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Abstract—The task of the binary classification problem is to
determine which of two distributions has generated a length-n
test sequence. The two distributions are unknown; two training
sequences of lengthN , one from each distribution, are observed.
The distributions share an alphabet of sizem, which is sig-
nificantly larger than n and N . How does N,n,m affect the
probability of classification error? We characterize the achievable
error rate in a high-dimensional setting in which N,n,m all tend
to infinity, under the assumption that probability of any symbol
is O(m−1). The results are:

1) There exists an asymptotically consistent classifier if and
only if m = o(min{N2, Nn}). This extends the previous
consistency result in [1] to the caseN 6= n.

2) For the sparse sample case wheremax{n,N} = o(m), finer
results are obtained: The best achievable probability of
error decays as− log(Pe) = J min{N2, Nn}(1 + o(1))/m
with J > 0.

3) A weighted coincidence-based classifier has non-zero gen-
eralized error exponent J .

4) The ℓ2-norm based classifier hasJ = 0.
Index Terms—high-dimensional model, large deviations, clas-

sification, sparse sample, generalized error exponent

I. INTRODUCTION

Consider the following binary classification problem: Two
training sequencesX={X1, . . . , XN} andY ={Y1, . . . , YN}
generated from two differentunknownsources are observed.
The two sources share the same alphabet[m] := {1, . . . ,m}.
Given a test sequenceZ = {Z1, . . . , Zn}, the classifier
decides whetherZ comes from the first source or the second.

The performance of a classifier is usually assessed by how
its probability of classification error depends onN,n,m. Since
the exactly formula for the probability of error is usually
complicated, asymptotic models and performance criteria are
used. For example, the classical error exponent criterion char-
acterizes the exponential rate at which the probability of error
decays asN andn increase to infinity. In addition to assessing
a particular classifier’s performance, it is desirable to establish
fundamental limits on the best achievable performance.
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In many applications such as text classification, the number
of training and test samples observed,N and n, are much
smaller than the size of alphabetm. This is the so-calledsparse
sampleproblem. For example, suppose we want to decide,
given two articles written by two different others, which author
writes the third article. The number of words appearing in an
article is much smaller than the English vocabulary, and the
histogram of words is a sparse one [2].

The high-dimensional setting, in whichN,n,m all tend
to infinity and m is much large thanN,n, is a widely-
used approach to analyze classifiers for the sparse sample
problem. A widely-used performance criterion is asymptotic
consistency: Given some dependence ofN,n on m, does
the probability of error decay to zero asm increases to
infinity? A fundamental result with respect to this criterion
was established in [1]: Assuming that the distribution on all
symbols in the alphabet is of order1/m, there exists an
asymptotic consistent classifier if and only ifm = o(n2).
Note that the result is established only for the caseN = n.

In most practical scenarios, the number of test samples
available is smaller than the number of training samples. It
is thus desirable to understand howN andn affects the per-
formance individually. We thus pose the following questions:

1) How fast doN andn need to increase withm in order
to have an asymptotic consistent classifier?

2) Does the probability of error depend onN andn in the
same way?

3) If the number of training samples is limited, can the
performance be improved by having more test samples?

The goal of this paper is to answer these questions by
establishing achievability and converse results on best achieble
probability of classification error. Our tool is the generalized
error exponent analysis technique from [3]. In this prior work,
the sparse samplegoodness of fitproblem is investigated in
which the number of test samples is much smaller than the
size of alphabet. The classical error exponent was extendedto
this problem via a different scaling in large deviation analysis.

In the classification problem, the classsical error exponent
analysis has been applied to the case of fixed alphabet in [4]
and [5]. It was shown that in order for the probability of error
to decay exponentially fast with respect ton, the number
of training samplesN must grow at least linearly withn.
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However, in the sparse sample problem, the classical error
exponent concept is again not applicable, and thus a different
scaling is needed.

