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Channel Modelling of MU-MIMO Systems by
Quaternionic Free Probability

Ralf R. Müller and Burak Çakmak
Department of Electronics & Telecommunications

The Norwegian University of Science and Technology, Trondheim, Norway
Email: {ralf@iet,cakmak@stud}.ntnu.no

Abstract—This paper studies the asymptotic eigenvalue dis-
tribution (AED) and the mutual information of a multiuser
(MU) multiple-input multiple output (MIMO) channel with a
certain fraction of users experiencing line-of-sight. It shows that
the AED of the channel matrix decomposes into two separate
bulks for practically relevant parameter choices and differs very
much from the common assumption of independent identically
distributed (iid) entries which induces the quarter circle law. This
happens even without antenna correlation at either side of the
channel. In order to tackle this problem the paper makes use of
recent developments in free probability theory which allow to deal
with complex-valued eigenvalue distributions of non-Hermitian
matrices by means of quaternions.

Index Terms—antenna arrays, channel modeling, eigenvalue
distribution, free probability, line of sight, multiple-input multiple
output, quaternions, random matrices, R-diagonal elements,
Rician fading, Stieltjes transform

I. INTRODUCTION

MU-MIMO systems have received a great deal of atten-
tion recently as they also serve as a models to describe
the propagation of virtual MIMO systems were the multiple
antennas are not co-located but belong to different cooperating
users. The capacity region of a MU-MIMO system depends
on the singular values of the channel matrix that governs
the propagation from all (virtual) transmitting antennas to all
(virtual) receiving antennas.

In multi-antenna systems, signal propagation is dominated
by two mechanism: line-of-sight and scattering. In single-user
MIMO systems, the line-of-sight component, if present, has
high power, but rank one while the scattered component has
lower power but high rank. In MU-MIMO systems, the line-of-
sight component of the channel matrix is not limited to rank
one, as the antennas need not be co-located. Several earlier
works have addressed this scenario, see e.g. [1]–[4].

The rank of the line-of-sight component is typically lower
than the rank of the scattered component as the existence of
a direct path is less probable than the existence of an indirect
path. With the scattered component having higher rank, but
lower power, the question which of the two components is
more important is non-trivial. Furthermore, it is expected that
the interplay of both components is important to understand
the properties of MU-MIMO systems.

In the large system limit, i.e. the number of antennas grows
to infinity with a fixed ratio between the number of transmit
to receive antennas, the properties of MIMO systems can be

studied by means of free probability theory, see e.g. [5]–[11].
Free probability, as proposed in [12], [13] allows to infer the
AEDs of sums or products of Hermitian random matrices with
known eigenvalue distribution provided that these Hermitian
random matrices are free. This allowed to deal with a great
number of channel models in wireless communications and
put the basis for the success of free probability in information
theory of wireless channels, see e.g. [8], [10], [14].

Still there are channel models with great practical impor-
tance which are not simply sums or products of Hermitian
random matrices with known eigenvalues distributions. The
MU-MIMO system described by

H = σH2H1 +H0 (1)

with H0, H1, H2, σ denoting the line-of-sight path, the
propagation from the transmit antennas to the scatterers, the
propagation from the scatterers to the receive antennas, and
the attenuation of the scattered paths relative to the line-of
sight paths, respectively, is one of them. Note that the terms
to be summed in

HH† =σ2H2H1H
†
1H
†
2 +H0H

†
0+ (2)

+ σH2H1H
†
0 + σH0H

†
1H
†
2 (3)

are not free, while the terms in (1) are not Hermitian.
In this paper, we will make use of a free probability calculus

for non-Hermitian random matrices recently discovered in
[15]1 to analyze the AEDs of MU-MIMO systems. First, we
will introduce the system model in Section II. Then, analyze
it in Section III making use of the quaternionic extension of
free probability theory discussed in Section IV. Conclusions
are outlined in Section V.

