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The Porosity of Additive Noise Sequences
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Abstract

Consider a binary additive noise channel with noiseless feedback. When the noise is a stationary and ergodic processZ, the
capacity is1−H(Z) (H(·) denoting the entropy rate). It is shown analogously that when the noise is a deterministic sequencez

∞,
the capacity under finite-state encoding and decoding is1 − ρ(z∞), whereρ(·) is Lempel and Ziv’s finite-state compressibility.
This quantity is termed theporosityσ(·) of an individual noise sequence. A sequence of schemes are presented that universally
achieve porosity for any noise sequence. These converse andachievability results may be interpreted both as a channel-coding
counterpart to Ziv and Lempel’s work in universal source coding, as well as an extension to the work by Lomnitz and Feder and
Shayevitz and Feder on communication across modulo-additive channels. Additionally, a slightly more practical architecture is
suggested that draws a connection with finite-state predictability, as introduced by Feder, Gutman, and Merhav.

Index Terms

Lempel-Ziv, universal source coding, universal channel coding, modulo-additive channel, compressibility, predictability

I. I NTRODUCTION

The “core” results of information theory, starting with Shannon’s source and channel coding theorems, are concerned
with probabilistic systems of a known model: an iid Bernoulli(1/4) source must be compressed, or perhaps bits are to be
communicated across an AWGN channel of known SNR. One may seek additional generality by asking that a coding scheme
simultaneously function for an entire class of such probabilistic models. In the case of source coding, Ziv and Lempel [1],
[2] and Ziv [3] take this question to its logical extreme and ask that a compressor not only achieve the optimal rate for any
probabilistic source model, but do so forany individual source sequence. In [2], it is discovered that the traditionally relevant
probabilistic measurement — entropy rate — generalizes into a measure for an individual sequence — compressibility. Inthis
paper, an analogous set of questions yield an analogous set of answers in the context of noisy channel coding with feedback.

Historically, far more attention has been paid to the issue of universality in source coding than in channel coding. The source
of this discrepancy is readily apparent from Figs. 1 and 2. The encoder of Fig. 2 never observes the noise sequence in any
way, and so its codebook cannot be dynamically customized tosuit the channel. The source encoder of Figure 1 on the other
hand has direct access to the source sequence and can therefore adjust to its statistics. As such, the degree of universality that
can be requested in the classical channel-coding setup is far more restricted than in source coding. Certainly, this does not
preclude discussion of “universality,” but the term must take on a considerably looser meaning, as is discussed in Sec. II.

The playing field is considerably leveled by introducing a noiseless feedback link, as in Fig. 3. In particular, the modulo-
additive channel of Fig. 4 allows for a clear and precise analogy to the universal source coding of Lempel and Ziv. To highlight
some of the parallels:

• Individual sequences. In the source coding setting, Lempeland Ziv replace the source random processX∞ with a
deterministic sequencex∞. Here, the standard stochastic description of channel noise Z∞ is supplanted by a specific
individual sequencez∞.

• Finite state constraint. Lempel and Ziv ask the question: how well can a source encoder/decoder perform for a specific
individual sequence, if the engineer designing the encoder/decoderknows the sequence ahead of time? Clearly, if the
encoder and decoder are unconstrained, this problem trivializes: one may design a decoder that, with absolutely no input
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Fig. 1. The model for universal source coding. An unknown source is provided to an encoder, which must describe it to the decoder.
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Fig. 2. The model for universal channel coding. A message must be communicated over an unknown channel.
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Fig. 3. Universal channel coding with noiseless feedback.
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Fig. 4. An additive-noise channel with noiseless feedback.

from the encoder, producesxt at timet. A finite-state requirement — which reflects the constraintsof the real world — is
therefore introduced for both encoder and decoder. Within this class of schemes, Lempel and Ziv provide a (non-trivial)
converse.
Similarly, if one permits arbitrary encoders and decoders for the individual noise sequence channel coding setting, the
maximum communication rate oflog |X | may be easily attained for any noise sequencez∞. One merely sets the encoder’s
output to the difference between the source sequence and thenoise sequenceM∞ − z∞. The channel cancels out the
noise, and the decoder needs merely read the channel output to obtain the messageM∞. To avoid such triviality, a
finite-state encoder/decoder constraint analogous to thatof Lempel and Ziv is introduced. Within this class of schemes,
a non-trivial converse is proven.

• In traditional Shannon theoretic results, converses that apply for a particular source/channel model are accompanied
by achievability schemes that function for that particularmodel. For instance, given a BSC with crossover probability
p, Shannon’s channel coding converse tells us no reliable sequence of coding schemes can achieve a rate better than
1 − hb(p), and Shannon provides a rate(1 − hb(p))-achieving sequence of codebooks customized for the BSC(p). One
might similarly ask Lempel and Ziv that to accompany their converse for a particular source sequence, they provide an
achievability scheme for that particular sequence. The achievability they provide, however, goes several steps further: it
functions forany individual source sequence. Note that while this scheme that is suggested is infinite-state, it is also
shown that by truncation and repetition, achievability is also possible through a sequence of finite-state source-coding
schemes.
Similarly, both the infinite-state scheme of Lomnitz and Feder [4] and the sequence of finite-state achievability schemes
Fm presented in Sec. VIII achieve the channel-coding converses for *any* noise sequence.

• The compressibilityρ(x∞) of a sequence, introduced by Lempel and Ziv, is its best possible compression rate. The
analogous quantity in the channel-coding case is here referred to as the channel’sporosityσ(z∞). In the binary additive
noise case it is demonstrated to be equal to1 − ρ(z∞). Both are analogues of probabilistic quantities — entropy rate
in the case of compressibility, and one minus the entropy rate in the case of porosity. Both may also be interpreted as
generalizations of their probabilistic analogues, since according to Thm. 4 in [2],ρ(X∞) = H(X) with probability 1 if
X∞ is an ergodic source.

To summarize, we show both that the porosity of the noise is the best possible rate achievable within the class of finite-state
schemes, and that there exist a sequence of finite-state schemes that simultaneously achieves porosity for all noise sequences.

II. RELATED WORK

Lomnitz and Feder introduce the notion of competitive universality to channel coding in [4]. The reference class used inthis
comparison consists ofiterated fixed-blocklength(IFB) schemes, which ignore the feedback channel and simplyemploy block
coding across the noisy channel.Rate-adaptiveschemes, on the other hand, make arbitrary use of feedback and communicate a
fixed number of bits over at mostn channel uses. It is proven that IFB schemes can do no better than porosity (rate1−ρ(z∞)),
and a rate-adaptive scheme built upon LZ78 is shown to achieve porosity.

In a sense, the results reported here take these statements of competitive optimality a step further: we ask that the achievability
schemes not only outperform any elements of the reference class, but that theyare elements of the reference class. This
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establishes porosity as a channel capacity of sorts. As IFB codes frequently cannot even achieve porosity for a given noise
sequencez∞, let alone for the entire set of noise sequences, this requires that the reference class be widened to the class of
all finite-state schemes.

The porosity-achieving rate-adaptive scheme introduced by Lomnitz and Feder does not quite fall into this class, as it consists
of infinite states. One might consider consider truncating and repeating it in order to construct a finite state scheme. While this
could potentially work, we find it somewhat easier to build from the schemes of Shayevitz and Feder [5], whose performance
guarantees mesh well with the asymptotic performance metrics of interest here.

In [5], Shayevitz and Feder establish the initial results that have sparked much of the subsequent work in this problem. An
extremely general family of channels is considered, but theresults provided are most meaningful when restricting attention to
the individual additive noise sequence setting. Of interest are two things: the construction of variable-rate, fixed-blocklength
schemes expanded from Horner’s coding method, and the strong performance guarantees that are provided. The schemes are
shown to achieve for any noise sequence theempirical capacity, or one minus the first-order empirical entropy. By operating
this coding technique overblocksof channel use, one can potentially generalize to arbitrary-order empirical entropies. The
achievability schemes{Fm} presented in this paper are an extension of this idea.

As with both [4] and [5], Eswaran et al. [6] consider a very broad class of channels with noiseless feedback, but the
results provided are most meaningful in the modulo-additive setting with an individual noise sequence. Extending [5],it is
demonstrated that even when the feedback is asymptoticallyzero-rate, the empirical capacity is still universally achievable.

As previously mentioned, even in the absence of a feedback link questions of universal channel coding can be considered.
The principal complication in this setting is that the encoder no longer has any information about the specific channel, and so
neither the rate nor the transmission methodology can be adapted.

One may nonetheless ask that thedecoderadapt to the channel. Csiszar and Korner [7] consider the class of memoryless
DMC’s that share a common input alphabetX — call this classA(X ). For a randomly generated codebook, a universal decoder
for the entire classA(X ) is constructed and its performance compared to that of a decoder customized for whichever specific
channel happens to appear (maximum likelihood decoder). The universal decoder is not only shown to match the ML decoder
in terms of vanishing error, but it is also found to achieve the same error exponent.

Ziv [8] and Lapidoth and Ziv [9] seek to expand such a result into the territory of channels with memory. Each considers a
fairly specific form of memory: finite-state channels with deterministic state transitions [8] and those with probabilistic state
transitions [9]. Each also demonstrates achievability through decoding schemes that utilize LZ78-style sequence parsing. Feder
and Lapidoth [10] on the other hand consider the more generalproblem of decoding for a parametric family of channels.

Despite the non-adaptability of the encoder in this feedback-less setting, one may seek to maximize the worst-case rateof
communication across the channel. The fundamental limit ofperformance in this scenario is thecompound channel capacity,
discussed at length in the review article by Lapidoth and Narayan [11].

A generalization of the above is to take a broadcast approach, wherein channel uncertainty is modeled by having the encoder
broadcast across all channels in the class considered. The rate region of this broadcast channel then characterizes therates the
encoder may simultaneously achieve for each potential channel. Observe that if this rate region can be specifically determined,
it answers all possible questions of universal decoding. Shamai and Steiner [12] leverage this approach for the case of fading
channels.

