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Abstract—We consider the coded cooperative data exchange
problem for general graphs. In this problem, given a graph
G = (V, E) representing clients in a broadcast network, each of
which initially hold a (not necessarily disjoint) set of information
packets; one wishes to design a communication scheme in which
eventually all clients will hold all the packets of the network.
Communication is performed in rounds, where in each round a
single client broadcasts a single (possibly encoded) information
packet to its neighbors inG. The objective is to design a broadcast
scheme that satisfies all clients with the minimum number of
broadcast rounds.

The coded cooperative data exchange problem has seen signif-
icant research over the last few years; mostly when the graphG
is the complete broadcast graph in which each client is adjacent
to all other clients in the network, but also on general topologies,
both in the fractional and integral setting. In this work we focus
on the integral setting in general undirected topologiesG. We
tie the data exchange problem onG to certain well studied
combinatorial properties of G and in such show that solving the
problem exactly or even approximately within a multiplicative
factor of log |V| is intractable (i.e., NP-Hard). We then turn
to study efficient data exchange schemes yielding a number of
communication rounds comparable to our intractability result.
Our communication schemes do not involve encoding, and in such
yield bounds on thecoding advantage in the setting at hand.

I. I NTRODUCTION

In this work we study the coded cooperative data exchange
problem for general graphs. An instance to the problem
consists of an undirected graphG = (V, E) representing a
communication network (in which each node ofG represents
a client, and edges inG represent client pairs that can
communicate with each other), a parameterk representing
the number of information packetsX = {x1, . . . , xk} to be
transmitted over the network, and a set{Xi}i∈V of subsets of
X representing the set of packets available at each client node
vi ∈ V in the initial stage of the transition. The objective
is to design a communication scheme in which, eventually,
all nodes of the network will obtain allk packets. Loosely
speaking, in each round of the communication scheme, a single
node broadcasts a single (possibly encoded) packet to all its
neighbors inG. The goal is to find a communication scheme
in which the number of communication rounds is minimum.

The coded cooperative data exchange problem has seen
significant research over the last few years. The problem was
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introduced by El Rouayheb et al. in [15], where data exchange
over a completegraph G was considered (in which each
client can broadcast its messages to all other clients inG). In
[15] certain upper and lower bounds on the optimal number
of transmissions needed was established. In a subsequent
work, Sprinston et al. [17] continue the study of complete
graphsG and present a (randomized) algorithm that with high
probability achieves the minimum number of transmissions,
given that the packets are elements in a fieldFq with q large
enough. Ozgul et al. [13] study a variant of the data exchange
problem in which each client has a distinct broadcast cost and
one wishes to minimize the cost of the transmission scheme
after which all clients have obtained all information packets. In
[13], optimal randomized linear encoding schemes are given
for the problem at hand.

Communication in whichfractional packets can be trans-
mitted is addressed in the works of Courtade et al. in [3]
(for general topologiesG) and Tajbakhsh et al. [18], [19]
(for the complete topology). In the fractional setting, packets
are assumed to be divisible into chunks so that a fraction
of a packet may be transmitted at any (fractional) round of
communication; as apposed to the integral setting in which
information packets are indivisible. In [3], [18], [19] it is
shown that the fractional setting of the data exchange problem
reduces to that of multicast network coding and can be
efficiently solved in an optimal manner via linear programming
and the concept of linear network coding, see e.g. [1], [6], [7],
[9], [10].

Most related to our work is the work of Courtade et al. in [4]
which focus on general topologiesG in the setting of indivis-
ible packets (the integral setting). [4] continue the paradigm
of [3] which characterizes the data exchange problem as a
family of cut inequalities, and present certain communication
schemes that yield approximate solutions for an asymptotic
number of packetsk. Roughly speaking, [4] analyze a certain
communication scheme in which each client transmits at a
certain fixed rateover time, and obtain nearly optimal rate
allocations (within an additive approximation ofεk for general
graphs, and|V| for regular graphs). An important aspect in the
analysis in [4] is the assumption that the number of packets
k tends to infinity. A detailed comparison of the results of [4]
with ours appears below at the end of Section I-A.

Most recently, Milosavljevic et al. [12] present a compre-
hensive study of data exchange over the complete topology in
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which one wishes to broadcast the components of a (jointly
distributed) discrete memoryless multiple source. Efficient
optimal rate schemes are presented for a number of side
information models.

A. Our contribution

In this work we study the coded cooperative data exchange
problem on general topologies. We focus on the combina-
torial integral setting in which one assumes that packets
are indivisible. Namely, we assume that each packet is a
value from a given alphabetΣ, and in each communication
round a single element ofΣ is broadcasted by a client to its
neighbors inG. The study of the indivisible integral setting,
rises naturally in communication schemes in which dividing
information packets to several chunks leads to undesirable
overhead in communication (via scheduling issues or rate loss
due to header information). Our work addresses the design and
analysis ofefficientalgorithms that (approximately) solve the
problem at hand. Throughout our work, we assume that the
number of packetsk is polynomial in the size of the network
|V|. In this context, an efficient algorithm is one which is
polynomial in the network size.