II. SYSTEM MODEL

Consider the MU-MIMO communication link introduced
in (1). This model neglects potential antenna correlation at
transmitter and receiver side. Such correlations can be easily
taken into account by the modified channel model [9]√

CRH
√
CT (4)

by means of classical multiplicative free convolution, once the
AED of HH† is known. For sake of space limitations, we

1A less explicit calculus for non-Hermitian random matrices was already
proposed in [16], [17].



will thus ignore antenna correlation in this paper and solely
focus on the more challenging problem of finding the AED of
HH†.

Assuming users with equal powers2 and following [7], the
random matrices H1 ∈ CS×T and H2 ∈ CR×S are assumed
to have iid complex Gaussian entries with zero mean and
variances 1/S and 1/R, respectively, where T, S and R denote
the number of transmit antennas, of scatterers, and of receive
antennas, respectively. The line-of-sight matrix H0 is not iid,
since some users may not experience line of sight, in general.
Assuming users with equal powers again, it is well modeled
as

H0 = G0P 0 (5)

where G0 is iid complex Gaussian with zero-mean and vari-
ance 1/R and P 0 is a diagonal matrix with L ones and T −L
zeros on the diagonal.

Quaternionic free probability allows to find complex-valued
asymptotic eigenvalue distributions and is thus well-suited for
the analysis of a channel model like (1). However, H is not
square, in general. Nevertheless, assuming T ≤ R,3 we can
write

H = H̃P (6)

with H̃ ∈ CR×R and P ∈ {0, 1}R×T with ones on the
diagonal and zeros elsewhere. Obtaining the AED of HH†

given the AED of H̃H̃
†

is a straightforward exercise in
classical multiplicative free convolution and omitted here due
to space limitations. Similarly, the rectangular matrices H1

and H2 can be represented by equivalent square matrices.
Thus, we assume T = R in the sequel for sake of readability
and space limitations and leave the generalization to non-
square matrices to the reader. We are, thus, left with only
three parameters in the large system limit. One is the relative
scattering attenuation σ introduced in (1). The second one is

φ ≡ L

T
(7)

which we will call line-of-sight fraction in the following. It
specifies the relative rank of the light-of-sight component of
the MU-MIMO system. The third one is

ρ ≡ S

R
(8)

which is called the scattering richness or richness for short.
In the following, we will address the wireless MIMO system

described by

y =

√
γ

φ+ σ2
Hx+ n (9)

where x, y, n, γ are the channel input, the channel output,
additive white Gaussian noise (AWGN), and the signal-to-
noise ratio, respectively. The entries of x and n are assumed
to be iid with zero mean and unit variance.

2The generalization to unequal powers is a straightforward, though tedious
exercise and omitted for sake of readability and space limitations.

3The case T > R works accordingly by left multiplication of a projector.

III. MU-MIMO SYSTEMS

Using the results outlined in Section IV, we easily find:

COROLLARY 1 Let the entries of the independent T × T
matrices Hn be iid4 with zero mean and variance 1/T for all
n. Then, the empirical eigenvalue distributions of

∏N
n=1 Hn

and HN
n converge almost surely to the same limit given by

pHN
n
(z) =

{
1
πN |z|

2
N−2 |z| ≤ 1

0 elsewhere
(10)

∀n as T →∞.

In other words, independent square random matrices with iid
entries behave with respect to multiplication asymptotically
as if they were identical. This means, that running through
the same i.i.d. random channel twice or running consecutively
through two random channels with the same statistics makes
no difference in the large-system limit. By contrast, this does
not even hold approximately if the channel is a diagonal ma-
trix. A more general form of Corollary 1 is found in Theorem 4
which explains this surprising equivalence in distribution by
means of the bi-unitary invariance of the measure of Hn.

COROLLARY 2 Let the entries of the T × T matrix G be iid
with variance 1/T and the matrix P ∈ {0, 1}T×T be diag-
onal with L non-zero entries. Then, the empirical eigenvalue
distribution of GP converges almost surely to

pGP (z) = (1− φ)δ(z) +

{
1
π |z| ≤

√
φ

0 elsewhere
(11)

as T, L→∞ with φ = L
T fixed.

