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Abstract—We consider the coded cooperative data exchange introduced by El Rouayheb et al. in |15], where data exchange
problem for general graphs. In this problem, given a graph over a completegraph G was considered (in which each
G = (V, E) representing clients in a broadcast network, each of ¢jiant can broadcast its messages to all other client)inin

which initially hold a (not necessarily disjoint) set of information tai dl b d th timal b
packets; one wishes to design a communication scheme in whic [15] certain upper and lower bounds on the optimal number

eventually all clients will hold all the packets of the netwok. Of transmissions needed was established. In a subsequent
Communication is performed in rounds, where in each round a work, Sprinston et al.[[17] continue the study of complete
single client broadcasts a single (possibly encoded) infmation  graphsG and present a (randomized) algorithm that with high
packet to its neighbors inG. The objective is to design a broadcast probability achieves the minimum number of transmissions,

E?Qaegég;th?;uﬁztfﬂes all clients with the minimum number of given that the packets are elements in a fiE#dNith q large

The coded cooperative data exchange problem has seen signif €nough. Ozgul et all [13] study a variant of the data exchange
icant research over the last few years; mostly when the grapls  problem in which each client has a distinct broadcast codt an
is the complete broadcast graph in which each client is adjamt  one wishes to minimize the cost of the transmission scheme
to all other clients in the network, but also on general topobgies, after which all clients have obtained all information paskén

both in the fractional and integral setting. In this work we focus 3] timal domized li di h .
on the integral setting in general undirected topologiesG. We » optimal randomized linear encoding schemes are given

tie the data exchange problem onG to certain well studied for the problem at hand.

combinatorial properties of G and in such show that solving the Communication in whichractional packets can be trans-
problem exactly or even approximately within a multiplicative mitted is addressed in the works of Courtade et al.[in [3]
factor of log|V| is intractable (i.e., NP-Hard). We then turn (for general topologiesG) and Tajbakhsh et al[T18][T19]

to study efficient data exchange schemes yielding a number of . .
communication rounds comparable to our intractability result. (for the complete topology). In the fractional setting, fpets

Our communication schemes do not involve encoding, andinsh are assumed to be divisible into chunks so that a fraction

yield bounds on thecoding advantage in the setting at hand. of a packet may be transmitted at any (fractional) round of
L communication; as apposed to the integral setting in which
- INTRODUCTION information packets are indivisible. In][3][_[18].[19] isi

In this work we study the coded cooperative data exchanggown that the fractional setting of the data exchange probl
problem for general graphs. An instance to the problepaduces to that of multicast network coding and can be
consists of an undirected gragh = (V,E) representing a efficiently solved in an optimal manner via linear programgni
communication network (in which each node Gfrepresents and the concept of linear network coding, see €.g. [1], [, [

a client, and edges irG represent client pairs that can[g], [L0].

communicate with each other), a parameterepresenting  Most related to our work is the work of Courtade et al[in [4]
the number of information packef§ = {xi,...,x;} to be which focus on general topologi€sin the setting of indivis-
transmitted over the network, and a $é; };cv of subsets of ible packets (the integral setting).] [4] continue the payad

X representing the set of packets available at each clierg negd [3] which characterizes the data exchange problem as a
v; € V in the initial stage of the transition. The objectiveamily of cut inequalities and present certain communication
is to design a communication scheme in which, eventualbghemes that yield approximate solutions for an asymptotic
all nodes of the network will obtain ak packets. Loosely number of packets. Roughly speaking[]4] analyze a certain
speaking, in each round of the communication scheme, asingbmmunication scheme in which each client transmits at a
node broadcasts a single (possibly encoded) packet tosalldertain fixed rate over time, and obtain nearly optimal rate
neighbors inG. The goal is to find a communication schemallocations (within an additive approximation g for general

in which the number of communication rounds is minimumgraphs, anq]V| for regular graphs). An important aspect in the

The coded cooperative data exchange problem has segalysis in [[4] is the assumption that the number of packets
significant research over the last few years. The problem wagends to infinity. A detailed comparison of the results[af [4]

