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Abstract—THIS PAPER IS ELIGIBLE FOR THE STUDENT  then also influenced by the choice of power allocation byothe
PAPER AWARD. The behavior of rational and selfish play- players on other interference channels to maintain an tvera
ers (receivers) over a multiple-input multiple-output Gawssian  gegjred rate and hence is a game with coupled constraints.

broadcast channel is investigated using the framework of no- For the G ian broadcast ch | the choi f di
cooperative game theory. In contrast to the game-theoretimodel or the aussian broadcast channel, the choice ot precoding

of the Gaussian multiple access channel where the set of fidsle ~ COvariance matrix for one of the receivers restricts theiagho
actions for each player is independent of other players’ aidns, of precoding matrices for all other receivers, due to thatjoi
the strategies of the players in thebroadcast channeare mutually  power or covariance constraints. Interaction of playerthat
coupled, usually by asum poweror joint covariance constraint, |aye| of feasible sets makes the problem much harder than

and hence cannot be treated using traditional Nash equilibum tandard fi Th bl f det .
solution concepts. To characterize the strategic behavioof —St@ndard non-cooperative games. |he problem or detergunin

receivers connected to a single transmitter, this paper magls the equilibrium points of games with coupled constraints is
the broadcast channel as a generalized Nash equilibrium pidem  called the generalized Nash equilibrium problem (GNEP) [1]
with coupled constraints. The concept of normalized equibrium  [7], [9] and the points themselves are called generalizeshNa
(NOE) is used to characterize the equilibrium points and the equilibria (GNE)
existence and uniqueness of the NoE are proven for key scernas. ’
From a game theoretic perspective, the broadcast channel
has received very little attention as compared to othermblan
_ R _ such as the MAC. A discrete memoryless broadcast channel
We consider a multiple-input multiple-output (MIMO)with 2 users and a resource manager was considered in
Gaussiarbroadcast channel(GBC) in which a single trans- [10] and impact of the information available to the resource
mitter is assigned to send independent messages to sexerafrianager in modifying utility of each user is studied.
cevers .SUbJeCt to asum power constraint or a10|_nt covasan . main contributions of this paper are the following: (1)
constraintOur goal is to introduce a game-theoretic model fO(N . . . . .
) ) . . e model the interaction between selfish receivers gettatg d
signaling over the GBC to model strategic non-cooperatere b . : . ) .
. ) . over a GBC, with the transmitter employing dirty paper codin
havior among receivers, who are the players in the ga®ueh

. . . or linear precoding, as a GNEP. The transmitter computes the
a model allows us to predict the operating point of a broadcas P 9 P

channel, é.g.finding the equilibrium precoding matrices) an(grecoding matrix for the message intended for each receiver
enables,tﬁg,develc? mentqof distribl?ted al o%ithms to a':mie nd the precoding matrices are constrained by a common joint

) ) >1op 9 constraint. (2) We first show that there exists at least on&GN
this operating point.

. . . .for the broadcast channel. In fact, it is well know that under
In a typical non-cooperative game, the choice of an actign.

by a player affects the utility obtained bgvery player mild conditions there may exist infinitely many GNEs for a
but does not change the set of available actions for othay ! GNEPI7],[8]. Games in which each player has the same

: ) . coupled constraints, such as in the broadcast channel game,
players. Several game theoretic models for signaling over

. ) I belong to a special class whose GNEs can be characterized
wireless channels adopt this framework for characteritiey . : ; : :
. . . . ith weight vectors. The GNEs of this special class, first
interaction between rational or selfish nodes (see [1], [ fined by Roseri[7], are called normalized equilibrium (NoE
for a detailed survey). For example, the Gaussian multiple y ’ 9

access channel (MAC) has been studied extensively under I%?mts. (3) Using Rosen’s methodology, we show that forgver

. . easible weight vector there exists at least one NoE. (4) For
framework [3]-[6]. In practice, we encounter several sciesa . :
) . ! . . the special case of the aligned and degraded broadcastathann
in which the choice of actions of one player may modify th

. . , we first derive a sufficient condition for the uniqueses
set of fea_3|ble choices for every chgr_playEr [Ul [8. F of NoEs as was done i ][5] for the multi-antenna Gaussian
example, in[[9], the problem of maintaining a minimum rat

over parallel Gaussian interference channels subject tora SR/IAC (see also[[F]) and then (5) determine the set of weight

power constraint for each user is considered. The choicevoefm)rs for which the NOE_ s unlqge.
power allocation of a player for a given interference chaime The rest of the paper is organized as follows. Sedcfion II
briefly introduces the model for the broadcast channel and
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ONR N00014-09-1-0700, NSF CNS 0832186, NSF CCF-1117896nsi  USeful for the rest of the paper. Sectjon Il discuss theterize

