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Abstract—This work addresses the problem of correlation
detection in a group of elliptically-contoured variables, when the
number p of variates greatly exceeds the number n of observed
samples. We exploit the properties inherent to the Z-score
representation of the data set to devise two different decision
tests, whose performances are assessed by upper bounding the
Type I and Type II error probabilities. The results specifically
apply to the asymptotic regime where the number of variates p

is large, and the number of samples n is finite and fixed.

I. INTRODUCTION

An increasing number of practical applications require the

solution of inference problems on high dimensional data sets,

where the amount of considered features is large (some exam-

ples are sensor networks, gene expressions arrays, multimedia

databases, multivariate financial time series, and traffic in

communication networks). Their unifying trait is the small

number n of available samples, in comparison to the feature

dimension p. In this context, especially challenging tasks are

the correlation screening problem [1], i.e. the identification

of significant levels of linear dependence, and the covariance

structure testing problem [2]. In gene expression analysis, for

example, a biologist might be interested to test for structure

of the gene regulatory network, but only has a handful (n)

of samples to construct the sample correlation matrix between

tens of thousands (p) of gene probes. In this situation classical

large n asymptotic techniques cannot be reliably applied.

This work addresses the simpler problem of deciding

whether the high dimensional data set is completely uncorre-

lated. Building upon the U -score representation introduced in

[1] we test properties of the empirical distribution to decide

the diagonality of the covariance matrix. This work extends

previous results that hold only in the limiting asymptotic

regime p → ∞, n → ∞. For normal multivariate samples,

for instance, [3] provides the asymptotic distribution of the

maximum eigenvalue of the sample correlation matrix. This

statistic, however, is only meaningful for p < n. In [4] a

quadratic form of the sample covariance matrix is shown to

be a consistent statistic even for p > n, if n and p have equal

growth rate. Under the same conditions, [5] and [6] derive the

asymptotic distribution of the maximum sample correlation

coefficient, test statistic first considered in [7], [8].

Differently from this approach, the results presented here

specifically apply to the asymptotic regime p → ∞ with

n fixed and finite, also considered in [1], [9]. Unlike in

correlation screening for sparse correlation matrices [1], we

are interested in global tests for diagonal covariance, here

derived applying the theory of exchangeability and the method

of types.

The paper is organized as follows. Section II reviews the

U -score representation of the data set introduced in [1].

The decision problem is formally defined in Section III.

In Section III-A and Section III-B two different tests are

proposed, whose performances are characterized by means of

the respective Type I and Type II error exponents. Section IV

provides experimental results.

II. THE GEOMETRY OF CORRELATION

Let the size p random vector X be distributed according to

an elliptically-contoured density fX(x) (e.g. the multivariate

normal, or the multivariate t-distribution, see [10, Sec. 2.7]

and references therein). The elliptically-contoured density is

specified by the parameters µ, Σ, and g(·), where g(·) is a

non-negative monotonic function:

fX(x) = |Σ|−1/2 g
(

(x− µ)TΣ−1(x− µ)
)

.

The elements of X are assumed to have finite first and second

moments. This section introduces different possible represen-

tations of the data set collected by making n independent

drawings from the a priori distribution fX(x).

A. Z-score and U -score representations of the data

Raw data set: The matrix X[n×p] is formed by (vertically)

stacking n independent drawings from fX(x).
Z-scores: The matrix Z[n×p] is obtained centering and nor-

malizing the columns of X with respect to their sample mean

and standard deviation. Let mi = (n)−1
1
Tx(i) denote the i-th

sample mean, and s2i = (n− 1)−1(x(i) −mi1)
T (x(i) −mi1)

the i-th sample variance. The columns of Z are obtained from

the columns of X as

z(i) =
x(i) −mi1
√

(n− 1) si
, ∀i ∈ {1, 2, · · · , p}. (1)

Geometrically, the columns of Z are points living in the Rn

space. Each z(i) belongs to the intersection of the hyperplane

Mn−1 = {z ∈ Rn : 1
Tz = 0} with the unit hypersphere

Sn−1={z ∈ Rn : ‖ z ‖= 1}.

U -scores [1]: The matrix U[(n−1)×p] is obtained from

Z as a result of the rotation by H
∗ of its columns, and

of their subsequent projection over Mn−1. Define H
∗ as

an orthonormal matrix1 whose first row is parallel to 1
T ,

1As explained in [1], the matrix H
∗ can be easily obtained via Gram-

Schmidt orthogonalization of the matrix composed by 1
T and any other

arbitrarily chosen n− 1 linearly independent row vectors.
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the vector orthogonal to Mn−1. The first row in H
∗Z is

identically null, and is removed by the projection onto Mn−1.