_ _ with ours appears below at the end of Secfion I-A.
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which one wishes to broadcast the components of a (jointlypologies within a multiplicative factor df}(logn) (for any
distributed) discrete memoryless multiple source. Effitiek polynomial inn). Here,n = |V|.
optimal rate schemes are presented for a number of sideln Section[1V, we present our algorithm for data exchange
information models. based on the Dominating Set problem and its variants. The
algorithm we present is conceptually very simple and does
not involve coding. As mentioned above, a naive analysis of
In this work we study the coded cooperative data exchanger algorithm yields an approximation ratio 6f(k - logn),
problem on general topologies. We focus on the combinand the majority of this section is devoted to proving that th
torial integral setting in which one assumes that packetgorithm actually performs better.
are indivisible. Namely, we assume that each packet is aln Section[IV-B, we show that our algorithm is the best
value from a given alphabet, and in each communicationpossible (assuming standard tractability) and has an appro
round a single element A& is broadcasted by a client to itsimation ratio of O(logn) (matching the lower bound of
neighbors inG. The study of the indivisible integral setting,Section[1ll) on instances in which each packet is initially
rises naturally in communication schemes in which dividingresent at a single client i@. This implies a coding advantage
information packets to several chunks leads to undesiralleO(logn) in such cases.
overhead in communication (via scheduling issues or ra® lo In Sectiof1V-C, we study data exchange instances in which
due to header information). Our work addresses the design dhe underlying graph is regular (each client has the same
analysis ofefficientalgorithms that (approximately) solve thenumber of neighbors). We show that the approximation ratio i
problem at hand. Throughout our work, we assume that ttiés case is again better th@rk - log |V'|) and depends on the
number of packets is polynomial in the size of the network average numbef of packets available at client nodes. Specif-
|V|. In this context, an efficient algorithm is one which iscally we show that in this case the approximation ratio of
polynomial in the network size. our algorithm isO (kad) logn = O (1 + k%d-) logn (thus
We start by tying the data exchange problem in general . . : . i
topologiesG to certain well studied combinatorial properties'mp_rOVIng the f?ctor ofk in the na|ye an_aly5|s @+ de‘)'
of G. Specifically, we consider thBominating Seproblem Notice, that ford = ©(k) (the case in which on average each
(e.g., [8]) and its variants (to be defined in Sectioh I1), ang|ent|n|t|a_lly hgsacc_mstant fraction of the packets) viéain
show that they are closely related to the data exchange prgf-2PProximation ratio that matches the bound of Segfion Ill
lem. Namely, we show that (i) a solution to the Dominatin§Ur results imply a coding advantage Of( 1 + k%,;) logn
Set problem (or its variants) yields a (not necessarilyroalj in the cases at hand. Finally, in Secti -D we study
solution to the data exchange problem, and (ii) an optimgéneral graph& with no restrictions and present an improved
solution to the data exchange problem yields a nearly optin@&pproximation ratio to that naively mentioned above.
solution to the Dominating Set problem(s). Roughly spegkin We conclude our work by studying a refined version of
these connections (together with others) imply two initigdur algorithm (still without encoding) in Sectién IV-E angt b
results. Primarily, that it is NP-Hard to find a solution tethdiscussing future research directions in Secfion V.
data exchange problem in which the number of communicationComparing our results with those inl[4] is not straightfor-
rounds is within a multiplicative factor €@ (log |V'|) from the ward. Courtade et al[[4] focus on the setting in which the
optimal. Secondly, that a conceptually simple data exchangumber of packet& tends to infinity and may be significantly
algorithm, that does not involve encoding, based on tigseater than the network size The setting of asymptotik
Dominating Set problem yields a number of communicationlows the design of algorithms which are efficient with resp
rounds which is within a multiplicative factor @ (k -log |V|)  to k but may be exponential in. In our work we focus on the
from the optimal. setting in whichk is polynomially bounded by:, and obtain
The gap between the upper and lower bounds above i$ommunication schemes that can be designed efficiently in
(the number of distinct packets in the network) which maljme polynomial in the network size. In addition, [4] focus
be of significant size. Reducing this gap is the main foc@ the case in which every client initially holds a constant
of our work. Roughly speaking, in this work we reduce th&raction of thek information packet@;and in this setting study
gap ofk by analyzing our algorithm based on the Dominatingdditive approximations. In this work, we study multipliva
Set problem(s). Our algorithm does not involve coding argpproximations, and our assumptions (if any) on the packet
in such yields bounds on theoding advantagén the setting distribution are of different nature.
of d_ata exchange. Our dete}iled results are given belovx_/,h/vhi_c Il. MODEL DEFINITION AND PRELIMINARIES
at times are the best possible (assuming standard tratgtabil ,
assumptions). A. Coded Cooperative Data Exchange Problem
The paper is structured as follows. In Secfidn II, we presentWe start by defining the Coded Cooperative Data Exchange
the model and notation used throughout this work, includirffoblem for General Graphs. L& = (V,E) be a given

the several variants of the Dominating Set problem use
9 P dlThe precise formulation i [4] is phrased in terms of “welhbeed” packet

inour anaIYSiSj In Sectiof I, we prove that it is NP'distributions; i.e., the asymptotic (i) empirical probability that a client (or
Hard to approximate the data exchange problem on genesalof clients) holds a certain number of packets.