CNS-082175 and unigueness of GNEs and Secfioh IV concludes this paper.
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[1. SIGNAL MODEL AND PRELIMINARIES on the controlling variables and will be called thaility

In this section, we describe the signal model and staignction of thek!" player for the rest of this paper. Given the

several game theoretic concepts used throughout this papétrategiesy . picked by all other players, the set of feasible
actions of thek!” player determined by the joint constraints

is given by A(Q_j) and this is thdeasible sebr thestrategy
) ) . ) spaceof the k" player. We emphasize that the s&t(Q_)
Consider a general multiuser multi-input multi-outpufs  function of the strategies of the other players. Eachepla

(MIMO) system with one transmitter anét’ receivers. We gjven the strategies of all other players, picks a stratbgy t
first define several classes of broadcast channels which 8&&es the maximization problem

simplified models of the GBC. We use the terminology from _

[17] herein. The transmitted signal is denotedihya vector of max U (Qr, @—1) subject toQ, € Ax(Q-k).  (5)
lengtht, wheret is the number of antennas at the transmitter ’ ] )
(TX). This TX signal is the sum of independent each drawn L€t Bi(Q@-1) denote the set of all the solutions for this
from a Gaussian codebook and intended for #tkereceiver Maximization problem. The GNEP is the problem of finding

A. Broadcast channel model

(RX). Q7. such that
K
o= Z% 2, ~ N(0,Q,). L Q; eB(Q*) forall k=1,2,..., K. (6)
i=1 Define B(Q) = xX B(Q_;). In other words, the GNEP is to
The signal at the® RX can be expressed as find a fixed point@* such thatQ* € B(Q*) and Q" solves

the maximization in[{5). Such a point is calledyaneralized
Nash equilibrium(GNE) or a solution to the GNEP. A point
Q* = (Q3,...,Q%) is therefore an equilibrium if no player

h is th h | qai it h can increase his objective function by unilaterally chaggi
where H; is the r; x t channel gain matrix from the TX O to any other feasible point.

. h . .
to the¢"* RX andr; is the number of antennas at thé 2) Discussion: A GNEP usually has multiple or even

RX. Withqut loss 01_‘ generality, we assume that transmitt?r‘ifinitely many solutions[[7]. A special class of GNEPs,
signaling is constrained by a covariance masix- 0 such .5ieq GNEP with shared common constraints was defined by
that K Rosenl|[7]. This class is characterized by dependent camistra
Elza™) = ZQi <S. (3) that are common to all the players and our paper herein
=1 considers a problem belonging to this class. Rosen proposed
a solution concept called the normalized equilibrium (N&ai)
characterize GNEP belonging to this class. The NoE is a GNE
Tr (E[ﬁT]) < Py, (@) fo_r which the Lagrange multipliers (shadow prices) asdedia
with the shared constraints are equal among all players up
where P,,, is the maximum transmit sum power for all theo constant factors, and its uniqueness is guaranteed under
antennas. For simplicity of illustration, we only considbe appropriate condition$ [7].
covariance matrix constraint in this paper; all the results GNEs are not self-enforceable like a Nash equilibrium
derived are also valid for sum power constraint as well. Was it is not feasible to assume that each player picks his
now define a special class of broadcast channels which ateategy independently and the selected strategies ys#tisf
simplified versions of the general GBC[11]. coupled constraints. However, GNEs have significant explan
1) AMBC: A MIMO BC is calledalignedif the number of tory power and capture the characteristics of several redbw
transmit antennas is equal to the number of antennas at epabblems as will be demonstrated later.
of the receiverst(= r; = ro = ... = rx) and the channel
gain matrices are all identity matricesl{ = ;). C. Concave games, existence and uniqueness of normalized
2) ADBC: A MIMO BC is called alignedand degradedf equilibrium points
the BC is aligned and the covariances of the Gaussian noisgxfinition 1. A game is said to beoncaveif the set of allowed
the receiver are ordered such tilak N1 < N> < ... X Nk, strategies of all the players is a convex set, the utilitycfions
where A < B implies thatB — A is a positive semi-definite are concave in each players control variables and contirsuou
matrix. in the control variables of all other players.