We identify the appropriate scaling in this paper, and thereby
obtain a generalized error exponent to approximate the prob-
ability of error for large but sparse observations.This analysis
yields new insights on the best achievable performance:

1) The numbers of training and test samplesN,n have
different effects on the performance, made precise in
Theorem IV.1 and Theorem IV.2.

2) The ℓ2-norm based classifier investigated in [1], which
compares theℓ2 distances from the empirical distribu-
tion of the test sequence to those of the two training
sequences, is sub-optimal in that it has zero gener-
alized error exponent, while a weighted coincidence-
based classifier proposed in this paper has a non-zero
generalized error exponent.

Related work: Two problems that are closely related to the
sparse sample classification problem is the goodness of fit
problem and the problem of testing whether two distributions
are close. For the goodness of fit problem, achievability and
converse results with respect to different criteria have been
established in [6], [7], [8], [9], [3]. For the problem of
testing the closeness of two distributions, achievabilityand
converse results with respect to asymptotic consistency have
been established in [10], [11]. Our converse result uses the
concept of profile in [12]. The results in [12] have lead to
algorithms for classification and closeness testing [13], [14].

II. N OTATION AND MODEL

Consider the following classification problem: Two train-
ing sequencesX and Y are generated i.i.d. with marginal
distributionsπ andµ, respectively. Each symbol takes value
in [m] := {1, 2, . . . ,m}. A test sequenceZ is observed. The
sequenceZ is i.i.d. with marginal distributionπ under the
null hypothesisH0 and with marginalµ under the alternative
hypothesisH1. The three sequencesX,Y ,Z are independent.

Denote the set of probability distributions over[m] by
P([m]). The pair of unknown distributions(π, µ) belongs to
the following setΠm ⊆ P([m])× P([m]),

Πm = {(π, µ) : ‖µ− π‖1 ≥ ε,max
j

πj ≤
η

m
,max

j
µj ≤

η

m
},

where η is a large positive constant. The definition ofΠm

is essentially the same as theα-large-alphabet source defined
in [1], except that we allow the number of training and test
samples to be different. While this assumption that all words
are rare does not hold for English vocabulary, the insights and
classifiers obtained for rare words will be used to improve the
algorithms for the case when there are both frequent and rare
words.

The assumption thatmaxj πj ≤ η
m
,maxj µj ≤ η

m
indicates

that we are interested in how the existence of a large number
of rare symbols affects the performance, and is motivated by
the English vocabulary. Extending the results to the case where

there are both rare and non-rare symbols is a topic currently
under investigation.

In the high-dimensional model, we consider a sequence of
classification problems as described above, indexed bym.
ThusP([m]), N, n, p, q,Πm all depend onm. Moreover,N,n
increase to infinity asm increases.

A classifierφ = {φm}m≥1 is a sequence of binary-valued
functions withφm : [m]N × [m]N × [m]n → {0, 1}. It decides
in favor ofH1 if φm = 1 andH0 otherwise. Use the notation
P(µ,π,ν)(A) to denote the probability of the eventA whenX,
Y andZ have marginal distributionsµ, π, ν respectively. The
performance of a classifierφ is evaluated using the worst-case
average probability of error given by

Pe(φm)= sup
(π,µ)∈Πm

[ 12P(π,µ,π){φm=1}+ 1
2P(π,µ,µ){φm=0}].

It is said to be asymptotically consistent if

lim
m→∞

Pe(φm) = 0.

III. A SYMPTOTIC CONSISTENCY

We begin with the asymptotic consistency result.

Theorem III.1. There exists an asymptotically consistent
classifier if and only if

m = o(min{N2, Nn}).
Proof: The sparse sample case wheremax{N,n} =

o(m) is a corollary of the generalized error exponent analysis
results given in Theorem IV.1 and Theorem IV.2.