The U -score matrix is given by U = HZ, where H is H
∗

deprived of its first row. Geometrically, the columns of U are

points in the Rn−1 space. The transformation Hz(i) is norm

preserving, so that the columns of U belong to Sn−2.

The geometry of correlation [1]: In [1, Sec. 2] the analysis

of the properties of the U -scores for elliptically-contoured

fX(x) is presented. When the elements of X are uncorrelated,

and Σ is diagonal, the distribution of the columns of U is

uniform on Sn−2. For non-diagonal Σ the distribution is,

in general, far from uniform. This property is the key to

establishing the correlation detection procedure proposed here.

B. Statistical properties

In this subsection some relevant statistical properties of the

matrices X, Z and U are derived. The matrix X, composed

of independent drawings from fX(x), is row–exchangeable

[11], i.e. its probability law is unchanged upon row permu-

tation. The conversion in Z-scores, detailed in (1), preserves

exchangeability (though not independence) of the rows of Z.

These considerations justify the following proposition.

Proposition 1. The matrix Γ
(ij)=cov

(

Z(i),Z(j)
)

has the form

Γ
(ij) = β(ij)

11
T + (α(ij) − β(ij)) I. (2)

If Xi and Xj are uncorrelated, then α(ij) = β(ij) = 0.

Proposition 2. The matrix Υ
(ij)=cov

(

U (i),U (j)
)

has the form

Υ
(ij) = (α(ij) − β(ij)) I. (3)

If Xi and Xj are uncorrelated, then Υ
(ij) = 0 11

T .

Proof: The U -scores covariance matrix can be represented

as Υ(ij) = HΓ
(ij)

H
T . Combining this representation with (2)

yields Υ
(ij) = β(ij)

H11
T
H

T + (α(ij) − β(ij))HH
T . Recall

that the rows of the matrix H belong, by construction, to the

hyperplane Mn−1. This implies H1 = 0, and hence (3).

III. CORRELATION DETECTION

Making use of the representation of the data set exposed

in Section II we formulate the hypothesis test in the R(n−1)

space associated with the U -scores. From now on we denote

U =
(

U (1), · · · ,U (p)
)

the vector of random points belonging

to Sn−2. The proposed hypotheses to be tested are
{

H0 : fU(u
(1), · · · ,u(p)) = U(Sn−2)

H1 : fU(u
(1), · · · ,u(p)) 6= U(Sn−2)

, (4)

where U(Sn−2) is the uniform distribution on Sn−2. As a

consequence of the properties of the elliptically-contoured

density fX(x), H0 is verified only if Σ is diagonal. The

testing of the hypotheses (4) is difficult, since the observed

matrix U represents a single drawing from fU(u
(1), · · · ,u(p)).

We propose a simple testing strategy, based on the following

observation: since the test aims to detect the presence of

correlated variables in the vector X , but not to identify the

correlated pairs, the information about the identities (i.e. the

labeling) of the random variables is redundant, and can be

discarded. This conceptual operation is formalized as the

resampling (without replacement) of the data set U. The

resampled data set V is defined by V = UP , where the matrix

P is random and uniformly distributed over the set P ⊂ Bp×p

of permutation matrices. Therefore, for p = 2 the density of

V for the arguments (v,w) is equal to

f
V (1)V (2)(v,w) =

1

2
f
U(1)U(2)(v,w) +

1

2
f
U(2)U(1)(v,w),

where 1/2 is the probability of choosing any of the two

permutation matrices. Extending this argument to general

values of p yields the following proposition.

Proposition 3. The probability density function of the resam-

pled data set fV(v
(1), · · · ,v(p)) has form

fV(v
(1), · · · ,v(p)) =

1

p!

p!
∑

a=1

fUP |P=Pa

(

v(1), · · · ,v(p)
)

. (5)

As it is evident from (5), the distribution fV(v
(1), · · · ,v(p))

is invariant upon permutation of the arguments. The resampled

data set V is hence an exchangeable sequence [11] of random

points in the Rn−1 space. This implies, in particular, that each

column in V is distributed according to the same marginal

fV (v). The covariance between any pair of columns of V is

given by

cov (V ,W ) =
∑

(ij)∈Q

Υ
(ij)

p(p− 1)
= I

∑

(ij)∈Q

(

α(ij) − β(ij)
)

p(p− 1)
. (6)

The testing procedure will be performed on V. It

is straightforward to verify that, when H0 is in force,

fV(v
(1), · · · ,v(p)) = fU(v

(1), · · · ,v(p)). The hypotesis testing

problem on fV(v
(1), · · · ,v(p)) can now be solved easily, as

shown below. Since exchangeability allows to consider each

column of V as a drawing from fV (v), the high dimensionality

p of the problem can be exploited to test, without requiring

large sample size n.