III. STRUCTURE OFPAPER

In Sec. IV a precise description is provided of the problem setting, the class of finite-state schemes, and the relevant
performance metrics. Sec. V builds slightly on Lempel and Ziv’s definition of compressibility and establishes certain useful
properties. Sec. VI states the three theorems that constitute the core results of this work. Sec. VII contains the proof of the
converse theorems, and Sec. VIII proves achievability. Sec. IX introduces a significantly more practical (but sub-optimal) set
of schemes that establish a connection between porosity andfinite-state predictability. Sec. X summarizes this paper’s findings.
A few lemmas have somewhat distracting proofs that are relegated to the appendices.

IV. PROBLEM SETUP

A deterministic additive noise feedback channel, as depicted in Fig. 4, is defined by a noise sequencez∞ ∈ X∞, whereX
is a finite alphabet with a modulo-addition operator. The channel output at any timei is given by the sum of the noise and
the input:yi = xi + zi. Noiseless feedbackui = yi−1 delays the channel output by one time unit before providing it to the
encoder. Without loss of generality, we will concern ourselves primarily with the binary-alphabet case, i.e.X = {0, 1}, as the
extension to general finiteX is straightforward.

A. Finite-state Schemes

A finite-state (FS) encoder/decoder scheme for an additive noise channel — depicted in Fig. 5 — consists of several
components:

1) An encoder state variables(e)
i and decoder state variables(d)

i , each taking values in a finite setS.
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Fig. 5. A finite-state encoding/decoding scheme for a modulo-additive channel.

2) A source pointerpi and a finite lookahead constantℓ.
3) An iid common randomness sourceθi ∼ pθ taking values in a finite alphabet.
4) An encoding functionxi = e(s(e)

i ,Mpi+ℓ
pi

, yi, θi) ∈ X .
5) A decoding length functionLi = dL(s

(d)
i , yi, θi) that also determines the update of the source pointer:pi+1 = pi + Li.

6) A decoding function̂Mpi+Li−1
pi

= dM (s(d)
i , yi, θi).

7) State-update functions for both the encoders(e)
i+1 = f(e)(s

(e)
i ,Mpi+ℓ

pi
, yi, θi) and decoders(d)

i+1 = f(d)(s
(d)
i , yi, θi).

At each time step, the encoding function determines the input xi to the channel, the decoding function estimates the first
Li source symbols that have yet to be estimated (based on the output yi of the channel), and state variables and the source
pointer location are updated in anticipation of the next transmission.

Observe, first, that this class of schemes is sufficiently general to include the following as special cases:

1) The class of “iterated fixed-length” block schemes, as defined by Lomnitz and Feder [4]. These are simply block codes
that ignore the feedback. The common randomness at encoder and decoder allows for randomly generated block codes
as well.

2) Schemes that transmit a variable number of source symbolsover a fixed number of channel uses, before reseting their
state variables and repeating the operation (defined more precisely in Sec. VIII-A as “Repeated Finite-Extent” schemes).

3) Schemes that transmit a variable (or fixed) number of source symbols over a variable (but bounded) number of channel
uses (also known as “rate-adaptive” schemes [4]).

Secondly, notice that without certain restrictions in the definition of class FS, the problem can become trivial:

1) Suppose that the encoder is permitted to be infinite-state. The system designer may then allow the encoder states
(e)
i

to be the current time indexi. This then allows the encoding function to be a function ofi, which in turn permits the
encoding function to be customized for a particular noise sequencez∞: e(i,Mpi

) = Mpi
− zi. Sending this through the

channel,zi is canceled out. The decoder needs merely read the channel output to obtain the message at the maximum
possible rate,log |X |.

2) Suppose that the decoder is permitted to be infinite-state. One may reverse the above construction by having the encoder
blindly send the message bits through the channele(Mpi

) = Mpi
and asking the decoder to cancel out the noise.

Specifically, lettings(d)
i = i, the decoding function can be a function of the timei. This allows for a clever system

designer to choosedM (i, yi) = yi − zi, which guarantees that̂Mpi
= Mpi

and thatLi = 1 for any i.
3) Finally, suppose that the finite-lookahead requirement is nonexistant — that is, the encoding function can look at theentire

untransmitted message streamxi = e(s(e)
i ,M∞

pi
, yi, θi). As we will illustrate, this is identical to allowing the encoder an

infinite number of states. IfM∞ is a Bernoulli(1/2) sequence, then with probability one there exists a one-to-one map
betweenM∞

i andi. The encoder may therefore sende(M∞
pi
) = Mpi

+ zpi
as the channel input at timei. The decoder,

as before, simply reads the channel output, achieving the maximum ratelog |X |.

B. Performance metrics

Channel coding typically concerns itself with the tradeoffbetween rate of communication and the frequency of errors. In
the individual sequence setting of interest to us, we define the instantaneous rate and bit-error rate of an FS scheme at timen
as

Rn =
1

n

n∑

i=1

Li,

and

ǫn =
1

nRn

nRn∑

i=1

1
M̂i 6=Mi

.
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We consider two interpretations of these quantities.
Best-Case. An FS schemebest-casep-achievesrate/error(R, ǫ) for a noise sequencez∞ if with at least probabilityp there

exists a sequence of points{ni} ∈ Z
+ such thatlimi→∞ Rni

≥ R andlimi→∞ ǫni
≤ ǫ. In other words, a performance monitor

that observes the system at the “right” times will see it achieve (R, ǫ) with probability at leastp. If p is 1, we say that the
scheme simplybest-case achieves(R, ǫ).

Worst-Case. An FS schemeworst-casep-achievesrate/error(R, ǫ) if with at least probabilityp both lim infn→∞ Rn ≥ R
and lim supn→∞ ǫn ≤ ǫ. In other words, a performance monitor observing the systemat any set of sample times will see it
achieve(R, ǫ) with probability at leastp. If p is one the scheme is said toworst-case achieve(R, ǫ).

Observe that the randomness in these definitions has two possible sources: the source sequenceM∞ and the common-
information sequenceθ∞ used by the FS scheme. Sometimes the sourceM∞ will be a fixed sequence, but this is always
made clear from context.

V. NOTIONS OF“ COMPRESSIBILITY”

The results of this paper connect the operational notions ofachievability to certain long-established individual sequence
properties, first introduced by Lempel and Ziv [2] in a source-coding context. In this section, these properties are defined and
some useful relations are presented between them.

First, we denote thekth order block-by-block empirical distribution

p̂k(Xk)[xn] =
1

⌊n
k ⌋

⌊n/k⌋∑

i=0

1
x
k(i+1)
ki+1 =Xk .

If the empirical distribution is instead computed in a sliding-window manner, we denote

p̂ksw(X
k)[xn] =

1

n− k + 1

n−k+1∑

i=0

1xi+k
i+1=Xk .

The argument[xn] is occasionally omitted when the context is clear.
Thekth order block-by-block empirical entropy is indicated byĤk(xn) = Hp̂k(Xk). The sliding-windowkth order empirical

entropy is similarly written aŝHk
sw(x

n) = Hp̂k
sw
(Xk).

As shown by Ziv and Lempel [2], the finite-statecompressibilityof a sequencex∞ may be written as

ρ(x∞) = lim sup
k→∞

lim sup
n→∞

Ĥk
sw(x

n).

An analagous quantity may also be introduced:

ρ(x∞) = lim inf
k→∞

lim inf
n→∞

Ĥk
sw(x

n).

Operationally, compressibility is the smallest limit supremum compression ratio achievable for a sequence (Theorem 3in [2]).
It is not difficult to show that, analogously, the second quantity is the smallest possible limit infimum compression ratio.
Informed by this, we refer to the original compressibility quantity as theworst-case compressibilityand the new limit infimum
version as thebest-case compressibility.

The following lemma, proved in Appendix A, demonstrates that both best-case and worst-case compressibilities may be
computed using either block-by-block or sliding-window empirical entropies.

Lemma 1:Let x∞ be a finite-alphabet sequence. Then

ρ(x∞) = lim
k→∞

lim inf
n→∞

1

k
Ĥk(xn)

and

ρ(x∞) = lim
k→∞

lim sup
n→∞

1

k
Ĥk(xn).

The porosityof a noise sequencez∞ ∈ Z∞ is defined in best-case

σ(z∞) = log2 |Z| − ρ(z∞)

and worst-case
σ(z∞) = log2 |Z| − ρ(z∞)

varieties as well. Observe the sign changes: while a “good” compressibility is small, a “good” porosity is large. The remainder
of this paper clarifies the operational significance of thesequantities.
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VI. STATEMENT OF RESULTS

The results of this paper may be summarized as follows:

1) A converse that upper-bounds the best-case achievable rate by an FS scheme.
2) A converse that upper-bounds the worst-case achievable rate by an FS scheme.
3) A sequence of universal FS schemes{Fm}∞m=1 that simultaneously achieve the best-case and worst-case converse bounds

for any noise sequencez∞.

Formally, each of these three statements corresponds to a theorem:
Theorem 2:Suppose an FS scheme best-casep-achieves(R, ǫ). If p > 0, then

R ≤ hb(ǫ) + σ(z∞).

Theorem 3:Suppose an FS scheme worst-casep-achieves(R, ǫ). If p > 0, then

R ≤ hb(ǫ) + σ(z∞).

Theorem 4:There exists a sequence of schemesFm, which for an iid Bernoulli(1/2) sourceM∞ and every noise sequence
z∞ best-case achieves

σ(z∞)− δm(z∞) , ǫm/(σ(z∞)− δm(z∞)),

and worst-case achieves
σ(z∞)− δm(z∞) , ǫm/(σ(z∞)− δm(z∞)),

with probability one, whereǫm, δm, andδm all go to zero.
Theorems 2 and 3 are proven in Section VII. In Section VIII, weintroduce the schemes{Fm}∞m=1 and prove Theorem 4.

VII. PROOF OFCONVERSE

A. Definitions and Lemmas

In order to prove the converse theorems, a series of definitions and lemmas is first required.
Lemma 5: (Selection Lemma) SupposeX∞ is iid Bernoulli(1/2) andL is a random positive integer with arbitrary conditional

distributionpL|X∞ with respect toX∞. ThenH(XL) ≥ E [L].
Proof:

H(XL) =
∑

xl

p(XL = xl) log
1

p(XL = xl)

(a)

≥
∑

xl

p(XL = xl) log
1

p(X l = xl)

(b)

≥
∑

xl

p(XL = xl)l

= E [L]

where step (a) follows because ifXL = xl thenX l must necessarily equalxl. Step (b) follows from the iid Bernoulli(1/2)
distribution ofX∞.

