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Abstract—The task of the binary classification problem is to
determine which of two distributions has generated a lengti
test sequence. The two distributions are unknown; two traiing
sequences of lengthV, one from each distribution, are observed.
The distributions share an alphabet of sizem, which is sig-
nificantly larger than n and N. How does N, n, m affect the
probability of classification error? We characterize the adhievable
error rate in a high-dimensional setting in which N, n, m all tend
to infinity, under the assumption that probability of any symbol
is O(m™1). The results are:

1) There exists an asymptotically consistent classifier if and
only if m = o(min{N?, Nn}). This extends the previous
consistency result in [1] to the caseV # n.

2) For the sparse sample case whemaax{n, N} = o(m), finer
results are obtained: The best achievable probability of
error decays as— log(P.) = Jmin{N?, Nn}(1 +o(1))/m
with J > 0.

3) A weighted coincidence-based classifier has non-zero gen-

eralized error exponent J.
4) The ¢2-norm based classifier has/ = 0.

Index Terms—high-dimensional model, large deviations, clas-
sification, sparse sample, generalized error exponent
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In many applications such as text classification, the number
of training and test samples observed, and n, are much
smaller than the size of alphabet This is the so-calledparse
sampleproblem. For example, suppose we want to decide,
given two articles written by two different others, whichtlaor
writes the third article. The number of words appearing in an
article is much smaller than the English vocabulary, and the
histogram of words is a sparse oné [2].

The high-dimensional setting, in whiclV,n, m all tend
to infinity and m is much large thanN,n, is a widely-
used approach to analyze classifiers for the sparse sample
problem. A widely-used performance criterion is asymjgtoti
consistency: Given some dependencefn on m, does
the probability of error decay to zero as increases to
infinity? A fundamental result with respect to this criterio
was established ir_[1]: Assuming that the distribution on al
symbols in the alphabet is of orddr/m, there exists an
asymptotic consistent classifier if and onlysf = o(n?).
Note that the result is established only for the cAse- n.

In most practical scenarios, the number of test samples
available is smaller than the number of training samples. It

Consider the following binary classification problem: Twas thus desirable to understand hdwandn affects the per-

training sequenceX ={X;,..., Xy} andY ={1,..., Yy}

formance individually. We thus pose the following quession

generated from two differeninknownsources are observed. 1) How fast doN andn need to increase with: in order

The two sources share the same alphabét= {1,...,m}.
Given a test sequenc& = {Z7,...,Z,}, the classifier

decides whetheZ comes from the first source or the second.

to have an asymptotic consistent classifier?
2) Does the probability of error depend dhandn in the
same way?

The performance of a classifier is usually assessed by hows) If the number of training samples is limited, can the

its probability of classification error depends &hn, m. Since

performance be improved by having more test samples?

the exactly formula for the probability of error is usually The goal of this paper is to answer these questions by
complicated, asymptotic models and performance critega astablishing achievability and converse results on bédsehte

used. For example, the classical error exponent critetfiam-c
acterizes the exponential rate at which the probabilityrodre

probability of classification error. Our tool is the genéedl
error exponent analysis technique fram [3]. In this priorkyo

decays asV andn increase to infinity. In addition to assessinghe sparse samplgoodness of fiproblem is investigated in

a particular classifier's performance, it is desirable talgssh
fundamental limits on the best achievable performance.
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which the number of test samples is much smaller than the
size of alphabet. The classical error exponent was extetaded
this problem via a different scaling in large deviation gsé.