We start by tying the data exchange problem in general
topologiesG to certain well studied combinatorial properties
of G. Specifically, we consider theDominating Setproblem
(e.g., [8]) and its variants (to be defined in Section II), and
show that they are closely related to the data exchange prob-
lem. Namely, we show that (i) a solution to the Dominating
Set problem (or its variants) yields a (not necessarily optimal)
solution to the data exchange problem, and (ii) an optimal
solution to the data exchange problem yields a nearly optimal
solution to the Dominating Set problem(s). Roughly speaking,
these connections (together with others) imply two initial
results. Primarily, that it is NP-Hard to find a solution to the
data exchange problem in which the number of communication
rounds is within a multiplicative factor ofΩ(log |V|) from the
optimal. Secondly, that a conceptually simple data exchange
algorithm, that does not involve encoding, based on the
Dominating Set problem yields a number of communication
rounds which is within a multiplicative factor ofO(k · log |V|)
from the optimal.

The gap between the upper and lower bounds above isk
(the number of distinct packets in the network) which may
be of significant size. Reducing this gap is the main focus
of our work. Roughly speaking, in this work we reduce the
gap ofk by analyzing our algorithm based on the Dominating
Set problem(s). Our algorithm does not involve coding and
in such yields bounds on thecoding advantagein the setting
of data exchange. Our detailed results are given below, which
at times are the best possible (assuming standard tractability
assumptions).

The paper is structured as follows. In Section II, we present
the model and notation used throughout this work, including
the several variants of the Dominating Set problem used
in our analysis. In Section III, we prove that it is NP-
Hard to approximate the data exchange problem on general

topologies within a multiplicative factor ofΩ(log n) (for any
k polynomial in n). Here,n = |V|.

In Section IV, we present our algorithm for data exchange
based on the Dominating Set problem and its variants. The
algorithm we present is conceptually very simple and does
not involve coding. As mentioned above, a naive analysis of
our algorithm yields an approximation ratio ofO(k · log n),
and the majority of this section is devoted to proving that the
algorithm actually performs better.

In Section IV-B, we show that our algorithm is the best
possible (assuming standard tractability) and has an approx-
imation ratio of O(log n) (matching the lower bound of
Section III) on instances in which each packet is initially
present at a single client inG. This implies a coding advantage
of O(log n) in such cases.

In Section IV-C, we study data exchange instances in which
the underlying graph is regular (each client has the same
number of neighbors). We show that the approximation ratio in
this case is again better thanO(k · log |V|) and depends on the
average number̄d of packets available at client nodes. Specif-
ically we show that in this case the approximation ratio of
our algorithm isO

(

k
k−d̄

)

log n = O
(

1 + d̄
k−d̄

)

log n (thus

improving the factor ofk in the naive analysis to1 + d̄
k−d̄

).
Notice, that ford̄ = Θ(k) (the case in which on average each
client initially has a constant fraction of the packets) we obtain
an approximation ratio that matches the bound of Section III.
Our results imply a coding advantage ofO

(

1 + d̄
k−d̄

)

log n

in the cases at hand. Finally, in Section IV-D we study
general graphsG with no restrictions and present an improved
approximation ratio to that naively mentioned above.

We conclude our work by studying a refined version of
our algorithm (still without encoding) in Section IV-E and by
discussing future research directions in Section V.

Comparing our results with those in [4] is not straightfor-
ward. Courtade et al. [4] focus on the setting in which the
number of packetsk tends to infinity and may be significantly
greater than the network sizen. The setting of asymptotick
allows the design of algorithms which are efficient with respect
to k but may be exponential inn. In our work we focus on the
setting in whichk is polynomially bounded byn, and obtain
communication schemes that can be designed efficiently in
time polynomial in the network sizen. In addition, [4] focus
on the case in which every client initially holds a constant
fraction of thek information packets;1 and in this setting study
additive approximations. In this work, we study multiplicative
approximations, and our assumptions (if any) on the packet
distribution are of different nature.

II. M ODEL DEFINITION AND PRELIMINARIES

A. Coded Cooperative Data Exchange Problem

We start by defining the Coded Cooperative Data Exchange
Problem for General Graphs. LetG = (V, E) be a given

1The precise formulation in [4] is phrased in terms of “well behaved” packet
distributions; i.e., the asymptotic (ink) empirical probability that a client (or
set of clients) holds a certain number of packets.



undirected graph withV = {v1, ..., vn}. Let X = {x1, ..., xk}
be a set of packets to be delivered to then clients belonging to
the setV. The packets are elements of a finite alphabet which
will be assumed to be a finite fieldFq. At the beginning, each
client vi knows a subset of packets denoted byXi ⊆ X, while
the clients collectively know all packets inX. We denote by
X̄i = X \ Xi the set of packets required by clientvi. For
each client (vertex inG) vi let dvi

= |Xi| be the number of
packets it holds, letd̄ = ∑v∈V dv/n be the average number
of packets present at vertices ofG, and letd = maxv∈V dv

be the maximum number if packets that any client holds. We
will use these parameters in our analysis.