K
1=1

The scenario with a sum power constraire,,can be similarly
modeled as

. I Let us denote byF the set of jointly feasible strategies of

B. Gene.ra.h.zed Nash Equilibrium Problen.15 the players, and byF; the projection ofF on the space from
1) Definition: Formally, a GNEP consists of" players which the control variables for th&" player come from. Then

with each player controlling the variablé€; (Q are positive r C 7, x F,... x Fx, with equality satisfied when the control

semi-definite covariance matrices in our problem). Eachigsla variables do not have any joint constraints. Let us define the
has an objective functiony,, which depends o), as well fynction

as the controlling variables of all other players denoted by

Q—-r. We denote the utility function byvy(Qr,@—x) or PO.r) =Y ru; Qi1 P Qi 7
Uk(Q)7 Q _ (Q17Q27___7QK) to emphasize the dependence f( 7Qa_) ; (Qla aQ 1, 7Q +1, 7QK>? ( )



for a fixed vectorr = (ry,7s,...,7x) € RX. The K-tuple is the covariance matrix); = of the signalz; intended for
Q* = (Q7,...,Q3) is a normalized equilibrium point i€)* that receivetRX;. All these players are constrained by a joint

satisfies the equivalent fixed point condition covariance constraint given @fil Q; < S. Thus, it is clear
. P O* 8 that the dependent constraints are common to each player and
Q" = argmax f(P, Q" 1), ) hence this game belongs to the special class of GNEPs which

where the maximization is carried out over the convex/et Can be characterized by NoE points. _

For concave games, the existence of a normalized equilib-Ve consider both linear precoding [12] and dirty paper
rium point is guaranteed by Theorem 3 ifi [7] for all vector§eding (DPC)[[11] based encoding schemes at the TX. For the
7 in the positive orthant. Note that for any given value 0I_pPC, we f';\lso assume a fixed encoding order at t_he TX without
r, there could be multiple normalized equilibrium points. wime-sharing between orders. Each player obtains a raee (th

now state the conditions for the uniqueness of the NoEs. 9ame utility) based on the choice of actions of all other ptay
1) Uniqueness of normalized equilibrium pointset and the TX. For a general GBC, if the data streams are linearly

precoded at the TX with covariance matria@s, the utility
function (rate achievable) of the player can be written as

K
o(Q,r) = ;m}i(Qi, Q-i), i >0, ) [2]:

be a weighted sum of the utilities of each player, whére _ |N; + Hi(ZiIi1 Qi) H!|
: : vk (Qr, Q) = log 7 |- (13)
are the control variables for all the players ands a vector INi + Hi(3, 4, Qi) H[ |

containing a set of weights.
g ¢ Similarly, if the data streams are coded using DPC with

Definition 2. The function encoding orde(K, K — 1, ..., 1), then the utility function of
V101 (Q1, Q1) the k" player can be written a§ [11]:
r2Vav2(Q2, Q—2) IN; + H;(XF ., Q) HE|
9(Q,r) = : ; (10) ok (Qry Q) =log | ————=="—L~ | . (14)
; INi+ Hi (3005 Qi) HY|

\Y ,Q— . -
ri Vv (@, Q-r) Itis easy to see that the utilities of th€" player,vy.(Qx, Q1)
where V; is the derivative w.r.t theé" players’control vari- in (I3) and [IB), are concave i), and continuous in the
ables is called thepseudo-gradiendf o(Q, r). control variables of all the other players.

Definition 3. Vector valued strategies[ [7]: The function
o(z,r) is calleddiagonally strictly concavgDSC) in vector

. . ) B. Existence of Normalized Equilibrium Points
valued strategies for € F and a fixedr € R¥ if for every .

2V, 2! € F, we have Proposition 1. The broadcast channel game with linear pre-
1 O\T s 0 T 1 coding or DPC is a concave game and hence for each weight
(@" —27) g(z”,r) + (&" —a7) g(z’,r) > 0. (11)  vector in the positive orthant — (r1,72,....,7x) € RE, there

From Theorem 4 in[[7], we know that for vector valuedXists at least one normalized equilibrium point.
strategies, ifo(z,r) is DSC for everyr € R, whereR is a
convex subset of the positive orthant, then for eaechR the
NOE is unique.