In the classification problem, the classsical error expbnen
analysis has been applied to the case of fixed alphabét in [4]
and [5]. It was shown that in order for the probability of erro
to decay exponentially fast with respect 19 the number
of training samplesN must grow at least linearly with.
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However, in the sparse sample problem, the classical ertbere are both rare and non-rare symbols is a topic currently
exponent concept is again not applicable, and thus a differeinder investigation.
scaling is needed. In the high-dimensional model, we consider a sequence of
We identify the appropriate scaling in this paper, and there classification problems as described above, indexednrby
obtain a generalized error exponent to approximate the-prathusP([m]), N, n, p, ¢, I1,,, all depend onn. Moreover,N, n
ability of error for large but sparse observations.Thislgsia increase to infinity asn increases.
yields new insights on the best achievable performance: A classifier¢p = {¢m}m>1 is a sequence of binary-valued
1) The numbers of training and test sampl¥sn have functions withgy, : [m]™ x [m]™ x [m]" — {0,1}. It decides
different effects on the performance, made precise i favor of H1if ¢,, = 1 and HO otherwise. Use the notation
Theoren IVl and TheoreM TV.2. P(u,)(A) to denote the probability of the evedtwhen X,

2) The (,-norm based classifier investigated i [1], which @ndZ have marginal distributions, =, v respectively. The
compares the, distances from the empirical distribu-Performance of a classifier is evaluated using the worst-case

tion of the test sequence to those of the two trainirfiy/€rage probability of error given by
sequences, is sub-optimal in that it has zero genegs (4 )= sup (3P {0m =1} + Py (D =0}].
alized error exponent, while a weighted coincidence- (70,10) €M, o .
based classifier proposed in this paper has a non-z@res said to be asymptotically consistent if
generalized error exponent.
Related work: Two problems that are closely related to the mlﬂnoo Pe(ém) = 0.
sparse sample classification problem is the goodness of fit 1. ASYMPTOTIC CONSISTENCY
problem and the problem of testing whether two distribugion
are close. For the goodness of fit problem, achievability and
converse results with respect to different criteria havenbeTheorem I1Il.1. There exists an asymptotically consistent
established in[]6], []7], [I8], [1O], [[B]. For the problem ofclassifier if and only if
testing the closeness of two distributions, achievabitihd . 9
converse results with respect to asymptotic consisteneg ha m = o(min{N", Nn}).
been established in_[10]. [11]. Our converse result uses the Proof: The sparse sample case wherex{N,n} =
concept of profile in[[I2]. The results in"[12] have lead te(m) is a corollary of the generalized error exponent analysis
algorithms for classification and closeness testing [1B3].[ results given in Theorem 1¥.1 and Theorém 1V.2.
Now consider the case whem = O(N). The only if
Il. NOTATION AND MODEL direction is trivial. For the if direction, whemn = o(N),
Consider the following classification problem: Two trainth€ distributions ofX" andY” can be essentially be estimated

ing sequencesX and Y are generated i.i.d. with marginaIWith vanishing error since the number of types grows sub-

distributions= and ., respectively. Each symbol takes valu&XPonentially im (Seel[1, Lemma 3]). Whem is linear inXV,
in [m] :={1,2,...,m}. A test sequencé is observed. The this problem can be transformed into a (harder) sparse sampl

sequenceZ is i.i.d. with marginal distributionr under the Problem with alphabet size:b whereb = [/min{V, n}]:
null hypothesisi0 and with marginal, under the alternative ASSociate each symbol ifin] with b symbols. Each obser-

hypothesig 1. The three sequence§, Y, Z are independent. Vation is then randomly mapped to one of the associated
Denote the set of probability distributions ovén] by symbols. A consistent classifier for the sparse sample gnobl

P(Im]). The pair of unknown distributionér, 1) belongs to leads to a consistent classifier for the original problem.m

We begin with the asymptotic consistency result.

the following setll,,, C P([m]) x P([m]), We have a few remarks:
1) For the caseV = n, the conclusion of TheoremTIl.1 is
M, = {(m, 1) : || — 7y > &, maxm; < E,maxuj <1y consistent with the results inl[1, Theorem 3 and 4].Our
J mo m proof technique is different.
where ) is a large positive constant. The definition Bf, 2) The requirements otV andn for asymptotic consis-

is essentially the same as thelarge-alphabet source defined tency are different: The first requirement = o(N?)
in [1], except that we allow the number of training and test ~ needs to be satisfied regardless of how many test samples
samples to be different. While this assumption that all word ~ are available. The second requirement is active only
are rare does not hold for English vocabulary, the insights a whenn = O(N). Therefore, as long as the number of
classifiers obtained for rare words will be used to improve th ~ test samples grows linearly with the training samples,
algorithms for the case when there are both frequent and rare further increasing the test samples will not improve the
words. performance in terms of asymptotic consistency.