A. Our contribution



undirected graph witlV = {0y, ..., v,}. Let X = {xq, ..., x¢} Minimize 3 .cy co
be a set of packets to be delivered to thelients belonging to subjectto Y enyu =21, Vo EV
the setV. The packets are elements of a finite alphabet which 0<c<1,VoeV

W@II be assumed to be a finite fielg;. At the beginning, e_ach Let DST denote the minimum value of the linear program
cliento; knows a subset of packets denotedXiyC X, while  55ye By considering integral values @f. it is straightfor-
the clients collectively know all packets K. We denote by \yard to establish thabS*™ < DS+,

X; = X\ X; the set of packets required by client. For
each client (vertex irG) v; let d,, = |X;| be the number of

packets it holds, leff =) ,cy do/n be the average numberyye 5 consider the integer and fractioh@elf Dominating
of packets present at vert_lces Gf and letd = maXUGVdU Set problems as well. Below we phrase the fractional version
be the maximum number if packets that any client holds. Weith optimum denoted by(k — DS*)f, the integer variant

will use these parameters in our analysis. s obtained by setting, € {0,1} and its optimum will be
Each client may transmit packets to it neighborsGnvia  yenoted byk — DS*:

a lossless broadcast channel capable of transmitting desing o

element inF,. The data is transmitted in communication Minimize ) ,cy co

rounds, such that at rouridne of the clients, say, broadcasts subject 0 Yyen(o)cu =k, Vo €V

an elementr € F, to all its neighbors inG. The transmitted 0<c<1lVoeV

information x may be one of the original packets X, or Finally, as we will see, to connect the cooperative data

some encoding of packets Xy and the information previously exchange problem with the notion of dominating setsGin

transmitted tov;. we will need to specify the “cover” requirement explicitlgrf
Our goal is to devise a scheme that enables each clieaich vertexo. We refer to this variant as th&ugmented-

v; € V to obtain all packets inX; (and thus inX) while Fractional Self Dominating Sgtroblem. Here, we solve the

minimizing the total number of broadcasts. This work foausesame linear program with the exception that each vertexseed

on theintegral (i.e., scalar) setting in which each broadcastto be covered at least— d, times (the use of the parametkyr

consists of a single element df,. We denote byNC the that was defined previously to be the number of initial pazket

minimum number of (integral) broadcasts needed to sati&y tpresent at is not occasional).

given instance to the coded cooperative data exchangegmnobl

at hand. In this work we connect the value ¥ with other

well studies combinatorial operators ¢hdefied below.
Throughout our work, we assume that the number of packets

k is polynomial in the size of the networl’| (i.e., k < |V|c  We denote byA — (k— DS™) the optimal solution to the

for some constant). In this context, we say an algorithm islinear program above. Note that the above is an augmented

efficientif its running time is polynomial in the network size.version of thek fractional self dominating set problem when
there is an initial solutio{d,} and we wish tcaugmentt to

a full solution by using values ofcy }.
Some observations and related work expressing the relation
Given an undirected grapfi = (V, E), a self dominating ships between the notions defined above are in place:
setof G is a subset of vertice§ such that every € V et 1ot
is connected to some vertexc S by an edge(s,v) € E. Lemmal (k- DS¥) =k DSf’
In such a case we say thate N(s) whereN(s) = {v | Proof: Any solution{c,} to DS} implies a solution{ck} =
(s,v) € E}. The self dominating set problem is closely reIategLik ¢y} to (k— DS*); and visa versas
to the standard dominating set problem, €.9. [8], on which wengte that the above lemma is not valid for the integral
elaborate below. The minimum size of a self dominating sgt,sions of the problems, namety— DS* # k- DS*. E.g.,
in G is denoted byDS™. A self dominating setS with & it js not hard to verify that th@ by 3 complete bipartite graph

corresponding induced subgraph that is connected is e“*ferEK;g,) with an additional edge between the two vertices in the
to as a connected self dominating set. DenoteCllyS* the 2-size side ha@ — DS+ — 3 and DS+ — 2.