Each client may transmit packets to it neighbors inG via
a lossless broadcast channel capable of transmitting a single
element in Fq. The data is transmitted in communication
rounds, such that at roundi one of the clients, sayv, broadcasts
an elementx ∈ Fq to all its neighbors inG. The transmitted
information x may be one of the original packets inXj, or
some encoding of packets inXj and the information previously
transmitted tovj.

Our goal is to devise a scheme that enables each client
vi ∈ V to obtain all packets inX̄i (and thus inX) while
minimizing the total number of broadcasts. This work focuses
on the integral (i.e., scalar) setting in which each broadcast
consists of a single element ofFq. We denote byNC the
minimum number of (integral) broadcasts needed to satisfy the
given instance to the coded cooperative data exchange problem
at hand. In this work we connect the value ofNC with other
well studies combinatorial operators onG defied below.

Throughout our work, we assume that the number of packets
k is polynomial in the size of the network|V| (i.e., k ≤ |V|c

for some constantc). In this context, we say an algorithm is
efficientif its running time is polynomial in the network size.

B. The Self Dominating Set problem

Given an undirected graphG = (V, E), a self dominating
set of G is a subset of verticesS such that everyv ∈ V
is connected to some vertexs ∈ S by an edge(s, v) ∈ E.
In such a case we say thatv ∈ N(s) where N(s) = {v |
(s, v) ∈ E}. The self dominating set problem is closely related
to the standard dominating set problem, e.g. [8], on which we
elaborate below. The minimum size of a self dominating set
in G is denoted byDS+. A self dominating setS with a
corresponding induced subgraph that is connected is referred
to as a connected self dominating set. Denote byCDS+ the
size of a minimum connected self dominating set inG. We
will show below that computing (or approximating) any of the
values mentioned above (i.e.,DS+, CDS+) is NP-Hard.

In this work we will also be interested in a fractional
version of the Self Dominating Set problems expressed by
the following linear program. Given a graphG = (V, E), find
a set of capacitiesC = {cv|v ∈ V} (where for eachv ∈ V, cv

is the capacity of vertexv) such that∑v∈V cv is minimum, and
∀v ∈ V it holds that∑u∈N(v) cu ≥ 1. The above is equivalent
to the solution of the following LP:

Minimize ∑v∈V cv

subject to ∑u∈N(v) cu ≥ 1, ∀v ∈ V

0 ≤ cv ≤ 1, ∀v ∈ V

Let DS+
f denote the minimum value of the linear program

above. By considering integral values ofcv, it is straightfor-
ward to establish thatDS+

f ≤ DS+.
As we will see, at times we would like to “cover” each

vertex in G more than once by our self dominating setsS.
We thus consider the integer and fractionalk Self Dominating
Set problems as well. Below we phrase the fractional version,
with optimum denoted by(k − DS+) f , the integer variant
is obtained by settingcv ∈ {0, 1} and its optimum will be
denoted byk − DS+:

Minimize ∑v∈V cv

subject to ∑u∈N(v) cu ≥ k, ∀v ∈ V

0 ≤ cv ≤ 1, ∀v ∈ V

Finally, as we will see, to connect the cooperative data
exchange problem with the notion of dominating sets inG,
we will need to specify the “cover” requirement explicitly for
each vertexv. We refer to this variant as theAugmented-k-
Fractional Self Dominating Setproblem. Here, we solve the
same linear program with the exception that each vertex needs
to be covered at leastk− dv times (the use of the parameterdv

that was defined previously to be the number of initial packets
present atv is not occasional).

Minimize ∑v∈V cv

subject to ∑u∈N(v) cu ≥ k − dv, ∀v ∈ V

0 ≤ cv ≤ 1, ∀v ∈ V

We denote byA − (k − DS+) f the optimal solution to the
linear program above. Note that the above is an augmented
version of thek fractional self dominating set problem when
there is an initial solution{dv} and we wish toaugmentit to
a full solution by using values of{cv}.

Some observations and related work expressing the relation-
ships between the notions defined above are in place:

Lemma 1 (k − DS+) f = k · DS+
f .

Proof: Any solution{cv} to DS+
f implies a solution{ck

v} =

{k · cv} to (k − DS+) f and visa versa.
Note that the above lemma is not valid for the integral

versions of the problems, namelyk − DS+ 6= k · DS+. E.g.,
it is not hard to verify that the2 by 3 complete bipartite graph
(K2,3) with an additional edge between the two vertices in the
2-size side has2 − DS+ = 3 and DS+ = 2.