Definition 1: Let {Li}∞i=1 be a bounded sequence of nonnegative integers, and letM∞ and z∞ as usual denote binary
sequences. Thek-partition of (M∞, z∞) according to{Li} is the sequence of blocks

(MLi , zk)i = M
∑

i
j=1 Lj

∑i−1
j=1 Lj+1

, zik(i−1)k+1.

In this context,{Li} are referred to as the partition lengths.
Definition 2: Let x∞ be a sequence of symbols drawn from a finite alphabetX . If there exists a series of sample points

{ni}∞i=1 such that the sequencêp1(x)[xni ] converges to a distribution̂p(x), p̂(x) is said to be a limiting distribution forx∞.
Observe that for any finite-alphabet sequencex∞ at least one limiting distribution exists:̂p1(x)[xn] is an infinite sequence in
a compact set, so at least one convergent subsequence must exist.

Definition 3: Let z∞ be a finite-alphabet sequence. The setMk(z
∞) consists of all binary sequencesM∞ such that there

exist partition lengths{Li}, a resultingk-partition {(MLi, zk)i}, and a limiting distributionp̂(L,ML, zk) for the sequence
{Li, (M

Li, zk)i} such that
E [L]p̂ > Hp̂(M

L|zk) + 1. (1)

We may interpret the set in the following manner. Suppose first that a “genie” partitions the source sequenceM∞ into
an arbitrary series of variable-length blocks{(MLi)i}. Each block(MLi)i, of length Li, is then source-coded with side
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information(zk)i at average rate less thanHp̂(M
L|zk)+1. The setMk(z

∞) consists of all source sequences that, in a sense,
allow such a genie/side-information-source-coding setupto compress strictly better than one bit per source symbol. One would
expect that the occurrence of such a set is a rare event when the source is drawn iid Bernoulli(1/2). This is formalized with
the following lemma.

Lemma 6:Let z∞ be a fixed finite-alphabet sequence, and letM∞ be drawn from an iid Bernoulli(1/2) process. Then the
probability thatM∞ ∈ Mk(z

∞) is zero for allk.
Proof: See Appendix B.

We may easily expand this lemma to allow for common randomness.
Corollary 7: Let z∞ be a fixed binary sequence, letM∞ be drawn from an iid Bernoulli(1/2) process, and letθ∞ be a

finite-alphabet sequence of arbitrary distribution that isindependent ofM∞. Then the probability thatM∞ ∈ Mk((zi, θi)
∞
i=1)

is zero for anyk.
Proof: First observe that Lemma 6 does not require thatz∞ be a binary sequence — only that it be of a finite alphabet.

As such, for a given sequenceθ∞ we may define the surrogatez-sequencẽz∞ = (zi, θi)
∞
i=1.

Applying Lemma 6 for this surrogate sequence, we have that for any fixed z∞ and θ∞, the probability of drawing an
element ofMk((zi, θi)

∞
1 ) from a Bernoulli(1/2) process is zero. Sinceθ∞ is independent fromM∞, the corollary follows.

B. Converse Lemma

Although the converse results are presented as two distincttheorems, at their heart is the same argument. We present this
core result in the following lemma.

Lemma 8:Suppose ans-stateℓ-lookahead FS scheme achieves(R, ǫ) on points{ni} for a specific source sequenceM∞,
a specific channel noise sequencez∞, and a specific encoder/decoder common information sequence θ∞. If for somek ∈ Z

+

M∞ is not a member ofMk((zi, θi)
∞
i=1), and if Ĥk(zn) + Ĥk(θn)− Ĥk((zi, θi)

n
i=1) →n→∞ 0, then

R ≤ 2 log s+ ℓ+ 2

k
+ hb(ǫ) + 1− lim sup

i→∞

1

k
Ĥk(zni).

The general idea in proving this lemma is to turn any given FS scheme into asourceencoding/decoding scheme. Consider
an FS decoder that achieves(R, ǫ) on some points{ni}, and ignore the minor complication of common randomnessθ∞. Given
only the channel outputy∞, the decoder produces an estimate of the source sequenceM∞. Knowing the source sequence
and the channel output, the decoder is technically capable of “simulating” the encoder and thereby obtaining both the channel
input sequencex∞ and the noise sequencez∞. One may therefore interpret the channel outputy∞ as an encoding of the joint
source sequence(M∞, z∞). The following proof utilizes a rigorous argument inspiredby this intuition.

Proof: Let e∞ denote the error indication sequenceei = 1Mi 6=M̂i
. First, consider thek-partition of (M∞, z∞, θ∞, e∞)

according to the given FS scheme:

(MLi , eLi, zk, θk)∞i=1 =
(
Mpik+1−1

p(i−1)k+1
, epik+1−1

p(i−1)k+1
, zik(i−1)k+1, θ

ik
(i−1)k+1

)∞
i=1

.

In other words, let(MLi , eLi , zk, θk)i enumeratek-blocks of channel noise and common information, along withthe source
bits that are estimated during each such block and the error indicators for these source bits. LetLi = pik+1−p(i−1)k+1 denote
the partition lengths.

Now define the sequence of points{n∗
i } ⊂ {ni} so that

lim
i→∞

1

k
Ĥk(zn

∗

i ) = lim sup
i→∞

1

k
Ĥk(zni), (2)

and letp(ML, eL, zk, θk) be a limiting distribution of(ML, zk, θk)i on these points{n∗
i }. Recall from Def. 2 that such a

limiting distribution always exists.
Suppose random variables(ML, eL, zk, θk) are distributed according top(ML, zk, θk). We first use the FS scheme given

in the lemma statement to construct a lossless source encoder/decoder for(ML, zk), with θk as side information. By later
requiring that the rate of this encoding exceedHp(M

L, zk|θk), the lemma may be proven.

E1 Letj ∈ Z
+. We construct a codeword for the source block(MLj , zk)j given side information block(θk)j as follows:

1) To reduce clutter, we remove some of the unnecessary indices. Denote the source bits used by the FS encoder
during thisjth block asM ℓ = M

p(j−1)k+1+ℓ−1
p(j−1)k+1 . Similarly, let the source bits estimated by the FS decoder be

referred to aŝML = M̂
pjk+1−1
p(j−1)k+1

and the error indicators aseL = e
pjk+1−1
p(j−1)k+1

. Additionally, let s(e) = s(e)
(j−1)k+1

ands(d) = s(d)
(j−1)k+1 indicate the initial encoder and decoder states, and letxk = xjk

(j−1)k+1 andyk = yjk(j−1)k+1
denote the channel inputs and outputs during the block.

2) Apply a binary Huffman code toeL to create the compressed representationg(eL) ∈ {0, 1}∗. The Huffman
code is designed according to the limiting empirical distribution p(eL).
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3) Add the codeword(s(e), s(d),ML+ℓ
L+1 , y

k, g(eL)) to the codebook.
4) Observe that(s(e), s(d),ML+ℓ

L+1 , g(e
L)) decodes uniquely into(ML, zk)j given side information block(θk)j :

• Simulate the channel decoding operation with initial states(d), common informationθk, and channel output
yk. This yieldsM̂L. Correcting for errors with the correctional information embedded ing(eL), we have
ML.

• Simulate the channel encoding operation using initial state se, feedbackyk, common informationθk, source
ML from the previous step, andML+ℓ

L+1 from the codeword. This yields the channel inputxk, which produces
zk when modulo-2 added toyk.

Refer to this decoding operation on a codewordc asC−1(c, θk).

E2 Build the codebook by repeating stepE1 for every block(ML, zk, θk)j , j ∈ Z
+. Note that each codeword is of

length2 log s+ ℓ+ k + length(g(eL)) and losslessly decodes into its source block. Call this codebook C̃.
E3 Define the codebook encoding functionF of a source sample(ML, zk|θk) as mapping to the shortest codeword in

the set{c ∈ C̃ : C̃−1(c, θk) = (ML, zk)}.

We now establish the expected length of this code when applied to the probabilistic source(ML, zk|θk). As mentioned in
step E2, a given codeword is of length2 log s + ℓ + k + length(g(eL)), whereeL is the error sequence. According to the
assumptions of the lemma, the bit error rate on points{n∗

i } is upper-bounded byǫ. From this and fromp(eL) being a limiting
distribution on{n∗

i }, the expected frequency of1 in eL may be upper-bounded byǫ. Therefore, the expected length ofg(eL)
is upper-bounded bykhb(ǫ) + 1, and

E
[
length(F (ML, zk|θk))

]
p
≤ 2 log s+ ℓ+ k(1 + hb(ǫ)) + 1.

SinceF is a lossless variable-length encoder for sources drawn from p(ML, zk|θk), the expected codeword length must
exceed the conditional entropy according top:

2 log s+ ℓ+ k (1 + hb(ǫ)) + 1 ≥ Hp(M
L, zk|θk)

≥ Hp(z
k|θk) +Hp(M

L|zk, θk)
(a)
= Hp(z

k) +Hp(M
L|zk, θk)

(b)

≥ Hp(z
k) + E [L]p − 1

(c)
= lim sup

i→∞
Ĥk(zni) +Rk − 1

where (a) holds because of the final assumption in the theoremstatement, (b) follows from Corollary 7, and (c) is due to both
(2) and the lemma’s assumption about rateR being achieved on points{n∗

i }. Rearranging terms proves the lemma.

C. Proof of Converses

Armed with Lemma 8, it is a relatively straightforward matter to prove Theorems 2 and 3.
Proof of Theorem 2:We first note that becauseθ∞ is drawn iid andz∞ is fixed,Ĥk(zn)+ Ĥk(θn)− Ĥk((zi, θi)

n
i=1) → 0

with probability one for everyk. Furthermore, by Corollary 7,M∞ /∈ Mk((zi, θi)
∞
i=1) with probability one for every k.

