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Abstract

In this paper, we study the coding delay and the average coding delay of random linear network codes (dense

codes) over line networks with deterministic regular and Poisson transmission schedules. We consider both lossless

networks and networks with Bernoulli losses. The upper bounds derived in this paper, which are in some cases more

general, and in some other cases tighter, than the existing bounds, provide a more clear picture of the speed of

convergence of dense codes to the min-cut capacity of line networks.

I. I NTRODUCTION

Random linear network codes (dense codes) achieve the capacity over various network scenarios, in particular,

unicast over line networks. Lunet al. [1] showed that dense codes achieve the capacity of networkswith transmission

and loss schedules specified by stochastic processes with bounded average rate. They however did not discuss the

speed of convergence of such codes to the capacity.

The speed of convergence of dense codes to the capacity of networks with arbitrary deterministic transmission

schedules was studied in [2] and [3]. It is not, however, straightforward to apply the results to the networks with

probabilistic schedules.

In the literature, the coding delay or the average coding delay is often used to measure the speed of convergence

of a code to the capacity of a network. Thecoding delay of a code over a network with a given traffic (with a given

schedule of transmissions and losses) is the minimum time that the code takes to transmit all the message vectors

from the source to the sink over the network. Theaverage coding delay of a code over a network with respect to

a class of traffics is the average of the coding delays of the code with respect to all the traffics.1

Pakzadet al. [4] studied the average coding delay of dense codes over the networks with deterministic regular

transmission opportunities and Bernoulli losses, where the special case of two identical links in tandem was

considered. The analysis however did not provide any insight about how the coding delay (which is random with

†This paper is an extended version of a manuscript which has been submitted to IEEE ISIT 2012.

1The coding delay of a class of codes over a class of traffics is arandom variable due to the randomness in both the code and thetraffic. The

average coding delay is the coding delay averaged out over the traffics but not the codes, and hence is a random variable dueto the randomness

in the code.
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respect to both the codes and the traffics) can deviate from the average coding delay (which is random with respect

to the codes but not the traffics).

More recently, Dikaliotiset al. [5] studied both the average coding delay and the coding delay over networks

similar to those in [4], under the assumption that all the packets are innovative.2 This is not however a valid

assumption in practice, where the field size is finite and can be as small as two.

In this paper, we study the coding delay and the average coding delay of dense codes over the field of size two

(F2). The analysis however can be generalized to the finite fieldsof larger size. We consider both lossless networks

and networks with Bernoulli losses. We also study both deterministic regular and Poisson transmission schedules.

The main contributions of this paper are:

• For networks with deterministic regular transmission opportunities and Bernoulli losses, we derive upper bounds

on the average coding delay of dense codes tighter than what were presented in [4], [5].

• We show that, for such networks, the coding delay may have a large deviation from the average coding delay

in both cases of identical and non-identical links. For non-identical links, our upper bound on such a deviation

is smaller than what was previously shown in [5]. It is worth noting that, for identical links, upper bounding

such a deviation has been an open problem (see [5]).

• We generalize the results to the networks with Poisson transmission schedules for both lossless networks and

networks with Bernoulli losses.

II. N ETWORK MODEL AND PROBLEM SETUP

We consider a line network of lengthL, where theL + 1 nodes{vi}0≤i≤L are connected in tandem. The

underlying problem is unicast: The source nodev0 is given a message ofk vectors from a vector space overF2,

and the sink nodevL demands to have all the message vectors.

Each node transmits a (coded) packet at each transmission opportunity in discrete-time where the number of

transmissions per transmission opportunity is one. The points in time at which the transmissions occur over each

link follow a stochastic point process. The processes specifying the transmissions over different links are considered

to be independent.

Each packet transmission is either successful or fails. In the latter case, the packet is erased. We consider two

scenarios: (i) lossless, where all packet transmissions are successful, and (ii) lossy, where all packet transmissions

are subject to independent erasures over the same link or different links. The traffic over a link is fully described

by the processes describing the schedule of transmissions and by the loss model.

The links are assumed to be delay-free, i.e., the arrival time of a successful packet at a receiving node is the

same as the departure time of the packet from the transmitting node.

In this paper, we use the notions of the coding delay and the average coding delay in a probabilistic fashion as

follows:

2A collection of packets is “innovative” if their global encoding vectors are linearly independent.



For some fixed0 < ǫ < 1, the ǫ-constrained coding delay of a class of codes over a network with a class of

traffics is defined as the infimum value ofN ∈ Z such that the coding delay of a randomly chosen code over

the network with a randomly chosen traffic is larger thanN with probability (w.p.) bounded above by (b.a.b.)ǫ.

The ǫ-constrained average coding delay of a class of codes over a network with respect to a class of traffics is

defined as the infimum value ofN ∈ Z such that the average coding delay of a randomly chosen code over the

network with respect to the class of traffics is larger thanN w.p. b.a.b.ǫ. We often drop the term “ǫ-constrained”

for simplicity unless there is a danger of confusion.

The goal in this paper is to upper bound the coding delay and the average coding delay of dense codes over

networks with two types of transmission schedules and two types of loss models specified below.

The transmission schedules are described by (i) a deterministic process where at each time unit there is a

transmission opportunity at each node (such a schedule is referred to asdeterministic regular), or (ii) a Poisson

process with parameterλi : 0 < λi < 1, over the ith link, where λi is the average number of transmission

opportunities per time unit.