A. The empirical squared distance test

Let Q∗ = {(i, j) : i, j ∈ {1, · · · , p}, i < j}. The vector

D(V) = (D1, · · · , Dp(p−1)/2) is constructed by stacking

in sequence, ∀(i, j) ∈ Q∗, the pairwise squared Euclidean

distances Dk =‖ V (i) − V (j) ‖2. As consequence of the

exchangeability of V, the distribution fD(d1, · · · , dp(p−1)/2)
is invariant with respect to the permutation of the arguments,

and D is exchangeable as well. The explicit expression of

E[D], i.e. the expectation of the marginal distribution of D, is

given in the following proposition.

Proposition 4. The expectation of the random variable D is

given by

E[D] = 2
(

1− tr
(

cov (V ,W )
)

− ‖E [V ]‖2
)

= 2(1− γ), (7)

where γ = tr
(

cov (V ,W )
)

+‖E[V ]‖2.



Proof: Because of the exchangeability of the elements in

V, E [D] = E
[

‖V −W‖2
]

. Consider the following relation

tr
(

cov (V ,W )
)

= E
[

V TW
]

− ‖ E[V ]‖2 (8)

= 1−
1

2
E
[

‖V −W ‖2
]

− ‖ E[V ]‖2, (9)

where (8) is a consequence of the linearity of the trace and of

the expectation, and (9) is due to the fact that ‖V ‖2=‖W‖2=
1. Rearranging (9) yields (7).

The value E [D] belongs to the interval [0, 2]. When H0 is

true, ‖E[V ]‖2= 0, and Υ
(ij) = 0 I, ∀(i, j) ∈ Q, so that, after

(6), tr
(

cov (V ,W )
)

= 0. As a consequence E
[

D
∣

∣H0

]

= 2,

i.e. the expectation E [D] is maximized when H0 is true. This

motivates using the average of the vector D(V) as the test

statistic T

T =
2

p(p− 1)

p(p−1)/2
∑

k=1

Dk. (10)

By thresholding T we obtain the hypothesis test
{

∣

∣T − 2
∣

∣ ≤ τ : H0
∣

∣T − 2
∣

∣ > τ : H1

. (11)

The threshold value τ will satisfy τ ≥ 2/(p− 1).
The performance of the test is characterized evaluating the

Type I and Type II error probabilities.

Proposition 5. The Type I error probability relative to the

threshold test (11) is bounded by

PI ≤ 2 e−
1
4 p(p−1) τ2

. (12)

The Type II error probability is bounded by

PII ≤

{

e−
1
4p(p−1)(γ−τ)2 − e−

1
4p(p−1)(γ+τ)2 , 2γ ≥ τ

1− e−
1
4p(p−1)(γ+τ)2 − e−

1
4p(p−1)(γ−τ)2 , 2γ < τ

.

(13)

Proof: The proof relies on Lemma 8 and Lemma 9

in Appendix A. Lemma 8 proves that the variables in D

have negative association [12]. This property is intuitively

clear: since the surface Sn−2 is bounded, the increase of

the distance of one point on Sn−2 with another induces

a decrease in distance with respect to a third point. The

important consequence of negative association of the variables

in D is that it permits the application of Chernoff-type large

deviation bounds, proven in Lemma 9.

The Type I error probability PI is, by definition,

PI = P
(
∣

∣T − 2
∣

∣ > τ
∣

∣ H0

)

= P
(
∣

∣T − E [D]
∣

∣ > τ
)

, (14)

where the last equality follows from E [D|H0] = 2. Using

(10) and (26) with (14) yields (12). The Type II probability

of error PII is given by

PII = 1− P
(

|T − 2| ≥ τ | H1

)

(15)

= 1−P(T−E [D] ≥ 2γ+τ)−P(T−E [D] ≤ 2γ−τ) (16)

= 1−e−
1
4p(p−1)(2γ+τ)2 − P(T − E [D] ≤ 2γ − τ), (17)

where (16) is deduced using the relation 2 = E [D] + 2γ
introduced in (7). Lemma 7 in Appendix A allows to establish

the relation 2γ ≥ −2/(p − 1). As a consequence of the

threshold choice τ ≥ 2/(p − 1) it is concluded 2γ + τ ≥ 0.