Therefore, if(R, ǫ) is best-case-achieved with positive probability, it must then be achieved for some specific(M∞, θ∞) such
thatM∞ /∈ Mk((zi, θi)

∞
i=1 andĤk(zn)+ Ĥk(θn)− Ĥk((zi, θi)

n
i=1) → 0 for everyk. Let {ni} be the subsequence on which

it is achieved.
Applying Lemma 8,

R ≤ 2 log s+ ℓ+
√
k

k
+ hb(ǫ) + 1− 1

k
lim sup
i→∞

Ĥk(zni),

for any k.
Taking the limit supremum ask → ∞,

R ≤ hb(ǫ) + 1− lim inf
k→∞

1

k
lim sup
i→∞

Ĥk(zni)

≤ hb(ǫ) + 1− lim inf
k→∞

1

k
lim inf
i→∞

Ĥk(zni)

≤ hb(ǫ) + 1− lim inf
k→∞

1

k
lim inf
n→∞

Ĥk(zn)

= hb(ǫ) + 1− ρ(z∞).
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Fig. 6. A finite-state active feedback scheme for a modulo-additive channel.

Proof of Theorem 3:If (R, ǫ) is worst-case-achieved with positive probabilityp, then it must be worst-case achieved for
some(M∞, θ∞) such thatM∞ /∈ Mk((zi, θi)

∞
i=1 (because by Corollary 7 this occurs with probability one) and Ĥk(zn) +

Ĥk(θn)− Ĥk((zi, θi)
n
i=1) → 0 (because this occurs with probability one whenθ∞ is chosen iid).

We may therefore apply Lemma 8 with{ni} = Z
+. For anyk, we have that

R ≤ 2 log s+ ℓ+
√
k

k
+ hb(ǫ) + 1− 1

k
lim sup
n→∞

Ĥk(zn).

Since this holds for arbitraryk, we may take the limit infimum of the expression withk → ∞:

R ≤ lim inf
k→∞

(
2 log s+ ℓ+

√
k

k
+ hb(ǫ) + 1− 1

k
lim sup
n→∞

Ĥk(zn)

)

= hb(ǫ) + 1− lim sup
k→∞

1

k
lim sup
n→∞

Ĥk(zn)

= hb(ǫ) + 1− ρ(z∞).

VIII. P ROOF OFACHIEVABILITY

In this section, a sequence of FS schemes is constructed and guaranteed to achieve both the best-case and worst-case bounds
for any channel noise sequencez∞. This “universal achievability” is analogous to the universal source coding achievability
scheme introduced by Ziv and Lempel [2].

A. Some Classes of Schemes

To begin, several additional classes of schemes are introduced, and their relationships with each other and with class FS are
clarified. This will prove useful in constructing the universal achievability schemes.

A finite-state active feedback(FSAF) scheme is a variation of the class FS that allows for active feedback (Fig. 5). It consists
of the following:

1) An encoder state variables(e)
i , a decoder state variables(d)

i , and a feedback state variables(f)
i , all taking values in a finite

set.
2) A source pointerpi and a finite lookahead constantℓ.
3) An iid common randomness sourceθi ∼ pθ.
4) A finite-state feedback channel whose output at timei is distributed according toUi ∼ pu|y,s(ui|yi, s(f)

i ).
5) An encoding functionxi = e(s(e)

i ,Mpi+ℓ
pi

, θi, ui).
6) A decoding length functionLi = dL(s

(d)
i , yi, θi, ui) that also determines the update of the source pointer:pi+1 = pi+Li.

7) A decoding function̂Mpi+Li−1
pi

= dM (s(d)
i , yi, θi, ui).

8) State-update functions for the encoders(e)
i+1 = f(e)(s

(e)
i ,Mpi+ℓ

pi
, θi, ui), decoders(d)

i+1 = f(d)(s
(d)
i , yi, θi, ui), and feedback

channels(f)
i+1 = f(f)(s

(f)
i , yi, θi).

Lemma 9:The class of schemes FSAF is equivalent to class FS.
Proof: By settingUi = yi, we find that FS is a special case of FSAF. To show the other direction, first assume we are

given an FSAF scheme. By the arguments that follow, we will construct an FS scheme that simulates it. Quantities relatingto
the constructedFS scheme will be notated with a “hat,” e.g.θ̂, ŝe

i, etc.
First, letU be a random vector with components indexed byy ∈ X ands ∈ S(f) , and let the(y, s)th component be distributed

according toUy,s ∼ pU|y,s, wherepU|y,s is the given FSAF scheme’s feedback channel transition matrix. Furthermore, let the
components be independently distributed. We then define theFS scheme’s common randomness asθ̂i = (θi,Ui) distributed
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iid according topθpU , wherepθ is the common randomness distribution for the given FSAF scheme. Let(Uy,s)i denote the
(y, s)−th component of thei-th random vectorUi.

The equivalent FS scheme is assigned encoder and decoder state variableŝs(e)
i = (s

(e)
i , s

(f)
i ) and ŝ

(d)
i = (s

(d)
i , s

(f)
i ), where

s
(e)
i , s(d)

i , ands(f)
i are the state variables for the FSAF scheme. The encoder/decoder update functions are given by

f̂(e)(ŝ
(e)
i ,Mpi+ℓ

pi
, yi, θ̂i) =

(
f(e)(s

(e)
i ,Mpi+ℓ

pi
, θi, (Uyi,s

(f)
i
)i), ff(s

(f)
i , yi, θi)

)
,

and

f̂(d)(ŝ
(d)
i , yi, θ̂i) =

(
f(d)(s

(e)
i , yi, θi, (Uyi,s

(f)
i
)i), ff(s

(f)
i , yi, θi)

)
.

Observe how the randomness of the FSAF scheme’s active feedback channel is simulated by means of the common randomness
θ̂i = (θi,Ui).

In this manner the FSAF encoder/decoder/feedback state machines are simulated by the FS encoder/decoder state machines.
The FSAF encoding and decoding functions may be implementedin a similar manner:

ê(ŝ(e)
i ,Mpi,pi+ℓ, yi, θ̂i) = e(s(e)

i ,Mpi,pi+ℓ, θi, (Uyi,s
(f)
i
)i),

and

d̂M (ŝ(d)
i , yi, θ̂i) = dM (s(d)

i , yi, θi, (Uyi,s
(f)
i
)i).

Since this constructed FS scheme is identical to the given FSAF scheme, FSAF is a special case of FS.
A finite-extent(FEex) schemeF for a channel with alphabetX — as depicted in Fig. 7 consists of:

1) A extentn.
2) A feedback channel with transition probabilities given by Ui ∼ pui

(ui|ui−1, yi) and taking values inX , for i ∈
{1, . . . , n}.

3) A common randomness variableθ drawn from a finite alphabet, independent of the source, and provided to both encoder
and decoder.

4) Encoding functionsx1 = e1(M
∞, θ), x2 = e2(M

∞, θ, u1), . . . , xn = en(M
∞, θ, un−1).

5) A decoding length functionL = dL(y
n, θ, un−1), upper bounded byn log |X |.

6) A decoding function̂ML = dM (yn, θ, un−1).

A repetition schemeis constructed from ann-extent FE schemeF . Let F(M∞, zn) describe the application of schemeF
to sourceM∞ and noise blockzn. Then the repetition schemeF consists of repeated independent uses ofF , i.e.

F(M∞, z∞) ≡
{
F ((Mn

1 , 0
∞), zn1 ) ,F

(
(ML1+n

L1+1 , 0
∞), z2nn+1

)
, . . .

}
.

In each block,F is applied to a “virtual source” consisting of the firstn bits of the source that have yet to be transmitted and
a string of 0s.

Proposition 10: The class of repetition schemes is a subclass of FSAF schemes(and therefore of FS schemes).
This follows directly from two properties of repetition schemes:

• The block-based structure allows for implementation with finite-state machines.
• A repetition scheme constructed from ann-extent FE scheme has finite lookahead constantn.
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B. Universal Scheme Construction

At the core of the achievability scheme is a lemma, introduced and proven by Shayevitz and Feder [5]:
Lemma 11:(Shayevitz and Feder, 2009) LetX be a finite alphabet with an addition operation. Then there exists a sequence of

n-extent FE schemesFn(X ) with the following worst-case performance guarantees overall additive noise sequencesz∞ ∈ X∞

and source sequencesM∞ ∈ {0, 1}∞

sup
zn∈Xn,M∞∈{0,1}∞

P
(
M̂L 6= ML

)
≤ ǫ(n) (3)

and

inf
zn∈Xn,M∞∈{0,1}∞

P
(
L

n
> 1− Ĥ1(zn)− ǫ(n)

)
> 1− ǫ(n), (4)

whereǫ(n) → 0.
Note that the only randomness in the above probabilistic statements is due to the randomness in the feedback channel.

Observe that Lemma 11 concerns itself with only the first-order empirical entropyĤ1(zn). By specializing to binary
sequences, this may be replaced by higher-order empirical entropies.

Corollary 12: For binary additive noise channels with feedback, there exists a sequence of finite extent schemesFm with
extentsN(m) → ∞ and the following performance guarantees:

sup
zN(m)∈XN(m),M∞∈{0,1}∞

P
(
M̂L 6= ML

)
≤ ǫm

and

inf
zN(m)∈XN(m),M∞∈{0,1}∞

P
(

L

N(m)
> 1− 1

m
Ĥm(zN(m))− ǫm

)
> 1− ǫm,

whereǫm → 0.
Proof: For a givenm, consider them-tuple supersymbol channel characterized by inputsXi = xim

(i−1)m+1, noiseZi =

zim(i−1)m+1, and outputsYi = (x(i−1)m+1+z(i−1)m+1, x(i−1)m+2+z(i−1)m+2, . . . , xim+zim). Applying Lemma 11 to channels
of this alphabet yields a sequence of schemesFn({0, 1}m) with

ǫn,m →
n→∞

0. (5)

Observe thatFn({0, 1}m) may be seen as a finite-extent scheme both for the supersymbolalphabet{0, 1}m additive noise
channel as well as for the (fundamental) binary alphabet{0, 1} additive noise channel.

