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Abstract—Probabilistic shaping for bit-interleaved coded mod-
ulation (BICM) systems at low signal-to-noise ratio (SNR) is
investigated. Using known results for BICM systems with a
uniform input distribution, the combinations of input alphabet,
input distribution, and binary labeling that achieve the Shannon
limit –1.59 dB are fully characterized. It is found that a BICM
system achieves the Shannon limit at low SNR if and only if it can
be represented as a zero-mean linear projection of a hypercube,
which is the same condition as for uniform input distributions.
Hence, probabilistic shaping offers no extra degrees of freedom
to optimize the low-SNR mutual information of BICM systems,
in addition to what is provided by geometrical shaping.

I. INTRODUCTION

The most important breakthrough for coded modulation
(CM) in fading channels came in 1992, when Zehavi intro-
duced the so-called bit-interleaved coded modulation (BICM)
in [1], usually referred to as a pragmatic approach for CM
[2], [3]. Despite not being fully understood theoretically,
BICM has been rapidly adopted in commercial systems such
as wireless and wired broadband access networks, 3G/4G
telephony, and digital video broadcasting, making it as the
de facto standard for current telecommunications systems.
Signal shaping [4], [5] refers to the use of non-equally

spaced and/or non-equally likely symbols, i.e., geometrical
shaping and probabilistic shaping. In the context of BICM,
geometrical shaping for BICM was proposed in [6]–[8] and
probabilistic shaping in [9].
For the additive white Gaussian noise (AWGN) channel,

the Shannon Limit (SL) −1.59 dB represents the average bit
energy to noise-ratio needed to transmit information reliably
when the signal-to-noise ratio (SNR) tends to zero [10], [11].
The SL is fully determined by the first derivative of the mutual
information (MI) function at zero SNR [10, Sec I] [11, eq. (1)].
When discrete alphabets are used with a BICM receiver, the

SL is not always achieved [12]. This was shown in [13] to be
caused by the selection of the binary labeling. The behavior
of the BICM-MI at low SNR, i.e., in the wideband regime,
was studied in [12]–[15]. In [16], the wideband behavior was
shown to be determined by three transmission parameters:
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the input alphabet X, its input distribution P, and its binary
labeling L. First-order optimal (FOO) constellations were
defined as the triplet [X, P, L] that make a BICM system
achieve the SL. The optimality analysis in [16], however, only
considers uniform input distributions. Probabilistic shaping
for BICM was considered in [9], [17]–[19]. Recently, the
first-order equivalence between some uniform and nonuniform
constellations for BICM was numerically studied in [20].
The main contribution of this paper is to generalize the

results of [16] to nonuniform input distributions using the
equivalence in [20]. A complete characterization of FOO
constellations for BICM in terms of [X, P, L] is obtained. In
particular, we find the geometrical and/or probabilistic shaping
rules that should be applied to a constellation to make it FOO.
We conclude that for BICM systems in the wideband regime,
probabilistic shaping offers no extra degrees of freedom in
addition to what is provided by geometrical shaping.

II. PRELIMINARIES
A. Notation Convention
Throughout this paper all MIs are given in bits. Vectors

are row vectors x and matrices are denoted by X. The
inner product between two vectors a and b is denoted by
〈a, b〉. The Euclidean norm of the vector a is denoted by
‖a‖. Random variables are denoted by capital letters X and
random vectors by boldface capital vectorsX . The probability
density function (pdf) of the random vector Y is denoted
by pY (y) and the conditional pdf by pY |X(y|x). A similar
notation applies to probability mass functions (pmf) of a
random variable, which we denote by PY (y) and PY |X(y|x).
Expectations are denoted by E. The binary set by B ! {0, 1}.
The negation of a bit b is denoted by b̄ = 1 − b.
B. System Model
We consider transmissions over a discrete-time memoryless

AWGN channel. The received vector at any discrete time
instant is Y = X + Z, where X is the channel input and
Z is a Gaussian noise with zero mean and variance N0/2 in
each dimension. The conditional transition pdf is given by

pY |X(y|x) =
1

(N0π)N/2
exp

(

−
‖y − x‖2

N0

)

. (1)
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Fig. 1. A generic BICM system, consisting of a transmitter, an AWGN channel, and a receiver.