size of a minimum connected self dominating setGn We o
will show below that computing (or approximating) any of th&-€mma 2 Defining the parametets, to be equal tqX;| for
values mentioned above (i.€)S*, CDS™) is NP-Hard. everyv; € V, it holds thatA — (k — DS™); < NC.
In this work we will also be interested in a fractionaProof: Consider any solution to the coded cooperative data
version of the Self Dominating Set problems expressed kychange problem. For every vertexe V, let ¢, be the
the following linear program. Given a grajgh= (V, E), find number of times transmitted information during the execu-
a set of capacitie€ = {c,|v € V} (where for eaclv € V, ¢, tion of the solution at hand. By our definitionsc, > NC.
is the capacity of vertex) such thaf_,c ¢, is minimum, and We now show tha{c, } is also a solution toA — (k — DS™).
Yo € V it holds thatZueN(U> ¢, > 1. The above is equivalent Namely, consider any € V that is missingc — d, packets in
to the solution of the following LP: our data exchange problem. It must be the case, that during

As we will see, at times we would like to “cover” each
vertex in G more than once by our self dominating séts

Minimize ) ,cyco
subject to ZuGN(v) ey >k—dy, VoeVv
0<cp,<1,VoeV

B. The Self Dominating Set problem



the process of communication it received at least d, andCDS™ (and also approximating them beyond a ratio of
broadcasts, as otherwise it could not be able to obtairt all)(log|V|)) is also NP-hard. Lemmid 5 and the definition of
packets after the communication process. Thus it holds thlé self dominating set problem imply the following lemma
YueN(o) Cu > k —dy as desired.n which connectdS, DS*, CDS, andCDS™:

Lemma 3 Let{d,} be the set of weights in the augmented Lemma 6
dominating set problem, and lét= max,cy dy. Then

(k—d)-DS}’gA—(k—DS*)ngC.

%DS+12CDS+12CDS+2DS+2DS.

] o . - Lemmal[® implies that all the valug®S, DS*, CDS, and
Proof: The right inequality follows from Lemm@l 2. For theCDS* are all all approximately (up to constant factors) the

left inequality, we notice that each solution to the fractb .
C . ; same size.
augmented self dominating set problem is a fractional solu-
tion to the (k — d) self dominating set problem . Namely, let [1. | NTRACTABILITY RESULTS
{cv} be the capacities of an optimal solution to the fractional

augmentedc self dominating set problem. Then for all it exchan : : P .

X ge problem is hard to approximate within a multiplica
hoId; that)en (o) Cu = k—dy 2 k—d. 'Ifher-efore,{cv} ISa tive factor of clog |V|, for somec > 0, for every value of
solution to the fractionalk — d) self dominating set problem. k. We use the fact that it is NP-hard to estimad& within
Now using Lemmdll, we obtain: a multiplicative factor ofc log |V, for somec > 0 [14]. We

(k—d)- D5f+ = ((k—d) — D5+)f <A— (k- DS+)f- first show our hardness fdr= 1. We then turn to the case of
generalk (polynomial inn).

In this section we show that the coded cooperative data

|
Lemma 7 The coded cooperative data exchange problem with

C. The (standard) dominating set problem k = 1 is NP-hard to approximate withinlog |V|, for some

We now address the standard dominating set problem, whicky 0.
slightly differs from the previously defineselfdominating set py oot \we show that, essentially, the coded cooperative data
problem. Given an undirected graph= (V, E), a (standard) o, hange problem when= 1 is equivalent to the connected

domlnf_;ltmg set _OG is a subset of verticeS such that every dominating set problem. Namely, consider any (connected)
v € Vis either inS or connected to some vertexc S by an i ctance G — (V,E) of the dominating set problem and

edge(s,v) € E. The minimum sized dominating set i c,nsiryct an instance to the data exchange problem which
denoted byDS. The fractional variant of the dominating sef .| ,des the networlC and a single node, € V that holds

problem is expressed by the following linear problem: the (single) message;. We show that the number of rounds

Minimize Y ,cyco in the optimal solution to the data exchange instance at hand
subjectto Y en(oufo Cu =1, Vo €V NC is approximately the size of the minimum connected
0<c, <1,Voev dominating set siz&€ DS of G. Specifically
We denote the optimal solution to the linear problem above CDS < NC< CDS+1
by DSy Clearly, it holds thatDS < DS* and thatDS; < _ S
DSt Consider an optimal solution to the data exchange problem.