Lemma 2 Defining the parametersdv to be equal to|Xi| for
everyvi ∈ V, it holds thatA − (k − DS+) f ≤ NC.

Proof: Consider any solution to the coded cooperative data
exchange problem. For every vertexv ∈ V, let cv be the
number of timesv transmitted information during the execu-
tion of the solution at hand. By our definitions∑ cv ≥ NC.
We now show that{cv} is also a solution toA− (k− DS+) f .
Namely, consider anyv ∈ V that is missingk − dv packets in
our data exchange problem. It must be the case, that during



the process of communication it received at leastk − dv

broadcasts, as otherwise it could not be able to obtain allk
packets after the communication process. Thus it holds that
∑u∈N(v) cu ≥ k − dv as desired.

Lemma 3 Let {dv} be the set of weights in the augmentedk-
dominating set problem, and letd = maxv∈V dv. Then

(k − d) · DS+
f ≤ A − (k − DS+) f ≤ NC.

Proof: The right inequality follows from Lemma 2. For the
left inequality, we notice that each solution to the fractional
augmentedk self dominating set problem is a fractional solu-
tion to the(k − d) self dominating set problem . Namely, let
{cv} be the capacities of an optimal solution to the fractional
augmentedk self dominating set problem. Then for allv it
holds that∑u∈N(v) cu ≥ k − dv ≥ k − d. Therefore,{cv} is a
solution to the fractional(k − d) self dominating set problem.
Now using Lemma 1, we obtain:

(k − d) · DS+
f = ((k − d)− DS+) f ≤ A − (k − DS+) f .

C. The (standard) dominating set problem

We now address the standard dominating set problem, which
slightly differs from the previously definedselfdominating set
problem. Given an undirected graphG = (V, E), a (standard)
dominating set ofG is a subset of verticesS such that every
v ∈ V is either inS or connected to some vertexs ∈ S by an
edge(s, v) ∈ E. The minimum sized dominating set inG is
denoted byDS. The fractional variant of the dominating set
problem is expressed by the following linear problem:

Minimize ∑v∈V cv

subject to ∑u∈N(v)∪{v} cu ≥ 1, ∀v ∈ V

0 ≤ cv ≤ 1, ∀v ∈ V

We denote the optimal solution to the linear problem above
by DS f Clearly, it holds thatDS ≤ DS+ and thatDS f ≤
DS+

f .
As before, one can define the connected variant of the

dominating set problem, and thek-dominating set problem.
We denote the optional values in these cases asCDS for the
connected variant,k − DS for integral k-dominating set, and
(k − DS) f for fractional k-dominating set. As in Lemma 1
we have that:

Lemma 4 (k − DS) f = k · DS f .

The following lemma that constructively connects between
dominating sets and their connected variant was proven in [5].

Lemma 5 ([5]) Given any dominating setD, one can effi-
ciently construct aconnecteddominating setD′ with |D′| ≤
4
3 · |D|. Specifically, for every connected graphG = (V, E) it
holds thatCDS ≤ 4

3 · DS.

It is NP-Hard to estimate the size of the minimum dom-
inating set of a given graphG up to a multiplicative factor
of Ω(log |V|) [14]. Notice that if CDS > 1, thenCDS+ =
CDS, (and in generalCDS+ ≤ CDS + 1) so findingCDS,

and CDS+ (and also approximating them beyond a ratio of
Ω(log |V|)) is also NP-hard. Lemma 5 and the definition of
the self dominating set problem imply the following lemma
which connectsDS, DS+, CDS, andCDS+:

Lemma 6
4

3
DS + 1 ≥ CDS + 1 ≥ CDS+ ≥ DS+ ≥ DS.

Lemma 6 implies that all the valuesDS, DS+, CDS, and
CDS+ are all all approximately (up to constant factors) the
same size.

III. I NTRACTABILITY RESULTS

In this section we show that the coded cooperative data
exchange problem is hard to approximate within a multiplica-
tive factor of c log |V|, for somec > 0, for every value of
k. We use the fact that it is NP-hard to estimateDS within
a multiplicative factor ofc log |V|, for somec > 0 [14]. We
first show our hardness fork = 1. We then turn to the case of
generalk (polynomial inn).

Lemma 7 The coded cooperative data exchange problem with
k = 1 is NP-hard to approximate withinc log |V|, for some
c > 0.

