
Allocations for Heterogenous Distributed Storage
Vasileios Ntranos

University of Southern California
Los Angeles, CA 90089, USA

ntranos@usc.edu

Giuseppe Caire
University of Southern California

Los Angeles, CA 90089, USA
caire@usc.edu

Alexandros G. Dimakis
University of Southern California

Los Angeles, CA 90089, USA
dimakis@usc.edu

Abstract—We study the problem of storing a data object in a
set of data nodes that fail independently with given probabilities.
Our problem is a natural generalization of a homogenous storage
allocation problem where all the nodes had the same reliability
and is naturally motivated for peer-to-peer and cloud storage
systems with different types of nodes. Assuming optimal erasure
coding (MDS), the goal is to find a storage allocation (i.e, how
much to store in each node) to maximize the probability of
successful recovery. This problem turns out to be a challenging
combinatorial optimization problem. In this work we introduce
an approximation framework based on large deviation inequal-
ities and convex optimization. We propose two approximation
algorithms and study the asymptotic performance of the resulting
allocations. SUBMITTED TO ISIT 2012.

I. INTRODUCTION

We are interested in heterogenous storage systems where
storage nodes have different reliability parameters. This prob-
lem is relevant for heterogenous peer-to-peer storage networks
and cloud storage systems that use multiple types of storage
devices, e.g. solid state drives along with standard hard disks.
We model this problem by considering n storage nodes and
a data collector that accesses a random subset r of them.
The probability distribution of r ⊆ {1, . . . , n} models random
node failures and we assume that node i fails independently
with probability 1 − pi. The probability of a set r of nodes
being accessed is therefore:

P(r) =
∏
i∈r

pi
∏
j /∈r

(1− pj). (1)

Assume now that we have a single data file of unit size
that we wish to code and store over these nodes to maximize
the probability of recovery after a random set of nodes fail.
The problem becomes trivial if we do not put a constraint
on the maximum size T of coded data and hence, we will
work with a maximum storage budget of size T < n:
If xi is the amount of coded data stored in node i, then∑n
i=1 xi ≤ T . We further assume that our file is optimally

coded, in the sense that successful recovery occurs whenever
the total amount of data accessed by the data collector is at
least the size of the original file. This is possible in practice
when we use Maximum Distance Separable (MDS) codes
[1]. The probability of successful recovery for an allocation
(x1, . . . , xn) can be written as

Ps = P

[∑
i∈r

xi ≥ 1

]
=

∑
r⊆{1,...,n}

P(r) 1
{∑
i∈r

xi ≥ 1
}

where 1{·} is the indicator function. 1{S} = 1 if the statement
S is true and zero otherwise.

A more concrete way to see this problem is by introducing
a Yi ∼ Bernoulli(pi) random variable for each storage node:
Yi = 1 when node i is accessed by the data collector and
Yi = 0 when node i has failed. Define the random variable

Z =

n∑
i=1

xiYi (2)

where xi is the amount of data stored in node i. Then,
obviously, we have Ps = P[Z ≥ 1].

Our goal is to find a storage allocation (x1, . . . , xn), that
maximizes the probability of successful recovery, or equiva-
lently, minimizes the probability of failure, P[Z < 1].

II. OPTIMIZATION PROBLEM

Put in optimization form, we would like to find a solution
to the following problem.

Q1 : minimize
xi

∑
r⊆{1,...,n}

P(r) 1
{∑
i∈r

xi < 1
}

subject to:
n∑
i=1

xi ≤ T

xi ≥ 0, i = 1, . . . , n.

Authors in [1] consider a special case of problem Q1 in
which pi = p, ∀i. Even in this symmetric case the problem
appears to be very difficult to solve due to its non-convex
and combinatorial nature. In fact, even for a given allocation
{xi} and parameter p, computing the objective function is
computationally intractable (#P -hard , See [1]).

A very interesting observation about this problem follows
directly from Markov’s Inequality: P[Z ≥ 1] ≤ E[Z] = pT . If
pT < 1, then the probability of successful recovery is bounded
away from 1. This has motivated the definition of a region of
parameters for which high probability of recovery is possible:
RHP = {(p, T) : pT ≥ 1}. The budget T should be more than
1/p if we want to aim for high reliability and the authors in
[1] showed that in the above region of parameters, maximally
spreading the budget to all nodes (i.e, xi = T/n, ∀i) is an
asymptotically optimal allocation as n→∞.