The assumption thatax; 7; < 2, max; 1; < 2 indicates 3) On the other hand,l increasing the numbertrafning
that we are interested in how the existence of a large number ~samples will always increase the performance. The effect
of rare symbols affects the performance, and is motivated by ~ Of increasing the training samples is different whes:
the English vocabulary. Extending the results to the casarevh o(N) and N = o(n).



IV. GENERALIZED ERROREXPONENT This classifier was shown ifl[1] to be asymptotically coresist
Whenm is fixed, the following error exponent criterion hatvhen N' = n andm = o(N?). We now show, however, this

been used to evaluate a classifier classifier has zero generalized error exponent:
L 1 Theorem V.1. Suppose Assumptigh 1 and Assumgiion 2 hold
I(¢) = _hﬁsolipﬁlog(&(qsm))‘ (1) and N = n. Assume in addition thato — o(n?/log(n)?).
Then

This classical error exponent criterion is no longer aggtile F
in the sparse sample case where J(¢7) =0.
The sub-optimality of”" is due to the following reason: For
. _ _ ~_anyj, a large variation of the value an‘;’ causes a significant
One should consider instead the following generallzanoahange in the value of the statistic,. Assumem is even for
defined with respect to the normalizatio@WV, n, m): simplicity of exposition. Let: denote the uniform distribution
on[ml. Letq; = (1 +¢)/m for j < m/2 andq; = (1
J(¢) := —limsup ] log(Pe(ém))- @) 5)/1[n ]for j >qjm/2(. CJ:)n;i/der thejcgse \{vhere L(lezldﬁf)f trTe

. - . istribution is given by(q, u, q).
The results in TheoreMm V.1 and Theorém IV.2 imply that the Considering the following event where one symbol appears

appropriate normalization is many times:
r(N,n,m) = min{N?, Nn} /m. Cn:={ay = |4n/v/m]}, (3)

The generalized error exponeitt¢) could depend on how we claim that this event is likely to cause a false alarm:
N, n increase withn. Note that to have a consistent classifier,

Assumption 1. N = o(m),n = o(m).

the necessary condition in Theor€m 1Il.1 must be satisfisd, a Pgug{d” =1]Cn} =1—0(1).
summarized in the assumption below: On the other hand, the probability ¢f, decays slowly:
. L,

This is equivalent tdim,, . (N, n, m) = oc. - . .
The following theorems demonstrate that the definition i%omblnlng these two equality gives the lower-bound

@) is meaningful: log(Pe(¢")) >108(3P (410) (Ca)P (g (0" = 1|Ci})
Theorem V.1 (Achievability). Suppose Assumptidd 1 and = 34%10g(m)(1+0(1))
Assumptiofi ]2 hold. Then there exists a classifiesuch that m

J(6) > 0 Thus this error decays at most a1~ z log(m), slower than
' n?/m. Consequently] (¢f") = 0.

Theorem V.2 (Converse) Suppose Assumption 1 holds.

There exists a constant such that for any classifiep,

VI. PROOF OF ACHIEVABILITY: WEIGHTED
COINCIDENCE-BASED CLASSIFIER
—log(Pe(¢m)) < 7(N,n,m)J. A nonzero generalized error exponent is achieved by the

These theorems imply that the best achievable probabilf§/lowing weighted coincidence-based classifier, whoss-co
of error decays approximately @& = exp{—r(N,n,m)J} S ruction is inspired by the weighted coincidence-basst te
for someJ > 0. Note that the probability of error changed’roposed inl[B]. Define the test statistit:
exponetially with respect ta only whenn = O(N). When B 1 e o s oo L
N = o(n), the probability of error is mainly determined by ™ _Z [ﬁﬂ{aﬂ' = 2,05 = 0} + —I{af = 0,4f = 2}
the number of training samples. This phenomenon is similar J