The loss models are described by (i) a deterministic processwhere each packet transmission is successful (such

a model is referred to aslossless), or (ii) a Bernoulli process with parameterpi : 0 < pi < 1, over theith link,

wherepi is the average number of successes per transmission opportunity.

III. D ETERMINISTIC REGULAR LOSSLESSTRAFFIC

In a dense coding scheme, the source node, at each transmission opportunity, transmits a packet by randomly

linearly combining the message vectors, and each non sourcenon-sink (interior) node transmits a packet by randomly

linearly combining its previously received packets. The vector of coefficients of the linear combination associated

with a packet is called thelocal encoding vector of the packet, and the vector of the coefficients representing the

mapping between the message vectors and a coded packet is called theglobal encoding vector of the packet. The

global encoding vector of each packet is assumed to be included in the packet header. The sink node can recover

all the message vectors as long as it receives an innovative collection of packets of the size equal to the number of

message vectors at the source node.

The entries of the global encoding vectors of a collection ofpackets are independent and uniformly distributed

(i.u.d.) Bernoulli random variables as long as the local encoding vectors of the packets are linearly independent.

Such packets, calleddense, are of main importance in our analysis.

The first step is to lower bound the size of a maximal collection of dense packets at the sink node until a certain

decoding time. We, next, lower bound the probability that the underlying collection includes a sufficient number of

packets with linearly independent global encoding vectors.

Let Q be a matrix overF2. A maximal collection of rows inQ with i.u.d. entries is calleddense. The matrixQ

is called adense matrix if all its rows form a dense collection. We refer to the numberof rows in a dense collection

of rows inQ as thedensity of Q, denoted byD(Q), and refer to each row in such a collection as adense row.



Let Oi (Ii) be the set of labels of the packets transmitted (received) by the ith node and letDi be the set of

labels of the dense packets at theith node. Letr andd be the size ofOi andDi, respectively. The global encoding

vectors of the received packets at a node form the rows of the decoding matrix at that node. LetQi+1 andQi be the

decoding matrices at the(i+ 1)th and ith nodes, respectively, andTi be a matrix overF2 such thatQi+1 = TiQi.

The rows ofTi are the local encoding vectors of the packets transmitted bythe ith node, i.e.,(Ti)n,j = λn,j ,

∀n ∈ Oi and∀j ∈ Ii, whereλn is the local encoding vector of thenth packet. LetQ′
i beQi restricted to its dense

rows, i.e.,Q′
i is dense and hasd rows (D(Qi) = d). We can writeQi+1 = T ′

iQ
′
i, whereT ′

i , the transfer matrix

at theith node, is a matrix overF2 with d columns:(T ′
i )n,j = λn,j +

∑

ℓ∈Ii\Di
λn,ℓγℓ,j , ∀n ∈ Oi, ∀j ∈ Di and

{γℓ,j} are inF2 satisfying
∑

j∈Di
γℓ,jλj,k = λℓ,k, ∀k ∈ Ii.

Thenth row of T ′
i indicates the labels of dense packets at theith node which contribute to thenth packet sent by

the ith node, and thej th column ofT ′
i indicates the labels of packets sent by theith node to which thej th dense

packet contributes. LetT ′(n)
irow

(T ′(j)
icol

) be the set of labels of i.u.d. entries in thenth row (j th column) ofT ′
i . Thus,

|T ′(n)
irow

| ≥ max{n− r+ d, 0} (in particular, the firstmax{n− r+ d, 0} entries of thenth row are i.u.d.). Similarly,

|T ′(j)
icol

| ≥ d− j + 1 (in particular, the lastd− j + 1 entries of thej th column are i.u.d.).

Let rank(T ) denote the rank of a matrixT overF2. The following result is then useful to lower bound the density

of the decoding matrixQi+1 in terms of rank(T ′
i ).

3

Lemma 1: Let M be a dense matrix overF2, andT be a matrix overF2, where the number of rows inM and

the number of columns inT are equal. If rank(T ) ≥ γ, thenD(TM) ≥ γ.

The rank of a matrixT similar to that of the transfer matrixT ′ specified earlier can be lower bounded as follows.

Lemma 2: Let T be ann× d (d ≤ n) matrix overF2 such that for any1 ≤ j ≤ d, at leastd− j + 1 entries of

its j th column are i.u.d.. For every integer0 ≤ γ ≤ d− 1,

Pr{rank(T ) < d− γ} ≤ (d− γ)2−(γ+1).

Proof: For any integer0 ≤ γ ≤ d−1, let T ′ beT restricted to its firstd−γ columns. SinceT ′ is ann×(d−γ)

sub-matrix ofT , Pr{r(T ) < d−γ} ≤ Pr{r(T ′) < d−γ}. Suppose thatr(T ′) < d−γ. Then there exists a nonzero

column vectorv of lengthd− γ overF2 such that the column vectorT ′v of lengthn is an all-zero vector. For an

integer1 ≤ j ≤ d− γ, suppose that the first non-zero entry ofv is thej th. There exist2d−γ−j such vectors. Since

there exist at leastd − j + 1 i.u.d. entries in thej th column ofT ′, there exist at leastd − j + 1 i.u.d. entries in

the vectorT ′v. The probability that all these entries are zero is2−d+j−1, and thus the probability thatT ′v is an

all-zero vector given that the first nonzero entry ofv is the j th is b.a.b.2−d+j−1. Taking a union bound over all

such vectorsv, the probability thatT ′v is an all-zero vector is2d−γ−j × 2−d+j−1 = 2−γ−1. Taking a union bound

over all j: 1 ≤ j ≤ d− γ, the probability thatT ′v is an all-zero vector is b.a.b.(d− γ)2−(γ+1).

