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Abstract

In this paper, we study the coding delay and the average gadiay of random linear network codes (dense
codes) over line networks with deterministic regular anis&m transmission schedules. We consider both lossless
networks and networks with Bernoulli losses. The upper deuterived in this paper, which are in some cases more
general, and in some other cases tighter, than the existogds, provide a more clear picture of the speed of
convergence of dense codes to the min-cut capacity of liheanks.

|. INTRODUCTION

Random linear network codes (dense codes) achieve theityapser various network scenarios, in particular,
unicast over line networks. Lugt al. [1] showed that dense codes achieve the capacity of netwottkgransmission
and loss schedules specified by stochastic processes witided average rate. They however did not discuss the
speed of convergence of such codes to the capacity.

The speed of convergence of dense codes to the capacitywbnkstwith arbitrary deterministic transmission
schedules was studied in [2] and [3]. It is not, however,iglrdorward to apply the results to the networks with
probabilistic schedules.

In the literature, the coding delay or the average codingyde often used to measure the speed of convergence
of a code to the capacity of a network. Teading delay of a code over a network with a given traffic (with a given
schedule of transmissions and losses) is the minimum timethie code takes to transmit all the message vectors
from the source to the sink over the network. Tdwerage coding delay of a code over a network with respect to
a class of traffics is the average of the coding delays of tlie edth respect to all the traffics.

Pakzadet al. [4] studied the average coding delay of dense codes overdtveorks with deterministic regular
transmission opportunities and Bernoulli losses, where dphecial case of two identical links in tandem was

considered. The analysis however did not provide any insaghout how the coding delay (which is random with

TThis paper is an extended version of a manuscript which hes bebmitted to IEEE ISIT 2012.

1The coding delay of a class of codes over a class of trafficsamaom variable due to the randomness in both the code artdaffie. The
average coding delay is the coding delay averaged out oeeraffics but not the codes, and hence is a random variabléodie randomness
in the code.
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respect to both the codes and the traffics) can deviate fremathrage coding delay (which is random with respect
to the codes but not the traffics).

More recently, Dikaliotiset al. [5] studied both the average coding delay and the codingydmlar networks
similar to those in [4], under the assumption that all thekpéx are innovativé. This is not however a valid
assumption in practice, where the field size is finite and @assmall as two.

In this paper, we study the coding delay and the average gatbiay of dense codes over the field of size two
(F2). The analysis however can be generalized to the finite ffldisrger size. We consider both lossless networks
and networks with Bernoulli losses. We also study both deit@stic regular and Poisson transmission schedules.

The main contributions of this paper are:

o For networks with deterministic regular transmission apyaities and Bernoulli losses, we derive upper bounds
on the average coding delay of dense codes tighter than wévat presented in [4], [5].

« We show that, for such networks, the coding delay may havege ldeviation from the average coding delay
in both cases of identical and non-identical links. For maentical links, our upper bound on such a deviation
is smaller than what was previously shown in [5]. It is worititing that, for identical links, upper bounding
such a deviation has been an open problem (see [5]).

« We generalize the results to the networks with Poisson mégsson schedules for both lossless networks and

networks with Bernoulli losses.

II. NETWORK MODEL AND PROBLEM SETUP

We consider a line network of length, where theL + 1 nodes{v;}o<;<z are connected in tandem. The
underlying problem is unicast: The source nages given a message df vectors from a vector space oves,
and the sink node; demands to have all the message vectors.

Each node transmits a (coded) packet at each transmissjportapity in discrete-time where the number of
transmissions per transmission opportunity is one. Thatpan time at which the transmissions occur over each
link follow a stochastic point process. The processes §pagithe transmissions over different links are considere
to be independent.

Each packet transmission is either successful or failshénlatter case, the packet is erased. We consider two
scenarios: (i) lossless, where all packet transmissiomsaccessful, and (ii) lossy, where all packet transmission
are subject to independent erasures over the same link feratif links. The traffic over a link is fully described
by the processes describing the schedule of transmissimhbythe loss model.

The links are assumed to be delay-free, i.e., the arrivat tiha successful packet at a receiving node is the
same as the departure time of the packet from the transgitiiale.

In this paper, we use the notions of the coding delay and tkeage coding delay in a probabilistic fashion as

follows:

2A collection of packets is “innovative” if their global endimg vectors are linearly independent.



For some fixed) < e < 1, the e-constrained coding delay of a class of codes over a network with a class of
traffics is defined as the infimum value &f € Z such that the coding delay of a randomly chosen code over
the network with a randomly chosen traffic is larger thsnwith probability (w.p.) bounded above by (b.a.b.)
The e-constrained average coding delay of a class of codes over a network with respect to a class tificgds
defined as the infimum value df € Z such that the average coding delay of a randomly chosen cesfetioe
network with respect to the class of traffics is larger thaw.p. b.a.b.c. We often drop the terme*constrained”

for simplicity unless there is a danger of confusion.

