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Abstract—THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD. The behavior of rational and selfish play-
ers (receivers) over a multiple-input multiple-output Gaussian
broadcast channel is investigated using the framework of non-
cooperative game theory. In contrast to the game-theoreticmodel
of the Gaussian multiple access channel where the set of feasible
actions for each player is independent of other players’ actions,
the strategies of the players in thebroadcast channelare mutually
coupled, usually by asum poweror joint covariance constraint,
and hence cannot be treated using traditional Nash equilibrium
solution concepts. To characterize the strategic behaviorof
receivers connected to a single transmitter, this paper models
the broadcast channel as a generalized Nash equilibrium problem
with coupled constraints. The concept of normalized equilibrium
(NoE) is used to characterize the equilibrium points and the
existence and uniqueness of the NoE are proven for key scenarios.

I. I NTRODUCTION

We consider a multiple-input multiple-output (MIMO)
Gaussianbroadcast channel(GBC) in which a single trans-
mitter is assigned to send independent messages to several re-
ceivers subject to a sum power constraint or a joint covariance
constraint.Our goal is to introduce a game-theoretic model for
signaling over the GBC to model strategic non-cooperative be-
havior among receivers, who are the players in the game. Such
a model allows us to predict the operating point of a broadcast
channel, (e.g.,finding the equilibrium precoding matrices), and
enables the development of distributed algorithms to achieve
this operating point.

In a typical non-cooperative game, the choice of an action
by a player affects the utility obtained byevery player,
but does not change the set of available actions for other
players. Several game theoretic models for signaling over
wireless channels adopt this framework for characterizingthe
interaction between rational or selfish nodes (see [1], [2]
for a detailed survey). For example, the Gaussian multiple
access channel (MAC) has been studied extensively under this
framework [3]–[6]. In practice, we encounter several scenarios
in which the choice of actions of one player may modify the
set of feasible choices for every other player [7], [8]. For
example, in [9], the problem of maintaining a minimum rate
over parallel Gaussian interference channels subject to a sum
power constraint for each user is considered. The choice of
power allocation of a player for a given interference channel is
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then also influenced by the choice of power allocation by other
players on other interference channels to maintain an overall
desired rate and hence is a game with coupled constraints.
For the Gaussian broadcast channel, the choice of precoding
covariance matrix for one of the receivers restricts the choice
of precoding matrices for all other receivers, due to the joint
power or covariance constraints. Interaction of players atthe
level of feasible sets makes the problem much harder than
standard non-cooperative games. The problem of determining
the equilibrium points of games with coupled constraints is
called the generalized Nash equilibrium problem (GNEP) [1],
[7], [9] and the points themselves are called generalized Nash
equilibria (GNE).

From a game theoretic perspective, the broadcast channel
has received very little attention as compared to other channels
such as the MAC. A discrete memoryless broadcast channel
with 2 users and a resource manager was considered in
[10] and impact of the information available to the resource
manager in modifying utility of each user is studied.

The main contributions of this paper are the following: (1)
We model the interaction between selfish receivers getting data
over a GBC, with the transmitter employing dirty paper coding
or linear precoding, as a GNEP. The transmitter computes the
precoding matrix for the message intended for each receiver
and the precoding matrices are constrained by a common joint
constraint. (2) We first show that there exists at least one GNE
for the broadcast channel. In fact, it is well know that under
mild conditions there may exist infinitely many GNEs for a
given GNEP [7], [8]. Games in which each player has the same
coupled constraints, such as in the broadcast channel game,
belong to a special class whose GNEs can be characterized
with weight vectors. The GNEs of this special class, first
defined by Rosen [7], are called normalized equilibrium (NoE)
points. (3) Using Rosen’s methodology, we show that for every
feasible weight vector there exists at least one NoE. (4) For
the special case of the aligned and degraded broadcast channel
[11], we first derive a sufficient condition for the uniqueness
of NoEs as was done in [5] for the multi-antenna Gaussian
MAC (see also [7]) and then (5) determine the set of weight
vectors for which the NoE is unique.