This justifies (17), derived making use of the upper tail bound

(30) in Lemma 9 in Appendix A.

For 2γ < τ , the last term in (17) is evaluated using the

lower tail bound (31) derived in Lemma 9, and this yields the

second part of (13). For 2γ ≥ τ , (17) can be developed as

PII = 1− e−
1
4p(p−1)(2γ+τ)2 − 1 + P(T − E [D] > 2γ − τ),

from which the first part of (13) is finally obtained by

substitution of (31).

As it is clear from (12) and (13), for 2γ ≥ τ the test is

characterized by a fast decrease of the error probability as

the dimension p increases, forcing it to zero for p → ∞.

The constant γ is null when H0 is in force, and, for high

dimensional problems (i.e. when the modelization p → ∞
is allowed), is always positive (Lemma 7 in Appendix A). It

increases whenever there is correlation among the elements

of V, and/or the marginal fV (v
(1), · · · ,v(p)) over Sn−2 de-

viates from symmetry about the origin of Rn−1. Thus γ can

be understood as a measure of divergence of the empirical

fV(v
(1), · · · ,v(p)) from the uniform distribution on Sn−2, as

a function of its first and second order statistics. If 2γ < τ ,

this will almost surely induce a Type II error, for p → ∞.

B. The empirical entropy test

As discussed above, testing the average of the squared dis-

tance between the columns of V allows to detect the deviation,

expressed by γ, of the empirical distribution from the uniform

distribution on the sphere. For some a priori densities fX(x),
however, the covariance term tr

(

cov (V ,W )
)

contributing to

γ may be small. This happens, for example, when the random

vector X is composed of elements that are both positively

and negatively correlated2, or for the sparse correlation regime,

when only κ ≪ p elements are correlated. Under these circum-

stances the test on the empirical squared distances will have

reduced power of rejecting the null hypothesis for symmetric,

but not uniform, marginal distributions. This section outlines

an alternative test, based on the method of types [13]. As it

will be shown, the Type I error exponent increases less rapidly

in p, but allows a Type II error exponent that is better behaved

for symmetric marginals under the alternative hypothesis.

Define the quantizer Q : Rn−1 → {1, · · · ,m}, given

by a tessellation of Sn−2 in m Voronoi cells of equal vo-

lume. The (column by column) quantization Q(V) produces

a p-dimensional vector ν of quantization indexes. Counting

how many instances of each quantization index appear in

ν, and normalizing for 1/p, gives the m-dimensional vector

µ, describing a probability mass function on the support

{1, · · · ,m}. Under the high dimensionality assumption p →
∞, by effect of the law of large numbers, the empirical

2In (6) cov (V ,W ) is defined as the average of the covariances between
the U -scores, which may cancel each other out. It can in fact be proven that
the sign of the term (α(ij)

−β(ij)) in (3) is equal to the sign of cov (Xi, Xj).



distribution µ (the type) almost surely converges to the a priori

distribution µ of Q(V), where µk =
∫

Vk
fV (v) dv, ∀k ∈

{1, · · · ,m}. The statistic chosen to perform the hypothesis

test is the entropy of the empirical distribution H(µ). Observe

that, when hypothesis H0 is true, H(µ | H0)
a.s.
−→ H(µ0) =

log(m). Here µ0 is the uniform probability mass function over

the index set {1, · · · ,m}. The thresholding test takes the form
{

H(µ) ≥ τ : H0

H(µ) < τ : H1

. (18)

The performance of the test is determined by the Type I and

Type II probabilities of error.

Proposition 6. The Type I probability of error for the thresh-

old test (18) is bounded by

PI ≤ e−p (logm−τ), (19)

while the Type II probability of error is bounded by

PII ≤ e−pD(µ∗||µ), (20)

where µ∗ is defined as µ∗ = argminµ∈F D(µ||µ), given

F = {µ : H(µ) ≥ τ} = {µ : D(µ||µ0) ≤ logm− τ}.