The goal in this paper is to upper bound the coding delay aadatlerage coding delay of dense codes over
networks with two types of transmission schedules and twegyof loss models specified below.

The transmission schedules are described by (i) a detesticirprocess where at each time unit there is a
transmission opportunity at each node (such a scheduldesred to asdeterministic regular), or (ii) a Poisson
process with parametex; : 0 < \; < 1, over the:™ link, where )\; is the average number of transmission
opportunities per time unit.

The loss models are described by (i) a deterministic proad®se each packet transmission is successful (such
a model is referred to awsdess), or (ii) a Bernoulli process with parametgy : 0 < p; < 1, over thei link,

wherep; is the average number of successes per transmission opipyrtu

IIl. DETERMINISTIC REGULAR LOSSLESSTRAFFIC

In a dense coding scheme, the source node, at each trarmmiggdortunity, transmits a packet by randomly
linearly combining the message vectors, and each non saoresink (interior) node transmits a packet by randomly
linearly combining its previously received packets. Thetwoe of coefficients of the linear combination associated
with a packet is called thiocal encoding vector of the packet, and the vector of the coefficients represgritie
mapping between the message vectors and a coded packeet tteglobal encoding vector of the packet. The
global encoding vector of each packet is assumed to be iadlidthe packet header. The sink node can recover
all the message vectors as long as it receives an innovatilexction of packets of the size equal to the number of
message vectors at the source node.

The entries of the global encoding vectors of a collectiopatkets are independent and uniformly distributed
(i.u.d.) Bernoulli random variables as long as the localogimty vectors of the packets are linearly independent.
Such packets, calledense, are of main importance in our analysis.

The first step is to lower bound the size of a maximal collectib dense packets at the sink node until a certain
decoding time. We, next, lower bound the probability that timderlying collection includes a sufficient number of
packets with linearly independent global encoding vectors

Let @ be a matrix oveif,. A maximal collection of rows inQ with i.u.d. entries is calledlense. The matrixQ
is called adense matrix if all its rows form a dense collection. We refer to the numbfkerows in a dense collection

of rows in @ as thedensity of @), denoted byD(Q), and refer to each row in such a collection adease row.



Let O; (Z;) be the set of labels of the packets transmitted (receivgdhe " node and letD; be the set of
labels of the dense packets at tffenode. Letr andd be the size of?; andD;, respectively. The global encoding
vectors of the received packets at a node form the rows oféheding matrix at that node. Lél;.; and@; be the
decoding matrices at th@ + 1)”‘ andi™ nodes, respectively, arif; be a matrix oveif, such thatQ,, = T;Q;.
The rows of 7; are the local encoding vectors of the packets transmittethbyi™ node, i.e.,(Ti),.; = A,
Vn € O; andV¥j € Z;, where),, is the local encoding vector of thé" packet. LetQ’, be Q; restricted to its dense
rows, i.e.,@Q; is dense and hag rows (D(Q;) = d). We can writeQ;1 = T}/Q;, whereT], the transfer matrix
at thei™ node, is a matrix oveF, with d columns:(7}),; = A\n; + Z%L\m AneVej, Yn € Oy, Vj € D; and
{7e,;} are inFy satisfying) ;. ve,j Ak = Aok, Yk € Z;.

Then'" row of T/ indicates the labels of dense packets atith@ode which contribute to the™™ packet sent by
the i node, and theg™ column of 7/ indicates the labels of packets sent by tfenode to which thej"" dense
packet contributes. LeI;:O(W”) (7;55)) be the set of labels of i.u.d. entries in th# row (! column) of 7}. Thus,
177" > max{n —r +d,0} (in particular, the firstnax{n — r + d, 0} entries of then™ row are i.u.d.). Similarly,

|Tii§|j)| >d — j+ 1 (in particular, the lastl — j + 1 entries of thej"" column are i.u.d.).

Let rankT") denote the rank of a matrik overF». The following result is then useful to lower bound the dgnsi
of the decoding matrix9; 1 in terms of rank7}).2

Lemma 1. Let M be a dense matrix ovéif,, andT be a matrix oveify, where the number of rows i/ and
the number of columns ifi" are equal. If rankl’) > ~, thenD(T' M) > ~.

The rank of a matrix” similar to that of the transfer matrik’ specified earlier can be lower bounded as follows.