The rest of the paper is organized as follows. Section II
briefly introduces the model for the broadcast channel and
presents several game theoretic definitions and preliminaries
useful for the rest of the paper. Section III discuss the existence
and uniqueness of GNEs and Section IV concludes this paper.
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II. SIGNAL MODEL AND PRELIMINARIES

In this section, we describe the signal model and state
several game theoretic concepts used throughout this paper.

A. Broadcast channel model

Consider a general multiuser multi-input multi-output
(MIMO) system with one transmitter andK receivers. We
first define several classes of broadcast channels which are
simplified models of the GBC. We use the terminology from
[11] herein. The transmitted signal is denoted byx, a vector of
lengtht, wheret is the number of antennas at the transmitter
(TX). This TX signal is the sum of independentxi, each drawn
from a Gaussian codebook and intended for theith receiver
(RX).

x =

K
∑

i=1

xi, xi ∼ N (0, Qi). (1)

The signal at theith RX can be expressed as

y
i
= Hix+ ni, n ∼ N (0,

K
∑

i=1

Ni), (2)

where Hi is the ri × t channel gain matrix from the TX
to the ith RX and ri is the number of antennas at theith

RX. Without loss of generality, we assume that transmitter
signaling is constrained by a covariance matrixS � 0 such
that

E[xxT ] =
K
∑

i=1

Qi � S. (3)

The scenario with a sum power constraint,i.e.,can be similarly
modeled as

Tr
(

E[xxT ]
)

≤ Ptot, (4)

wherePtot is the maximum transmit sum power for all the
antennas. For simplicity of illustration, we only considerthe
covariance matrix constraint in this paper; all the results
derived are also valid for sum power constraint as well. We
now define a special class of broadcast channels which are
simplified versions of the general GBC [11].

1) AMBC: A MIMO BC is calledaligned if the number of
transmit antennas is equal to the number of antennas at each
of the receivers (t = r1 = r2 = . . . = rK) and the channel
gain matrices are all identity matrices (Hi = It×t).

2) ADBC: A MIMO BC is called alignedanddegradedif
the BC is aligned and the covariances of the Gaussian noise at
the receiver are ordered such that0 ≺ N1 � N2 � ... � NK ,
whereA � B implies thatB − A is a positive semi-definite
matrix.

B. Generalized Nash Equilibrium Problems

1) Definition: Formally, a GNEP consists ofK players
with each player controlling the variablesQk (Qk are positive
semi-definite covariance matrices in our problem). Each player
has an objective function,vk, which depends onQk as well
as the controlling variables of all other players denoted by
Q−k. We denote the utility function byvk(Qk, Q−k) or
vk(Q), Q = (Q1, Q2, ..., QK) to emphasize the dependence

on the controlling variables and will be called theutility
function of thekth player for the rest of this paper. Given the
strategiesQ−k picked by all other players, the set of feasible
actions of thekth player determined by the joint constraints
is given byA(Q−k) and this is thefeasible setor thestrategy
spaceof the kth player. We emphasize that the setAk(Q−k)
is a function of the strategies of the other players. Each player,
given the strategies of all other players, picks a strategy that
solves the maximization problem

max
Qk

vk(Qk, Q−k) subject toQk ∈ Ak(Q−k). (5)

Let Bk(Q−k) denote the set of all the solutions for this
maximization problem. The GNEP is the problem of finding
Q∗

k such that

Q∗
k ∈ B(Q∗

−k) for all k = 1, 2, ...,K. (6)

DefineB(Q) = ×K
i=1B(Q−i). In other words, the GNEP is to

find a fixed pointQ∗ such thatQ∗ ∈ B(Q∗) andQ∗ solves
the maximization in (5). Such a point is called ageneralized
Nash equilibrium(GNE) or a solution to the GNEP. A point
Q∗ = (Q∗

1, ..., Q
∗
K) is therefore an equilibrium if no player

can increase his objective function by unilaterally changing
Qk to any other feasible point.