Proof: We show that, essentially, the coded cooperative data
exchange problem whenk = 1 is equivalent to the connected
dominating set problem. Namely, consider any (connected)
instanceG = (V, E) of the dominating set problem and
construct an instance to the data exchange problem which
includes the networkG and a single nodev0 ∈ V that holds
the (single) messagex1. We show that the number of rounds
in the optimal solution to the data exchange instance at hand
NC is approximately the size of the minimum connected
dominating set sizeCDS of G. Specifically

CDS ≤ NC ≤ CDS + 1

Consider an optimal solution to the data exchange problem.
Notice that, as each edge has unit capacity, once there is
only a single messagex1 to be broadcasted throughout the
network, no encoding is needed. Thus, any solution to the data
exchange problem will correspond to a series of broadcasts of
messagex1 at certain nodes of the network. As there is only a
single message, it also holds that no vertex needs to broadcast
more than once. LetS be the set of vertices that performed
a broadcast. The size ofS is exactly the value ofNC on
the instance at hand. In addition, as every vertexv ∈ V has
receivedx1, it holds that eitherv ∈ S or v is connected toS.
This implies thatS is a connected dominating set inG.

For the opposite direction, notice that any connected dom-
inating setS in G implied a broadcast scheme for the data
exchange problem. Ifv0 is in S, then consider a broadcasting
scheme that transmits according to a Breadth First Search
(BSF) starting fromv0 in the subgraph induced byS. It is
not hard to verify that such a scheme will use|S| broadcasts
and eventually will transmitx1 to all the network. Namely,
let (v0, v1, v2 . . . ) be a BSF ordering fromv0 on the vertices



Figure 1. Illustration of the graphG′ of Lemma 8.

of S. The messagex1 ∈ X can be transmitted fromv0 to all
nodes inV using the ordering(v0, v1, v2 . . . ). Specifically, our
ordering implies that nodevj holds the messagex1 after nodes
{v0, v1, . . . , vj−1} transmit and, asS is dominating, all nodes
will eventually receive the messagex1. If v0 is not isS then it
is connected tos ∈ S, so we can addv0 to S and still have a
connected dominating set (and now use the scheme described
in the last paragraph). All in all, the resulting scheme will
haveCDS + 1 broadcasts.

As it is NP-hard to approximateCDS within a multiplicative
factor of c log n for some universal constantc > 0 on graphs
of size n for which CDS depends onn (this follows directly
from [14] and Lemma 6); it holds that the same is true for the
parameterNC under study.

Note that the proof of Lemma 7 is also valid fork = 1 in
the specific case when only one vertex holds the information.
This implies that our upper bound for the case of disjoint sets
of messages discussed in SectionIV-B is tight.

We now show that our hardness result holds for everyk
by (again) presenting a reduction from the dominating set
problem. Given an instanceG = (V, E) to the dominating
set problem, we construct the following graphG′ = (V′, E′)
for the coded cooperative data exchange problem.G′ has k
copies of G, and a new vertexv, such thatv is connected
to a vertexui in each copyGi of G. Figure 1 illustratesG′.
All vertices ui know all messages,v knows no message, and
for eachGi all vertices inGi besidesui know all messages
besides thei’th one.

Lemma 8 If DS(G) ≤ α thenNC(G′) ≤ k · 4
3 · (α + 1), and

if DS(G) > β thenNC(G′) > k · β.

Proof: Assume thatDS(G) ≤ α. Then the following is
a transmission algorithm ink · 4

3 · (α + 1) communication
rounds. LetUi be a minimum connected dominating set ofGi.
For all1 ≤ i ≤ k, as only one message needs to be broadcasted
throughoutGi, one may design a broadcast scheme to satisfy
all nodes inGi based on the connected dominating setUi

exactly as in the proof of Lemma 7. It holds (via Lemma 6)

that

NC(G′) ≤
k

∑
i=1

(|Ui|+ 1) ≤
k

∑
i=1

4

3
· DS(Gi) + 1

= k ·

(

4

3
· DS(G) + 1

)

≤ k ·
4

3
· (α + 1).

Now assume thatNC(G′) ≤ k · β. We first show that
CDS(Gi) ≤ NC(Gi). This follows by the proof of Lemma 7,
as any communication scheme inGi only needs to com-
municate a single messagexi from ui to the vertices of
Gi (recall that all vertices inGi know all the messages in
X \ {xi}). Now, it also holds thatDS(Gi) ≤ CDS(Gi)
and thatNC(Gi) ≤ NC(G′)/k, thus we obtainDS(G) =
DS(Gi) ≤ NC(Gi) ≤ β. All in all, we now conclude that
estimatingNC(G′) within a multiplicative factor ofO(log n)
will imply such an estimate forDS(G).

Lemma 7, Lemma 8 and the hardness of computingDS
specified in [14] imply the following theorem:

Theorem 1 The coded cooperative data exchange problem is
NP-hard to approximate withinc log |V|, for somec > 0, for
every value ofk polynomial in|V|.

IV. A PPROXIMATION ALGORITHM

In this section we give an approximation algorithm for the
coded data exchange problem and analyze its approximation
ratio. In the first subsection we present the approximation
algorithm. In the second subsection we analyze the quality
of the algorithm on a number of graph families or initial
packet allocations, and show that for these instances the
approximation ratio of the given algorithm matches (or comes
close to matching) the results given in the previous section.
In the third subsection we extend our analysis to the general
case.