Lemma 2: Let T be ann x d (d < n) matrix overF; such that for anyi < j < d, at leastd — j + 1 entries of

its j" column are i.u.d.. For every integér< v < d — 1,
Pr{rankT) < d — v} < (d —~)2~ O+,

Proof: For any integef) < v < d—1, letT’ beT restricted to its firstt —~ columns. Sincd"” is ann x (d—~)
sub-matrix ofT", Pr{r(T") < d—~} < Pr{r(17") < d—~}. Suppose that(1") < d—-. Then there exists a nonzero
column vector of lengthd — ~+ overF, such that the column vectd?v of lengthn is an all-zero vector. For an
integerl < j < d — ~, suppose that the first non-zero entry:ois the ;. There exis2¢~7~7 such vectors. Since
there exist at leasf — j + 1 i.u.d. entries in thej" column of 7", there exist at leasi — j + 1 i.u.d. entries in
the vectorT’v. The probability that all these entries are zer®is+7~!, and thus the probability th&t’'v is an
all-zero vector given that the first nonzero entry:ofs the ;" is b.a.b.2=4+7=1, Taking a union bound over all
such vectors), the probability thaf’v is an all-zero vector i€¢~7~7 x 2-4+i=1 = 271 Taking a union bound
over allj: 1 < j < d — ~, the probability thaf’v is an all-zero vector is b.a.lpd — )2~ +1), [ ]

The preceding lemma is a special case of what we state in Hogvfiog. The latter is useful in order to generalize

the results on one transmission per opportunity to multipd@smissions per opportunity.

3The proofs of the lemmas in this section can be found in [3].



For given integersy andr, let T; ; be anr x r dense matrix oveF,, Vi,j : 1 < j <14 < w, andT;; be an
all-zeror x r matrix, Vi, j : 1 <i < j <w. LetT = [T} j]1<ij<w, andn = wr.

Lemma 3: Let T" be defined as above. For every inte@ex v <n — 1,
Pr{r(T) <n—~} < {uw (1-27")277.
T

Proof: Let T" andv be defined as in the proof of Lemma 2. Fix an intejet j < n — ~. Suppose that the
first non-zero entry of is the ;. There exis2”~7~7 such vectors. Let be the largest integer smaller thayv-.
The ;™ column has at least — 7 i.u.d. entries, and hence there exist at least 7r i.u.d. entries in the vector
T'v. These entries are all zero w.p7"~", andT"v is all-zero given suchy w.p. b.a.b.27"~". Taking a union
bound over all such vectors, the latter probability2ig—>—7. Taking a union bound over, 7v is all-zero w.p.
b.a.b.2=7 Zlgjgn—v 2777, noting thatr depends ory. We shall upper bound the preceding sum by rewriting
itas: Y i 277 + X icar 27 ot Dy 20T = Y 27+ Y 27
D 0cicn—(u-1yr 20 Sudg i<, 277 =u(l—27"), whereu = [(n — )/r]. This completes the proof.

Let (0, Nr| be the period of time over which the transmissions occur. déeoding matrix at the first internal
node (1) is dense and its density is equal to the number of packeteatdde until timeNr, i.e.,D(Q1) = Nr.
The density of the decoding matrix at the other non-souraesds bounded from below as follows by applying
the preceding lemmas.

Lemma 4: For everyl < i < L, the inequality
D(Q;) > D(Qi-1) — log D(Qi—1) — log(1/e)

fails w.p. b.a.be.
By combining the result of Lemma 4 witP(Q,) = N, we can derive the following result.
Lemma 5: Suppose that a dense code is applied over a line netwatklioks with deterministic regular lossless

traffics until time N7. Then, the inequality
D(Qr) > N7 — Llog(NrL/e¢)

fails w.p. b.a.be.
Now, we lower bound the probability that the collection ohde packets at the sink node includes an innovative
sub-collection of sizé:. This itself lower bounds the probability that a dense cagscseds.

Lemma 6: Let M be ann x k (k < n) dense matrix oveF,. For every0 < e < 1,
Pr{rank M) < k} <,

if &K <n—log(l/e).
The following result upper bounds the coding delay by pagttingether the results of Lemmas 5 and 6.
Theorem 1: The e-constrained coding delay of a dense code over a line netabik links with deterministic
regular lossless traffics is b.a.b.
k+ Llog(L/e) 4+ log(1/e) + L + 1.



IV. DETERMINISTIC REGULAR TRAFFIC WITH BERNOULLI LOSSES
A. ldentical Links

In this case, the Bernoulli parametds; }1<;<, are all the same, and equaljto Similar to the analysis of the
previous case, in the case of the deterministic reguldfidraith Bernoulli losses, we need to track the number of
dense packets through the network.

The density of the decoding matrix at the receiving node afladepends on the density of the decoding matrix
and the rank of the transfer matrix at the transmitting noflthe link. The rank of a matrix is a function of its
structure, and the structure of the transfer matrix at a risgeends on the number of dense packet arrivals at the
node and the number of packet departures from the node befater any given time. Such parameters depend
on the transmission schedule and the loss model of the limk,aae therefore random variables. It is however not
straightforward to find the distribution of such random ahtes. We rather adopt a probabilistic technique to lower
bound the rank of the transfer matrices as follows.