2) Discussion: A GNEP usually has multiple or even
infinitely many solutions [7]. A special class of GNEPs,
called GNEP with shared common constraints was defined by
Rosen [7]. This class is characterized by dependent constraints
that are common to all the players and our paper herein
considers a problem belonging to this class. Rosen proposed
a solution concept called the normalized equilibrium (NoE)to
characterize GNEP belonging to this class. The NoE is a GNE
for which the Lagrange multipliers (shadow prices) associated
with the shared constraints are equal among all players up
to constant factors, and its uniqueness is guaranteed under
appropriate conditions [7].

GNEs are not self-enforceable like a Nash equilibrium
as it is not feasible to assume that each player picks his
strategy independently and the selected strategies satisfy the
coupled constraints. However, GNEs have significant explana-
tory power and capture the characteristics of several real world
problems as will be demonstrated later.

C. Concave games, existence and uniqueness of normalized
equilibrium points

Definition 1. A game is said to beconcaveif the set of allowed
strategies of all the players is a convex set, the utility functions
are concave in each players control variables and continuous
in the control variables of all other players.

Let us denote byF the set of jointly feasible strategies of
the players, and byFi the projection ofF on the space from
which the control variables for theith player come from. Then
F ⊆ F1×F2...×FK , with equality satisfied when the control
variables do not have any joint constraints. Let us define the
function

f(P,Q, r) =

K
∑

i=1

rivi(Q1, ..., Qi−1, Pi, Qi+1, ..., QK), (7)



for a fixed vectorr = (r1, r2, ..., rK) ∈ R
K . The K-tuple

Q∗ = (Q∗
1, ..., Q

∗
K) is a normalized equilibrium point ifQ∗

satisfies the equivalent fixed point condition

Q∗ = argmax
P

f(P,Q∗, r), (8)

where the maximization is carried out over the convex setF .
For concave games, the existence of a normalized equilib-

rium point is guaranteed by Theorem 3 in [7] for all vectors
r in the positive orthant. Note that for any given value of
r, there could be multiple normalized equilibrium points. We
now state the conditions for the uniqueness of the NoEs.

1) Uniqueness of normalized equilibrium points:Let

σ(Q, r) =

K
∑

i=1

rivi(Qi, Q−i), ri > 0, (9)

be a weighted sum of the utilities of each player, whereQ
are the control variables for all the players andr is a vector
containing a set of weights.

Definition 2. The function

g(Q, r) =











r1∇1v1(Q1, Q−1)
r2∇2v2(Q2, Q−2)

...
rK∇KvK(Qk, Q−k)











, (10)

where∇i is the derivative w.r.t theith players’control vari-
ables is called thepseudo-gradientof σ(Q, r).

Definition 3. Vector valued strategies [7]: The function
σ(x, r) is calleddiagonally strictly concave(DSC) in vector
valued strategies forx ∈ F and a fixedr ∈ R

K if for every
x0, x1 ∈ F , we have

(x1 − x0)T g(x0, r) + (x0 − x1)T g(x1, r) > 0. (11)

From Theorem 4 in [7], we know that for vector valued
strategies, ifσ(x, r) is DSC for everyr ∈ R, whereR is a
convex subset of the positive orthant, then for eachr ∈ R the
NoE is unique.

Definition 4. Matrix valued strategies [5]: The function
σ(Q, r) is called DSC in matrix valued strategies forQ ∈ F
and a fixedr ∈ R

K if for everyQ0, Q1 ∈ F , we have

Tr
[

(Q1 −Q0)T g(Q0, r) + (Q0 −Q1)T g(Q1, r)
]

> 0. (12)

We also show that if, for matrix valued strategies, the DSC
condition is satisfied for everyr ∈ R, then the NoE is unique
for that r ∈ R.

III. T HE BROADCAST CHANNEL AS A GENERALIZED

NASH EQUILIBRIUM PROBLEM

A. Model of the game

As mentioned previously, the broadcast channel has a single
TX sending data to several RXs over the wireless channel. The
receivers are the players of this game and it can be assumed
that a fictitious agent of each RX is located at the TX plays and
the game on behalf of the RX. We assume Gaussian codebooks
are used for communication and each RX’s control variable

is the covariance matrixQi � of the signalxi intended for
that receiverRXi. All these players are constrained by a joint
covariance constraint given by

∑K

i=1 Qi � S. Thus, it is clear
that the dependent constraints are common to each player and
hence this game belongs to the special class of GNEPs which
can be characterized by NoE points.