By (5) we may chooseN(m) so thatǫN(m),m →
m→∞

0. DenotingFm = FN(m)({0, 1}m), this proves the lemma.

The sequence of finite-extent schemes{Fm}∞m=1 form the basis of the universal achievability construction.
Definition 4: The universal achievability scheme of orderm is the repetition schemeFm formed from theN(m)-extent

schemeFm.
We end with an important lemma regarding repetition schemes.
Lemma 13:Let F be anN -extent FE scheme and letF be the corresponding repetition scheme. DefineEi be the error

indicator for theith block and defineTi = 1Li≥ai
so as to indicate if in theith block the number of bits transmitted exceeds

a fixed thresholdai. Then the Markov relations
Ei −MN

(i) − Ei−1 (6)

and
Ti −MN

(i) − T i−1 (7)

both hold, whereMN
(i) ≡ M

∑i−1
j=1 Li+N

∑i−1
j=1 Li+1

denotes theN source samples used in theith block by the repetition scheme.

Proof: See Appendix C.

C. Proving Achievability (Theorem 4)

Two additional lemmas, regarding the limiting behavior of random binary sequences, are required in order to prove thatFm

achieves the performance promised in Theorem 4.
Lemma 14:Suppose{Xi} is a sequence of iid Bernoulli(p) random variables, and suppose{αi} is a bounded sequence of

real numbers. Then with probability one,

lim sup
n→∞

1

n

n∑

i=1

Xiαi = p lim sup
n→∞

1

n

n∑

i=1

αi
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and

lim inf
n→∞

1

n

n∑

i=1

Xiαi = p lim inf
n→∞

1

n

n∑

i=1

αi.

Proof: Let Yi = αiXi. Sinceαi is bounded, there exists constantA such that|αi| < A. We then have thatE
[
Y 2
i

]
≤ A2 is

bounded and
∑∞

k=1
1
k2 varYi ≤ A2

∑∞
k=1

1
k2 < ∞. These two statements qualify the use of Kolmogorov’s strong law, which

states that1n
∑n

i=1 Yi − 1
n

∑n
i=1 αip →

n→∞
0 with probability one. This proves the lemma.

Lemma 15:Let {αi} be a bounded real-valued sequence, and let{Xi} be a random binary process. IfP
(
Xi = 1|X i−1 = xi−1

)
≤

p for anyxi−1 ∈ {0, 1}i−1, then with probability one

lim sup
n→∞

1

n

n∑

i=1

αiXi ≤ pα (8)

lim inf
n→∞

1

n

n∑

i=1

αiXi ≤ pα (9)

whereα = lim supn→∞

∑n
i=1 αi andα = lim infn→∞

∑n
i=1 αi. Similarly, if P

(
Xi = 1|X i−1 = xi−1

)
≥ p for any xi−1 ∈

{0, 1}i−1,

lim sup
n→∞

1

n

n∑

i=1

αiXi ≥ pα (10)

lim inf
n→∞

1

n

n∑

i=1

αiXi ≥ pα (11)

Proof: Let {Yi} be a Bernoulli-p iid process. We will construct correlated binary processes{X̃i, Ỹi} whose marginal
distributions are identical to those of{Xi} and{Yi}, and use these to prove the lemma.

• Let {Ui} be a sequence of independent uniform[0, 1] random variables.
• For eachi let

X̃i =

{
1 if Ui < P

(
Xi = 1|X i−1 = X̃ i−1

)

0 otherwise

and

Ỹi =

{
1 if Ui ≤ p
0 otherwise

• By Lemma 14,lim supn→∞
1
n

∑n
i=1 αiỸi = pα and lim infn→∞

1
n

∑n
i=1 αiỸi = pα.

• Consider the case whereP
(
Xi = 1|X i−1 = xi−1

)
≤ p. Then sinceX̃i ≤ Ỹi we have that

lim sup
n→∞

1

n

n∑

i=1

αiX̃i ≤ pα

and

lim inf
n→∞

1

n

n∑

i=1

αiX̃i = pα

with probability one. Since{Xi} has the same marginal distribution as{X̃i}, this proves (8) and (9).
• Similarly, in the case whereP

(
Xi = 1|X i−1 = xi−1

)
≥ p, the relationX̃i ≥ Ỹi always holds and we have (10) and (11).

Proof of Theorem 4:SupposeFm is applied to a sourceM∞ and noise sequencez∞. Let {Li} be the number of

source bits decoded in each block. Consider theith block — i.e.F
(
(M

∑i−1
j=1 Li+N(m)

∑i−1
j=1 Li+1

, 0∞), z
iN(m)
(i−1)N(m)+1

)
. Let MN(m)

(i) =

M
∑i−1

j=1 Li+N(m)
∑i−1

j=1 Li+1
indicate the source bits used by the encoder, letM̂Li

(i) = M̂
∑

i
j=1 Li

∑i−1
j=1 Li+1

indicate the estimate produced,

let Ri = Li

N(m) indicate the rate of the block, and letzN(m)
(i) = z

iN(m)
(i−1)N(m)+1 denote the noise of the block. Finally, let

u
N(m)
(i) = u

iN(m)
(i−1)N(m)+1 denote the feedback during the block.

Rate Guarantees
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Recalling thatǫm denotes the rate-error guarantee in Corollary 12, define the“rate indicator”Ti as the indication of whether
the rate in theith block exceeds the threshold1− 1

mĤm((z
N(m)
(i) ))− ǫm, i.e.

Ti = 1
Ri≥1− 1

m
Ĥm((z

N(m)

(i)
))−ǫm

. (12)

One may demonstrate that for anyi and anyti−1 ∈ {0, 1}i−1, P
(
Ti|T i−1 = ti−1

)
≥ 1− ǫm:

P
(
Ti = 1|T i−1 = ti−1

)
=

∑

mN(m)∈{0,1}N(m)

[
P
(
Ti = 1|T i−1 = ti−1,M

N(m)
(i) = mN(m)

)
·

P
(
M

N(m)
(i) = mN(m)|T i−1 = ti−1

)]

(a)
=

∑

mN(m)∈{0,1}N(m)

[
P
(
Ti = 1|MN(m)

(i) = mn
)

P
(
M

N(m)
(i) = mN(m)|T i−1 = ti−1

)]

(b)

≥ 1− ǫm, (13)

where step (a) follows from the Markov relation (Lemma 13) and step (b) is due to the rate guarantee in Corollary 12.
Applying Lemma 15 to{Ti}, (10) bounds the limit supremum rate of the scheme.

lim sup
k→∞

1

k

k∑

i=1

Ri

(a)

≥ lim sup
k→∞

1

k

k∑

i=1

RiTi

(b)

≥ lim sup
k→∞

1

k

k∑

i=1

Ti

(
1− Ĥm(z

N(m)
(i) )− ǫm

)

(c)

≥ (1− ǫm) lim sup
k→∞

1

k

k∑

i=1

(
1− Ĥm(z

N(m)
(i) )− ǫm

)
w.p.1

(d)

≥ (1− ǫm) lim sup
k→∞

(
1− Ĥm(zkN(m))− ǫm

)
w.p.1

(e)

≥ (1− ǫm)(1 − δm(z∞)− ρ(z∞)) w.p.1, (14)

where step (a) is due toTi ≤ 1, step (b) follows from the definition ofTi, step (c) is an application of (10) from Lemma 15,
step (d) comes from the concavity∩ of the entropy function, and step (e) involves the definition

δm(z∞) = ǫm + lim inf
k→∞

1

m
Ĥm(zkN(m))− ρ(z∞).

Sincelim infk→∞ Ĥm(zkN(m)) = lim infk→∞ Ĥm(zk) and by Lemma 1ρ(z∞) = limm→∞ lim infk→∞
1
mĤm(zk), we have

that δm(z∞) vanishes with increasingm.
A similar line of logic can demonstrate the limit infimum ratebound:

lim inf
k→∞

1

k

k∑

i=1

Ri

(a)

≥ lim inf
k→∞

1

k

k∑

i=1

RiTi

≥ lim inf
k→∞

1

k

k∑

i=1

Ti

(
1− Ĥm(z

N(m)
(i) )− ǫm

)

≥ (1− ǫm) lim inf
k→∞

1

k

k∑

i=1

(
1− Ĥm(z

N(m)
(i) )− ǫm

)
w.p.1

≥ (1− ǫm) lim inf
k→∞

(
1− Ĥm(zkN(m))− ǫm

)
w.p.1

≥ (1− ǫm)
(
1− ρ(z∞)− δm(z∞)

)
w.p.1, (15)

where in the final step we define

δm(z∞) = ǫm + lim sup
k→∞

Ĥm(zkN(m))− ρ(z∞).

As in the infimum case, sincelim supk→∞ Ĥm(zkN(m)) = lim supk→∞ Ĥm(zk) and, by Lemma 1,
ρ(z∞) = limm→∞ lim supk→∞

1
mĤm(zk), we have thatδm(z∞) vanishes asm → ∞.
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Error Guarantees Let Ei indicate the presence of an error in theith block, i.e.Ei = 1
M̂

Li
(i)

=M
Li
(i)

. The limit-supremum

bit-error rate may be written in terms of{Ei} and{Li} as

lim sup
n→∞

∑n
i=1 EiLi∑n
i=1 Li

= lim sup
n→∞

1
n

∑n
i=1 EiLi

1
n

∑n
i=1 Li

≤ lim supn→∞
1
n

∑n
i=1 EiLi

lim infn→∞
1
n

∑n
i=1 Li

(a)

≤ lim supn→∞
1
n

∑n
i=1 EiN(m)

lim infn→∞
1
n

∑n
i=1 Li

(b)

≤ N(m) lim supn→∞
1
n

∑n
i=1 Ei

N(m)
(
1− ρ(z∞)− δm(z∞)

) w.p.1, (16)

where (a) holds becauseLi ≤ N(m) for anN(m)-horizon repetition scheme. (b) follows with probability one from (15).
As was done with{Ti}, one may demonstrate that for anyi andei−1 ∈ {0, 1}i−1, the boundP

(
Ei = 1|Ei−1 = ei−1

)
≤ ǫm

holds:

P
(
Ei = 1|Ei−1 = ei−1

)
=

∑

mN(m)∈{0,1}N(m)

[
P
(
Ei = 1|Ei−1 = ei−1,M

N(m)
(i) = mN(m)

)
·

P
(
M

N(m)
(i) = mN(m)|Ei−1 = ei−1

)]

(a)
=

∑

mN(m)∈{0,1}N(m)

[
P
(
Ei = 1|MN(m)

(i) = mn
)

P
(
M

N(m)
(i) = mN(m)|Ei−1 = ei−1

)]

(b)

≤ ǫm, (17)

where step (a) follows from the Markov relation (Lemma 13) and step (b) is due to the error bound in Corollary 12. This
allows for the application of Lemma 15 to{Ei} with constant weightsαi = 1, establishing that

lim sup
n→∞

1

n

n∑

i=1

Ei ≤ ǫm. (18)

This in turn may be inserted into (16), proving

lim sup
n→∞

∑n
i=1 EiLi∑n
i=1 Li

≤ ǫm

1− ρ(z∞)− δm(z∞)
w.p.1.