The SNR is defined as snr ! Es/N0 = RcEb/N0, where
Es ! EX [‖X‖2] is the average symbol energy, Rc is the
transmission rate in information bits per symbol, and Eb is
the average energy per information bit.
We consider the generic BICM scheme in Fig. 1. In the sim-

plest case, a binary encoder is concatenated with a memoryless
modulator Φ via a bit-level interleaver. Multiple encoders
and/or interleavers may be used to obtain probabilistic shaping.
At the receiver, using the channel output Y , the demapperΦ−1

computes metrics Lk for the individual coded bits Ck with
k = 0, . . . , m−1, usually in the form of logarithmic likelihood
ratios. These metrics are then passed to the deinterleaver(s) and
decoder(s) to obtain an estimate of the information bits.
The mapper Φ is defined via the input alphabet X =

[xT
0 , . . . , xT

M−1]
T ∈ RM×N , where m bits are used to index

the symbols vectors xi ∈ RN for i = 0, . . . , M −1, M = 2m.
We associate with each symbol xi the codeword (binary
labeling) ci ! [ci,0, . . . , ci,m−1] ∈ Bm and the probability
0 ≤ Pi ≤ 1, where Pi ! PX(xi). The binary labeling is
denoted by L = [cT

0 , . . . , cT
M−1]

T ∈ BM×m and the input
distribution by P = [P0, . . . , PM−1]T ∈ [0, 1]M .
For any constellation [X, P, L], a set of equivalent constel-

lations can be constructed by simultaneously permuting the
rows of X, L, and P. Specifically, it is possible to permute
the rows of any labeling matrix L such that any other labeling
is obtained. Without loss of generality, we therefore fix the
labeling to be the natural binary code (NBC) from now on,
defined as follows.
Definition 1 (Natural binary code): The NBC is the binary

labeling Nm ! [n(0)T, . . . , n(M − 1)T]T, where n(i) =
[ni,0, . . . , ni,m−1] ∈ Bm denotes the base-2 representation of
the integer 0 ≤ i ≤ M − 1, with ni,m−1 being the most
significant bit.
Based on the previous discussion, from now on we use

the name constellation to denote the pair [X, P], where the
NBC labeling is implicit. Assuming independent, but possibly
nonuniformly distributed, bits C0, . . . , Cm−1 at the input of
the modulator, the symbol probabilities are given by [16, eq.
(30)] [9, eq. (8)]

Pi =
m−1
∏

k=0

PCk
(ni,k) (2)

for i = 0, . . . , M − 1 and for some [PC0
(0), . . . , PCm−1

(0)].
Since PCk

(1) = 1−PCk
(0), the distribution P is fully specified

by the set of bit probabilities [PC0
(0), . . . , PCm−1

(0)]. An
important special case is the uniform distribution, for which

PCk
(0) = 1/2 for k = 0, . . . , m − 1 and P = Um !

[1/M, . . . , 1/M ]T.
Throughout this paper, we assume that 0 < PCk

(0) < 1 for
all k = 0, . . . , m − 1, i.e., we assume that all constellation
points are used with a nonzero probability. If that was not the
case, the cardinality of the constellation should be reduced.
Hence Pi > 0 for i = 0, . . . , M − 1.

C. The Hadamard Transform
The Hadamard transform (HT), or Walsh–Hadamard trans-

form, is a discrete, linear, orthogonal transform, whose coef-
ficients take values in ±1. It is defined as follows.
Definition 2: The HT X̃ = [x̃T

0 , . . . , x̃T
M−1]

T of a matrix
(or vector) X = [xT

0 , . . . , xT
M−1]

T with M = 2m rows is

x̃i !
1

M

M−1
∑

j=0

xjhi,j , i = 0, . . . , M − 1 (3)

where for all i = 0, . . . , M − 1 and j = 0, . . . , M − 1

hi,j =
m−1
∏

k=0

(−1)ni,knj,k . (4)