The preceding lemma is a special case of what we state in the following. The latter is useful in order to generalize

the results on one transmission per opportunity to multipletransmissions per opportunity.

3The proofs of the lemmas in this section can be found in [3].



For given integersw and r, let Ti,j be anr × r dense matrix overF2, ∀i, j : 1 ≤ j ≤ i ≤ w, andTi,j be an

all-zeror × r matrix, ∀i, j : 1 ≤ i < j ≤ w. Let T = [Ti,j ]1≤i,j≤w , andn
.
= wr.

Lemma 3: Let T be defined as above. For every integer0 ≤ γ ≤ n− 1,

Pr{r(T ) < n− γ} ≤
⌈

n− γ

r

⌉

(

1− 2−r
)

2−γ .

Proof: Let T ′ andv be defined as in the proof of Lemma 2. Fix an integer1 ≤ j ≤ n− γ. Suppose that the

first non-zero entry ofv is thej th. There exist2n−γ−j such vectors. Letτ be the largest integer smaller thanj/r.

The j th column has at leastn − τr i.u.d. entries, and hence there exist at leastn− τr i.u.d. entries in the vector

T ′v. These entries are all zero w.p.2τr−n, andT ′v is all-zero given suchv w.p. b.a.b.2τr−n. Taking a union

bound over all such vectors, the latter probability is2τr−γ−j. Taking a union bound overj, T ′v is all-zero w.p.

b.a.b.2−γ
∑

1≤j≤n−γ 2
τr−j, noting thatτ depends onj. We shall upper bound the preceding sum by rewriting

it as:
∑

0<j≤r 2
−j +

∑

r<j≤2r 2
r−j + · · ·+ ∑

(u−1)r<j≤n−γ 2
(u−1)r−j =

∑

0<j≤r 2
−j +

∑

0<j≤r 2
−j + · · · +

∑

0<j≤n−γ−(u−1)r 2
−j ≤ u

∑

0<j≤r 2
−j = u (1− 2−r), whereu = ⌈(n− γ)/r⌉. This completes the proof.

Let (0, NT ] be the period of time over which the transmissions occur. Thedecoding matrix at the first internal

node (v1) is dense and its density is equal to the number of packets at the node until timeNT , i.e.,D(Q1) = NT .

The density of the decoding matrix at the other non-source nodes is bounded from below as follows by applying

the preceding lemmas.

Lemma 4: For every1 < i ≤ L, the inequality

D(Qi) ≥ D(Qi−1)− logD(Qi−1)− log(1/ǫ)

fails w.p. b.a.b.ǫ.

By combining the result of Lemma 4 withD(Q1) = NT , we can derive the following result.

Lemma 5: Suppose that a dense code is applied over a line network ofL links with deterministic regular lossless

traffics until timeNT . Then, the inequality

D(QL) ≥ NT − L log(NTL/ǫ)

fails w.p. b.a.b.ǫ.

Now, we lower bound the probability that the collection of dense packets at the sink node includes an innovative

sub-collection of sizek. This itself lower bounds the probability that a dense code succeeds.

Lemma 6: Let M be ann× k (k ≤ n) dense matrix overF2. For every0 < ǫ < 1,

Pr{rank(M) < k} ≤ ǫ,

if k ≤ n− log(1/ǫ).

The following result upper bounds the coding delay by putting together the results of Lemmas 5 and 6.

Theorem 1: The ǫ-constrained coding delay of a dense code over a line networkof L links with deterministic

regular lossless traffics is b.a.b.

k + L log(L/ǫ) + log(1/ǫ) + L+ 1.



IV. D ETERMINISTIC REGULAR TRAFFIC WITH BERNOULLI LOSSES

A. Identical Links

In this case, the Bernoulli parameters{pi}1≤i≤L are all the same, and equal top. Similar to the analysis of the

previous case, in the case of the deterministic regular traffic with Bernoulli losses, we need to track the number of

dense packets through the network.

The density of the decoding matrix at the receiving node of a link depends on the density of the decoding matrix

and the rank of the transfer matrix at the transmitting node of the link. The rank of a matrix is a function of its

structure, and the structure of the transfer matrix at a nodedepends on the number of dense packet arrivals at the

node and the number of packet departures from the node beforeor after any given time. Such parameters depend

on the transmission schedule and the loss model of the link, and are therefore random variables. It is however not

straightforward to find the distribution of such random variables. We rather adopt a probabilistic technique to lower

bound the rank of the transfer matrices as follows.

We split the time interval(0, NT ] into a number of disjoint subintervals (partitions) of the same length. The

arrivals in the firstj partitions occur before the departures in the(j + 1)th partition. Thus the number of arrivals

before a given point in time within the(j + 1)th partition is bounded from below by the sum of the number of

arrivals in the firstj partitions. Such a method of counting is however suboptimalsince there might be some extra

arrivals in the(j + 1)th partition before some points in time within the same partition. To control the impact of

suboptimality, the length of the partitions thus needs to bechosen with some care.4

Let w be the number of partitions of the interval(0, NT ]. Let Iij be thej th partition pertaining to theith link

for all i and j. We start off with lower bounding the number of packets inIij . Let ϕij be the number of packets

in Iij . The length of the partitionIij is NT /w. Thus,ϕij is a binomial random variable with the expected value

ϕ
.
= pNT /w.