We split the time interval0, N7] into a number of disjoint subintervals (partitions) of then® length. The
arrivals in the firstj partitions occur before the departures in thier 1) partition. Thus the number of arrivals
before a given point in time within thé¢j + 1) partition is bounded from below by the sum of the number of
arrivals in the firstj partitions. Such a method of counting is however suboptsitale there might be some extra
arrivals in the(j 4 1) partition before some points in time within the same pantitiTo control the impact of
suboptimality, the length of the partitions thus needs tahesen with some cafe.

Let w be the number of partitions of the intervil, N7|. Let I;; be thej " partition pertaining to the™ link
for all ¢ andj. We start off with lower bounding the number of packets/jn Let ¢;; be the number of packets
in I;;. The length of the partitiod,; is Nr/w. Thus,y;; is a binomial random variable with the expected value
¢ = pNr/w.

Hereafter, for the ease of exposition, let us dengt2 by i, for everyz € R. By applying the Chernoff bound,

one can show that the inequality
iy >r=(1-79")¢p

fails w.p. b.a.bé, so long asy* is chosen such thatis an integer, angd* goes to0 as Ny goes to infinity, where

(2 2\®

We focus on the set of all packets over tffelink in the active partitions: I;; is ‘active’ if i < j <w — L+ 4.

Such a partition is active in the sense that (i) there existsesother partition over the upper link so that all its

4 0n one hand, the length of the partitions needs to be suffigismall such that there is not a large number of arrivalsri partition with
respect to the total number of arrivals in all the partitiomkis should be the case because ignoring a subset of arfivaine partition should
not cause a significant difference in the number of arrivaffote each point in time within the same partition. On theeptiand, the partitions
need to be long enough such that the deviation of the numbarriofls from the expectation in one partition is negligitih comparison with

the expectation itself.



packets arrive before the departure of all the packets irutiterlying active partition, and (ii) there exists some
other partition over the lower link so that all its packetpale after the arrival of all the packets in the underlying
active partition.

Let wy denote the total number of active partitions. It is easy ® $@tw,r = L(w — L + 1). We selectr
packets in each active partition and ignore the rest. Thigateof selection fails if the number of packets in some
active partition is less than. Clearly, the failure occurs w.p. b.adoe¢.

We shall lower bound the number of dense packets in activiitipas. Before explaining the lower bounding
technique, let us first state two lemmas which will be usedubtver bound the rank of the transfer matrix at each
node (depending on whether the number of dense packetlaraivéhe node in a partition is larger or smaller than
the number of packet departures from the node in the samigiguart

For given integersy, r» and {r;}i<j<w (0 < r; < r), let T; ; be defined as followsT; ; is anr x r; dense
matrix overF, if 1 < j < i < w; or an arbitraryr x r; matrix overFy, otherwise (i.e., ifl <1i < j < w). Let
T = [T;jl1<ij<w, andn =37, i, 75

Lemma 7: Let T be defined as above. For every inteex v <n — 1,
Pr{r(T) <n—~}<u(l- 27”"'“) 9~y n—wrt(r—rmn) (u—1)

wherermax = max; rj, rmin = min; r;, andu = [(n — ) /rmin] -

Proof: Let 77 andv be defined as in the proof of Lemma 2. Let us defige= 0 for convenience. For a
given integerl < j < n —~, definer : > ;o 1 < j < > 5<;<, i Further, definermac: > o, i <
n—vy< ZOQSTWH 7; (0 < Tmax < w). By definition, Tmax < min{w,u — 1}. For every0 < 7 < 7max, define
87 =D o<icy Tir The ;! column of T’ has at leastw — 7)r i.u.d. entries, and hence the vectBiv has at least

(w —7)r i.u.d. entries. Thus]"v is all-zero w.p. b.a.b2= =37, . 277=J, noting thatr depends ory.



We rewrite the sum as:

S Y i

0<j<s1 s1<j<s2

cot Z QTmax" ] —

Srmax<J<n—v
E 2*j_|_27“*51 E 2*]'_'_
0<j<ry 0<j<ry

v QTMad S max Z 9=J <

0<j<n—7y—5Srmax

o2 Y 274

0<J <7max 0<J <7max
g 3T g
0<j<rmax

Z 2—j Z 27'/7‘—5,_/ <
0<j<rmax 0< 7/ <7max

Z 2—j Z 2(7‘—rmin)'r/ _
0<j<7rmax 0< 7" <Tmax
(1—27mme) o 2l

0<7" <Tmax

The SerieSZOST’STmax2(T_Tmin)‘r/ converges from below t0rmay + 1)2("—"mn)max if ¢ — 0 goes to infinity. Thus

the following is always true(l — 27"m) >, 20="m0)™ < (g 4 1)(1 — 27 me)2(r—Tmi)Tmac < gy(1 —
2~ rma)2(r=rmn)(u=1) This proves the lemma. ]

For given integersv, r and {r;}1<j<w (r < r;), let T; ; be defined as followsT; ; is anr x r; dense matrix
over o, if 1 < j <4 < w; or an arbitraryr x r; matrix overFq, otherwise (i.e., ifl < i < j < w). Let
T = [T} j]i<i,j<w, andn = wr.