A. The Algorithm

The following lemma introduces an approximation algo-
rithm for the cooperative data exchange problem.

Lemma 9 Given a connected dominating setD of G one
can efficiently solve the cooperative data exchange problem
in k · (|D| + 1) communication rounds. Specifically,NC ≤
k · (CDS + 1).

Proof: The proof follows that given in Lemma 7. LetD
be a connected dominating set inG. Let si be an arbitrary
node holding messagexi. Assume thatsi is a node inD.
Let (si, v1, v2 . . . ) be a BSF (Breadth First Search) ordering
from si on the vertices ofD. The messagexi ∈ X can
be transmitted fromsi to all nodes inV using the ordering
(si, v1, v2 . . . ). Specifically, our ordering implies that nodevj

holds the messagexi after nodes{si, v1, . . . , vj−1} transmit
and, asD is dominating, all nodes will eventually receive the
messagexi. All in all, transmission of thek messages will
take k · CDS communication rounds. Ifsi is not in D, then
an additional round of communication is required for each
message in order for it to reach the setD.



Since the problem of finding a minimum connected domi-
nating set is NP-hard, we need to show how to approximately
find such a set (efficiently). Roughly speaking, we will find
a connected dominating set in our networkG by first solving
the fractional dominating set problem, by thenrounding the
fractional solution to an integral one to obtain a standard
dominating set ofG (see e.g., [2], [8], [11], [16]), and by
finally modifying the dominating set to a connected one via
Lemma 5. All in all, this (well studied) scheme will yield a
connected dominating setD of size at mostc log n · DS f for
some universal constantc > 0.

Repeating the above more formally, given an instanceG to
the cooperative data exchange problem on general topologies,
one can efficiently perform the following algorithm:

1) Solve the fractional dominating set problem onG to
obtain a fractional solution{c

f
v}.

2) Change the fractional solution to an integral one{cv}
corresponding to a dominating setD (via, e.g., [2], [8],
[11], [16]).

3) Using D, construct a connected dominating setD′

(Lemma 5) with|D′| = O(|D|).
4) Broadcast thek source messages according to the pro-

cedure specified in Lemma 9 inO(k|D′|) ≤ O(k log n ·
DS f ) communication rounds.

The procedure above will yield a communication scheme
with at most O(k log n · DS f ) communication rounds. To
understand the quality of the algorithm, one must express
the size NC (or at least bound it frombelow) by an
expression which can be easily compared with the bound
O(k log n · DS f ). For example, consider an instance to the
data exchange problem in whichd = maxv∈V dv < k (here,
for all vi ∈ V dvi

= |Xi|). We have seen via Lemma 3 that
NC ≥ (k− d) · DS+

f ≥ (k− d) · DS f ≥ DS f . Thus, on these
instances we obtain a solution to the data exchange problem
that is within a multiplicative factor ofO(k log n) from the
optimal solution. It is also not hard to see (we do this implicitly
in Section IV-E) that even ifd = maxv∈V dv = k a slight
variant to our algorithm yields a solution which is within a
multiplicative factor ofO(k log n) from the optimal solution.
The next sections attempt to improve this ratio to better match
the hardness results presented in Section III. Specifically, we
show that the factor ofk in the ratioO(k log n) can be reduced
or in cases removed.

B. Disjoint Sets of Messages

In this subsection we analyze our approximation algorithm
for the case that for each two nodesv, u it holds thatXv ∩
Xu = ∅. Note that this includes the case where only one
node holds all the information, and all other nodes have no
information. Namely, for somev ∈ V, Xv = X, and for all
u 6= v Xu = ∅. For this case we are able to improve over the
lower bound presented in Lemma 3.

Lemma 10 NC ≥ k · DS f .

Proof: We show that a solution to the Coded Cooperative Data
Exchange problem induces a solution to thek Dominating Set

problem. For every vertexv ∈ V definecv to be the number
of packets transmitted byv during an optimal data exchange
protocol. It holds that for every vertexv the sum of capacities
cu of all u ∈ N(v)∪ {v} is at leastk. This is true since each
nodev must send at least|Xv| packets (as no other node holds
the packets inXv and they must eventually reach the entire
network), and receive at leastk− |Xv | = |X̄v| packets. There-
fore ∑u∈N(v)∪{v} cu = ∑u∈N(v) cu + cv ≥ |X̄v|+ |Xv| = k.
Thus (k − DS) f ≤ k − DS ≤ NC. Finally, by Lemma 4 it
holds thatk · DS f = (k − DS) f .