Because n0,k = 0 for k = 0, . . . , m − 1, setting i = 0 in
(3)–(4) shows that the first HT vector

x̃0 =
1

M

M−1
∑

j=0

xj (5)

can be interpreted as the uniformly weighted mean of the
alphabet. This is a property that the HT shares with, e.g., the
discrete Fourier transform.
The inverse transform is identical to the forward transform,

apart from a scale factor:

xj =
M−1
∑

i=0

x̃ihi,j , j = 0, . . . , M − 1. (6)

III. BICM AT LOW SNR
A. Mutual Information
The mutual information (MI) in bits per channel use be-

tween the random vectors X and Y is defined as

IX(X; Y ) ! E

[

log2

pY |X(Y |X)

pY (Y )

]

, (7)

where the expectation is taken over the joint pdf pX,Y (x, y),
and pY |X(y|x) is given by (1).



The conditional MI is defined as the MI between X and
Y conditioned on the value of the kth bit at the input of the
modulator, i.e.,

IX|Ck=u(X; Y ) ! E

[

log2

pY |X,Ck
(Y |X, u)

pY |Ck
(Y |u)

]

, (8)

where the expectation is taken over the conditional joint pdf
pX,Y |Ck

(x, y|u).
Definition 3 (BICM Mutual Information): The BICM mu-

tual information (BICM-MI) is defined as [2], [12], [13], [21]

I (snr) ! mIX (X; Y ) −
m−1
∑

k=0

∑

u∈B

PCk
(u)IX|Ck=u(X ; Y ).

(9)

Martinez et al. [21] recognized the BICM decoder in Fig. 1
as a mismatched decoder and showed that the BICM-MI in
(9) corresponds to an achievable rate of such a decoder. This
means that reliable transmission using a BICM system at rate
Rc is possible if Rc ≤ I (snr).
Definition 4 (Low-MI Parameters): The low-MI parame-

ters of a constellation [X, P] are defined as [µ, Es, α], where

µ ! EX [X]

Es ! EX [‖X‖2]

α ! lim
snr→0+

I (snr)

snr
.

It can be shown that for asymptotically low SNR, i.e., in the
wideband regime, the average received bit energy needed for
reliable transmission is lower-bounded by Eb/N0 ≥ 1/α ≥
loge 2, where the bound loge 2 equals the SL −1.59 dB.

B. Low-MI Parameters for Uniform Distributions

The low-MI parameters [µ, Es, α] have been analyzed in
detail for arbitrary input alphabets X under the assumption of
uniform probabilities [16]. Under this assumption, they can be
expressed as functions of the HT of the alphabet X̃ as shown
in the following theorem.
Theorem 1: For a constellation [X, Um], the low-MI param-

eters are

µ =
1

M

M−1
∑

i=0

xi = x̃0, (10)

Es =
1

M

M−1
∑

i=0

‖xi‖
2 =

M−1
∑

i=0

‖x̃i‖
2, (11)

α =
log2 e

M2Es

m−1
∑

k=0

∥

∥

∥

∥

∥

M−1
∑

i=0

(−1)ni,kxi

∥

∥

∥

∥

∥

2

=
log2 e

Es

m−1
∑

k=0

‖x̃2k‖2.

(12)

Proof: The expressions in (10) are obtained from Defini-
tion 4 and (5), the ones in (11) from from Definition 4 and
[16, eq. (16)], and the ones in (12) from [16, eq. (50)] and
[16, Theorem 11].

C. Low-MI Parameters for Nonuniform Distributions
Theorem 1 can be generalized to arbitrary constellations

[X, P] as follows.
Theorem 2: For a constellation [X, P], the low-MI parame-

ters are

µ =
M−1
∑

i=0

Pixi, (13)

Es =
M−1
∑

i=0

Pi‖xi‖
2, (14)

α =
log2 e

Es

M−1
∑

i=0

Pi

M−1
∑

j=0

Pj 〈xi, xj〉

·
m−1
∑

k=0

(−1)ni,k+nj,k
PCk

(n̄i,k)

PCk
(nj,k)

. (15)

Proof: Expressions (13) and (14) follow from Definition
4, while (15) can be obtained using [16, Theorem 10] plus
some algebra. For a detailed proof, we refer the reader to [22,
Theorem 6].
Theorem 2 shows that the low-MI parameters depend on the

input alphabetX, the binary labeling (via ni,k in the expression
for α), and the input distribution (via PCk

(u) and Pi).