Lemma 8: Let T" be defined as above. For every inte@ex v <n — 1,
Pr{r(T) <n—~}<u(l-27") 9~y Hn=wrmint (rmin—r)(u=1)

whereu = [(n —v)/r].

Proof: We start the proof by noting thaf has a smaller number of rows than columns, and the minimum
number of rows and columns gives an upper bound on the rankeofniatrix. Let7” be T' restricted to its last
n — v rows. For every0 < 7 < w, defines, = > ., ;. Thus, 7" is of size (n — ) x so. Suppose that
there exists a nonzero row vectoof lengthn — v whose entries are ovéh, and its first nonzero entry is thd",
and the row vectorT” is all-zero. There ar@”~7~7 such vectors. Let be the largest integer smaller thayv-.
The ;™ row of 7" has at least. i.u.d. entries, and hence the vectdf’ has at least, i.u.d. entries. ThusyT” is
all-zero w.p. b.a.b2=7 " Z1gjgn77 2-J=s=_ By definition,s, > (w — 7)rmin, and the preceding sum can thus be

upper bounded as follow$:, ., 278 < do1<j<n—m 27~ (w=")rmn_The latter sum can be rewritten itself



as:

Z 27j7wrmin+ Z 27j7(w—1)»,vmin+

0<j<r r<j<2r

o4 Z 2*j*(w*“+1)7”min —

(u=1)r<j<n—ry

9—Wrmin Z 9= 4 g~ (w=1)rmin—r Z 277 4

0<j<r 0<j<r
cee 27(w71)Tmin*(u*1)T Z 2,] <

0<j<n—y—(u—1)r

v 27 N ol <

0<j<m 0<7'<u—1
0<7r’'<u—1
The last sum is bounded from above by 2("m—")(v=1) "and this completes the proof. ]

For everyl <i < L, andl < j <w— L+ 1, the number of dense packets in the fifsictive partitions over
the i link can be lower bounded as follows: For evarg [ < j, suppose that the number of dense packets in the
first [ active partitions over théi — 1) link is already lower bounded. L&t be the transfer matrix at th&' node,
restricted to the successful packet transmissions witnénfitst j active partitions over thé" link (the number of
such packets in each partition is already lower bounded®nTit can be shown that includes a sub-matrif”
with a structure similar to that in Lemma 7 or the one in LemntaB/ applying the proper lemma, the rank of
the transfer matrix at thé" node, and consequently, by applying Lemma 1, the number méedpackets in the
first j active partitions over thé" link can be lower bounded.

Note that, because of its recursive nature, the above #igofiower bounds the number of dense packets in
the firstj active partitions over thé™ link as a function of the number of dense packets in the agaritions
pertaining to the first link. Further, the packets over thetflink are all dense (by the definition of the dense
packets), and hence by using the recursion, the followisglte can be derived.

Let D(Q{) be the number of dense packets in the firsictive partitions over the™ link. Let D,,(Q-Z) lower
bound D(Q?) such thatD(Q?) < D,(Q?) w.p. b.a.b.¢, given D(Q7) > D,(Q7), for everyl < s < i and
1 <7 <j, except(s,7) = (i,).. We definer;; in a recursive fashion as the largest non-negative integesfysing
rij < DP(Q'Z) - Z1§r<j Tir -

We construct a collection of dense packets atifhenode as follows: starting with an empty collection (at the
step zero), for every < j < w — L + 1, at the ;" step, we expose the packets in the active partitions over the
i link in order, one by one. We add a packet to the collectionnelier the packet is dense (with respect to the

current collection), until revealing;; new dense packets. The size of such a collection lower botimedaumber

5In the case of identical links, the transfer matrix at eacHenmcludes a sub-matrix similar to that in Lemma 7. Howeirerthe case of
non-identical links, depending on the traffic parametdrs, ttansfer matrix at a node might include a sub-matrix sinti that in Lemma 7 or
the one in Lemma 8.

6DP(Q{) is a “proper” lower bound orD(Qg) for the purpose of the analysis in this paper and hence thecgpb“p.”



of dense codes at th#' node, and in order to study the structure of the transferirmatrthis node, we consider
the packets in the subsets of the underlying collectionh esabset pertaining to one of the collection steps, and
ignore the rest of packets.
CIearIy,D(Q{) >rj,Vj:1<j<w-—L+1(sincer packets are selected in each partition). For any other
values ofi andj, D(Q-Z) is lower bounded as follows.
Lemma 9: For everyl < i < L,
D(Q}) > r —log(1/e) —logi — 1

fails w.p. b.a.b<.