Therefore schemeFm worst-case (and best-case) achieves bit-error rateǫm.

IX. PREDICTABILITY AND A SIMPLER SUB-OPTIMAL SCHEME

The finite-statepredictability was introduced by Feder et al. in [13] as an analog of compressibility in the context of
universal prediction, just as porosity is an analog in the context of modulo-additive channels. We explore the relationship
between porosity and predictability, but we do so with fairly pragmatic motivations.

A. Practicality of{Fm}
While the achievability schemes{Fm} manage to asymptotically achieve porosity for any sequence, they are not particularly

simple to implement. The complexity ofFm is hidden within the Shayevitz-Feder empirical-capacity-achieving scheme at its
core (Corollary 12). At each time instant, the Shayevitz-Feder decoder is required to compute the posterior of the message
given all the channel outputs in the block so far. This computation is linear in the alphabet size, but becauseFm applies
Shayevitz-Feder to binarym-tuples (Corollary 12), it is exponential inm.

Although it grows in complexity quite rapidly, this Horstein-based approach of Shayevitz and Feder is actually quite efficient
for small alphabets, e.g. binary. The only reason it is applied tom-tuples in our construction is to account for memory and
correlation within the noise sequence. Alternatively stated, we seek to achieve themth-order empirical capacity for arbitrarily
largem. The simpler repetition schemes suggested in this section take a layered approach, wherein memory and correlation
is first “removed” from the noise sequence, after which the binary-alphabet Shayevitz-Feder scheme is used to communicate
with the decoder.
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Fig. 8. Block diagram for the schemeGn.
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θ

Fig. 9. An alternative block diagram for schemeGn, where the prediction loop is represented as a surrogate noise sequencẽz∞.

B. Construction of layered scheme

In defining the more practical repetition schemesGn, we first describe the finite-extent schemes{Gn} at their heart. As shown
in Fig. 8, in its inner layerGn consists of a predictor that forms an estimateẑi for the noisezi at each timei ∈ {1, . . . , n}. By
subtracting this prediction from the encoder’s output, a “surrogate” channel is created with “effective” noisez̃n = (zi− ẑi)

n
i=1.

In other words, the noisezn is replaced by a sequence of error indications for the predictor (Fig. 9). The first-order finite-extent
schemeFn({0, 1}) (defined in Lemma 11), which we will refer to simply asFn, is then applied to this surrogate channel.
Roughly speaking, the prediction step exploits the memory and correlation inzn in order to reduce its first-order empirical
entropy, which then serves to boost the performance ofFn.

To aid in formally constructing{Gn}, define the following:

• {eFi } refers to the encoding functions forFn.
• dFL anddFM refer to the decoding-length and decoding-message functions ofFn.
• {pi(ui|ui−1, yi)} is the set of feedback conditional distributions forFn, andθF is the common randomness.
• ẑi = f(zi−1) is the estimation function implemented by the prediction scheme (which has yet to be described).

The prediction-based FE schemeGn can then be defined in terms of the six components listed in thedefinition of FE schemes:

1) The extent isn.
2) The feedback channel is a simple delay-one noiseless feedback:ui = yi−1.
3) The common randomness is given byθi = (θF , U

(1), U (2), . . . , U (n)). U (i) is a X 22i−1

-valued vector indexed by
(yi, ui−1). The (yi, ui−1)-th componentU (i)

yi,ui−1 is distributed according topi(·|yi, ui−1). Note thatU (i) is introduced
only to simulate the feedback channel of schemeFn at both encoder and decoder. This is similar to the techniqueused
in the proof of Lemma 9.

4) To define theith encoding function, first letuF
i = U

(i)

yi,ui−1,F be the simulated feedback channel. Note that both encoder
and decoder may computeuF

i at the end of theith time step. The encoding functions are then given by

ei(M
∞, θ, ui−1) = eFi (M

∞, θF , u
i−1,F)− f(yi−1 − xi−1).

5) The decoding length function is unchanged:L = dFL (y
n, θ, un−1,F).

6) The decoding function is also unchanged:M̂L = dFM (yn, θ, un−1,F).
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The prediction scheme at the heart ofGn is the incremental parsing(IP) algorithm introduced by Feder et al. [13]. This is
an elegant and simple algorithm that is based on the same parsing procedure as Lempel and Ziv’s compression scheme. Rather
than describe its operation in detail, we point the reader towards the exposition in Sec. V of [13].

C. Analysis of performance

The schemes{Gn} have been constructed to simplify the encoding and decodingprocess. Here, this notion is quantified.
As a layered scheme,Gn consists of two machines running in parallel: the IP predictor of Feder et al. [13] and the

actual communication schemeFn of Shayevitz and Feder [5]. The operations-per-time-step required byFn do not scale
appreciably withn, so the bottleneck is the prediction operation. Observe that the complexity bottleneck forFm also arises
from accounting for the noise sequence’s memory and correlation. As previously mentioned, accounting for memory withFm

requires an exponential number of operations-per-time-step. The IP predictor, on the other hand, requires only a linear number
of operations in order to produce an estimate. Specifically,at each time step the Lempel-Ziv parsing tree must be extended.

The rates achieved by schemesGn however do not quite reach porosity. To illustrate this, we start by repeating the definition
of predictability as given in [13].

Definition 5: The finite-state predictability of a sequencex∞ is the minimum limit-supremum fraction of errors that a finite-
state predictor can attain when operating onx∞. Just as with compressibility, one may define a limit infimum version of this
quantity. We term the former the worst-case predictabilityπ and the latter the best-case predictabilityπ.

In Theorem 4 of [13] it is shown that the IP predictor achievesthe worst-case predictabilityπ(x∞) of any sequencex∞.
Though it is not stated in the theorem, the proof that is givenalso demonstrates that the IP predictor achieves the best-case
predictabilityπ(x∞). Therefore the limit supremum (or infimum) first-order empirical entropy of the surrogate noise sequence
approacheshb(π(x

∞)) (or hb(π(x
∞))). By applying the FS schemesFn to this noise sequence, the performance approaches

rate1− hb(π(x
∞)) (or 1− hb(π(x

∞))) with vanishing error.
In Sec. VI of [13], the worst-case predictabilityπ(x∞) is bounded in terms of the compressibility:

h−1
b (ρ(x∞)) ≤ π(x∞) ≤ 1

2
ρ(x∞).

An identical set of bounds exist between the best-case predictability and best-case compressibility. When a noise sequence
satisfies the lower bound with equality, one may observe thatthe asymptotic performance of{Gn} matches that of{Fm}.
However, this is usually not the case, and one must settle forthe guarantee of worst-case rate1− hb(ρ(z

∞)/2) and best-case
rate1 − hb(ρ(z

∞)/2). Each falls strictly below worst- and best-case porosity unless the noise sequence is either completely
redundant or incompressible.

X. SUMMARY

In this work, the best-case/worst-case porosityσ(·)/σ(·) of a binary noise sequence is defined as one minus the best-
case/worst-case compressibility1 − ρ(·)/1 − ρ(·). Porosity may be seen as an individual sequence property, analogous to
compressibility or predictability, that identifies the ease of communication through a modulo-additive noise sequence. Two
results regarding porosity are at the core of this work. First, porosity is identified as the maximum achievable rate within
the class of finite-state communication schemes. Second, itis shown that porosity may be universally achieved within this
class. Together, these results parallel those of Lempel andZiv in the source coding context [2]. Furthering this analogy, the
achievability schemes given here complement those of Lomnitz and Feder [4] in similar manner as the infinite-state and
finite-state schemes of [2].

In addition to the above, a more practical universal communication architecture is introduced, built upon prediction.
Rather than communicate using blocks of channel uses — whichcontributes to an exponentially growing complexity —
a layered approach is taken. A prediction algorithm first “removes” the memory from the noise, and then a simple first-order
communication scheme is employed. While the resulting algorithm is suboptimal, it reduces complexity considerably, and also
draws an operational connection between predictability and porosity.

APPENDIX A
PROOF OFLEMMA 1

We show that the distinction between block-by-block and sliding-window empirical entropy computations vanishes in the
limit of large blocks and long blocklengths. First, a few definitions that simplify notation:

Definition 6: A k-block codeC mapsk-tuples from an alphabetX k into binary strings of arbitrary but finite length.
Definition 7: The (θ, k̃)-extension codefor a k-block codeC is a k̃-block codeC̃θ whose encoding of a blockX k̃ is given

by

C̃θ(X
k̃) =

(
Xθ

1 , C(Xθ+k
θ+1 ), . . . , C(X

⌊ k̃−θ
k

⌋k+θ

⌊ k̃−θ
k

⌋k−k−1+θ
), X k̃

⌊ k̃−θ
k

⌋k+θ+1

)
.
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The k̃-extension codeis a k̃-block code whose encoding is given by

C̃(X k̃) = argmin
C̃θ(Xk̃),θ∈{0,...,k−1}

ℓ
(
C̃θ(X

k̃)
)

,

whereℓ(·) returns the length of a binary string.
In both the k̃-extension and the(θ, k̃)-extension, the initial segment ofXθ

1 is referred to as theuncoded prefix, while the
punctuating segmentX k̃

⌊ k̃−θ
k

⌋k+θ+1
is theuncoded suffix. The encoded segments in the middle are called theencoded subblocks.