We consider both linear precoding [12] and dirty paper
coding (DPC) [11] based encoding schemes at the TX. For the
DPC, we also assume a fixed encoding order at the TX without
time-sharing between orders. Each player obtains a rate (the
game utility) based on the choice of actions of all other players
and the TX. For a general GBC, if the data streams are linearly
precoded at the TX with covariance matricesQi, the utility
function (rate achievable) of thekth player can be written as
[12]:

vk(Qk, Q−k) = log

(

|Ni +Hi(
∑K

i=1 Qi)H
H
i |

|Ni +Hi(
∑

i6=k Qi)HH
i |

)

. (13)

Similarly, if the data streams are coded using DPC with
encoding order(K,K − 1, ..., 1), then the utility function of
the kth player can be written as [11]:

vk(Qk, Q−k) = log

(

|Ni +Hi(
∑k

i=1 Qi)H
H
i |

|Ni +Hi(
∑k−1

i=1 Qi)HH
i |

)

. (14)

It is easy to see that the utilities of thekth player,vk(Qk, Q−k)
in (13) and (13), are concave inQk and continuous in the
control variables of all the other players.

B. Existence of Normalized Equilibrium Points

Proposition 1. The broadcast channel game with linear pre-
coding or DPC is a concave game and hence for each weight
vector in the positive orthantr = (r1, r2, ..., rK) ∈ R

K
++ there

exists at least one normalized equilibrium point.

Proof: Each players’ control variable in the broadcast
channel game is the signaling covariance matrixQi. By
definition Qi � 0. In addition, the sum power constraint or
the joint covariance constraint ensure that the set of jointly
feasible strategies is compact and convex. Thekth players’
utility is concave inQk and is continuous inQ−k and hence
the broadcast channel game is a concave game. From Theorem
3 of [7], we know that a concave game has at least one NoE
for every weight vectorr ∈ R

K
++.

C. Uniqueness of Normalized Equilibrium Points

We now derive the condition for the uniqueness of the
equilibrium points. We start by assuming that for a given
r ∈ R

K
++ there exist multiple equilibrium points and then

arrive at a contradiction which proves the uniqueness.

Proposition 2. The sufficient condition for the uniqueness of
the normalized Nash equilibrium for a given weight vectorr
is given as

Tr
[

(Q̂− Q̃)T g(Q̃, r) + (Q̃i − Q̂i)g(Q̂, r)
]

> 0. (15)



Proof: Let Q̃ =
(

Q̃1, Q̃2, ..., Q̃K

)

and Q̂ =
(

Q̂1, Q̂2, ..., Q̂K

)

be two K-tuples of covariance matrices
which are normalized equilibria to the game characterized by
the weight vectorr. We know from (8) thatf(Q̃, Q̃, r) =
maxP∈F f(P, Q̃, r) and f(Q̂, Q̂, r) = maxP∈F f(P, Q̂, r).
Writing the Karush-Kuhn-Tucker (KKT) conditions [13] for
the two equilibria yields:

(a) Q̃i, Q̂i � 0, i = 1, 2, ...,K
(b)

∑K

i=1 Q̃i � S and
∑K

i=1 Q̂i � S.

(c) Tr
(

L̃iQ̃i

)

= 0 and Tr
(

L̂iQ̂i

)

= 0.

(d) Tr
(

D̃
(

∑K

i=1 Q̃i − S

))

= 0.

(e) Tr
(

D̂
(

∑K

i=1 Q̂i − S

))

= 0.

(f) ri∇ivi(Q̃) + L̃i − D̃ = 0
(g) ri∇ivi(Q̂) + L̂i − D̂ = 0.