Proof: Fix 1 < i < L. Let T be the transfer matrix at the starting node of tfidink. Let 7’ be T restricted
to the packets in the first active partition over #felink. For everyl < s < 4, supposeD(Q!) > D,(Q}), where
D,(QL) = r —log(1/e) — 1, andD(Q}) = D,(Q1) = r. Then, T’ includes anr x r; dense sub-matrik.Thus
by applying Lemma 7, for everg < v < 7, — 1, Pr{r(T") < r; — v} < u(l —2771)27vtn—rtr=—rjlu=1) —
(1 —27)277t"~" sinceu = [(ry —v)/r1] = 1. Takingy = log(1/€) + 1 —r + 1, it follows thatPr{r(7") <
r1 — v} < é. By applying Lemma 1D(Q}) < r —log(1/e) — 1 w.p. b.a.bé. Thus,D,(Q}) = r —log(1/e) — 1.
Taking a union bound over the firstlinks, D(Q}) < r —log(1/¢) — logi — 1 w.p. b.a.b. [ |

Lemma 10: Foreveryl <i<L,andl < j<w-—L+1,
D(Q)) >rj — Ly

fails w.p. b.a.b¢, so long aslog(wr/e) = o(r), whereL;; = j(1 + o(1))(log(ij/e) + 1) + log((j(1 + o(1)) +
1)/€) +log(ij) + 1, and theo(1) term is (log(ij/e) + 1)/r.

Proof: Fix 1 <i < L. For everyl < s <iandl <7 < j, except(s,7) = (i,7), SupposeD(Q7) > D,(Q7),
whereD,(Q7) = r7—7(14+0(1))(log(1/e)+1)—log((7(140(1))+1)/€e)—1, and theo(1) term is(log(1/€)+1)/r,
and D(Q!) > D,(QL), whereD,(Q!) = r —log(1/e) — 1. Let rmin = min, 7, and rmax = max, r.. Let
rr = Ti—1,., for everyl < 7 < j, andn = Dy {_1) = Zlgrgj r.. Let us defineT" as in the proof of
Lemma 9. LetT” be T restricted to the packets in the firsactive partitions over thé" link. Then,7” includes an
rj x n sub-matrix with a structure similar to the matfixas in Lemma 7. Thus by applying Lemma 7, for every
0<~y<n-—1,Pr{r(T) <n—~} < u(l — 27 "m)2=ytn=ritlr=—rmn)(u=1) whereu = [(n — v)/rmin].
It is not difficult to see that, by our method of constructinte tdense collection, it follows thatni, = 7.
Further by applying Lemma 91 = D,(Q}_;) = r — log(1/e) — 1. Thus,u < [rj/r] = [(1 + 0(1))j] <
(I14+0(1))j+1, sincer; = r(1 —o(1)), givenlog(wr/€) = o(r), where theo(1) term is (log(1/e) + 1)/r. Taking
vy=n—rj+(1+0(1))j(log(1/e)+1)+log(((1+0(1))j+1)/e)+ 1, it follows thatPr{r(T’) < n—~} < é. Now,
by applying Lemma 1D(Q{) <n—~vyWw.p.babé. Thus,Dp(QZ) = n — . Taking a union bound over the firgt
active partitions of the first links, D(Q?) < j — (14 0(1))j(log(ij/€) +1) —log(((1 4 0(1))j +1)/€) —log(ij) — 1
w.p. b.a.b.¢, where theo(1) term is (log(ij/e) + 1)/r. This completes the proof. [ |

"We often drop the subscriptin the notationr;; unless there is a danger of confusion.



The result of Lemma 10 lower bounds the number of dense paekdhe sink node as follows.

Lemma 11: The inequality

D(QL) = wre/L —wre/L\/(1/¢) log(wr /€)—
— (wr/L)log(wr /¢) — (wr/Ly) log*(wr /¢) —
—(wr /L) log(wr /€) — log(wr /€) -
—log(wr /L) —1 (2)
fails w.p. b.a.be, wherew ~ (pNTLQ/log(NTL/e))l/?’.