Now consider the case whenm = O(N). The only if
direction is trivial. For the if direction, whenm = o(N),
the distributions ofX andY can be essentially be estimated
with vanishing error since the number of types grows sub-
exponentially inn (See [1, Lemma 3]). Whenm is linear inN ,
this problem can be transformed into a (harder) sparse sample
problem with alphabet sizemb where b = ⌈

√

min{N,n}⌉:
Associate each symbol in[m] with b symbols. Each obser-
vation is then randomly mapped to one of the associated
symbols. A consistent classifier for the sparse sample problem
leads to a consistent classifier for the original problem.

We have a few remarks:
1) For the caseN = n, the conclusion of Theorem III.1 is

consistent with the results in [1, Theorem 3 and 4].Our
proof technique is different.

2) The requirements onN and n for asymptotic consis-
tency are different: The first requirementm = o(N2)
needs to be satisfied regardless of how many test samples
are available. The second requirement is active only
whenn = O(N). Therefore, as long as the number of
test samples grows linearly with the training samples,
further increasing the test samples will not improve the
performance in terms of asymptotic consistency.

3) On the other hand, increasing the number oftraining
samples will always increase the performance. The effect
of increasing the training samples is different whenn =
o(N) andN = o(n).



IV. GENERALIZED ERROR EXPONENT

Whenm is fixed, the following error exponent criterion has
been used to evaluate a classifierφ:

I(φ) :=− lim sup
n→∞

1

n
log(Pe(φm)). (1)

This classical error exponent criterion is no longer applicable
in the sparse sample case where

Assumption 1. N = o(m), n = o(m).

One should consider instead the following generalization,
defined with respect to the normalizationr(N,n,m):

J(φ) :=− lim sup
n→∞

1

r(N,n,m)
log(Pe(φm)). (2)

The results in Theorem IV.1 and Theorem IV.2 imply that the
appropriate normalization is

r(N,n,m) = min{N2, Nn}/m.

The generalized error exponentJ(φ) could depend on how
N,n increase withm. Note that to have a consistent classifier,
the necessary condition in Theorem III.1 must be satisfied, as
summarized in the assumption below:

Assumption 2. m = o(min{N2, Nn}).
This is equivalent tolimm→∞ r(N,n,m) = ∞.

The following theorems demonstrate that the definition in
(2) is meaningful:

Theorem IV.1 (Achievability). Suppose Assumption 1 and
Assumption 2 hold. Then there exists a classifierφ such that

J(φ) > 0.

Theorem IV.2 (Converse). Suppose Assumption 1 holds.
There exists a constant̄J such that for any classifierφ,

− log(Pe(φm)) ≤ r(N,n,m)J̄ .

These theorems imply that the best achievable probability
of error decays approximately asPe = exp{−r(N,n,m)J}
for someJ > 0. Note that the probability of error changes
exponetially with respect ton only whenn = O(N). When
N = o(n), the probability of error is mainly determined by
the number of training samples. This phenomenon is similar
to the case with fixedm, for which results in [4] show that
whethern = O(N) holds determines whether the probability
of error decreases exponentially inn.

V. ℓ2-NORM BASED CLASSIFIER HAS A ZERO

GENERALIZED ERROR EXPONENT

Let azj be the number of times thatjth symbol appears in
Z. The notationsax anday are defined similarly.

Theℓ2-norm based classifier has the following test statistic:

Fn := ‖ 1
n
az − 1

N
ax‖22 − ‖ 1

n
az − 1

N
ay‖22.

The classifier is given by

φF = I{Fn ≥ 0}.

This classifier was shown in [1] to be asymptotically consistent
whenN = n andm = o(N2). We now show, however, this
classifier has zero generalized error exponent:

Theorem V.1. Suppose Assumption 1 and Assumption 2 hold
and N = n. Assume in addition thatm = o(n2/ log(n)2).
Then

J(φF ) = 0.

The sub-optimality ofφF is due to the following reason: For
any j, a large variation of the value ofayj causes a significant
change in the value of the statisticFn. Assumem is even for
simplicity of exposition. Letu denote the uniform distribution
on [m]. Let qj = (1 + ε)/m for j ≤ m/2 and qj = (1 +
ε)/m for j > m/2. Consider the case where underH0, the
distribution is given by(q, u, q).