Now multiplying (f) and (g) with(Q̂i − Q̃i) and (Q̃i − Q̂i)
respectively, summing oni and taking the trace we get

0 =

K
∑

i=1

Tr
[

(Q̂i − Q̃i)(ri∇ivi(Q̃) + L̃i − D̃)
]

+

K
∑

i=1

Tr
[

(Q̃i − Q̂i)(ri∇ivi(Q̂) + L̂i − D̂)
]

=

K
∑

i=1

Tr
[

(Q̂i − Q̃i)ri∇ivi(Q̃) + (Q̃i − Q̂i)ri∇ivi(Q̂)
]

+

K
∑

i=1

Tr
[

(Q̂i − Q̃i)(L̃i − D̃) + (Q̃i − Q̂i)(L̂i − D̂)
]

= α+ β (16)

Re-arranging and evaluating the second term,

β = Tr

[

K
∑

i=1

(Q̃i − Q̂i)
{

(D̃ − L̃i)− (D̂ − L̂i)
}

]

(c)
= Tr

[

K
∑

i=1

(Q̃iD̃ − Q̃iD̂ + Q̃iL̂i − Q̂iD̃ + Q̂iL̃i + Q̂iD̂)

]

(d,e)
= Tr

[

SD̃ + SD̂
]

− Tr

[

∑

i

Q̃iD̂ +
∑

i

Q̂iD̃

]

+ Tr

[

∑

i

(Q̃iL̂i + Q̂iL̃i)

]

(a)

≥ Tr

[(

S−
∑

i

Q̃i

)

D̂

]

+ Tr

[(

S−
∑

i

Q̂i

)

D̃

]

(b)

≥ 0. (17)

We have shown thatβ ≥ 0 and hence forα+ β = 0 we need
thatα ≤ 0. Now

α =

K
∑

i=1

Tr
[

(Q̂i − Q̃i)ri∇ivi(Q̃) + (Q̃i − Q̂i)ri∇ivi(Q̂)
]

= Tr
[

(Q̂− Q̃)T g(Q̃, r) + (Q̃i − Q̂i)g(Q̂, r)
]

. (18)

This condition is exactly the DSC condition defined in Section

II. If for the broadcast channel game, we have thatα > 0 for
somer then we have arrived at a contradiction and hence there
cannot exist multiple NoE for thatr. For all suchr, α > 0 is
a sufficient condition for the uniqueness of the NoE.

Note that we have derived the sufficient condition for
uniqueness of the NoE for the broadcast channel game with
joint covariance constraints. We state without proof that the
DSC condition with matrix valued strategies holds for a more
general scenarios (for example, sum power or per-antenna
power constraint or other common constraints) and is not
restricted to the broadcast channel problem (see [7] for a
discussion on how the DSC condition with vector valued
strategies holds for concave games in general).

We now consider special cases for the broadcast channel
and determine which values ofr result in unique NoEs. We
first state two trace inequalities that will be used to derivethe
uniqueness results.

Lemma 1. [14] For any positive integerK and a set of posi-
tive semi-definite matricesA1, A2, ..., AK andB1, B2, ..., BK

such thatA1 ≻ 0 andB1 ≻ 0, we have that

Tr







K
∑

k=1

(Ak −Bk)





(

k
∑

l=1

Bl

)−1

−

(

k
∑

l=1

Al

)−1










≥ 0.

(19)

Note that the set of inequalities may not be the tightest
trace inequalities. For example, forK = 2 and any positive
real numberw, it has been shown in [15] that

Tr[(A1 −B1)(B
−1
1 −A−1

1 )

+ 4(A2 −B2)
{

(wB1 +B2)
−1 − (wA1 +A2)

−1
}

] ≥ 0.
(20)

Clearly, there is much room for deriving generalizations of
such inequalities and such generalizations will improve the
characterization of the unique NoEs. We restrict our attention
to the above known inequalities in this paper.

D. Uniqueness results for normalized Nash equilibrium points

Proposition 3. For the aligned and degraded broadcast
channel (ADBC) with dirty paper coding at the transmitter
and interference canceling receivers, a unique normalized
equilibrium point exists forr1 ≥ r2 ≥ ... ≥ rK > 0.