Hereafter, for the ease of exposition, let us denotex/2 by ẋ, for everyx ∈ R. By applying the Chernoff bound,

one can show that the inequality

ϕij ≥ r
.
= (1− γ∗)ϕ

fails w.p. b.a.b.̇ǫ, so long asγ∗ is chosen such thatr is an integer, andγ∗ goes to0 asNT goes to infinity, where

γ∗ ∼
(

2

ϕ
ln

2

ǫ

)
1

2

. (1)

We focus on the set of all packets over theith link in the active partitions:Iij is ‘active’ if i ≤ j ≤ w − L+ i.

Such a partition is active in the sense that (i) there exists some other partition over the upper link so that all its

4 On one hand, the length of the partitions needs to be sufficiently small such that there is not a large number of arrivals in one partition with

respect to the total number of arrivals in all the partitions. This should be the case because ignoring a subset of arrivals in one partition should

not cause a significant difference in the number of arrivals before each point in time within the same partition. On the other hand, the partitions

need to be long enough such that the deviation of the number ofarrivals from the expectation in one partition is negligible in comparison with

the expectation itself.



packets arrive before the departure of all the packets in theunderlying active partition, and (ii) there exists some

other partition over the lower link so that all its packets depart after the arrival of all the packets in the underlying

active partition.

Let wT denote the total number of active partitions. It is easy to see thatwT = L(w − L + 1). We selectr

packets in each active partition and ignore the rest. This method of selection fails if the number of packets in some

active partition is less thanr. Clearly, the failure occurs w.p. b.a.b.wT ǫ̇.

We shall lower bound the number of dense packets in active partitions. Before explaining the lower bounding

technique, let us first state two lemmas which will be useful to lower bound the rank of the transfer matrix at each

node (depending on whether the number of dense packet arrivals at the node in a partition is larger or smaller than

the number of packet departures from the node in the same partition).

For given integersw, r and {rj}1≤j≤w (0 ≤ rj ≤ r), let Ti,j be defined as follows:Ti,j is an r × rj dense

matrix overF2, if 1 ≤ j ≤ i ≤ w; or an arbitraryr × rj matrix overF2, otherwise (i.e., if1 ≤ i < j ≤ w). Let

T = [Ti,j ]1≤i,j≤w, andn
.
=
∑

1≤j≤w rj .

Lemma 7: Let T be defined as above. For every integer0 ≤ γ ≤ n− 1,

Pr{r(T ) < n− γ} ≤ u
(

1− 2−rmax
)

2−γ+n−wr+(r−rmin)(u−1),

wherermax = maxj rj , rmin = minj rj , andu = ⌈(n− γ)/rmin⌉.
Proof: Let T ′ and v be defined as in the proof of Lemma 2. Let us definer0

.
= 0 for convenience. For a

given integer1 ≤ j ≤ n − γ, defineτ :
∑

0≤i≤τ ri < j ≤ ∑

0≤i≤τ+1 ri. Further, defineτmax :
∑

0≤i≤τmax
ri <

n − γ ≤
∑

0≤i≤τmax+1 ri (0 ≤ τmax < w). By definition, τmax ≤ min{w, u − 1}. For every0 ≤ τ ≤ τmax, define

sτ =
∑

0≤i≤τ ri. The j th column ofT ′ has at least(w − τ)r i.u.d. entries, and hence the vectorT ′v has at least

(w − τ)r i.u.d. entries. Thus,T ′v is all-zero w.p. b.a.b.2−γ+n−wr
∑

1≤j≤n−γ 2
τr−j, noting thatτ depends onj.



We rewrite the sum as:

∑

0<j≤s1

2−j +
∑

s1<j≤s2

2r−j +

· · ·+
∑

sτmax<j≤n−γ

2τmaxr−j =

∑

0<j≤r1

2−j + 2r−s1
∑

0<j≤r2

2−j +

· · ·+ 2τmaxr−sτmax

∑

0<j≤n−γ−sτmax

2−j ≤

∑

0<j≤rmax

2−j + 2r−s1
∑

0<j≤rmax

2−j +

· · ·+ 2τmaxr−sτmax

∑

0<j≤rmax

2−j =

∑

0<j≤rmax

2−j
∑

0≤τ ′≤τmax

2τ
′r−s

τ′ ≤

∑

0<j≤rmax

2−j
∑

0≤τ ′≤τmax

2(r−rmin)τ
′

=

(1 − 2−rmax)
∑

0≤τ ′≤τmax

2(r−rmin)τ
′

.

The series
∑

0≤τ ′≤τmax
2(r−rmin)τ

′

converges from below to(τmax+ 1)2(r−rmin)τmax if r − rmin goes to infinity. Thus

the following is always true:(1 − 2−rmax)
∑

0≤τ ′≤τmax
2(r−rmin)τ

′ ≤ (τmax + 1)(1 − 2−rmax)2(r−rmin)τmax ≤ u(1 −
2−rmax)2(r−rmin)(u−1). This proves the lemma.