Proof: For the ease of exposition, let= wy/L. Lemma 10 gives a lower bound dn(Qy ). Thus, we can
write: D(Qr) > D(QY) > rv —v(1 +o(1)) (log(wr/€) + 1) —log((v(1 +0(1)))/€) —logwr — 1, where theo(1)
term is (log(wr/€)) /. This bound fails w.p. b.a.l&, given the success of the packet collection process. Rurthe
r = (1 —o(1))p, where theo(1) term is y/(1/¢) In(wr/€). Thus,D(Qr) > v — o(pv) — vlog(wr/e) — v —
o(vlog(wr/e)) — o(v) — log(v/e) — logwr — 1 fails w.p. b.a.be, whereo(pv) ~ O(pvy/(1/¢)log(wr/€)), and
o(v) ~ (v/¢)log(wr/e). By considering the dominant terms, the right-hand sidehef last inequality can be

written as
v — O(vy/plog(wr/€)) — O(vlog(wr/€)). 3)

We now replacep andv by pN/w andw (v ~ w), respectively, and rewrite the above as

pNt — O(pNrL/w) —

O(\/pNTw log(wL/e)) — O(wlog(wL/e)). 4)

We would likeD(Qr) > (1 —o(1))pNr. EachO(.) term needs to be(pNr). When considering the third term, it
is easy to show that we needlog(wL/e) = o(pN7). When this condition holds, the second term dominates the

third one. We need to specifiy with some care in order to minimize

O(pNrL/w) + O(v/pNrwlog(wL/e)). (5)
We definew as
3 pNTL2
log(NpL/e€)
This choice ofw ensures that thé(.) terms areo(pNr). [ |

Let n be equal to the right-hand side of the inequality (2). Ths,fails to include am x k dense sub-matrix
w.p. b.a.be. By applying Lemma 6, the probability dfrank Q1) < k} is b.a.b., so long ask < ny — log(1/e).
We replacee with ¢ everywhere. Then, a dense code fails to trangmitessage vectors w.p. b.ad).so long as
k<np—log(l/e) — 1.

In the asymptotic setting a& goes to infinity,n, can be written as

pNr — (14 0(1))(pNrL/w + \/pNrwlog(wL/e) + wlog(wL/e)).



We rewrite the last inequality as

k < pNy — (1 +0(1))(pNrL/w + /pNrwlog(wL/e) + wlog(wL/e)) — log(1/e) — 1.

Let kmax be the largest integdr satisfying this inequality. Thugimax ~ pNt, asny ~ pNr andlog(1/¢) = o(nr).
The following result can be shown by replacidg- with & /p in the right-hand side of the latter inequality.
Theorem 2: Thee-constrained coding delay of a dense code over a line netaforkidentical links with regular

traffics and Bernoulli losses with paramejers b.a.b.

% <k+(1+0(1)) <%+ k (wlog%) +wlongL>>

wherew ~ (kLQ/log(kL/pe))1/3, and theo(1) term goes td) ask goes to infinity?

It is worth noting that Theorem 1 is not a special case of Té@o2 withp = 1.° In fact, Theorem 1 provides
a tighter bound compared to the result of Theorem 2 with 1.

We now study the average coding delay of dense codes witlecesp the traffics with deterministic regular
transmission opportunities and Bernoulli losses. It sticag clear that, in this case, the deviation of the number

of packets per partition should not be taken into accounusThby replacing- with ¢ in Lemmas 9 and 10, and

redefiningw as/pNrL/log(NrL/¢), we have the following resulf
Theorem 3: The e-constrained average coding delay of a dense code over amesimilar to Theorem 2 is

b.a.b.
% <k+ (1+o0(1)) <% + wlog w_€L>>
wherew ~ (kL/log(kL/pe))'/>.
Proof: The proof follows the same line as that of the proof of Theo&raxcept that needs to be replaced
with ¢ in the proof of Lemma 11. Thus, the ter@(v\/¢log(wr/e)) in (3) andO(y/pNrwlog(wL/e)) in (4)

will disappear. Then, it should not be hard to see that, is tsise,w needs to be chosen in order to minimize

O(pNrL/w) + O(wlog(wL/€)), instead of (5). This can be done by redefinings
pNTL -
log(NpL/e)

8Similarly, in the following, theo(1) term is defined with respect to.

9This arises from the fact that the latter result is based enctimdition thaty* goes to0 (i.e., N7 /w has to go to infinity) asV goes to
infinity. That is, the length of the partitions needs to gortbinity with N1. However, thinking of partitions in the proof of the formessult,
it can be seen that each partition has length one.

10Note that the latter choice af is much larger than that in Lemma 11. This is because, in ti® cthere is no gap between the lower
bound on the number of packet transmissions in each partitial the expectation, and hence, the partitions do not mekd sufficiently long
(see Footnote 4).



B. Non-ldentical Links

The preceding results regarding the identical links imratadly serve as upper bounds for the case of non-identical
links with parametergp; }1<i<r, by replacingp with min;<,<;, p;. The results however might not be very tight,
e.g., for the case where, for some< i < L, p; is much larger thap. Thus the values and the ordering {of; }
needs to be taken into consideration to derive tighter bsufd particular, for everyt < i < L, depending on
whether thei® or the (i + 1) link has a larger parameter, Lemma 7 or 8 is useful to lowenddhe rank of the
transfer matrix at thé" node. The rest of the analysis remains the same.