Proof: Consider the set of probability mass functions

defined on the support {1, · · · ,m}, and define its partition

(F, F c). We establish convexity of F and F c. By convex-

ity of the Kullback-Lieber divergence [14, Thm. 2.7.2], for

µ3 = αµ1 + (1− α)µ2, with µ1,µ2 ∈ F and α ∈ [0, 1]

D(µ3||µ0) ≤ αD(µ1||µ0) + (1− α)D(µ2||µ0) ≤ logm− τ

so that µ3 ∈ F . Similarly, by concavity of the entropy [14,

Thm. 2.7.3], for µ1,µ2 ∈ F c

H(µ3) ≥ αH(µ1) + (1− α)H(µ2) ≥ τ,

so that µ3 ∈ F c is established.

Finally the Type I probability of error (19) can be evaluated

using Sanov’s theorem [14, Thm. 12.4.1] as

PI = P(F c | H0) ≤ e−pminµ∈Fc D(µ||µ0) = e−p (logm−τ).

Similarly, the Type II probability of error (20) is given by

PII = P(F | H1) ≤ e−pminµ∈F D(µ||µ) = e−pD(µ∗||µ),

with µ∗ as defined above.

As pointed out above, the test will almost surely induce a

Type II error whenever the empirical distribution µ falls in F .

The Type II probability of error can be decreased by increasing

the cardinality m of the quantizer.

IV. EXPERIMENTAL RESULTS

This section presents an experimental assessment of the

performance of the empirical squared distance test for finite

dimension. The ROC curves are obtained generating 104 data

matrices, each given by n i.i.d. drawings from a Gaussian p-

variate distribution with random covariance matrix and mean

vector. In Figure 1 the performance of the empirical squared

distance (SqDist) test proposed in Section III-A is compared
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Figure 1. ROC curves for the proposed empirical squared distance(SqDist)
test, compared to the maximum correlation (MaxCor), maximum ranked
correlation (MaxRCor), and S-biggest correlation (MaxCorS) tests.

with the ROC curves for the maximum Pearson’s correlation

coefficient (MaxCor) and maximum Spearman’s rank corre-

lation coefficient (MaxRCor) tests [7], and for the S biggest

correlation coefficients test (MaxCorS) [8], where S = 5. All

the tests have comparable complexity.

For p = 50 and n = 12 the SqDist test outperforms the

alternatives. Figure 1 presents also the SqDist ROC curves for

n = 6 and n = 3: it can be observed that the SqDist test

(n = 3) achieves a performance comparable to the MaxCor

and MaxCorS tests (n = 12), but requiring only 1/4 the

number of samples. For comparison, the SqDist curve for

p = 100 and n = 3 is depicted as well, showing that, as

expected, increasing p for fixed n improves the performance.

V. CONCLUSION

In this work two tests for correlation detection in large data

sets of elliptically-contoured variables are presented. Their

performance is characterized for finite values of n, using

Chernoff and Sanov bounds. The properties of the U -scores

allow to take advantage of the high dimension of the problem

without requiring n to go to infinity. Using vector quantization

to discretize the empirical distribution of the U -scores leads to

a simple test statistic whose Type I and Type II error exponents

can be computed using the method of types.
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APPENDIX

Lemma 7. The trace of the covariance cov (V ,W ) is lower

bounded by −1/(p− 1) ≤ tr
(

cov (V ,W )
)

.

Proof: In order to derive the lower bound, some prelimi-

nary results are needed. Define U =
∑p

i=1 U
(i). Positiveness

of the quantity tr
(

cov
(

U ,U
) )

is established by

tr
(

cov
(

U ,U
) )

= E
[

tr
(

U
T
U
)]

− tr
(

E[U ]TE[U ]
)

(21)

= E
[

‖ U ‖2
]

− ‖ E[U ]‖2≥ 0, (22)

where (21) is obtained by linearity of the trace and of the

expectation. The inequality in (22) follows applying Jensen’s

inequality to the convex function ‖ · ‖2. Now consider the

following expression:

tr
(

cov
(

U ,U
) )

= tr
(

∑p
i=1Υ

(ii) +
∑

(ij)∈QΥ
(ij)

)

=
∑

i(1− ‖E[U (i)]‖2) + p(p− 1)tr
(

cov (V ,W )
)

. (23)

The first term in (23) is obtained by linearity of the trace and

of the expectation, and using the relation E
[

‖ U (i) ‖2
]

= 1;

the second term is obtained applying (6). Rearranging (23)

yields

tr
(

cov
(

U ,U
))

+
∑

‖E[U (i)]‖2

p
= 1+(p−1)tr

(

cov (V ,W )
)

.