In the general case, when the node access probabilities, pi,
are not equal, one could follow similar steps to characterize

ar
X

iv
:1

20
2.

15
96

v1
 [

cs
.I

T
]

 8
 F

eb
 2

01
2

a region of high probability of recovery. Markov’s Inequality
yields:

P[Z ≥ 1] ≤ E[Z] =

n∑
i=1

xipi = pTx

where p = [p1, p2, . . . , pn]T and x = [x1, x2, . . . , xn]T . If we
don’t want P[Z ≥ 1] to be bounded away from 1 we have
to require now that pTx ≥ 1. We see that in this case, high
reliability is not a matter of sufficient budget, as it depends on
the allocation x itself.

Let S(p, T) =
{
x ∈ Rn+ : pTx ≥ 1,1Tx ≤ T

}
be the set

of all allocations x with a given budget constraint T that satisfy
pTx ≥ 1 for a given p. We call these allocations reliable for
a system with parameters p, T , in the sense that the resulting
probability of successful recovery is not bounded away from 1.
Then the region of high probability of recovery can be defined
as the region of parameters p, T , such that the set S(p, T) is
non-empty.

RHP =
{

(p, T) ∈ Rn+1
+ : S(p, T) 6= ∅

}
This generalizes the region described in [1]. If all pi’s are

equal then the set S(p, T) is non-empty when pTx = pT ≥ 1.
In the general case, the minimum budget such that S(p, T)
is non-empty is T = 1/pmax, with pmax = max{pi}, and
S(p, 1/pmax) contains only one allocation xp−1

max
: xj =

1
pmax

, j = arg maxi{pi}, xi = 0 , ∀i 6= j.
Even though RHP provides a lower bound on the minimum

budget T required to allocate for high reliability, it doesn’t
provide any insights on how to design allocations that achieve
high probability of recovery in a distributed storage system.
This motivates us to move one step further and define a region
of ε-optimal allocations in the next section.

III. THE REGION OF ε-OPTIMAL ALLOCATIONS

We say that an allocation (x1, x2, . . . , xn) is ε-optimal if the
corresponding probability of successful recovery, P[Z ≥ 1], is
greater than 1− ε.

Let En(p, T, ε) = { x ∈ Rn+ : P[Z < 1] ≤ ε , 1Tx ≤ T }
be the set of all ε-optimal allocations. Note that if we could
efficiently characterize this set for all problem parameters, we
would be able to solve problem Q1 exactly: Find the smallest
ε such that En(p, T, ε) is non-empty.

In this section we will derive a sufficient condition for an
allocation to be ε-optimal and provide an efficient character-
ization for a region Hn ⊆ En(p, T, ε). We begin with a very
useful lemma.

Lemma 1. (Hoeffding’s Inequality [2], [3])
Consider the random variable W =

∑n
i=1 Vi, where Vi are

independent almost surely bounded random variables with
P (Vi ∈ [ai, bi]) = 1. Then,

P
[
W ≤ E[W]− nδ

]
≤ exp

{
− 2n2δ2∑n

i=1(bi − ai)2

}
for any δ > 0.

We can use Lemma 1 to upper bound the probability of
failure, P[Z < 1] ≤ P[Z ≤ 1], for an arbitrary allocation,
since Z =

∑n
i=1 xiYi can be seen as the sum of n independent

almost surely bounded random variables Vi = xiYi, with
P
(
Vi ∈ [0, xi]

)
= 1. Let δ =

(∑n
i=1 xipi − 1

)
/n and require

δ > 0⇔
∑n
i=1 xipi > 1. Lemma 1 yields:

P[Z < 1] ≤ exp

{
−

2
(∑n

i=1 xipi − 1
)2∑n

i=1 x
2
i

}
,

n∑
i=1

xipi > 1.