In other words, the projection of iid square random matrices
from T to L dimensions replaces the T −L eigenvalues with
greatest modulus by zero eigenvalues.

COROLLARY 3 Let the entries of the R×S matrix X and the
S×T matrix Y be iid with zero mean and variance 1/

√
RS.

Then, the empirical eigenvalue distribution of the R×R matrix
Z = [XY |0] converges almost surely to the limit

pZ(z) = (1−β)δ(z)+

{
1
π

ρ√
(ρ−β)2+4ρ|z|2

|z| ≤
√
β

0 elsewhere
(12)

as T, S,R→∞ with ρ = S/R ≥ 1 and β = T/R ≤ 1 fixed.

Setting β = 1, the AEDs of Corollary 1 with N = 2 and
N = 1 are recovered for ρ = 1 and ρ→∞, respectively.

More involved calculations based on the results in Sec-
tion IV lead to:

THEOREM 1 Let the entries of the R × S matrices A1 and
A†2 be iid with zero mean, variance 1/

√
RS and mth moments

upper bounded by αmR−m/2 for some αm and all m ≥ 1. Let

4For matrices with independent Gaussian entries, the result is stated in [18].



B be an arbitrary matrix free of A1A2 such that the empirical
distribution of eigenvalues of BB† converges, as R→∞, to
a limit distribution with Stieltjes transform GBB†(s) defined
in (22). Furthermore, let

C = σA1A2 +B (13)

with σ ∈ C and define

G̃B(s) ≡ sGBB†
(
s2
)
. (14)

Then, the empirical distribution of eigenvalues of CC† con-
verges almost surely to a limit distribution whose Stieltjes
transform satisfies

GCC†(s) =
1√
s
G̃B

[√
s− |σ|

2ρ
√
sGCC†(s)

ρ− |σ|2sG2
CC†(s)

]
(15)

as R,S →∞ with ρ = S/R fixed.

The proof is omitted due to space limitations.
The AED of the line-of-sight component, i.e.

H0H
†
0 = GPG† (16)

is the well-known Marchenko-Pastur distribution with param-
eter φ [10]. Its Stieltjes transform is a solution to a quadratic
equation which has the two solutions [19, Table I]5

GH0H
†
0
(s) =

1

2
+

1− φ
2s
±
√

(1− φ)2
4s2

− 1 + φ

2s
+

1

4
. (17)

With the help of (17), Theorem 1 allows to calculate the
asymptotic singular value distribution of the channel (1). The
respective density function is shown in Fig. 1 for 4φ = 4σ =
ρ = 1. This examples was chosen, since the relative scattering
attenuation σ and line-of-sight fraction φ are small, in practice.
In that case, the asymptotic singular value distribution of H
decomposes into two bulks with each bulk being shaped very
similar to the cases of pure scattering and pure line-of-sight
when scaled or shifted appropriately. This deviates strongly
from the quarter circle law that would be obtained, if H were
composed of iid entries.

The mutual information of the channel defined in (9) and
measured in nats is given by

lim
T→∞

I(X;Y )

T
=

∫
log
(
1 +

x

s

)
dPHH†(x)

∣∣∣∣
s=φ+σ2

γ

(18)

=

∞∫
φ+σ2

γ

GHH†(−s) + 1

s
ds (19)

= 2

∞∫
√
φ+σ2

γ

1

s
− G̃H(−s) ds (20)

where (19) and (20) follow from [7, Sec. IV.C]5 and (14),
respectively. It is shown in Fig. 2 for a fixed signal-to-noise
ratio of 9 dB. One can observe that small values of the line-of-

