 + R20 + I(S1;S′1 |U2, U3) < I(X1, X2, X3;Y1 |U1, X12, U3) + I(X12;X13 |U1),

which is the second line in (8).
When transitioning from (10) to (11), the union bound was applied to the indices m11, l13

and m20, while the indices l21 and l31 where handled later by omitting terms from the typicality
requirement. The latter omission is the technical reason for the saturation effects. By varying
which subset of indices {m20, l21, l31} is treated by the union bound, we can obtain the remaining
lines in (8), corresponding to other modes of saturation. In all cases, the indices m11 and l13 are
treated by the union bound, since they correspond to the intended message and thus saturation is
not desirable.
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