Ks. before, one can define the connected variant of tﬁ@tice that, as each edge has unit capacity, once there is
dominating set problem, and thedominating set problem. only a single message, to be broadcasted throughout the

We denote the optional values in these case€R$ for the network, no encoding is needed. Thus, any solution to the dat
connected variank — DS for integral k-dominating set, and exchange problem will correspond to a series of broadcésts o

(k — DS)f for fractional k-dominating set. As in Lemm@ 1 messager; at certain nodes of the network. As there is only a
we have that: single message, it also holds that no vertex needs to brsadca

more than once. Lef be the set of vertices that performed
Lemma4 (k—DS)r =k-DSy. a broadcast. The size &f is exactly the value ofNC on

The following lemma that constructively connects betwedhe€ instance at hand. In addition, as every vertex V has

dominating sets and their connected variant was proverin [Beceivedxy, it holds that eithew € S or v is connected tc.
This implies thatS is a connected dominating set {n

For the opposite direction, notice that any connected dom-

% . |D|. Specifically, for every connected gragh— (V, E) it inating setS in G impligd_ a broadcast spheme for the Qata
1 exchange problem. ldy is in S, then consider a broadcasting

holds thaCDS < 3 - DS. scheme that transmits according to a Breadth First Search

It is NP-Hard to estimate the size of the minimum dom®BSF) starting fromov, in the subgraph induced b§. It is

inating set of a given grapks up to a multiplicative factor not hard to verify that such a scheme will usg broadcasts

of Q(log |V|) [14]. Notice that ifCDS > 1, thenCDS™ = and eventually will transmitc; to all the network. Namely,

CDS, (and in generaCDS™ < CDS + 1) so findingCDS, let (v, 01,05 ...) be a BSF ordering fronay on the vertices

Lemma5 ([5]) Given any dominating seb, one can effi-
ciently construct &onnectecdominating seD’ with |D’| <



k k
4
NC(G) < (Ju;l +1) < Eg-DS(GiH—l
i=1 i=1
4 4
= k- (§~DS(G)+1) §k~§-(zx+1).

Now assume thafNC(G’) < k- B. We first show that
CDS(G;) < NC(G;). This follows by the proof of Lemmid 7,
as any communication scheme @; only needs to com-
municate a single message from u; to the vertices of
G; (recall that all vertices inG; know all the messages in

Figure1. lllustration of the graptG’ of Lemma[8. X\{xi}). Now, it also holds thatDS(Gi) < CDS(Gi)
and thatNC(G;) < NC(G')/k, thus we obtainDS(G) =
DS(G;) < NC(G;) < B. Al in all, we now conclude that
of 5. The message; € X can be transmitted from, to all  €stimatingNC(G') within a multiplicative factor ofO(log 1)
nodes inV using the orderingoy, v1, 0, .. . ). Specifically, our Will imply such an estimate foDS(G).
ordering implies that node; holds the message after nodes ~ LemmalY, Lemmd]8 and the hardness of compufirg
{0, 01,...,0j_1} transmit and, a$ is dominating, all nodes SPecified in[14] imply the following theorem:

is connected te € S, so we can addy to S and still have a np-pard to approximate withielog |V |, for somec > 0, for
connected dominating set (and now use the scheme descripgghy value ok polynomial in|V|.

in the last paragraph). All in all, the resulting scheme will
haveCDS + 1 broadcasts. IV. APPROXIMATION ALGORITHM

As it is NP-hard to approximatéD S within a multiplicative In this section we give an approximation algorithm for the
factor of clogn for some universal constant> 0 on graphs coded data exchange problem and analyze its approximation
of sizen for which CDS depends om (this follows directly ratio. In the first subsection we present the approximation
from [14] and Lemmal6); it holds that the same is true for thalgorithm. In the second subsection we analyze the quality
parametefNC under study.m of the algorithm on a number of graph families or initial

Note that the proof of Lemmi@ 7 is also valid for= 1 in Packet allocations, and show that for these instances the
the specific case when only one vertex holds the informatigiPProximation ratio of the given algorithm matches (or ceme
This implies that our upper bound for the case of disjoin se¢/0S€ to matching) the results given in the previous section

of messages discussed in SedfionIV-B is tight. In the third subsection we extend our analysis to the general
case.

We now show that our hardness result holds for every
by (again) presenting a reduction from the dominating sat The Algorithm
problem. Given an instanc& = (V,E) to the dominating
set problem, we construct the following gragh = (V’,E’)
for the coded cooperative data exchange problémhask
copies of G, and a new vertex, such thatv is connected Lemma9 Given a connected dominating se of G one
to a vertexu; in each copyG; of G. Figure[l illustratesG’. can efficiently solve the cooperative data exchange problem
All vertices u; know all messages; knows no message, andin k - (|D| 4+ 1) communication rounds. Specificall{C <
for eachG; all vertices inG; besidesu; know all messages k- (CDS + 1).
besides the’th one.