Noticing that the first term is positive, because of (22), yields

the lower bound.

Lemma 8. The elements of the random vector D are nega-

tively associated, i.e. for every pair A1,A2 of disjoint subsets

of {1, 2, · · · , p(p− 1)/2}, and for any pair of non-decreasing

functions f1(·), f2(·), the following holds:

cov (f1(Di, i ∈ A1), f2(Dj , j ∈ A2)) ≤ 0. (24)

Proof: The proof is obtained via a slight modification of

the proof of [12, Thm. 2.11]. Let D1,D2 denote an arbitrary

partition of the vector D, and let f1(·), f2(·) denote a pair

of non-decreasing, permutation invariant functions. Using [12,

(1.1)] it is possible to write

cov (f1(D1), f2(D2)) = E [cov (f1(D1), f2(D2)|U, I)]

+ cov (E [f1(D1)|U, I] ,E [f2(D2)|U, I]) ,
(25)

where I is a random variable identifying the minimum valued

component in the vector D. The distribution fD|U,I is a

permutation distribution in the sense defined in [12, Def.

2.10], and hence is negatively associated [12, Thm. 2.11].

This implies that the first term in the right hand of (25) is

negative. The negativity of the second term follows by the

same argument in the proof to [12, Thm. 2.11].

Lemma 9. The average of the random vector D obeys

Chernoff-type large deviation bounds. In particular, for ǫ > 0

P

(

∣

∣

∣

2
∑p(p−1)/2

i=1 Di

p(p− 1)
− E [D]

∣

∣

∣
> ǫ

)

≤ 2 e−
1
4 p(p−1) ǫ2 . (26)

Proof: The proof relies on [15, Thm. 3.2]. Recall that the

elements of D are positive, bounded in the interval [0, 2]. In or-

der to apply [15, Thm. 3.2] we need to prove that the elements

in D are λ-correlated, as defined in [15, Def. 3.1]. Define a

vector X of p(p− 1)/2 independent random variables on the

support [0, 2], and such that E [Xi] = E [D] , ∀i. This implies
∑p(p−1)/2

i=1 E
[

Di

]

=
∑p(p−1)/2

i=1 E
[

Xi

]

. Using linearity of the

expectation it is easy to see that condition (i) in [15, Def.

3.1] is satisfied. Now consider a non-negative function f(·).
Since the variables in D are negatively associated, invoking

[12, Property 2] gives

E

[

p(p−1)/2
∏

i=1

f(Di)

]

≤

p(p−1)/2
∏

i=1

E
[

f(Di)
]

=

p(p−1)/2
∏

i=1

E
[

f(Xi)
]

, (27)

where the last equality is obtained because E [Di] = E [Xi].
Inspection of (27) confirms that condition (ii) in [15, Def. 3.1]

is verified as well for λ = 1.

Now that the elements of D have been established to be

λ-correlated, [15, Thm. 3.2] can be used to evaluate the upper

tail bound as follows:

P

(

∑

i

Di>(1 + ε)
∑

i

E [D]
)

≤ e−
1

p(p−1)
(
∑

i
E[D])2ε2

(28)

P

(

2
∑

i Di

p(p− 1)
− E [D] > ε E [D]

)

≤ e−
1
4 p(p−1) E[D]2ε2 (29)

P

(

2
∑

i Di

p(p− 1)
− E [D] > ǫ

)

≤ e−
1
4 p(p−1) ǫ2 , (30)

where (28) follows directly from [15, Thm. 3.2], obtained for

E [Xi] = E [Di] = E [D], λ = 1, Di ∈ [0, 2]. Algebraic

manipulation yields (29), and the substitution ǫ = ε E [D]
yields (30).

The lower tail bound is obtained as follows. Define the

random variables Ci = E [D]+1−Di and Yi = E [X]+1−Xi.

It is straightforward to verify that the elements of the vector

C are λ-correlated for λ = 1. Hence, apply [15, Thm. 3.2] to

obtain, in a similar manner to (29),

P

(

2
∑

i Ci

p(p− 1)
−E [C] > ǫ E [C]

)

≤ e−
1
4 p(p−1) E[C]2ǫ2 . (31)

Substitution of the expression Ci in (31) shows that the

lower tail bound is equal to the upper tail bound (30). This

establishes (26).