For given integersw, r and{rj}1≤j≤w (r ≤ rj ), let Ti,j be defined as follows:Ti,j is an r × rj dense matrix

over F2, if 1 ≤ j ≤ i ≤ w; or an arbitraryr × rj matrix overF2, otherwise (i.e., if1 ≤ i < j ≤ w). Let

T = [Ti,j ]1≤i,j≤w, andn
.
= wr.

Lemma 8: Let T be defined as above. For every integer0 ≤ γ ≤ n− 1,

Pr{r(T ) < n− γ} ≤ u
(

1− 2−r
)

2−γ+n−wrmin+(rmin−r)(u−1),

whereu = ⌈(n− γ)/r⌉.
Proof: We start the proof by noting thatT has a smaller number of rows than columns, and the minimum

number of rows and columns gives an upper bound on the rank of the matrix. LetT ′ be T restricted to its last

n − γ rows. For every0 ≤ τ ≤ w, definesτ =
∑

0≤j≤w−τ rj . Thus,T ′ is of size (n− γ)× s0. Suppose that

there exists a nonzero row vectorv of lengthn− γ whose entries are overF2, and its first nonzero entry is thej th,

and the row vectorvT ′ is all-zero. There are2n−γ−j such vectors. Letτ be the largest integer smaller thanj/r.

The j th row of T ′ has at leastsτ i.u.d. entries, and hence the vectorvT ′ has at leastsτ i.u.d. entries. Thus,vT ′ is

all-zero w.p. b.a.b.2−γ+n
∑

1≤j≤n−γ 2
−j−sτ . By definition,sτ ≥ (w− τ)rmin, and the preceding sum can thus be

upper bounded as follows:
∑

1≤j≤n−γ 2
−j−sτ ≤ ∑

1≤j≤n−γ 2
−j−(w−τ)rmin. The latter sum can be rewritten itself



as:

∑

0<j≤r

2−j−wrmin +
∑

r<j≤2r

2−j−(w−1)rmin +

· · ·+
∑

(u−1)r<j≤n−γ

2−j−(w−u+1)rmin =

2−wrmin
∑

0<j≤r

2−j + 2−(w−1)rmin−r
∑

0<j≤r

2−j +

· · ·+ 2−(w−1)rmin−(u−1)r
∑

0<j≤n−γ−(u−1)r

2−j ≤

2−wrmin
∑

0<j≤m

2−j
∑

0≤τ ′≤u−1

2(rmin−r)τ ′

=

(1− 2−r)2−wrmin
∑

0≤τ ′≤u−1

2(rmin−r)τ ′

.

The last sum is bounded from above byu · 2(rmin−r)(u−1), and this completes the proof.

For every1 < i ≤ L, and1 ≤ j ≤ w − L + 1, the number of dense packets in the firstj active partitions over

the ith link can be lower bounded as follows: For every1 ≤ l ≤ j, suppose that the number of dense packets in the

first l active partitions over the(i− 1)th link is already lower bounded. LetT be the transfer matrix at theith node,

restricted to the successful packet transmissions within the first j active partitions over theith link (the number of

such packets in each partition is already lower bounded). Then, it can be shown thatT includes a sub-matrixT ′

with a structure similar to that in Lemma 7 or the one in Lemma 8.5 By applying the proper lemma, the rank of

the transfer matrix at theith node, and consequently, by applying Lemma 1, the number of dense packets in the

first j active partitions over theith link can be lower bounded.

Note that, because of its recursive nature, the above algorithm lower bounds the number of dense packets in

the first j active partitions over theith link as a function of the number of dense packets in the activepartitions

pertaining to the first link. Further, the packets over the first link are all dense (by the definition of the dense

packets), and hence by using the recursion, the following results can be derived.

Let D(Qj
i ) be the number of dense packets in the firstj active partitions over theith link. Let Dp(Q

j
i ) lower

boundD(Qj
i ) such thatD(Qj

i ) < Dp(Q
j
i ) w.p. b.a.b.ǫ̇, given D(Qτ

s ) ≥ Dp(Q
τ
s ), for every 1 ≤ s ≤ i and

1 ≤ τ ≤ j, except(s, τ) = (i, j).6 We definerij in a recursive fashion as the largest non-negative integer satisfying

rij ≤ Dp(Q
j
i )−

∑

1≤τ<j riτ .

We construct a collection of dense packets at theith node as follows: starting with an empty collection (at the

step zero), for every1 ≤ j ≤ w − L + 1, at thej th step, we expose the packets in the active partitions over the

ith link in order, one by one. We add a packet to the collection whenever the packet is dense (with respect to the

current collection), until revealingrij new dense packets. The size of such a collection lower boundsthe number

5In the case of identical links, the transfer matrix at each node includes a sub-matrix similar to that in Lemma 7. However,in the case of

non-identical links, depending on the traffic parameters, the transfer matrix at a node might include a sub-matrix similar to that in Lemma 7 or

the one in Lemma 8.

6
Dp(Q

j

i
) is a “proper” lower bound onD(Qj

i
) for the purpose of the analysis in this paper and hence the subscript “p.”



of dense codes at theith node, and in order to study the structure of the transfer matrix at this node, we consider

the packets in the subsets of the underlying collection, each subset pertaining to one of the collection steps, and

ignore the rest of packets.

Clearly,D(Qj
1) ≥ rj, ∀j : 1 ≤ j ≤ w − L + 1 (sincer packets are selected in each partition). For any other

values ofi andj, D(Qj
i ) is lower bounded as follows.