As our algorithm gives a communication scheme with at
mostO(k log n · DS f ) rounds we conclude:

Theorem 2 If for every two nodesv, u it holds that Xv ∩
Xu = ∅, the cooperative data exchange problem on general
topologies can be efficiently solved within an approximation
ratio ofO(log n). Moreover, in such cases it holds that

k · DS f ≤ NC ≤ k ·

(

4

3
· DS + 1

)

≤ O(k log n)DS f .

As our algorithm does not involve coding, this implies that the
coding advantage isO(log n).

C. Regular Graphs

In this subsection we show that if the given graph is regular
our approximation algorithm has a(1+ d̄/(k− d̄)) ·O(log n)
approximation ratio. As before, we start by giving a lower
bound forNC in this case. LetG be a∆ regular graph, and
let d̄ = 1

n ∑ dv, then it holds that

Lemma 11 (k − d̄)DS f ≤ NC.

Proof: Consider the optimal communication scheme for the
data exchange problem. Since every vertexv must receive at
leastk − dv messages, the total number ofedgetransmissions
over the network is at least∑v∈V k − dv (here we are counting
a single broadcast overr edges asr “edge”-transmissions).
Since each broadcast may transmit over at most∆ vertices it
follows that

NC ≥
∑v∈V k − dv

∆
=

n(k − d̄)

∆
≥ (k − d̄)DS+

f ≥ (k − d̄)DS f .

For the second inequality, notice that one can obtain a
fractional self dominating set by settingcv = 1

∆ for each
v ∈ V. This implies thatDS+

f ≤ n
∆

. The last inequality holds

by definition of DS f and DS+
f .

The following theorem follows from the above lemma:

Theorem 3 The cooperative data exchange problem on regular
topologies has a(1 + d̄/(k − d̄)) · O(log n) approximation
ratio. Specifically,

(k − d̄) · DS f ≤ NC ≤ k ·

(

4

3
· DS + 1

)

≤ O(k log n)DS f .

As our algorithm does not involve coding, this implies that the
coding advantage isO

((

1 + d̄
k−d̄

)

log n
)

.

Proof: By Lemma 11 we have that

(k − d̄) · DS f ≤ NC.



Figure 2. Illustration of the graphG for our counter exampleto Lemma 11
on general (non-regular) graphs.

All in all, we obtain a solution with cost

O(log n) · k · DS f = O(log n) ·
k

k − d̄
· (k − d̄)DS f

≤ O(log n) · NC ·
k

k − d̄
= O(log n) · NC · (1 + d̄/(k − d̄)).

D. General Case

In this subsection we analyze the quality of our approxima-
tion algorithm for any instanceG. We first give an an example
that shows that our lower bound for regular graphs stated in
Lemma 11 of(k − d̄) · DS f does not hold for general graphs.

1) Example, complementing Lemma11: We present a (gen-
eral, non-regular) graphG for which the lower bound stated
in Lemma 11 of(k − d̄) · DS f does not hold (even in an
approximate manner). Consider a graphG that consists of
two parts: The first part is a set ofm (disjoint) cliques of
size k. In each clique, for each messagei (between 1 tok)
there is exactly 1 vertex missing messagei and having all
the rest. The second part consists of a clique of sizemk in
which one vertex has all the information, and all the rest do
not have any message. Figure 2 illustratesG. The value of
an optimal scheme for data broadcast on the first part ofG
is 2m since for each clique two messages must be sent (One
client broadcasts an arbitrary message. This will cause another
client to have all ofX, and it broadcasts the sum of all the
messages inX over Fq). The value of an optimal scheme for
data broadcast on the second part is obviouslyk (just perform
k broadcasts from the single node that has all ofX). ThusNC
is 2m + k. Now, it is not hard to verify thatDS f of the first
part is m (1 for each clique), andDS f of the second part is

1. ThereforeDS f is m + 1. Moreover,d̄ = (k−1)km+mk
2km = k

2 ,
so (k − d̄)DS f =

k
2 (m + 1). Therefore, for largem ≫ k we

get thatNC ∼ 2m, and (k − d̄)DS f ∼
km
2 , so we get a gap

of approximatelyk/4 w.r.t. the assertion of Lemma 11.
2) Generalizing Lemma11: We use∆ to denote the maxi-

mum degree ofG andδ to denote the minimum degree ofG.
We generalize Lemma 11 to the case of general graphs:

Lemma 12 δ
∆
(k − d̄)DS f ≤ NC.

Proof: As in the proof of Lemma 11, the total number of
edge transmissions over the network is at least∑v∈V k − dv.
Since each message can be transmitted to at most∆ vertices
it follows that

NC ≥
∑v∈V k − dv

∆
=

n(k − d̄)

∆

≥
δ

∆
(k − d̄)DS+

f ≥
δ

∆
(k − d̄)DS f . (1)

In the setting at hand, the second inequality is valid sincen
δ

is an upper bound forDS+
f (i.e., one may set everycv to be

equal to1
δ to get a valid solution to the linear program defining

DS+
f ).