5Note that [7], [19] use a different definition of the Stieltjes transform.
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Fig. 1. Probability density function of the singular values of the matrix H in
(1) for 4σ = 4φ = ρ = 1. The dashed lines show scaled and shifted versions
of pure scattering (φ = 0) and pure line-of-sight (σ = 0), respectively. The
dotted line refers to the iid case.
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Fig. 2. Mutual information for γ = 9 dB and ρ = 1 versus φ and σ.

sight fraction φ and the relative scattering attenuation σ that
are typical in many practical scenarios are quite deleterious
for the mutual information of the channel. Furthermore, the
figure seems to suggest that blocking the line of sight is better
than a small, but non-zero value of the line-of-sight fraction
φ. However, Fig. 2 is plotted for constant SNR and blocking
the line of sight will surely decrease the SNR.

The hit in mutual information for small line-of-sight fraction
and relative scattering attenuation is exacerbated in practice by
the fact that analog-to-digital conversion and precise estima-
tion of the scattered paths is challenging in the presence of
much stronger direct paths.



IV. QUATERNIONIC FREE PROBABILITY THEORY

Hermitian matrices have real eigenvalues. The method of
choice to deal with real-valued eigenvalue distributions in free
probability is to utilize complex analysis, i.e. to represent a
real-valued eigenvalue distribution

p(x) =
1

π
lim
ε→0+

<{jG(x+ jε)} (21)

as a limit of a complex-valued holomorphic function G(s),
which is known as the Stieltjes transform and defined by

G(s) ≡
∫

dP(x)

s− x
. (22)

Complex-valued eigenvalue distributions are often not holo-
morphic. They can be represented by a pair of holomorphic
functions representing real and imaginary part. Instead of real
and imaginary part of a complex variable z, one can also
consider z, its complex conjugate z∗, and apply the Wirtinger
rule [20] for differentiation, i.e.

∂z∗

∂z
≡ 0 ≡ ∂z

∂z∗
. (23)

A. Stieltjes Transform

In order to generalize the Stieltjes transform to two complex
variables z and z∗, we first rewrite (22) by

G(s) =
d

ds

∫
log(s− x)dP(x) . (24)

Further, note that the Dirac function of complex argument can
be represented as the limit

δ(z) =
1

π
lim
ε→0

ε2

(|z|2 + ε2)2
. (25)

Thus, we have

p(z) =
1

π
lim
ε→0

∂2

∂z∂z∗

∫
log
[
|z − z′|2 + ε2

]
dP(z′) . (26)

We define the bivariate Stieltjes transform by

G(s, ε) ≡ ∂

∂s

∫
log
[
|s− z|2 + ε2

]
dP(z) (27)

=

∫
(s− z)∗

|s− z|2 + ε2
dP(z) (28)

and get the bivariate Stieltjes inversion formula to read

p(z) =
1

π
lim
ε→0

∂

∂z∗
G(z, ε) . (29)

At first sight, the bivariate Stieltjes transform looks quite
different from (22). However, we can rewrite (27) as

G(s, ε) =

∫ [(
s− z jε
jε s∗ − z∗

)−1]
11

dP(z) (30)

which clearly resembles the form of (22). To get an even
more striking analogy with (22), we can introduce the Stieltjes
transform with quaternionic argument q ≡ v + iw, (v, w) ∈
C2, i2 ≡ −1, ij ≡ −ji

G(q) ≡
∫

dP(z)

q − z
(31)

with the respective inversion formula

p(z) =
1

π
lim
ε→0

∂

∂z∗
<G(z + iε) (32)

and the definition <(v+iw) ≡ v ∈ C.6 Quaternions are incon-
venient to deal with since multiplication of quaternions does
not commute, in general. However, any quaternion q = v+iw
can be conveniently represented by the complex-valued 2× 2
matrix (

v w
−w∗ v∗

)
. (33)

This matrix representation directly connects (30) with (31) via

G(s, ε) = <G(s+ iε) . (34)

B. Free Convolution

We define the R-transform of quaternion argument p in
complete analogy to the complex case in [12] as

R(p) ≡ G−1(p)− 1

p
(35)

and obtain for free random matrices A and B, with RA(p)
and RB(p) denoting the R-transforms of the respective AEDs,

RA+B(p) = RA(p) + RB(p) . (36)

The scaling law of the R-transform generalizes as follows

RzH(p) = zRH(pz) (37)

for z ∈ C. Note that the order of factors does matter here,
since pz = z∗p.