Lemma 9: For every1 < i ≤ L,

D(Q1
i ) ≥ r − log(1/ǫ)− log i− 1

fails w.p. b.a.b.ǫ̇.

Proof: Fix 1 < i ≤ L. Let T be the transfer matrix at the starting node of theith link. Let T ′ beT restricted

to the packets in the first active partition over theith link. For every1 < s < i, supposeD(Q1
s) ≥ Dp(Q

1
s), where

Dp(Q
1
s) = r − log(1/ǫ) − 1, andD(Q1

1) = Dp(Q
1
1) = r. Then,T ′ includes anr × r1 dense sub-matrix.7 Thus

by applying Lemma 7, for every0 ≤ γ ≤ r1 − 1, Pr{r(T ′) < r1 − γ} ≤ u(1 − 2−r1)2−γ+r1−r+(r−r1)(u−1) =

(1− 2−r1)2−γ+r1−r, sinceu = ⌈(r1 − γ)/r1⌉ = 1. Takingγ = log(1/ǫ) + r1 − r + 1, it follows thatPr{r(T ′) <

r1 − γ} ≤ ǫ̇. By applying Lemma 1,D(Q1
i ) < r − log(1/ǫ)− 1 w.p. b.a.b.ǫ̇. Thus,Dp(Q

1
i ) = r − log(1/ǫ)− 1.

Taking a union bound over the firsti links, D(Q1
i ) < r − log(1/ǫ)− log i− 1 w.p. b.a.b.ǫ̇.

Lemma 10: For every1 < i ≤ L, and1 < j ≤ w − L+ 1,

D(Qj
i ) ≥ rj − Lij

fails w.p. b.a.b.ǫ̇, so long aslog(wT /ǫ) = o(r), whereLij = j(1 + o(1))(log(ij/ǫ) + 1) + log((j(1 + o(1)) +

1)/ǫ) + log(ij) + 1, and theo(1) term is (log(ij/ǫ) + 1)/r.

Proof: Fix 1 < i ≤ L. For every1 < s ≤ i and1 < τ ≤ j, except(s, τ) = (i, j), supposeD(Qτ
s ) ≥ Dp(Q

τ
s ),

whereDp(Q
τ
s ) = rτ−τ(1+o(1))(log(1/ǫ)+1)−log((τ(1+o(1))+1)/ǫ)−1, and theo(1) term is(log(1/ǫ)+1)/r,

and D(Q1
s) ≥ Dp(Q

1
s), whereDp(Q

1
s) = r − log(1/ǫ) − 1. Let rmin = minτ rτ , and rmax = maxτ rτ . Let

rτ = ri−1,τ , for every 1 ≤ τ ≤ j, and n = Dp(Q
j
i−1) =

∑

1≤τ≤j rτ . Let us defineT as in the proof of

Lemma 9. LetT ′ beT restricted to the packets in the firstj active partitions over theith link. Then,T ′ includes an

rj × n sub-matrix with a structure similar to the matrixT as in Lemma 7. Thus by applying Lemma 7, for every

0 ≤ γ ≤ n − 1, Pr{r(T ′) < n − γ} ≤ u(1 − 2−rmax)2−γ+n−rj+(r−rmin)(u−1), where u = ⌈(n − γ)/rmin⌉.
It is not difficult to see that, by our method of constructing the dense collection, it follows thatrmin = r1.

Further by applying Lemma 9,r1 = Dp(Q
1
i−1) = r − log(1/ǫ) − 1. Thus,u ≤ ⌈rj/r1⌉ = ⌈(1 + o(1))j⌉ ≤

(1 + o(1))j +1, sincer1 = r(1− o(1)), given log(wT /ǫ) = o(r), where theo(1) term is(log(1/ǫ) + 1)/r. Taking

γ = n− rj+(1+o(1))j(log(1/ǫ)+1)+ log(((1+o(1))j+1)/ǫ)+1, it follows thatPr{r(T ′) < n−γ} ≤ ǫ̇. Now,

by applying Lemma 1,D(Qj
i ) < n− γ w.p. b.a.b.ǫ̇. Thus,Dp(Q

j
i ) = n− γ. Taking a union bound over the firstj

active partitions of the firsti links, D(Qj
i ) < rj−(1+o(1))j(log(ij/ǫ)+1)− log(((1+o(1))j+1)/ǫ)− log(ij)−1

w.p. b.a.b.ǫ̇, where theo(1) term is (log(ij/ǫ) + 1)/r. This completes the proof.

7We often drop the subscripti in the notationrij unless there is a danger of confusion.



The result of Lemma 10 lower bounds the number of dense packets at the sink node as follows.

Lemma 11: The inequality

D(QL) ≥ wTϕ/L− wTϕ/L
√

(1/ϕ̇) log(wT /ǫ̇)−

− (wT /L) log(wT /ǫ̇)− (wT /Lϕ) log
2(wT /ǫ)−

−(wT /Lϕ) log(wT /ǫ)− log(wT /ǫ)−

− log(wT /L)− 1 (2)

fails w.p. b.a.b.ǫ, wherew ∼
(

pNTL
2/ log(NTL/ǫ)

)1/3
.