Proof: Each players’ control variable in the broadcast
channel game is the signaling covariance maif}x By
definition Q; = 0. In addition, the sum power constraint or

Definition 4. Matrix valued strategies[]5]: The function the joint covariance constraint ensure that the set of ljoint
7(Q,r) is called DSC in matrix valued strategies fgrc 7 feasible strategies is compact and convex. FHe players’

and a fixedr € RX if for everyQ®, Q' € F, we have utility is concave inQ;, and is continuous i) _; and hence
the broadcast channel game is a concave game. From Theorem

Tr [(Ql - QO)TQ(QOaZ) + (QO - Ql)Tg(Qlaf)] >0. (12) 3 0f [7], we know that a concave game has at least one NoE

. . . i K
We also show that if, for matrix valued strategies, the DS(T €very weight vector € RZ: . =
condition is satisfied for eveny € R, then the NoOE is unique
for that R. . . _ .
Le C. Uniqueness of Normalized Equilibrium Points

11l. THE BROADCAST CHANNEL AS A GENERALIZED We now derive the condition for the uniqueness of the
NASH EQUILIBRIUM PROBLEM equilibrium points. We start by assuming that for a given

r e Rﬁ there exist multiple equilibrium points and then

A. Model of the game : - . )
. . _arrive at a contradiction which proves the uniqueness.
As mentioned previously, the broadcast channel has a single

TX sending data to several RXs over the wireless channel. TREPPOSition 2. The sufficient condition for the uniqueness of
receivers are the players of this game and it can be assunt@.normallzed Nash equilibrium for a given weight vector
that a fictitious agent of each RX is located at the TX plays af®l 9Iven as

the game on behalf of the RX. We assume Gaussian codebooks { N AT (A 2 AN (A

are used for communication and each RX’s control variable Tr(Q-0Q) 9(Qr) +(Qi — Qi)g(Q,r)| > 0. (15)



Proof: Let Q = (Ql,QQ,...,QK) and Q = Il If for the broadcast channel game, we have that 0 for

0.0 0O be two K-tuples of covariance matricesSOMer then we have arrived at a contradiction and hence there
1, 2y eeny K =

. . e . cannot exist multiple NoE for that. For all suchr, o > 0 is
which are normalized equilibria to the game characterized

h oh K ; h e B sufficient condition for the uniqueness of the NoE. W
the weight vectorr. We know from ®) t atf(@Q.Q.r) = Note that we have derived the sufficient condition for

maxper f(P,Q,r) and f(Q,Q,r) = maxper f(P,Q,1). uniqueness of the NoE for the broadcast channel game with
Writing the .K.ar.ush.-Kuhn-Tucker (KKT) conditions [13] forjoint covariance constraints. We state without proof thnt t
the two equilibria yields: DSC condition with matrix valued strategies holds for a more
(@) Q;, Q;=0,i=1,2..K general scenarios (for example, sum power or per-antenna
(b) Zfil Q; <S andZiK: Q; < S. power constraint or other common constraints) and is not
(c) Tr ini) — 0 and Tr(ﬁi );) = 0. restricted to the broadcast channel problem (sée [7] for a
- K~ discussion on how the DSC condition with vector valued
(d) Tr(D(2is @i —S 0. strategies holds for concave games in general).
(e) Tr(D Zf; Q. —S 0. We now g:onsid(_er special cases fOIf the .broadcast channel
0 Tivivi(Q) i, -D=0 and determine which values efresult in unique NoEs. We
@ r:Vivi(Q) + Li — D =0.

first state two trace inequalities that will be used to dethe
Now multiplying (f) and (g) with(Q; — Q) and (Q; — Q)

unigueness results.
respectively, summing onhand taking the trace we get

tive semi-definite matriced:, A, ..., Ax and By, B», ..., Bg
= K k -1 k -1
K Tr Z(Ak —Bk) (Z Bl> — (ZA[)
=1 =1
Note that the set of inequalities may not be the tightest

Lemma 1. [14] For any positive integef and a set of posi-
K . L such that4, = 0 and B; > 0, we have that
0=> Tr [(Qi = Qi)(riVivi(Q) + L — D)}
> 0.
S — ONr Vo (O) 4+ L — I k=1 }
+ 3T [(@i = Q) Van(@Q) + Li - D) .
=1
K
= ZTr [(Qi = Qi)riVivi(Q) + (@i — Qi)”vivi(@} trace inequalities. For example, fé¢ = 2 and any positive
real numbeny, it has been shown in_[15] that

K
+Y T [(Qi —Qi)(Li = D)+ (Qi — Qi) (Li — f))} Tr[(Ay — B1)(B; ' — A7)
i=1 —1 —1
+4(Ay — Bo) {(wBy + B2) ™" — (wA; + As) ™" }] > 0.
=a+pj (16) { } (20)
Re-arranging and evaluating the second term, Clearly, there is much room for deriving generalizations of

such inequalities and such generalizations will improve th
characterization of the unique NoEs. We restrict our aiti@nt
to the above known inequalities in this paper.