Considering the following event where one symbol appears
many times:

Cn := {ay1 = ⌊4n/
√
m⌋}, (3)

we claim that this event is likely to cause a false alarm:

P(q,u,q){φF = 1|Cn} = 1− o(1).

On the other hand, the probability ofCn decays slowly:

P(q,u,q)(Cn) = exp{−4(n/
√
m) log(m)(1 + o(1))}. (4)

Combining these two equality gives the lower-bound

log(Pe(φ
F )) ≥ log

(

1
2P(q,u,q)(Cn)P(q,u,q){φF = 1|Cn}

)

= 34
n√
m

log(m)(1 + o(1))

Thus this error decays at most asnm− 1

2 log(m), slower than
n2/m. Consequently,J(φF ) = 0.

VI. PROOF OF ACHIEVABILITY: WEIGHTED

COINCIDENCE-BASED CLASSIFIER

A nonzero generalized error exponent is achieved by the
following weighted coincidence-based classifier, whose con-
struction is inspired by the weighted coincidence-based test
proposed in [3]. Define the test statisticTn:

Tn=
∑

j

[ 1

N2
I{axj = 2, azj = 0}+ 1

n2
I{axj = 0, azj = 2}

− 1

nN
I{axj = 1, azj = 1}+ 1

nN
I{ayj = 1, azj = 1}

− 1

n2
I{ayj = 0, azj = 2}− 1

N2
I{ayj = 2, azj = 0}

]

.

The classifier is given byφT = I{Tn ≥ 0}.
Theorem IV.1 is proved by boundingPe(φ

T ) via Chernoff:

log(P(π,µ,π){φT = 1}) ≤ inf
θ
Λ(π,µ,π)(θ).

log(P(π,µ,µ){φT = 0}) ≤ inf
θ
Λ(π,µ,µ)(θ).

whereΛ(π,µ,ν)(θ) = log E(π,µ,ν)[exp(θKn)] is the logarithmic
moment generating function ofKn. The main step is to
obtain an asymptotic approximation toΛ(π,µ,ν)(θ), given in
the following proposition:



Proposition VI.1. Let θ = min{N2, nN}γ. For γ = O(1),

Λ(π,µ,ν)(θ)

≤min{N2, nN}
(

γ[

m
∑

j=1

(12 (πj − νj)
2 − 1

2 (µj − νj)
2)]

+ γ2[

m
∑

j=1

(πjνj + µjνj) +
1
2 (π

2
j + µ2

j)]
)

+O(
min{N2, nN}max{N,n}

m2
) +O(1).

Proposition VI.1 is obtained using the Poisonnization tech-
nique: The distribution of the vectoraxj is the same as
the conditional distribution of a vector of Poisson random
variables whose expected values are given byλπ for some
constantλ > 0, conditioned on the event that the sum of these
random variables is equal toN . The main steps are similar to
those used for results in [3].

Applying Proposition VI.1 with the Chernoff bound for
the casesν = π and ν = µ, and using Assumption 1 and
Assumption 2, and the factsπj , µj ≤ η/m and

∑m

j=1(µj −
πj)

2 ≥ ε2/m, we obtain

log(Pπ,µ,π{φT = 1}) ≤ − ε4

160η2
min{N2, nN}

m
(1 + o(1)),

log(Pπ,µ,µ{φT = 0}) ≤ − ε4

160η2
min{N2, nN}

m
(1 + o(1)).

Note that the approximationo(1) is uniform over all(π, µ) ∈
Πm. Therefore,

J ≥ ε4

160η2
.

VII. PROOF OF CONVERSE

Step 1: Establish the upper bound,

− log(Pe(φm)) ≤ J̄1N
2/m. (5)

The main idea of the proof is to consider a event under
which observations do not give any information regarding the
hypotheses, and lower-bound the probability of such a event.