We now conclude (recall thatd = maxv∈V dv):

Theorem 4 The cooperative data exchange problem on gen-
eral topologies has an approximation ration and coding advan-
tage of

O(log n) · min

{(

1 +
d

k − d

)

,
∆

δ

(

1 +
d̄

k − d̄

)}

.

Proof: Using Lemma 3 we have that

(k − d) · DS f ≤ (k − d) · DS+
f ≤ NC.

In addition, by Lemma 12 we have that

δ

∆
(k − d̄) · DS f ≤ NC, (2)

Thus, the costO(log n) · k · DS f of our solution is at most:

O(log n) · NC ·min{(1+ d/(k − d)),
∆

δ
· (1+ d̄/(k − d̄))}.

E. A Tighter Upper Bound

We now present a refined version of our algorithm from
Section IV-A. The algorithm we present will not yield im-
proved asymptotic (inn) approximation ratios, however it
yields improved communication schemes that at times may
match those returned by the algorithm of Section IV-A and at
times may be significantly better (depending on the instance
at hand).

Roughly speaking, we improve the previous algorithm by
taking into account the simple fact that it suffices to send
each packetxi ∈ X only to those clients that do not hold
it. Therefore we do not actually need to find a connected
dominating set. Instead, we can do the following. LetVi be the
set of vertices holding information packetxi. Let V̄i = V \Vi.
A minimum sizedV̄i-self dominating set is a minimum sized
set of verticesS ⊂ V such that each vertex in̄Vi has a neighbor



Figure 3. Illustration of G′
i to be used in the construction ofDSi.

in S, and each connected component ofS intersectsVi. Using
V̄i-self dominating sets we can refine our algorithm.

Assume first that we know how to find a minimum sized
V̄i-self dominating set for each messagexi. Let {Ci

j}
ℓ
j=1

be the set of connected components of such a minimum
sized V̄i-self dominating set. Letwj be an arbitrary vertex
in Ci

j ∩ Vi. To communicatexi throughoutCi
j we use the

following natural procedure:wj sendsxi, and then each vertex
in Ci

j that receivedxi sendsxi. It immediately follows, after

performing this process for each connected componentCi
j,

that all vertices inG hold xi. Moreover, the number of
communication rounds used in this scheme is equal to the
size of theV̄i-self dominating set. LetDSi = DSi(G) denote
the minimum size of aV̄i-self dominating set inG.

We now turn to approximatingDSi. We define the following
graphG′

i = (V′
i , E′

i) corresponding to our definition of āVi-
self dominating set:V′

i = Vi, andE′
i = E∪ (Vi ×Vi). Figure 3

illustrates the construction ofG′
i .

Lemma 13 CDS(G′
i) ≤ DSi(G) ≤ CDS(G′

i) + 1.

Proof: Let D be a minimum sized̄Vi-self dominating set in
G. Then by definition ofDSi it follows that D is a connected
dominating set inG′

i , since every connected component ofD
in G has a vertex inVi, and all vertices inVi are connected in
G′

i . Similarly, let D be a minimum connected dominating set
in G′

i . If D includes a vertex inVi then it follows thatD is
also aV̄i-self dominating set inG. Otherwise (as we assume
w.l.o.g. that G is connected) we add one vertexv in Vi to
D. Here, we takev to be any vertex inVi, as they are all
connected toD. This completes the proof.

By Lemma 13 we can efficiently perform the following
algorithm:

1) For 1 ≤ i ≤ k do:

a) ConstructG′
i .

b) Using the algorithm specified in Section IV con-
struct a connected dominating setDi in G′

i via
the corresponding fractional solutions, with|Di| =
O(log |V′

i | · DS f (G′
i)).

c) For each connected component ofDi in G broad-
cast xi (according to the procedure specified in
the discussion above) inO(|Di|) communication
rounds.

All in all, the refined algorithm efficiently solves the data
exchange problem inO(∑i log |V′

i | · DS f (G′
i)) rounds of

communication which is at most the numberO(k log n ·
DS f (G)) of rounds from the original algorithm. This follows
sinceG is subgraph (in edges) ofG′

i , and thus by definition
DS f (G′

i) ≤ DS f (G). Thus, our refined algorithm is at least
as good as that of Section IV-A and improves over it in cases
in which DSi is significantly smaller than the dominating set
in G.

V. CONCLUDING REMARKS

In this paper, we consider the cooperative data exchange
problem for general topologiesG in the combinatorialin-
tegral setting. We establish both upper and lower bounds
on the multiplicative approximation ratio that one may ob-
tain efficiently by tying our problem to certain well studied
combinatorial properties ofG. Our achievability results are
based on communication schemes that do not involve coding
and in such imply bounds on the coding advantage of the
problem at hand. Our results address the setting of undirected
networks. Extending our results to the case of directed graphs
(by studying directed analogs to dominating sets) involves
modifications in our analysis and is subject to future research.
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