K

p=Tr lZ(Qz - Qi) {(D —Li)— (D - sz)}

i=1

K
91 [Z(Qif) —QiD+QiL; — Q;D + Q;L; + QiD)] D. Uniqueness results for normalized Nash equilibrium soin
=1 Proposition 3. For the aligned and degraded broadcast
ZQJ) n ZQJ) channel (ADBC) with dlrty paper coding at _the transm|t_ter
- - and interference canceling receivers, a unique normalized
equilibrium point exists fory > ro, > ... > rg > 0.

I Tr[sD + D] - Tr

+T0 > (QiLi + QiLy) Proof: For the ADBC, the utility obtained by thé"
i receiver is given by [11]
(a) ~ . 0\ =~
>Tr{{S=> Q| D|+Tr|(S=> Qi|D IS8 Qi+ Ny
3 S Vk(Qr, Q—k) =log | —=1=5——| . (21)
(b) |Zi:1 Qi+ Nk|
> 0. (17)  For this utility function we now show thatv > 0 and

We have shown that > 0 and hence for + 3 = 0 we need thus determine the unique NoEs. L&:,Q», ..., Qx) and
thata < 0. Now (Q1,Q2,...,Qk) be any two tuples of covariance matrices
- which satisfy the covariance constraift’ , Q; < S and
Zfil Q; =< S. Substituting the utility obtained when using
the two sets of covariances in the DSC condition, we get

K
o= Z Tr [(Qz —Qi)riVivi(Q) + (Qi — Qz)rlvzvz(Q)}
=T[Q-Q"9Qn+Qi-Q@r]. @y [

This condition is exactly the DSC condition defined in Sattio

K
> re(Qx — Q) {kak(Q) - Vk”k(@)}} (22)

k=1



K R - L. IV. CONCLUSIONS
=TF[ZM(Q1@ _Qk){(Nk +> Q) .
k=1

— = Strategic behavior among rational non-cooperative recsiv
k in a Gaussian broadcast channel has not been studied so far in
— (N + Z Qi)l}] literature. In this paper, we presented a game theoreticemod
i—1 for the general Gaussian broadcast channel and showed that i

K—1 belongs to the special class of generalized Nash equitibriu
= Z (rn = rng1)Tn + re Tk, (23) problems with common dependent constraints. We showed the
n=1 existence of the normalized equilibrium points, the solusiof
where the ternf/,, can be expressed as the GNEP with coupled constraints, for the Gaussian braadca

. . . channel with dirty paper coding and linear precoding strate
A ~ 5\ —1 A N—1 gies. In general, there exist multiple equilibrium points f
TYLZ_;(Qk a Qk){(Nk * ; Q)7 — (Ve + ; @) } " a GNEP. We then derived a sufficient condition to determine
(24) the unique normalized equilibrium points and characteirthe
It is now sufficient to show thaf,, > 0. Notice that the uniqueness of these points for the special case of an aligned
structure of 7,, closely resembles the inequality i {19)and degraded broadcast channel.
Choose the quantitiesl; = N1 + Q1, B1 = N1 + Q1

A;i = Ny = Ni-1 +Q; and B; = N; — Ni—1 + Q. By REFERENCES
definition, sinceNV; is a positive definite matrix an@1, Q1 1] 6. Scutari, D. P. Palomar, F. Facchinei, and J. S. Pangnvex
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the transmitter and interference canceling receivers, aue (9 J--S. Pang, G. Scutari, F. Facchinei, and C. Wang, “iisted power
allocation with rate constraints in gaussian parallel rietence chan-
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inequality for positive semi-defintie matricesThe Australian Journal

: : of Mathematical Analysis and Applicatigngol. 7, no. 2, 2011.
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Uniqueness of the NoEs ensures that each there existS a Belmega, Lasaulce and Debbafifie Australian Journal of Mathemat-
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simplifies the development of algorithms to compute NoEs. We

also note that the proof of uniqueness makes explicit use of

the degradedness of the broadcast channel and hence cannot

be directly extended to the AMBC and the general GBC.

Characterizing the uniqueness of the NoEs for the AMBC and

the GBC and computation of these equilibiia [9] is currently

being investigated .



	I Introduction
	II Signal Model and Preliminaries
	II-A Broadcast channel model
	II-A1 AMBC
	II-A2 ADBC

	II-B Generalized Nash Equilibrium Problems
	II-B1 Definition
	II-B2 Discussion

	II-C Concave games, existence and uniqueness of normalized equilibrium points
	II-C1 Uniqueness of normalized equilibrium points


	III The Broadcast Channel as a Generalized Nash Equilibrium Problem
	III-A Model of the game
	III-B Existence of Normalized Equilibrium Points
	III-C Uniqueness of Normalized Equilibrium Points
	III-D Uniqueness results for normalized Nash equilibrium points
	III-E Discussion

	IV Conclusions
	References