to the case with fixedn, for which results in[[4] show that - L]I{a? =1,a} = 1}+L}1{a?j =1,a7 =1}
whethern = O(N) holds determines whether the probability ”1N ' ?N
of error decreases exponentiallyin - —Haf =0,d] = 2}_Wﬂ{a? =2,a; =0} ]
n :
V. £3-NORM BASED CLASSIFIER HAS A ZERO The classifier is given by = I{T}, > 0}.
GENERALIZED ERROR EXPONENT TheorenfIV1 is proved by bounding.(¢”) via Chernoff:
Let a? be the number of times thath symbol appears in
J T _ ;
Z. The notations:” andaV are defined similarly. log(Prum{¢” =1}) < inf A pm) (0)-
The ¢3-norm based classifier has the following test statistic: log(P(mu,u)wT =0}) < i%f Aty (0).
1, 1, 1, 1
Fn = ||ﬁa -N 13— Hﬁa - NayH%. whereA . ,,..)(0) = log E(x ... [exp(0K,,)] is the logarithmic

moment generating function of(,,. The main step is to
obtain an.asymptotip_approximation 10 ) (0), given in
o =1{F, >0}. the following proposition:

The classifier is given by



Proposition VI.1. Let§ = min{N? nN}v. For v = O(1), Lemma VII.1. For any sequencéz,y, z) C A,

Amun ) 1 _ L
( " IKmlw;; w5 IKmlw;; i ™Y
<min{N*nN}(v[>_(3(m; = v)* = 3(p; — v;)*)] N "
= Proof sketch for Lemma VIl.1for any sequence, let;
m denote the number of symbols appearingmes. The vector
+ 20D (v + pivy) + (77 + pd)]) [©1, 2, @3, ... is called theprofile of the sequenceé [12].
j=1 Because of the symmetry of the collection of distributions
min{ N2 nN} max{N,n} {¢“,w € K,}, the symmetry of the uniform distribution
+0( m2 ) +O(1). u, and the independence amon¥,Y, Z, the value of

1 .
Propositio VL1 is obtained using the Poisonnization {echullgml ZwekalPl”(lu-,q?]u) (z, yatz) Or?ly de??ndsfon thg profiles
nique: The distribution of the vectoa? is the same as of z, y, andz. In the eventd, the profiles ofz andy are

the conditional distribution of a vector of Poisson randoWﬁd’ Wh%n Ie?ds tﬁ th? claim o[)the Ier_nma. -
variables whose expected values are given\ayfor some emm implies that for any observatide, y, z) €

constant\ > 0, conditioned on the event that the sum of thes‘é’ it is imp.ossible to tell whether it_ is more Iik(_aly to come
random variables is equal f§¥. The main steps are similar tof_rom the m|>_<ture on the left-hand side or the mixture on the
those used for results inl[3]. right-hand side. Consequently,

Applying Proposition[ VLI with the Chernoff bound for P, (¢,,)
the casess = m andv = pu, and using Assumptiohl 1 and 1
Assumptior(2, and the facts;, ;i; < n/m and ", (u; — Z4|Km|Z[P(u,q“,u){fbm:1}+P(u,qw,qw){¢m:0}]
7;)? > &/m, we obtain

1
K | Z[P(q“’,u,q“’){(bm = 1}+ P(q“’,u,u){‘bm = O}]

4 min{N2,nN T
(Pl =1) < gz oy,
1Og(P7T-,H-,H{¢T:O}) S_16€;’72 mm{]::’nN}(l—i-o(l)). 4|Km|;[(u,qwr,u){¢ } (qwﬂf’u){(b })]

1
Note that the approximatios(1) is uniform over all(r, ;1) € Z4|Km| Z[(ufjﬂ)(wm:1}0A)+(qw1?7£u)({¢m:0}mA)]

11,,,. Therefore,

4 1
€ = Pr m=1}NA)+ Pr m=0}NA
S T 2l By (0 =110+ Pr ({6, =0}04)
YII. PROOF OF CONVERSE zﬁz(u}:j,u)(fl).
Step 1: Establish the upper bound, © @)
—1og(Ps(ém)) < JIN?/m. (5) where the first inequality follows from the fact that the

maximum is no smaller than the average, and the second last
The main idea of the proof is to consider a event und@requality follows from Lemm& VII1l. The probability of the
which observations do not give any information regardirgy ttevent A can be lower-bounded.