We now make this precise. Define the event

A = {No symbol inX appears more than once;

no symbol inY appears more than once.}
Assume without loss of generality thatm is even. Define
a collection of bi-uniform distributions as follows: LetKm

denote the collection of all subsets of[m] whose cardinality
is m/2. For each setω ∈ Km, define the distributionqω as

qωj =

{

(1 + ε)/m, j ∈ ω;
(1 − ε)/m, j ∈ [m] \ ω. (6)

Note that‖u− qω‖1 = ε, and(u, qω) ∈ Πm for all ω.
We will use the short-hand notation{(x,y, z)} =

{(X,Y ,Z) = (x,y, z)} throughout the paper.
Our choice of the collection of distributions makes sure that

the following result holds:

Lemma VII.1. For any sequence(x,y, z) ⊆ A,

1

|Km|
∑

ω∈Km

Pr
(u,qω ,u)

(x,y, z) =
1

|Km|
∑

ω∈Km

Pr
(qω ,u,u)

(x,y, z).

Proof sketch for Lemma VII.1:For any sequence, letϕi

denote the number of symbols appearingi times. The vector
[ϕ1, ϕ2, ϕ3, . . .] is called theprofile of the sequence [12].

Because of the symmetry of the collection of distributions
{qω, ω ∈ Km}, the symmetry of the uniform distribution
u, and the independence amongX,Y ,Z, the value of

1
|Km|

∑

ω∈Km

Pr(u,qω ,u)(x,y, z) only depends on the profiles
of x, y, andz. In the eventA, the profiles ofx and y are
fixed, which then leads to the claim of the lemma.

Lemma VII.1 implies that for any observation(x,y, z) ∈
A, it is impossible to tell whether it is more likely to come
from the mixture on the left-hand side or the mixture on the
right-hand side. Consequently,

Pe(φm)

≥ 1

4|Km|
∑

ω

[P(u,qω ,u){φm=1}+P(u,qω,qω){φm=0}]

+
1

4|Km|
∑

ω

[P(qω ,u,qω){φm=1}+P(qω,u,u){φm=0}]

≥ 1

4|Km|
∑

ω

[ Pr
(u,qω ,u)

{φm=1}+ Pr
(qω,u,u)

{φm=0})]

≥ 1

4|Km|
∑

ω

[ Pr
(u,qω ,u)

({φm=1}∩A)+ Pr
(qω,u,u)

({φm=0}∩A)]

=
1

4|Km|
∑

ω

[ Pr
(u,qω ,u)

({φm=1}∩A)+ Pr
(u,qω,u)

({φm=0}∩A)]

=
1

4|Km|
∑

ω

Pr
(u,qω ,u)

(A).

(7)
where the first inequality follows from the fact that the
maximum is no smaller than the average, and the second last
inequality follows from Lemma VII.1. The probability of the
eventA can be lower-bounded.

Lemma VII.2. The following approximations holds uniformly
for anyω:

log
(

Pr
(u,qω ,u)

(A)
)

= −(1 + 1
2ε

2)
N2

m
(1 + o(1)) +O(1).

Proof sketch: It follows from a combinatorial argument
that the probability that no symbol appears twice inX when
X has marginal distributionu is given by

m(m−1) . . . (m−N+1)(1/m)N = exp{− 1
2

N2

m
(1+o(1))}.

Estimating the probability that no symbol appears twice inY

can be done similarly but is more involved.
The claim (5) follows from applying Lemma VII.2 to (7),

and picking a large enough̄J .
Step 2: Establish the second upper-bound

− log(Pe(φm) ≤ J̄2(Nn+ n2)/m. (8)



We consider the following event:

B = {No symbol inZ appears more than once;

no symbol inZ has appeared in eitherX or Y }.
When this event happens, it is impossible (in the worst-case
setting) to infer which distribution the test sequence is more
likely to be generated from. This is captured by the following
lemma:

Lemma VII.3. Consider anyx,y. For any two sequences
z and z̄ such that(x,y, z) ⊆ B and (x,y, z̄) ⊆ B, the
following holds:

1

|Km|
∑

ω∈Km

Pr
(u,qω,u)

(x,y, z) =
1

|Km|
∑

ω∈Km

Pr
u,qω ,u

(x,y, z̄).