(3)
Notice that the constraint

∑n
i=1 xipi > 1 requires the alloca-

tion (x1, x2, . . . , xn) to be reliable and S(p, T) 6= ∅.
In view of the above, a sufficient condition for a strictly

reliable allocation to be ε-optimal is the following.

exp

{
−

2
(∑n

i=1 xipi − 1
)2∑n

i=1 x
2
i

}
≤ ε ⇐⇒

||x||2

√
ln 1/ε

2
≤ pTx− 1 , pTx > 1

(4)

We say that all allocations satisfying the above equation are
Hoeffding ε-optimal, due to the use of Hoeffding’s Inequality
in Lemma 1.

Definition 1. “The Region of Hoeffding ε-optimal allocations”

Hn(p, T, ε) =

{
x ∈ Rn+ : pTx > 1, 1Tx ≤ T,

||x||2

√
ln 1/ε

2
≤ pTx− 1

} (5)

The above region is strictly smaller En(p, T, ε) for any finite
n, because the bound in (3) is not generally tight. However,
Hn(p, T, ε) is a convex set: Equation (4) can be seen as a
second order cone constraint on the allocation x ∈ Rn+.

Theorem 1. The region of Hoeffding ε-optimal allocations
Hn(p, T, ε) is convex in x.

This interesting result allows us to formulate and efficiently
solve optimization problems over Hn(p, T, ε). Finding the
smallest ε∗ such that Hn(p, T, ε) is non-empty will produce
an ε∗-optimal solution to problem Q1.

A. Hoeffding Approximation of Q1

If we fix p, T, n as the problem parameters, then the
following optimization problem can be solved efficiently, to
any desired accuracy 1/α, by solving a sequence of O(logα)
convex feasibility problems (bisection on ε).

H1 : min
x,ε

ε

s.t.: x ∈ Hn(p, T, ε)

We will see next that if T is sufficiently large, ε∗ goes to
zero exponentially fast as n grows, and hence the solution to
the aforementioned problem is asymptotically optimal.

B. Maximal Spreading Allocations and the Asymptotic Opti-
mality of H1

First, we will focus on maximal spreading allocations, xnT ,
{x ∈ Rn : xi = T/n }, and derive their asymptotic optimality
for Q1, in the sense that P[Z < 1] → 0, as n → ∞. Let
p̄ = 1

n

∑n
i=1 pi be the average access probability across all

nodes. We have the following lemma.

Lemma 2. If T > 1/p̄, for any ε > 0, ∃nε: xnT ∈ Hn(p, T, ε),
for all n ≥ nε.

Proof: This follows directly from the definition of
Hn(p, T, ε): nε = ln 1/ε

2(p̄−1/T)2 .
The above lemma establishes the asymptotic optimality of

maximal spreading allocations through the following corollary.

Corollary 1. The probability of failed recovery, Pe , P[Z <
1], for a maximal spreading allocation is Pe ≤ e−2n(p̄−1/T)2 .
When T > 1/p̄, Pe → 0, as n→∞.

The fact that Hn(p, T, ε) contains maximal spreading allo-
cations for T > 1/p̄, provides a sufficient condition on the
asymptotic optimality of H1.

Theorem 2. Let ε∗ be the optimal value of H1. If T > 1/p̄,
then ε∗ = O(exp(−n)).

Proof: Let T > 1/p̄ and consider the maximal spreading
allocation xnT . Then, ε∗ ≤ εs, where εs is the minimum ε such
that xnT ∈ Hn(p, T, ε). That is εs = e−2n(p̄−1/T)2 , and since
T > 1/p̄, ε∗ ≤ εs = O(exp(−n)).

IV. CHERNOFF RELAXATION

In this section we take a different approach to obtain a
tractable convex relaxation for Q1 by minimizing an appro-
priate Chernoff upper bound.