IV. FOO CONSTELLATIONS FOR BICM

Having characterized the low-SNR behavior of the BICM-
MI of an arbitrary constellation, the next step is to search for
optimal constellations in terms of the BICM-MI at low SNR.
The following definition formally defines BICM systems that
achieve the SL.
Definition 5 (FOO constellation): The constellation [X, P]

is said to be first-order optimal (FOO) if a BICM system using
[X, P] achieves the SL −1.59 dB, i.e., α = log2 e.

A. FOO Constellations for Nonuniform Distributions
In what follows, we derive necessary and sufficient condi-

tions for a BICM system, with an arbitrary input alphabet and
probability distribution, to achieve the SL. The proofs for the
next two theorems, which are omitted due to space limitations,
rely on a linear transform introduced in [20]. We refer the
reader to [22] for them.
Theorem 3 ([22, Theorem 9]): The constellation [X, P] is

FOO if and only if the HT X̃ of X satisfies both the following
conditions:

x̃0 =
m−1
∑

k=0

x̃2k (PCk
(1) − PCk

(0)) (16)

x̃j = 0, ∀j /∈ {0} ∪ {1, 2, 4, . . . , M/2}. (17)

Note that only (16) depends on the input distribution, not
(17). In view of [16, Theorem 12], the only difference between
FOO constellations with uniform and nonuniform distributions
lie in x̃0. The final theorem gives this statement a more
intuitive interpretation.
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Fig. 2. Constellations [XOTTO, P1] (filled circles) and [X′

OTTO
, P2] (empty

circles). Since both constellation are zero mean, they are FOO. The area of
the circles is proportional to the corresponding symbol probabilities. Lines
join symbols whose labels differ in one bit only.

Theorem 4 ([22, Theorem 10]): The constellation [X, P] is
FOO if and only if both the following conditions hold:

µ = 0 (18)
x̃j = 0, ∀j /∈ {0} ∪ {1, 2, 4, . . . , M/2}. (19)

Based on [16, Theorem 12], the result in Theorem 4 can
be understood as follows. If a constellation with a uniform
input distribution is FOO, it will still be FOO for any other
input distribution PC0

(0), . . . , PCm−1
(0) provided that the

input alphabet is translated to be zero mean. The result in
Theorem 4 also states that a constellation is FOO if and only
if its input alphabet is a linear projection of a hypercube and
it has zero mean. This behavior is illustrated in Example 1
and also in [16, Fig. 4].
We also note that the zero-mean condition in Theorem 4

is the same that guarantees FOO for the coded modulation
MI (CM-MI) [16, Footnote 12]1. This implies that the only
difference between FOO constellations for the CM-MI and the
BICM-MI lies on the extra constraint on the input alphabet to
be a linear projection of a hypercube.

B. Numerical Examples
In this section we give numerical examples to illustrate the

analytical results presented in this paper.
Example 1: Consider the so-called OTTO (one-three-three-

one) alphabet shown in [16, Fig. 4 (a)], which corresponds to
a projected hypercube. This alphabet is

XOTTO =

[

−1 1 −3 −1 1 3 −1 1
0 −2 0 −2 2 0 2 0

]T

. (20)

1The parameter α for the CM-MI is [16, Theorem 7] α = log2 e(1 −
‖µ‖2/Es).
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Fig. 3. BICM-MI for the two FOO constellations in Fig. 2. The BICM-MI
for the constellation [XOTTO, U3] in [16, Fig. 4 (a)] and the AWGN capacity
CAW = log2(1+Es/N0) are shown for comparison. The SL is shown with
a white circle.