We start by demonstrating that the block-by-block empirical entropy limits exist.
Lemma 16:Let x∞ be a finite-alphabet sequence. Then the limits

lim
k→∞

lim sup
n→∞

1

k
Ĥk(xn)

and

lim
k→∞

lim inf
n→∞

1

k
Ĥk(xn)

both exist.
Proof: Let k̃ > k, and letCn,k denote the k-block Huffman code for the block-by-block empirical distributionp̂(Xk)[xn].

Observe that by optimality of the Huffman code,

Ĥk(xn) ≤ E
[
ℓ(Cn,k(X

k))
]
p̂(Xk)[xn]

= E
[
ℓ(Cn,k(x

kN+k
kN+1))

]
≤ Ĥk(xn) + 1 (19)

whereN is distributed uniformly over the set{0, . . . , ⌊n
k ⌋ − 1}. Let C̃n,k̃,θ andC̃n,k̃ be the(θ, k̃)- and k̃-extensions ofCn,k.

By expressing the expected length ofC̃n,k̃ in terms of the expected length ofCn,k, we can show that both limits in the
lemma statement exist.

Allowing M to be uniformly distributed over the set{0, . . . , ⌊n

k̃
⌋ − 1}, we have that

Ĥ k̃(xn)
(a)

≤ E
[
ℓ
(
C̃n,k̃(x

k̃M+k̃

k̃M+1
)
)]

(b)
= E

[
min

θ∈{0,...,k−1}
ℓ
(
C̃n,k̃,θ(x

k̃M+k̃

k̃M+1
)
)]

(c)

≤ E
[
ℓ
(
C̃n,k̃,−Mk̃ mod k(x

k̃M+k̃

k̃M+1
)
)]

(d)

≤ E


2k +

⌊n
k
⌋−1∑

m=0

ℓ
(
Cn,k(x

km+k
km+1)

)
1km+1≥k̃M+11km+k≤k̃M+k̃




= 2k +

⌊n
k
⌋−1∑

m=0

P
(
km+ 1 ≥ k̃M + 1, km+ k ≤ k̃M + k̃

)
ℓ
(
Cn,k(x

km+k
km+1)

)

(e)

≤ 2k +

⌊n
k
⌋−1∑

m=0

k̃
k

n
k − 1

ℓ
(
Cn,k(x

km+k
km+1)

)

(f)
= 2k +

⌊n
k

⌋ k̃

n− k
E
[
ℓ(Cn,k(x

kN+k
kN+1))

]

(g)

≤ 2k +
⌊n
k

⌋ k̃

n− k

(
Ĥk(xn) + 1

)

Step (a) follows by Shannon’s source coding converse. (b) isfrom the definition ofC̃n,k̃. (c): Observe that by settingθ =

−Mk̃ mod k, every encoded subblock withiñCn,k̃,θ is aligned so that it will be of the formCn,k(x
k(m+1)
km+1 ) for some integer

m. Step (d) involves first upper-bounding the length of the unencoded prefix and suffix components ofC̃n,k(x
k(M+1)
kM+1 ) at k

bits each, and then summing the lengths of each of the encodedsubblocks. Note that an encoded subblockCn,k(x
km+k
km+1 )

only appears iñCn,k̃,−Mk̃ mod k(x
k̃M+k̃

k̃M+1
) if xkm+k

km+1 is fully contained within thẽk-block being encodedxk̃M+k̃

k̃M+1
. The indicator

functions ensure that only these encoded subblocks contribute to the length summation. (e) follows from recognizing that
M takes⌊n/k⌋ values uniformly, and that at most̃k/k of these positions satisfy the conditionsmk + 1 ≥ Mk̃ + 1 and
mk + k ≤ Mk̃ + k̃. (f) replaces the summation with an expectation, where the random variableN is uniformly distributed
over the set{0, . . . , ⌊n

k ⌋ − 1}. (g) invokes (19).
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Dividing both sides of this resulting inequality bỹk and taking the limit supremum with respect ton, we have that

lim sup
n→∞

1

k̃
Ĥ k̃(xn) ≤ 2k

k̃
+

1

k
+ lim sup

n→∞

1

k
Ĥk(xn).

Taking the limit supremum of both sides of this expression with k̃, we have that

lim sup
k̃→∞

lim sup
n→∞

1

k̃
Ĥ k̃(xn) ≤ 1

k
+ lim sup

n→∞

1

k
Ĥk(xn).

Finally, taking the limit infimum with respect tok,

lim sup
k̃→∞

lim sup
n→∞

1

k̃
Ĥ k̃(xn) ≤ lim inf

k→∞
lim sup
n→∞

1

k
Ĥk(xn).

This proves thatlimk→∞ lim supn→∞
1
k Ĥ

k(xn) exists.
Repeating this last set of arguments with the limit infimum with respect ton proves thatlimk→∞ lim infn→∞

1
k Ĥ

k(xn)
exists.

Next, we prove that the sliding-window compressibility canbe no greater than the block-by-block compressibility.
Lemma 17:Let x∞ be a finite-alphabet sequence. Then the following two statements hold:

ρ(x∞) ≤ lim
k→∞

lim inf
n→∞

1

k
Ĥk(xn)

and

ρ(x∞) ≤ lim
k→∞

lim sup
n→∞

1

k
Ĥk(xn).

Proof: As the form of this proof is very similar to that of Lemma 16, exposition will be limited.
Let k̃ > k, let Cn,k denote the k-block Huffman code for the block-by-block empirical distribution p̂(Xk)[xn], and let

C̃n,k̃,θ and C̃n,k̃ be the(θ, k̃)- and k̃-extensions ofCn,k.

Allowing M to be uniformly distributed over the set{0, . . . , n− k̃}, we have that

Ĥ k̃
sw ≤ E

[
ℓ
(
C̃n,k̃(x

M+k̃
M+1)

)]

= E
[

min
θ∈{0,...,k−1}

ℓ
(
C̃n,k̃,θ(x

M+k̃
M+1)

)]

≤ E
[
ℓ
(
C̃n,k̃,−M mod k(x

M+k̃
M+1)

)]

≤ E


2k +

⌊n
k ⌋−1∑

m=0

ℓ
(
Cn,k(x

km+k
km+1)

)
1km+1≥M+11km+k≤M+k̃




= 2k +

⌊n
k ⌋−1∑

m=0

P
(
km+ 1 ≥ M + 1, km+ k ≤ M + k̃

)
ℓ
(
Cn,k(x

km+k
km+1)

)

≤ 2k +

⌊n
k ⌋−1∑

m=0

k̃ − k − 1

n− k̃ − 1
ℓ
(
Cn,k(x

km+k
km+1)

)

≤ 2k +
⌊n
k

⌋ k̃

n− k̃ − 1
E
[
ℓ
(
Cn,k(x

kN+k
kN+1)

)]
, N ∼ Unif

{
0, . . . ,

⌊n
k

⌋
− 1
}

≤ 2k +
n

k

k̃

n− k̃ − 1

(
Ĥk(xn) + 1

)

Dividing both sides bỹk and taking the limit supremum inn, we have that

lim sup
n→∞

1

k̃
Ĥ k̃

sw ≤ 2k

k̃
+

1

k

(
Ĥk(xn) + 1

)
.

Now taking the limit supremum iñk followed by the limit supremum ink, we have that

lim sup
k̃→∞

lim sup
n→∞

1

k̃
Ĥ k̃

sw ≤ lim sup
k→∞

lim sup
n→∞

1

k
Ĥk. (20)
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We can identically show (by replacing all limits supremum with limits infimum) that

lim inf
k̃→∞

lim inf
n→∞

1

k̃
Ĥ k̃

sw ≤ lim inf
k→∞

lim inf
n→∞

1

k
Ĥk. (21)

Equations (20) and (21) prove the lemma.
We now prove the opposite direction: that the sliding windowcompressibility can be no smaller than the block-by-block

compressibility.
Lemma 18:Let x∞ be a finite-alphabet sequence. Then

ρ(x∞) ≥ lim
k→∞

lim inf
n→∞

1

k
Ĥk(xn)

and

ρ(x∞) ≥ lim
k→∞

lim sup
n→∞

1

k
Ĥk(xn).

Proof: Let k̃ > k be two blocklengths, and letCn,k be the optimalk-block Huffman code for thekth-order sliding window
distribution p̂ksw(X

k)[xn]. Then there must exist a phaseθ∗ ∈ {0, . . . , k − 1} such that

E
[
ℓ
(
Cn,k(x

(N+1)k+θ∗

Nk+1+θ∗ )
)]

≤ Ĥk
sw(x

n) + 1 (22)

whereN is distributed uniformly across the set{0, . . . ,
⌊
n−θ∗

k

⌋
− 1}. This follows from the within-one-bit optimality ofCn,k

over the sliding-window distribution, and because the sliding-window distribution may be expressed as a (nonnegative) linear
combination of the block-by-block distributionŝpk(Xk)[xn

θ ] computed according to each phaseθ.
Define C̃n,k,θ andC̃n,k as the(θ, k̃)- and k̃-extensions ofCn,k.
A familiar sequence of inequalities may then be applied. AllowingM to be uniformly distributed over the set{0, . . . , ⌊n/k̃⌋−

1}, we have:

Ĥ k̃(xn)
(a)

≤ E
[
ℓ
(
C̃n,k̃(x

k̃(M+1)

k̃M+1
)
)]

= E
[

min
θ∈{0,...,k−1}

ℓ
(
C̃n,k̃,θ(x

k̃(M+1)

k̃M+1
)
)]

(b)

≤ E
[
ℓ
(
C̃n,k̃,(θ∗−M) mod k(x

k̃(M+1)

k̃M+1
)
)]

(c)

≤ E


2k +

⌊
n−θ∗

k

⌋
−1∑

m=0

ℓ
(
Cn,k(x

k(m+1)+θ∗

km+1+θ∗ )
)
1Mk̃+1≤km+θ∗+11Mk̃+k̃≥mk+θ∗+k




≤ 2k +

⌊
n−θ∗

k

⌋
−1∑

m=0

P
(
Mk̃ + 1 ≤ km+ θ∗ + 1,Mk̃ + k̃ ≥ mk + θ∗ + k

)
ℓ
(
Cn,k(x

k(m+1+θ∗)
km+1+θ∗ )

)

(d)