The following lemma introduces an approximation algo-
rithm for the cooperative data exchange problem.

Proof: The proof follows that given in Lemmial 7. LeD

be a connected dominating set @a Let s; be an arbitrary
node holding message;. Assume thats; is a node inD.
Let (s;,v1,0v2...) be a BSF (Breadth First Search) ordering
from s; on the vertices ofD. The message;; € X can
be transmitted frons; to all nodes inV using the ordering
Proof: Assume thatDS(G) < «. Then the following is (s;,v1,v2...). Specifically, our ordering implies that node

a transmission algorithm irk - % - (e + 1) communication holds the message; after nodes{s;, vl,...,v]-,l} transmit
rounds. Letll; be a minimum connected dominating set®f and, asD is dominating, all nodes will eventually receive the
Foralll <i <k, as only one message needs to be broadcastadssager;. All in all, transmission of thek messages will
throughoutG;, one may design a broadcast scheme to satigBke k - CDS communication rounds. I§; is not in D, then

all nodes inG; based on the connected dominating 86t an additional round of communication is required for each
exactly as in the proof of Lemnid 7. It holds (via Lembhda 6nessage in order for it to reach the $&t m

Lemma8 If DS(G) < a thenNC(G') < k-5 - (a+1), and
if DS(G) > B thenNC(G') > k - B.



Since the problem of finding a minimum connected domproblem. For every vertex € V definec, to be the number
nating set is NP-hard, we need to show how to approximatedf packets transmitted by during an optimal data exchange
find such a set (efficiently). Roughly speaking, we will fingbrotocol. It holds that for every vertexthe sum of capacities
a connected dominating set in our netwa@kby first solving ¢, of all u € N(v) U {v} is at least. This is true since each
the fractional dominating set problem, by theundingthe nodev must send at lea$k,| packets (as no other node holds
fractional solution to an integral one to obtain a standatbe packets inX;, and they must eventually reach the entire
dominating set ofG (see e.g.,[]2],[18], [[11],[[16]), and by network), and receive at least- | X, | = | X, | packets. There-
finally modifying the dominating set to a connected one Vire Y, c(o)u{o} Cu = LueN(o) Cu + o > [Xo| + [ Xo| = k.
Lemmal$. All in all, this (well studied) scheme will yield aThus (k — DS); < k — DS < NC. Finally, by LemmdH# it
connected dominating sé of size at mostlogn - DS for  holds thatk - DS¢ = (k — DS)s. =
some universal constant> 0. As our algorithm gives a communication scheme with at

Repeating the above more formally, given an insta@a®  mostO(klogn - DSs) rounds we conclude:
the cooperative data exchange problem on general topslog
one can efficiently perform the following algorithm:

1) Solve the fractional dominating set problem Gnto
obtain a fractional solutior{cé}.

2) Change the fractional solution to an integral de} .
corresponding to a dominating skt (via, e.g., [2], [8], ) =
o [I%])- 9 g set(via, .. 12118, k. ps, < NC <k (3 DS+1> < O(klogn)DS;.

3) Using D, cor_lstru</:t a connected dominating Bt Ag oyr algorithm does not involve coding, this implies thee t
(Lemma[5) with|D'| = O(|DI). _ coding advantage i3 (log n).

4) Broadcast thé source messages according to the pro-
cedure specified in Lemnid 9 @(k|D’|) < O(klogn- C. Regular Graphs

DSy) communication_rou_nds. o In this subsection we show that if the given graph is regular
_The procedure above will yield a comm_unlcanon schemgur approximation algorithm has(a +d/(k —d)) - O(logn)
with at mostO(klogn - DSy) communication rounds. To approximation ratio. As before, we start by giving a lower

understand the quality of the algorithm, one must expresgund for NC in this case. LeG be aA regular graph, and
the size NC (or at least bound it frombelow by an |etd = %de then it holds that

expression which can be easily compared with the bound

O(klogn - DSy). For example, consider an instance to theemma 11 (k—d)DSy < NC.

data exchange problem in which= max,cy d, < k (here, Proof: Consider the optimal communication scheme for the
for all v; € V dy, = |X;|). We have seen via Lemnid 3 thadata exchange problem. Since every vertexust receive at