Proof: For the ADBC, the utility obtained by thekth

receiver is given by [11]

vk(Qk, Q−k) = log

(

|
∑k

i=1 Qi +Nk|

|
∑k−1

i=1 Qi +Nk|

)

. (21)

For this utility function we now show thatα > 0 and
thus determine the unique NoEs. Let(Q̃1, Q̃2, ..., Q̃k) and
(Q̂1, Q̂2, ..., Q̂k) be any two tuples of covariance matrices
which satisfy the covariance constraint:

∑K

i=1 Q̃i � S and
∑K

i=1 Q̂i � S. Substituting the utility obtained when using
the two sets of covariances in the DSC condition, we get

Tr

[

K
∑

k=1

rk(Q̂k − Q̃k)
{

∇kvk(Q̃)−∇kvk(Q̂)
}

]

(22)



= Tr

[

K
∑

k=1

rk(Q̂k − Q̃k)

{

(Nk +

k
∑

i=1

Q̃i)
−1

− (Nk +

k
∑

i=1

Q̂i)
−1

}

]

=

K−1
∑

n=1

(rn − rn+1)Tn + rKTK , (23)

where the termTn can be expressed as

Tr

[

n
∑

k=1

(Q̂k − Q̃k)

{

(Nk +

k
∑

i=1

Q̃i)
−1 − (Nk +

k
∑

i=1

Q̂i)
−1

}

]

.

(24)
It is now sufficient to show thatTn > 0. Notice that the
structure of Tn closely resembles the inequality in (19).
Choose the quantitiesA1 = N1 + Q̃1, B1 = N1 + Q̂1,
Ai = Ni − Ni−1 + Q̃i and Bi = Ni − Ni−1 + Q̂i. By
definition, sinceN1 is a positive definite matrix and̃Q1, Q̂1

are positive semi-definite the matricesA1 andB1 are strictly
positive definite. From the degradedness of the channel, we get
thatNi−Ni−1 is a positive semi-definite matrix and henceAi

andBi are positive semi-definite fori = 2, ...,K. Substituting
the values ofAi andBi in Eq. 19, it is straight forward to see
that Tn ≥ 0. For an ADBC channel having identity channel
matrices, we know from [5] that if the NoEs̃Q 6= Q̂ then
Tn > 0 and hence the normalized equilibrium points of the
ADBC game as unique forr1 ≥ r2... ≥ rK > 0.

It is clear that the region of weight vectorsr for which
uniqueness can be shown is dependent on the tightness of the
matrix trace inequalities. ForK = 2, the inequality in (19) has
been improved to the inequality in (20). Thus for the 2-user
ADBC, the uniqueness can be derived for a more general set
of weight vectors.

Lemma 2. For a 2-user ADBC with dirty paper coding at
the transmitter and interference canceling receivers, a unique
normalized equilibrium point exists forr1 ≥ r2/4 > 0.

Proof: The proof follows exactly on the lines of Lemma 3
with the DSC condition decomposing into two terms given by
(r1 −

r2
4 )T1 and r2

4 T2. Now using the inequality in (20) with
w = 1, it is easy to show that there exists a unique normalized
equilibrium point for each point in the regionr1 ≥ r2/4 > 0.

E. Discussion

We have characterized the unique NoEs of the ADBC above.
Uniqueness of the NoEs ensures that each there exists a
single reasonable outcome for the broadcast channel game and
simplifies the development of algorithms to compute NoEs. We
also note that the proof of uniqueness makes explicit use of
the degradedness of the broadcast channel and hence cannot
be directly extended to the AMBC and the general GBC.
Characterizing the uniqueness of the NoEs for the AMBC and
the GBC and computation of these equilibria [9] is currently
being investigated .

IV. CONCLUSIONS

Strategic behavior among rational non-cooperative receivers
in a Gaussian broadcast channel has not been studied so far in
literature. In this paper, we presented a game theoretic model
for the general Gaussian broadcast channel and showed that it
belongs to the special class of generalized Nash equilibrium
problems with common dependent constraints. We showed the
existence of the normalized equilibrium points, the solutions of
the GNEP with coupled constraints, for the Gaussian broadcast
channel with dirty paper coding and linear precoding strate-
gies. In general, there exist multiple equilibrium points for
a GNEP. We then derived a sufficient condition to determine
the unique normalized equilibrium points and characterized the
uniqueness of these points for the special case of an aligned
and degraded broadcast channel.
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