The constellation [XOTTO, U3] was shown to be FOO in [16,
Example 4].
In this example, we are interested in the first-order behavior

of the constellation [XOTTO, P] for different P. In view of
Theorem 4, this constellation will be FOO if it has zero mean.
Using (20) and (2) in (13), we find (after some algebra) that

µ =

[

1 + 2 (PC1
(0) − PC0

(0) − PC2
(0))

2 (PC0
(0) − PC2

(0))

]T

. (21)

For certain distributions, the mean (21) is zero. Specifically,
µ = 0 if and only if

PC0
(0) = PC2

(0) = PC1
(0)/2 + 1/4. (22)

Clearly, the uniform case (PC0
(0) = PC1

(0) = PC2
(0) =

1/2) analyzed in [16] fulfills (22). When any other set of
bit probabilities fulfilling (22) is used, the resulting con-
stellation will be FOO. This is the case for instance if
[PC0

(0), PC1
(0), PC2

(0)] = [0.3, 0.1, 0.3] which induces via
(2) an input distribution denoted by P1. The obtained con-
stellation [XOTTO, P1] is illustrated in Fig. 2 with filled
circles, where the area of the circles is proportional to the
corresponding symbol probabilities.
Input distributions do not generally fulfill (22). For ex-

ample, the set of probabilities [PC0
(0), PC1

(0), PC2
(0)] =

[0.2, 0.3, 0.8] gives an input distribution P2 for which the mean
(21) is µ = [−0.4,−1.2]. We define a new alphabet X′

OTTO

by subtracting µ from each element in XOTTO. The translated
constellation [X′

OTTO, P2], shown in Fig. 2, is a zero-mean
projected hypercube and thus FOO according to Theorem 4.
In Fig. 3, we show the BICM-MI for the zero-mean constel-

lations [XOTTO, P1] and [X′
OTTO, P2] in Fig. 2 as well as for

the constellation [XOTTO, U3] in [16, Fig. 4 (a)]. As expected,
all the MI curves converge at the SL for low SNR.
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[0.5, p, p] for different values of p. The constellations approach a binary FOO
constellation as p → 0. The NBC-labeled 8-PAM constellation [XPAM, U3],
although FOO, is considerably weaker than X′

PAM
for a wide range of SNRs.

The exemplified method holds in full generality: Any alpha-
bet that is FOO with a uniform input distribution is FOO also
with an arbitrary nonuniform distribution, if it is translated to
zero mean. Furthermore, all nonuniform FOO constellations
can be constructed in this manner.
Example 2: M -ary pulse amplitude modulation (PAM) al-

phabets have been shown to be FOO if the NBC is used with
a uniform input distribution, i.e, the constellation [XPAM, Um]
with XPAM = [−(M − 1),−(M − 3), . . . , M − 1] is FOO
[13] [16, Theorem 14]. In this example, we study the first-
order behavior of the Gray-labeled 8-PAM alphabet X′

PAM =
[−7, 7,−1, 1,−5, 5,−3, 3]. The constellation [X′

PAM, P] is
known not to be FOO for U3 [12, Theorem 3].
The BICM-MI of X′

PAM is shown in Fig. 4 for the set
of bit probabilities [PC0

(0), PC1
(0), PC2

(0)] = [0.5, p, p] for
different values of p. For p = 0.5, the uniform distribution
is obtained. As p decreases, the Gray-coded constellation
approaches a zero-mean binary alphabet, which is FOO [9,
Fig. 2] [16, Fig. 3(b)]. The results in Fig. 4 show the tradeoff
between the low- and high-SNR regimes: The SL can be
approached by decreasing p, but this causes a decrease in MI
in the high-SNR regime. Alternatively, the SL can be attained
by switching from the Gray code to the NBC, but this also
comes with a heavy penalty at higher SNRs.

V. CONCLUSIONS

We have characterized BICM systems that attain the SL
−1.59 dB at asymptotically low SNR, i.e., FOO constellations.
Somewhat disappointingly, the set of probabilistically shaped
FOO constellation is no larger than the set of FOO constel-
lations with uniform distributions, disregarding translations of

the whole input alphabet. Both sets can be fully characterized
as the set of linear projections of a hypercube, translated to
have zero mean for the considered input distribution. It is
impossible to make non-FOO constellations for BICM FOO
by probabilistic shaping, except in degenerate cases (by setting
some probabilities equal to zero).
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