NC> (k—d)-DSt > (k—d)- DSy > DS;. Thus, on these leastk — d, messages, the total numbereafgetransmissions
: f . over the network is at lea$t, ., k — d, (here we are counting
instances we obtain a solution to the data exchange problgn‘éing|e broadcast over edges as' “edge’-transmissions).
that is within a multiplicative factor oD(klogn) from the Since each broadcast may transmit over at ndosertices it
optimal solution. It is also not hard to see (we do this imflic follows that

in Section[IV-E) that even il = max,cyd, = k a slight Yoevk—d g
. . ) . A 4 n(k—d) ~
variant to our algorithm yields a solution which is within a NC > =*<+—— = ———= > (k= d)DS} > (k- d)DS;.
multiplicative factor ofO(klogn) from the optimal solution.
The next sections attempt to improve this ratio to bettercmat : L : 1
. S fractional self dominating set by setti = & for each
the hardness results presented in Sedfidn IIl. Specifically 9 y g A

. - - + < ﬂ . .
show that the factor of in the ratioO(klog ) can be reduced ve V'_T,h's implies thatDSf+7 a- The last inequality holds
or in cases removed. by definition of DSy andDS;. m

The following theorem follows from the above lemma:

LFheorem 2 If for every two nodesv,u it holds thatX; N

X, = @, the cooperative data exchange problem on general
topologies can be efficiently solved within an approximatio
ratio ofO(log n). Moreover, in such cases it holds that

For the second inequality, notice that one can obtain a

B. Disjoint Sets of Messages ]
Theorem 3 The cooperative data exchange problem on regular

In this subsection we analyze our approximation algorith . N P
for the case that for each two nodesu: it holds thatX, N %ﬁglog,;iiigg;/;l +d/(k—d))-O(logn) approximation

X, = @. Note that this includes the case where only one

node holds all the information, and all other nodes have T 4
1 J— . < < . — < .
information. Namely, for some € V, X, = X, and for all T% @) DSy < NC<k (3 ps+ 1) < Olklogn) DSy

u # v X, = O. For this case we are able to improve over thﬁs our algorithm does not involve coding, this implies thag t
lower bound presented in Lemrha 3. . . i
coding advantage 9 ((1 + m) log n) .

Lemmal0 NC > k- DSy. Broof: By L H H
roof: emmalIl we have that
Proof: We show that a solution to the Coded Cooperative Data y

Exchange problem induces a solution to thBominating Set (k—d)- DSy < NC.



get thatNC ~ 2m, and (k — d_)DSf ~ kT’” so we get a gap
of approximatelyk/4 w.r.t. the assertion of Lemnialll.

2) Generalizing Lemm@T We useA to denote the maxi-
mum degree of5 andé to denote the minimum degree 6f
We generalize Lemnialll to the case of general graphs:

Lemma12 £ (k—d)DS; < NC.

Proof: As in the proof of Lemma 11, the total number of
k k edge transmissions over the network is at I€asty k — d,.
o4 Since each message can be transmitted to at maosrtices
it follows that

mk

{1,...,;-1i+1,.. .k}

Yoevk—dy n(k—d)
> =

NC =2 A A

0 Aot o O -
> K(k—d)DSf > K(k—d)DSf. (1)
In the setting at hand, the second inequality is valid sifice

is an upper bound foPS} (i.e., one may set eveny, to be
Figure 2. lllustration of the graplG for our counter exampléo Lemma Tl 1 . f . . .
on general (non-regular) graphs. equal tos to get a valid solution to the linear program defining
DS}'). ]
We now conclude (recall that = max,cy dy):

All in all, we obtain a solution with cost )
Theorem 4 The cooperative data exchange problem on gen-

O(logn)-k-DSy = O(logn) - ——- (k—d)DSy teral to?ologies has an approximation ration and codingradva
age o

= O(logn)-NC-(1+d/(k—4d)). k—d)’ o k—d
Proof: Using LemmdB we have that

D. General Case (k—d)- DSy < (k—d)- DSJT < NC.

In this subsection we analyze the quality of our approximé#a addition, by Lemm&12 we have that
tion algorithm for any instanc€&. We first give an an example 5 )
that shows that our lower bound for regular graphs stated in K(k —d)- DSy < NC, (2)
Lemma[1l of(k —d) - DS does not hold for general graphs. o