hy\p/)\;)ethneosvisrhzﬂg 'lcﬁ\i,;e[:rt;?:iusr;d g‘;iggoﬁlaeble“%g such a eveEtemma VII.2. The following approximations holds uniformly

for any w:
A = {No symbol inX appears more than once; N2
no symbol inY appears more than onge. 10g((u1;w1"u)(14)) =—(1+ %EQ)E(l +0(1)) +O(1).
Assume without loss of generality that is even. Define
a collection of bi-uniform distributions as follows: Lét,,,
denote the collection of all subsets [ofi] whose cardinality
is m/2. For each set € K,,, define the distributiog® as

Proof sketch: It follows from a combinatorial argument
that the probability that no symbol appears twiceXnwhen
X has marginal distribution is given by

N2
- { (1+2)/m, jew @ "D e N D/m)Y = exp{=3 T (1 o(1)).

(L=e)/m, j&lml\w. Estimating the probability that no symbol appears twic&’in

Note that||u — ¢*||; = ¢, and (u, ¢*) € I1,,, for all w. can be done similarly but is more involved. [
We will use the short-hand notatiod(z,y,z)} = The claim [b) follows from applying Lemma VII.2 t§1(7),
{(X,Y,Z) = (xz,y, z)} throughout the paper. and picking a large enough.

Our choice of the collection of distributions makes surd tha Step 2: Establish the second upper-bound

the following result holds: - )
—10g(Pe(dm) < Jo(Nn +n)/m. (8)



We consider the following event: 1Og[Pr(u,qw,qW)({)§—fC7 Y—y}ﬂ}B)
Pr(uﬂquqw) )(ZEL‘7 Yzy

B = {No symbol inZ appears more than once; 7 at
no symbol inZ has appeared in eitheX or Y'}. The proof is similar to that of Ler_n_rﬂﬂﬂ].z. .
] o ) ) Note that the average probability of error is equal to the
When this event happens, it is impossible (in the worst-caggmmation of the left-hand side & (9) over all possifiey).

setting) to infer which distribution the test sequence igenOApplying Lemma VL2 to lower-bound the right-hand side of
likely to be generated from. This is captured by the follogvin@) leads to the claim.

lemma:

> 52 1 o),

We now combine[{5) and(8). It is straightforward to verify
Lemma VII.3. Consider anyx,y. For any two sequencesthat

z and z such that(z,y,z) C B and (z,y,2) C B, the min{N?, Nn +n’} < min{N? 2Nn}.
following holds: Taking J = max{.J;,2.J>} leads to the claim of the theorem.
ﬁ (U,Ef,u)(wvyaz) = ﬁ > b1 (@y,2). VIIl. CONCLUSIONS ANDFUTURE WORK
wekm wEKm We have investigated the binary classification problem with
L Pr (z,y.2) = L Pr (z,y,%). sparse samples using generalized error ex.po.nent concept,
|Km|we1<m(“’q“’q“) IKmlweKmuvq“,q“ and established fundamental performance limits. We have

Proof sketch for Lemm& VI1.3: Since no symbols in proposed a classifier that performs better than gh@orm

= have appeared i and y, due to the symmetry of the based Class_|f|er. Futur_e_dlrgctlons mplude: _
collection of distributions{¢”,w € K,,} and the symmetry 1) Investigate classification algorithms that are applieab

of the uniform distributioru, for fixed x andy, the value of when there are both rare and frequent.symbols. .
|Klm\zweKmPr(u7q‘“,q“)(m’ y, z) only depends on the profile 2) Thk?l gen(;rahzed error expc_)nent analysis cou_ld _be e_lppll—
of % It follows from the definition of the evenB that the cable to the problem of testing closeness of distributions.
profile of z is the same as the profile &f [ | REFERENCES
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