1

|Km|
∑

ω∈Km

Pr
(u,qω ,qω)

(x,y, z) =
1

|Km|
∑

ω∈Km

Pr
u,qω ,qω

(x,y, z̄).

Proof sketch for Lemma VII.3: Since no symbols in
z have appeared inx and y, due to the symmetry of the
collection of distributions{qω, ω ∈ Km} and the symmetry
of the uniform distributionu, for fixed x andy, the value of

1
|Km|

∑

ω∈Km

Pr(u,qω ,qω)(x,y, z) only depends on the profile
of z. It follows from the definition of the eventB that the
profile of z is the same as the profile of̄z.

The result of Lemma VII.3 can interpreted as follows: In
the eventB, observingZ does not gives any information since
under either hypothesis, each sequencez appears with equal
probability.

Consider anyx,y. Let Dx,y = {z : (x,y, z) ∈ {φm =
1} ∩ B} and Dc

x,y = {z : (x,y, z) ∈ {φm = 0} ∩ B}.
Lemma VII.3 implies that the probability of{X = x,Y =
y, φm = 1}∩B only depends on the size ofDx,y , rather than
what sequences the setDx,y includes. Consequently, We then
have

1

|Km|
∑

ω

[

Pr
(u,qω ,u)

({X = x,Y = y, φm = 1} ∩B)

+ Pr
(u,qω ,qω)

({X = x,Y = y, φm = 0} ∩B)
]

=
[ 1

|Km|
∑

ω

Pr
(u,qω ,u)

({X=x,Y =y}∩B)
] |Dx,y |
Dx,y+Dc

x,y

+
[ 1

|Km|
∑

ω

Pr
(u,qω,qω)

({X=x,Y =y}∩B)
] |Dc

x,y |
Dx,y+Dc

x,y

≥ 1

|Km| min
{

∑

ω

Pr
(u,qω ,u)

({X=x,Y =y}∩B),

∑

ω

Pr
(u,qω,qω)

({X=x,Y =y}∩B)
}

,

(9)
where the inequality follows from lower-bounding the proba-
bility of {X=x,Y =y}∩B under(u, qω, u) and(u, qω, qω)
by the minimum of these two.

Lemma VII.4. Let J̄2 = 5. Then the following bounds hold
uniformly over allω,x,y:

log
[Pr(u,qω ,u)({X=x,Y =y}∩B)

Pr(u,qω ,u){X=x,Y =y}
]

≥ J̄2
Nn+n2

m
(1 + o(1)).

log
[Pr(u,qω ,qω)({X=x,Y =y}∩B)

Pr(u,qω ,qω){X=x,Y =y}
]

≥ J̄2
Nn+n2

m
(1 + o(1)).

The proof is similar to that of Lemma VII.2.
Note that the average probability of error is equal to the

summation of the left-hand side of (9) over all possible(x,y).
Applying Lemma VII.4 to lower-bound the right-hand side of
(9) leads to the claim.

We now combine (5) and (8). It is straightforward to verify
that

min{N2, Nn+ n2} ≤ min{N2, 2Nn}.
Taking J̄ = max{J̄1, 2J̄2} leads to the claim of the theorem.

VIII. C ONCLUSIONS ANDFUTURE WORK

We have investigated the binary classification problem with
sparse samples using generalized error exponent concept,
and established fundamental performance limits. We have
proposed a classifier that performs better than theℓ2-norm
based classifier. Future directions include:

1) Investigate classification algorithms that are applicable
when there are both rare and frequent symbols.

2) The generalized error exponent analysis could be appli-
cable to the problem of testing closeness of distributions.
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