≤ 2k +

⌊
n−θ∗

k

⌋
−1∑

m=0

k̃
k

n−θ∗

k − 1
ℓ
(
Cn,k(x

k(m+1+θ∗)
km+1+θ∗ )

)

(e)

≤ 2k +
n− θ∗

k

k̃

n− θ∗ − k
E
[
ℓ
(
Cn,k(x

k(N+1)+θ∗

kN+1+θ∗ )
)]

(f)

≤ 2k +
n− θ∗

k

k̃

n− θ∗ − k

(
Ĥk

sw(x
n) + 1

)

Step (a) follows from Shannon’s converse and the definition of the k̃-block empirical entropyĤ k̃(xn). (b) setsθ = (θ∗ −
M) mod k so that every encoded subblock withiñCn,k̃,θ is of the formCn,k(x

k(m+1)+θ∗

km+1+θ∗ ) for some integerm. (c) upper-
bounds the length of an encoding first by bounding the suffix and prefix atk bits each, and then by summing the encod-
ing lengths for each contributing encoded subblock. Observe that an encoded subblockCn,k(x

k(m+1+θ∗)
km+1+θ∗ ) only appears in

C̃n,k̃,(θ∗−M) mod k(x
k̃(M+1)

k̃M+1
) if x

k(m+1+θ∗)
km+1+θ∗ is fully contained within thẽk-block being encodedxk̃(M+1)

k̃M+1
. (d) follows from

recognizing thatM takes ⌊(n − θ∗)/k⌋ values uniformly, and that at most̃k/k of these positions satisfy the conditions
Mk̃ + 1 ≤ km + θ∗ + 1 andMk̃ + k̃ ≥ mk + θ∗ + k. (e) introducesN as a random variable distributed uniformly over
{0, . . . ,

⌊
n−θ
k

⌋
− 1}, and the sum is replaced by an expectation. Finally, (f) is a direct application of (22).
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Dividing both sides bỹk and taking the limit infimum inn, we have that

lim inf
n→∞

1

k̃
Ĥ k̃(xn) ≤ 2k

k̃
+

1

k

(
Ĥk

sw(x
n) + 1

)
.

Taking the limit infimum ink̃, followed by the limit infimum ink, we have

lim inf
k̃→∞

lim inf
n→∞

1

k̃
Ĥ k̃(xn) ≤ lim inf

k→∞
lim inf
n→∞

1

k
Ĥk

sw(x
n). (23)

By repeating these two steps with limits supremum instead oflimits infimum, we find that

lim sup
k̃→∞

lim sup
n→∞

1

k̃
Ĥ k̃(xn) ≤ lim sup

k→∞
lim sup
n→∞

1

k
Ĥk

sw(x
n). (24)

Lemma 1 now follows from lemmas 16, 17, and 18.

APPENDIX B
PROOF OFLEMMA 6

Proof: We begin by defining a functionnM (M∞) that specifies the truncated sourceMnM (M∞).

1) If M∞ /∈ Mk(z
∞) then select only the first bitnM (M∞) = 1.

2) SupposeM∞ ∈ Mk(z
∞). Then let{Li}, {ni}, and p̂(ML, zk) be specified so that (1) is satisfied.

Let CM∞ be the optimal conditional Huffman code for̂p(ML|zk), and letBM∞ be the number of bits required to
describeCM∞ to a decoder.
We then choosei(M∞) ∈ Z

+ sufficiently large so that the following three conditions are satisfied:

C1
∣∣∣E [L]p̂ − E [L]p̂ni(M∞)

∣∣∣ < δ, wherep̂ni
is the empirical distribution of(ML, zk)ni

1 . This can be satisfied because

p̂ is a limiting empirical distribution on the points{ni}.
C2 E

[
ℓ(C(ML|zk))

]
p̂ni(M∞)

≤ Hp̂(M
L|zk) + 1. This is possible since we know thatE

[
ℓ(C(ML|zk))

]
p̂

≤
Hp̂(M

L|zk) + 1, and thatp̂ni
→ p̂.

C3 BM∞

ni(M∞)
< δ. This is possible simply becauseBM∞ is finite.

Armed with i(M∞) we may define the following:

• n(M∞) = ni(M∞) is the relevant index in the partition sequence{(ML, zk)i}.
• nM (M∞) =

∑ni(M∞)

j=1 Lj is the relevant index in the source sequenceM∞.
• nz(M

∞) = kni(M∞) is the relevant index in the noise sequencez∞.

We now describe a variable-length source coding scheme for this constructed sourceMnM (M∞)
1 with encoder-side-information

M∞
nM (M∞)+1:

1) If M∞ /∈ Mk, directly encodeMnM (M∞)
1 . Recall that sincenM ((Mk)

C) = 1, this is just the first bitM1.
2) If M∞ ∈ Mk: First, specifyCM∞ with the firstBM∞ bits in the encoding. Then, applyCM∞ to each of then(M∞)

blocks in thek-partition (ML, zk)
n(M∞)
1 .

Call this encoding functionF (MnM(M∞)). By Shannon’s source coding converse, the expected length of this encoding must
exceed the entropy of the sourceMnM (M∞). We demonstrate that for this to holdMk must be of measure zero.
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0 ≤ E
[
ℓ(F (M

nM (M∞)
1 ))

]
−H(M

nM(M∞)
1 )

(a)

≤ E
[
ℓ(F (M

nM (M∞)
1 ))

]
− E [nM (M∞)]

(b)
= P (M∞ /∈ Mk) + P (M∞ ∈ Mk)E

[
BM∞ + n(M∞)E

[
ℓ(CM∞(ML|zk))

]
p̂n(M∞)

| M∞ ∈ Mk

]

−P (M∞ /∈ Mk)− P (M∞ ∈ Mk)E [nM (M∞) | M∞ ∈ Mk]

= P (M∞ ∈ Mk)E
[
BM∞ + n(M∞)E

[
ℓ(CM∞(ML|zk))

]
p̂n(M∞)

− nM (M∞) | M∞ ∈ Mk

]

(c)

≤ P (M∞ ∈ Mk)E
[
n(M∞)

(
δ + E

[
ℓ(CM∞(ML|zk))

]
p̂n(M∞)

)
− nM (M∞) | M∞ ∈ Mk

]

(d)

≤ P (M∞ ∈ Mk)E
[
n(M∞)

(
δ + E

[
ℓ(CM∞(ML|zk))

]
p̂n(M∞)

)
− n(M∞)E [L]p̂n(M∞)

| M∞ ∈ Mk

]

(e)

≤ P (M∞ ∈ Mk)E
[
n(M∞)

(
δ +Hp̂(M

L|zk) + 1
)
− n(M∞)E [L]p̂n(M∞)

| M∞ ∈ Mk

]

(f)

≤ P (M∞ ∈ Mk)E
[
n(M∞)

(
2δ +Hp̂(M

L|zk) + 1
)
− n(M∞)E [L]p̂ | M∞ ∈ Mk

]

0
(g)

≤ P (M∞ ∈ Mk)E
[
n(M∞)

(
Hp̂(M

L|zk) + 1− E [L]p̂

)
| M∞ ∈ Mk

]

Step (a) holds by Lemma 5. Step (b) follows from an expansion of both expectations. (c) is due to conditionC3. The definition
of nM (M∞) yields (d). ConditionC2 implies (e). (f) follows from conditionC1. Becauseδ can be arbitrarily small, (g) holds.
Finally, by the definition ofMk in (1), this last inequality can only be satisfied ifP (M∞ ∈ M) is zero.

APPENDIX C
PROOF OFLEMMA 13

First, some notational conveniences are defined. Suppose the given repetition schemeF is applied to an iid Bernoulli(1/2)
sourceM∞ and fixed noise sequencez∞. Let {Li} be the number of source bits decoded in each block. Consider the ith

block — i.e.F
(
(M

∑i−1
j=1 Li+N

∑i−1
j=1 Li+1

, 0∞), ziN(i−1)N+1

)
. Let MN

(i) = M
∑i−1

j=1 Li+N
∑i−1

j=1 Li+1
indicate the source bits used by the encoder,

let M̂Li

(i) = M̂
∑i

j=1 Li
∑i−1

j=1 Li+1
indicate the estimate produced, letRi =

Li

N indicate the rate of the block, and letzN(i) = ziN(i−1)N+1

denote the noise of the block. Finally, letuN
(i) = uiN

(i−1)N+1 denote the feedback during the block.
Observe that thejth block in a repetition scheme can only affect a future blockin one way: by adjustingLj and thereby

changingMN
(i) for i > j. As such, for alli > j, the Markov chainuN

(i) −MN
(i) − (uN

(j),M
N
(j)) holds. The joint distribution of

(uN
(j), u

N
(i),M

N
(j),M

N
(i)) may then be written as

p
(
uN
(j), u

N
(i),M

N
(j),M

N
(i)

)
= p(uN

(j),M
N
(j))p(M

N
(i)|uN

(j),M
N
(j))p(u

N
(i)|MN

(i)).

SinceEi andEj are deterministic functions of(uN
(i),M

N
(i)) and (uN

(j),M(j)) respectively, we may easily introduce them into
the joint distribution:

p
(
uN
(j), u

N
(i),M

N
(j),M

N
(i), Ei, Ej

)
= p

(
uN
(j),M

N
(j)

)
p
(
Ej |uN

(j),M
N
(j)

)

·p
(
MN

(i)|uN
(j),M

N
(j)

)
p
(
uN
(i)|MN

(i)

)

·p
(
Ei|uN

(i),M
N
(i)

)
.

This may be rephrased as

p
(
uN
(j), u

N
(i),M

N
(j),M

N
(i), Ei, Ej

)
= p

(
uN
(j),M

N
(j), Ej ,M

N
(i)

)
p
(
uN
(i), Ei|MN

(i)

)
.

Summing over(uN
(j), u

N
(i),M

N
(j)) this yields

p
(
Ei, Ej ,M

N
(i)

)
= p

(
Ej ,M

N
(i)

)
p
(
Ei|MN

(i)

)
= p

(
Ej |MN

(i)

)
p
(
Ei|MN

(i)

)
p
(
MN

(i)

)
,

which proves the Markov relationEi −MN
(i) − Ei−1.

The above arguments may be repeated verbatim to show thatTi −MN
(i) − T i−1.
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