Proof: For the ease of exposition, letv = wT /L. Lemma 10 gives a lower bound onD(Qv
L). Thus, we can

write: D(QL) ≥ D(Qv
L) ≥ rv− v(1 + o(1)) (log(wT /ǫ) + 1)− log((v(1 + o(1)))/ǫ)− logwT − 1, where theo(1)

term is (log(wT /ǫ)) /r. This bound fails w.p. b.a.b.̇ǫ, given the success of the packet collection process. Further,

r = (1 − o(1))ϕ, where theo(1) term is
√

(1/ϕ̇) ln(wT /ǫ̇). Thus,D(QL) ≥ ϕv − o(ϕv) − v log(wT /ǫ) − v −
o(v log(wT /ǫ))− o(v)− log(v/ǫ)− logwT − 1 fails w.p. b.a.b.ǫ, whereo(ϕv) ∼ O(ϕv

√

(1/ϕ) log(wT /ǫ)), and

o(v) ∼ (v/ϕ) log(wT /ǫ). By considering the dominant terms, the right-hand side of the last inequality can be

written as

ϕv −O(v
√

ϕ log(wT /ǫ))−O(v log(wT /ǫ)). (3)

We now replaceϕ andv by pNT /w andw (v ∼ w), respectively, and rewrite the above as

pNT −O(pNTL/w)−

O(
√

pNTw log(wL/ǫ))−O(w log(wL/ǫ)). (4)

We would likeD(QL) ≥ (1− o(1))pNT . EachO(.) term needs to beo(pNT ). When considering the third term, it

is easy to show that we needw log(wL/ǫ) = o(pNT ). When this condition holds, the second term dominates the

third one. We need to specifyw with some care in order to minimize

O(pNTL/w) +O(
√

pNTw log(wL/ǫ)). (5)

We definew as

3

√

pNTL2

log(NTL/ǫ)
.

This choice ofw ensures that theO(.) terms areo(pNT ).

Let nT be equal to the right-hand side of the inequality (2). Thus,QL fails to include annT ×k dense sub-matrix

w.p. b.a.b.ǫ. By applying Lemma 6, the probability of{rank(QL) < k} is b.a.b.ǫ, so long ask ≤ nT − log(1/ǫ).

We replaceǫ with ǫ̇ everywhere. Then, a dense code fails to transmitk message vectors w.p. b.a.b.ǫ, so long as

k ≤ nT − log(1/ǫ)− 1.

In the asymptotic setting asNT goes to infinity,nT can be written as

pNT − (1 + o(1))(pNTL/w +
√

pNTw log(wL/ǫ) + w log(wL/ǫ)).



We rewrite the last inequality as

k ≤ pNT − (1 + o(1))(pNTL/w +
√

pNTw log(wL/ǫ) + w log(wL/ǫ))− log(1/ǫ)− 1.

Let kmax be the largest integerk satisfying this inequality. Thus,kmax ∼ pNT , asnT ∼ pNT andlog(1/ǫ̇) = o(nT ).

The following result can be shown by replacingNT with k/p in the right-hand side of the latter inequality.

Theorem 2: The ǫ-constrained coding delay of a dense code over a line networkof L identical links with regular

traffics and Bernoulli losses with parameterp is b.a.b.

1

p

(

k + (1 + o(1))

(

kL

w
+

√

k

(

w log
wL

ǫ

)

+ w log
wL

ǫ

))

wherew ∼
(

kL2/ log(kL/pǫ)
)1/3

, and theo(1) term goes to0 ask goes to infinity.8

It is worth noting that Theorem 1 is not a special case of Theorem 2 withp = 1.9 In fact, Theorem 1 provides

a tighter bound compared to the result of Theorem 2 withp = 1.

We now study the average coding delay of dense codes with respect to the traffics with deterministic regular

transmission opportunities and Bernoulli losses. It should be clear that, in this case, the deviation of the number

of packets per partition should not be taken into account. Thus, by replacingr with ϕ in Lemmas 9 and 10, and

redefiningw as
√

pNTL/log(NTL/ǫ), we have the following result.10

Theorem 3: The ǫ-constrained average coding delay of a dense code over a network similar to Theorem 2 is

b.a.b.
1

p

(

k + (1 + o(1))

(

kL

w
+ w log

wL

ǫ

))

wherew ∼ (kL/ log(kL/pǫ))
1/2.

Proof: The proof follows the same line as that of the proof of Theorem2, except thatr needs to be replaced

with ϕ in the proof of Lemma 11. Thus, the termO(v
√

ϕ log(wT /ǫ)) in (3) andO(
√

pNTw log(wL/ǫ)) in (4)

will disappear. Then, it should not be hard to see that, in this case,w needs to be chosen in order to minimize

O(pNTL/w) + O(w log(wL/ǫ)), instead of (5). This can be done by redefiningw as
√

pNTL

log(NTL/ǫ)
.

8Similarly, in the following, theo(1) term is defined with respect tok.

9This arises from the fact that the latter result is based on the condition thatγ∗ goes to0 (i.e., NT /w has to go to infinity) asNT goes to

infinity. That is, the length of the partitions needs to go to infinity with NT . However, thinking of partitions in the proof of the former result,

it can be seen that each partition has length one.

10Note that the latter choice ofw is much larger than that in Lemma 11. This is because, in this case, there is no gap between the lower

bound on the number of packet transmissions in each partition and the expectation, and hence, the partitions do not need to be sufficiently long

(see Footnote 4).