In the following, however, we state the main results for acidecase of non-identical links, where there is a
single worst link (a unique link with the smallest succesgapeeter).

Theorem 4: Consider a sequence of parametéps}i<;<; with a unique minimunmp = min; p;. Then, thee-
constrained coding delay of a dense code over a line netwbik links with deterministic regular traffics and

Bernoulli losses with non-identical parametéys} is b.a.b.

1 kL wL
; (k—l—(l-i—o(l)) (;—i—“k (wlogT)>>

wherew ~ (kL?/ 1og(kL/pe))1/3.

Theorem 5. The e-constrained average coding delay of a dense code over arkesimilar to Theorem 4 is

b.a.b.
% (k +(1+0(1)) (%L))

wherew ~ k/ (plog(kL/pe) f(k)) and f (k) goes to infinity arbitrarily slow, a& goes to infinity.

V. POISSONTRAFFIC: LOSSLESS ORBERNOULLI LOSSES

In the case of the lossless Poisson traffic with paramigtéhe number of packets in each partition of length
Nr/w is a Poisson random variable with the expected valdg-/w. By applying the Chernoff bound to the
Poisson random variable (see [6, Theorem A.1.15]), the mesnlts in Section IV are applicable to this network
scenario, where is replaced by\.

In the case of Bernoulli losses over a Poisson traffic wittapeatersy and A, respectively, it can be shown that
the points in time at which the arrivals/departures occllofoa Poisson process with parameter, and hence the
number of packets in each partition has a Poisson distobutiith the expected valugp Ny /w. Thus the main

results in Section IV apply by replacingwith Ap.

VI. COMPARISON WITH THE EXISTING LITERATURE

The upper bounds on theconstrained coding delay and average coding delay, dkriveéhis paper, are valid
for any arbitrary choice of. However, in the following, to compare our results with taag [4] and [5], we focus
on the case wheregoes to0 polynomially fast, as: goes to infinity. For such a choice efthe upper bounds on

the coding delay and the average coding delay hold W.ps % goes to infinity.



A. ldentical Links

In [4], the average coding delay of dense codes over the mk$wof length2 with deterministic regular
transmissions and Bernoulli losses with parametés shown to be upper bounded k%\(k + O(Vklogk)). The
result of Theorem 3 indicates that the average coding delajense codes over the networks of lendthwith
similar traffics as above is upper bounded%p@/c + (1 +0(1))(\/kLlog(kL))). This is consistent with the result
of [4], although the bound presented here provides moralsleta

The result of Theorem 2 suggests that the coding delay ofedemdes over network scenarios as above is upper
bounded by%(lﬁ— (14 0(1))(k*Llog(kL))'/?). One should note that there has been no result on the codiag de
of dense codes over identical links in the existing literatdn fact, this was posed as an open problem in [5]. It is
also noteworthy that unlike the analysis of [5], our analydoes not rely on the existence of a single worst link,
and hence is applicable to the case of identical links.

By combining Theorems 2 and 3, it can be seen that the codilay deight be much larger than the average
coding delay. This highlights the fact that the analysisha average coding delay does not provide a complete

picture of the speed of convergence of dense codes to theuhicapacity of line networks with identical links.

B. Non-ldentical Links

In [5], the average coding delay of dense codes over the mk$wof length L with deterministic regular
transmission opportunities and Bernoulli losses with peaters{p; }1<;<z was upper bounded b§'+ Z#m ﬁ,
wherep = min,; p; is the unique minimum and» = argmin; p;. This result was derived under the unrealistic
assumption that all the coded packets are innovative.

Related to this result, Theorem 5 indicates that the avectadig delay of dense codes over line networks with
non-identical links is upper bounded k%y(k + (1 +o0(1))(plog(kL)f(k))), where f(k) goes to infinity arbitrarily
slow, ask goes to infinity. It is important to note that Theorem 5 does mave the limiting assumption of the
result of [5] regarding the innovation of all the packetseTiound of Theorem 5 is larger than that of [5], which is
expected, since the former, unlike the latter, is deriveseaon the realistic assumption of operating over a finite
field, which has the consequence that not all the coded maeketinnovative.

The result of Theorem 4 indicates that the coding delay iuppunded byt (k + (1+o(1))(k*Llog(kL))'/?).
This is while, in [5], the coding delay is upper bounded%a(yc + O(K3/*%)). This bound is looser than the bound
in Theorem 4, although it is derived under the same limitisguaption as the one used in [5] for the average
coding delay (i.e., all coded packets being innovativerhSan assumption makes the bound appear smaller than
what it would be at the absence of the assumption. This detnrades the strength of the bounding technique used
in this work.

Similar to the case of identical links, in the case of nomittl links, by combining Theorems 4 and 5, it can
be seen that the coding delay might be much larger than theageeoding delay. In fact, the difference might be

even larger than that of the identical links.
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