]_) Examp|e’ Comp|ementing LemimB We present a (gen- Thus, the COSO(IOg 1’1) k- DSf of our solution is at most:
eral, non-regular) grapks for which the lower bound stated A B B
in LemmalIl of(k — d) - DS; does not hold (even in anO(logn) - NC-min{(1+d/(k—d)), 5 (1+d/(k—4d))}.
approximate manner). Consider a gra@hthat consists of
two parts: The first part is a set oft (disjoint) cliques of
size k. In each clique, for each messagégbetween 1 tok) E. A Tighter Upper Bound
there is exactly 1 vertex missing messag_and haV'F‘g _aII We now present a refined version of our algorithm from
the rest. The second part consists of a clique of sizein o@f

hich tex h Il the inf i 4 all th ‘ ection[IV=A. The algorithm we present will not yield im-
w tICh one vertex has a Fi elEIIrt]a 02rrq|a Ictm,(é.asnTha Ieresf oved asymptotic (inn) approximation ratios, however it
not have any message. Fg nustra € value o yields improved communication schemes that at times may
an optl_mal scheme for_ data broadcast on the first paG of 5., those returned by the algorithm of Secfion IV-A and at
'S.Zm since for each cllque two messages_mu_st be sent (O[ﬂ'ﬁes may be significantly better (depending on the instance
client broadcasts an arbitrary message. This will causthano at hand)

client to ha.\é? all O?{’ 6_‘|_nhd It blroad;:asts ﬂ:.e Slljm r?f all ;Ehe Roughly speaking, we improve the previous algorithm by
messages IX over Fy). The value of an optimal scheme Ortaking into account the simple fact that it suffices to send

gal;ta b(rjoad;:a?t onttr:]e s_eccl)nd pdartt;]s ?EV'Okf{Mﬁ_ﬁen}c\}? each packetr; € X only to those clients that do not hold
roadcasts from the single node that has akif Thus it. Therefore we do not actually need to find a connected

'S Ztm_ +k 1N]?W’ It |shn(?_t hard tod\;esrlfy ]Er][ﬁDsf of tge f'rtSt_ dominating set. Instead, we can do the following. gbe the
partism (1 for each ¢ ique), andSy o (f_fﬁ;ﬁlk pa:{ 'S set of vertices holding information packet Let V; = V \ V.
1. ThereforeDSy is m + 1. Moreoverd = “—3—— = 5, A minimum sizedV;-self dominating set is a minimum sized

so (k— cDDSf = %(m +1). Therefore, for largen > k we set of vertice$ C V such that each vertex i} has a neighbor



y o c) For each connected componentlofin G broad-

' cast x; (according to the procedure specified in
the discussion above) i®(|D;|) communication
rounds.

All in all, the refined algorithm efficiently solves the data
exchange problem irO(Y;log|V/| - DS¢(G])) rounds of
v, vy, communication which is at most the numbé(klogn -
DS¢(G)) of rounds from the original algorithm. This follows
since G is subgraph (in edges) @&/, and thus by definition
¢ DS¢(G;) < DS¢(G). Thus, our refined algorithm is at least
as good as that of Sectibn TWMA and improves over it in cases
in which DS; is significantly smaller than the dominating set
in G.

Figure3. lllustration of G/ to be used in the construction &fS;. V. CONCLUDING REMARKS

In this paper, we consider the cooperative data exchange

in S, and each connected componentdhtersectsV;. Using Problem for general topologie& in the combinatorialin-
V;-self dominating sets we can refine our algorithm. tegral settmg. .We_ establlsh. bot_h upper and lower bounds

Assume first that we know how to find a minimum size@" the multiplicative approximation ratio that one may ob-
Vi-self dominating set for each message Let {C g_l tain e_ff|C|en_tIy by tym_g our problem tq cert_a_ln well studied
be the set of connected components of such a]réfnimljgﬂmbénator'al prop_ert@s oG.hOur acr?le\;ablhty _resullts arz_
sized V;-self dominating set. Letv; be an arbitrary vertex °2S€d on communication schemes that do not involve coding
in Ci ﬁlVi. To commugicatexi thr]oughoutC? we l)J/SG the and in such imply bounds on the coding aqlvantage Qf the
following natural proceduray; sends;, and then each vertex problem at hand._Our results address the settmg of unditect
. ) ) o networks. Extending our results to the case of directedigrap
in C! that receivedy; sendsx;. It immediately follows, after ; - . ;

j ! ! » S (by studying directed analogs to dominating sets) involves

performing this process for each connected compoi&nt modifications in our analysis and is subject to future resrear
that all vertices inG hold x;. Moreover, the number of
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