B. Non-Identical Links

The preceding results regarding the identical links immediately serve as upper bounds for the case of non-identical

links with parameters{pi}1≤i≤L, by replacingp with min1≤i≤L pi. The results however might not be very tight,

e.g., for the case where, for some1 ≤ i ≤ L, pi is much larger thanp. Thus the values and the ordering of{pi}
needs to be taken into consideration to derive tighter bounds. In particular, for every1 ≤ i < L, depending on

whether theith or the(i+ 1)th link has a larger parameter, Lemma 7 or 8 is useful to lower bound the rank of the

transfer matrix at theith node. The rest of the analysis remains the same.

In the following, however, we state the main results for a special case of non-identical links, where there is a

single worst link (a unique link with the smallest success parameter).

Theorem 4: Consider a sequence of parameters{pi}1≤i≤L with a unique minimump
.
= mini pi. Then, theǫ-

constrained coding delay of a dense code over a line network of L links with deterministic regular traffics and

Bernoulli losses with non-identical parameters{pi} is b.a.b.

1

p

(

k + (1 + o(1))

(

kL

w
+

√

k

(

w log
wL

ǫ

)

))

wherew ∼
(

kL2/ log(kL/pǫ)
)1/3

.

Theorem 5: The ǫ-constrained average coding delay of a dense code over a network similar to Theorem 4 is

b.a.b.
1

p

(

k + (1 + o(1))

(

kL

w

))

wherew ∼ k/ (p log(kL/pǫ)f(k)) andf(k) goes to infinity arbitrarily slow, ask goes to infinity.

V. POISSONTRAFFIC: LOSSLESS ORBERNOULLI LOSSES

In the case of the lossless Poisson traffic with parameterλ, the number of packets in each partition of length

NT /w is a Poisson random variable with the expected valueλNT /w. By applying the Chernoff bound to the

Poisson random variable (see [6, Theorem A.1.15]), the mainresults in Section IV are applicable to this network

scenario, wherep is replaced byλ.

In the case of Bernoulli losses over a Poisson traffic with parametersp andλ, respectively, it can be shown that

the points in time at which the arrivals/departures occur follow a Poisson process with parameterλp, and hence the

number of packets in each partition has a Poisson distribution with the expected valueλpNT /w. Thus the main

results in Section IV apply by replacingp with λp.

VI. COMPARISON WITH THE EXISTING L ITERATURE

The upper bounds on theǫ-constrained coding delay and average coding delay, derived in this paper, are valid

for any arbitrary choice ofǫ. However, in the following, to compare our results with those of [4] and [5], we focus

on the case whereǫ goes to0 polynomially fast, ask goes to infinity. For such a choice ofǫ, the upper bounds on

the coding delay and the average coding delay hold w.p.1, ask goes to infinity.



A. Identical Links

In [4], the average coding delay of dense codes over the networks of length 2 with deterministic regular

transmissions and Bernoulli losses with parameterp is shown to be upper bounded by1p (k + O(
√
k log k)). The

result of Theorem 3 indicates that the average coding delay of dense codes over the networks of lengthL with

similar traffics as above is upper bounded by1
p (k + (1 + o(1))(

√

kL log(kL))). This is consistent with the result

of [4], although the bound presented here provides more details.

The result of Theorem 2 suggests that the coding delay of dense codes over network scenarios as above is upper

bounded by1p (k+(1+ o(1))(k2L log(kL))1/3). One should note that there has been no result on the coding delay

of dense codes over identical links in the existing literature. In fact, this was posed as an open problem in [5]. It is

also noteworthy that unlike the analysis of [5], our analysis does not rely on the existence of a single worst link,

and hence is applicable to the case of identical links.

By combining Theorems 2 and 3, it can be seen that the coding delay might be much larger than the average

coding delay. This highlights the fact that the analysis of the average coding delay does not provide a complete

picture of the speed of convergence of dense codes to the min-cut capacity of line networks with identical links.

B. Non-Identical Links

In [5], the average coding delay of dense codes over the networks of lengthL with deterministic regular

transmission opportunities and Bernoulli losses with parameters{pi}1≤i≤L was upper bounded bykp +
∑

i6=m
1−p
pi−p ,

wherep = mini pi is the unique minimum andm = argmini pi. This result was derived under the unrealistic

assumption that all the coded packets are innovative.

Related to this result, Theorem 5 indicates that the averagecoding delay of dense codes over line networks with

non-identical links is upper bounded by1p (k + (1 + o(1))(p log(kL)f(k))), wheref(k) goes to infinity arbitrarily

slow, ask goes to infinity. It is important to note that Theorem 5 does not have the limiting assumption of the

result of [5] regarding the innovation of all the packets. The bound of Theorem 5 is larger than that of [5], which is

expected, since the former, unlike the latter, is derived based on the realistic assumption of operating over a finite

field, which has the consequence that not all the coded packets are innovative.

The result of Theorem 4 indicates that the coding delay is upper bounded by1p (k+(1+o(1))(k2L log(kL))1/3).

This is while, in [5], the coding delay is upper bounded by1
p (k +O(k3/4)). This bound is looser than the bound

in Theorem 4, although it is derived under the same limiting assumption as the one used in [5] for the average

coding delay (i.e., all coded packets being innovative). Such an assumption makes the bound appear smaller than

what it would be at the absence of the assumption. This demonstrates the strength of the bounding technique used

in this work.

Similar to the case of identical links, in the case of non-identical links, by combining Theorems 4 and 5, it can

be seen that the coding delay might be much larger than the average coding delay. In fact, the difference might be

even larger than that of the identical links.
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