While additive free convolution generalizes straightfor-
wardly, this is very different for multiplicative free convolu-
tion. Due to space limitations, we refer the reader to [21].

C. R-Diagonal Random Matrices

In practice, non-Hermitian random matrices are often,
though not always, R-diagonal.

DEFINITION 1 (DEFINITION 2.3 IN [16]) . A random matrix
X is called R-diagonal, if it can be decomposed as X = UY

where Y =
√
XX† and U is Haar distributed and free of

Y .

R-diagonal random matrices are a superset of bi-unitarily
invariant matrices. Their additive free convolution can be
performed without quaternionic free calculus as follows:

THEOREM 2 (PROPOSITION 3.5 IN [22]) Let the asymptoti-
cally free random matrices A and B be R-diagonal and
denote the respective asymptotic singular value distributions
by PA(x) and PB(x). Define the symmetrization of a density
by

p̃(x) =
p(x) + p(−x)

2
. (38)

6Note that the real and imaginary part of a quaternion are its first and
second complex component, respectively.



Then, we have for the respective R-transforms of the sym-
metrized singular value distributions

R̃A+B(w) = R̃A(w) + R̃B(w). (39)

The AED relates to the respective asymptotic singular value
distribution as follows:

THEOREM 3 (COROLLARY 4.5 IN [22]) Let random matrix
H be R-diagonal. Let SHH†(s) denote the S-transform of
the AED of HH† and define the function

f(s) =
1√

SHH†(s− 1)
. (40)

Then, the AED of H is circularly symmetric and given by

pH(z) =
1

2πzf ′ [f−1(z)]
(41)

with f ′(s) = df(s)/ds wherever the density is positive and
continuous.

Furthermore, the following lemma relating the Stieltjes
transform of the symmetrized singular value distribution of
a square matrix X to the Stieltjes transform of the eigenvalue
distribution of XX† turns out quite helpful:

LEMMA 1 (TABLE II IN [19]) Let

G̃λ(s) =
1

2

∫
pλ(x) + pλ(−x)

s− x
dx. (42)

Then
G̃λ(s) = sGλ2

(
s2
)
. (43)

R-diagonal random matrices have the property to behave as
if they are identical with respect to multiplication:

THEOREM 4 (PROPOSITION 3.10 [22]) Let the random ma-
trices An have the same AED, be R-diagonal, and asymptoti-
cally free of each other for all n. Then, the AEDs of

∏N
n=1 An

and AN
1 are identical.

V. CONCLUSIONS AND OUTLOOK

Line of sight strongly influences the eigenvalue distribution
of multi-user MIMO channels. If the line-of-sight component
is significantly stronger than the scattered paths and/or the
fraction of users who experience line of sight is small, the
eigenvalue distribution is composed of two separate bulks, one
corresponding to the scattered paths and one corresponding
to the direct paths. In that case, the AED can be accurately
approximated by a scaled version of pure scattering and a
shifted version of pure line of sight which, in contrast to the
exact solution, can be given in closed explicit form.

While Stieltjes transforms in one complex variable can-
not uniquely define a complex-valued eigenvalue distribution,
a generalized Stieltjes transform in two complex-valued or
one quaternion-valued variable can do so. Quaternion-valued
Stieltjes transforms allow to deal with a much larger class

of vector-valued communication systems than complex-valued
univariate Stieltjes transforms do.

In a subsequent journal version of this paper, we will include
the more general case of rectangular channel matrices, i.e.
R 6= T , as well as the detailed derivation of Theorem 1.
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