A. Upper Bounding the Objective Function

Lemma 3. (Upper Bound) Let Z =
∑n
i=1 xiYi, xi ≥ 0, Yi ∼

bernoulli(pi) and t ≥ 0. The probability of failed recovery,
P[Z < 1], is upper bounded by

P[Z < 1] ≤ gt(x) =
∑

r⊆{1,...,n}

P(r) exp

{
−t

(∑
i∈r

xi − 1

)}

Proof: For any t ≥ 0 we have:

P[Z < 1] ≤ P[Z ≤ 1] = P
[
e−tZ ≥ e−t

]
≤ etE

[
e−tZ

]
= etE

[
n∏
i=1

e−txiYi

]

= et
n∏
i=1

E
[
e−txiYi

]
= et

n∏
i=1

(
1− pi + pie

−txi
)

(6)

= et
∑

r⊆{1,...,n}

P(r) exp

{
−t

(∑
i∈r

xi

)}

=
∑

r⊆{1,...,n}

P(r) exp

{
−t

(∑
i∈r

xi − 1

)}
(7)

, gt(x)

Note that gt(x) is a weighted sum of convex functions with
linear arguments, and hence convex in x. Equation (7) makes
the convex relaxation of the objective function apparent:

1
{
x < α

}
≤ e−t(x−α), for any t ≥ 0.

B. The Relaxed Optimization Problem

Before we move forward and state the relaxed optimization
problem, we take a closer look at the constraint set S = {x ∈
Rn+ : 1Tx ≤ T} of the original problem Q1. From a practical
perspective, it should be wasteful to allocate more than one
unit of data (filesize) on a single node. If the node survives,
then the data collector can always recover the file using only
one unit of data and hence any additional storage does not
help. Also, an allocation using less than the available budget
cannot have larger probability of successful recovery.

In the following lemma, we show that it is sufficient to
consider allocations with xi ∈ [0, 1] and

∑n
i=1 xi = T .

Lemma 4. For any x ∈ S, ∃x′ ∈ S′ = {x ∈ Rn+ : 1Tx =
T, xi ≤ 1, i = 1, . . . , n} such that P [

∑n
i=1 x

′
iYi < 1] ≤

P [
∑n
i=1 xiYi < 1].

Proof: See the long version of this paper [4].
The relaxed optimization problem can be formulated as

follows.

R1 : minimize
xi

gt(x)

subject to:
n∑
i=1

xi = T

xi ∈ [0, 1], i = 1, . . . , n.

Note that, in general, one would like to minimize
inft≥0{gt(x)} instead of gt(x) for some t ≥ 0. However,
for now, we will let t be a free parameter and carry on with
the optimization.

The important drawback of the above formulation hides
in the objective function: Although convex, gt(x) has an
exponentially long description in the number of storage nodes:
The sum is still over all subsets r ⊆ {1, . . . , n}. This can be
circumvented if we consider minimizing log gt(x) instead of
gt(x) over the same set.

Lemma 5. log gt(x) is convex in x.

Proof: See the long version of this paper [4].

Lemma 6. For any t ≥ 0

arg min
x∈S

gt(x) = arg min
x∈S

n∑
i=1

log

(
1 +

pi
1− pi

e−txi

)
,

where S = {x ∈ Rn+ : 1Tx ≤ T,x � 1}.

Proof: Let x∗ = arg minx∈S gt(x). Then gt(x
∗) ≤

gt(x), ∀x ∈ S. Taking the logarithm on both sides pre-
serves the inequality since log(·) is strictly increasing. Hence,
log gt(x

∗) ≤ log gt(x), ∀x ∈ S and subtracting t +∑n
i=1 log(1 − pi) from both sides yields the desired result

and completes the proof.
In view of Lemmas 5 and 6, we can solve R1 through the

following equivalent optimization problem.

R2 : minimize
xi

t+

n∑
i=1

log

(
1 +

pi
1− pi

e−txi

)
subject to:

n∑
i=1

xi = T

xi ∈ [0, 1], i = 1, . . . , n.

R2 is a convex separable optimization problem with poly-
nomial size description and in terms of complexity, it is “not
much harder” than linear programming [5]. One can solve such
problems numerically in a very efficient way using standard,
“off-the-shelf” algorithms and optimization packages such as
CVX [6], [7].

C. Insights from Optimality Conditions for R2

Here, we move one step further and take the KKT conditions
for R2 in order to take a closer look at the structure of the
optimal solutions. Let ri , pi

1−pi .
The Lagrangian for R2 is:

L(x,u,v, λ) =

n∑
i=1

log
(
1 + rie

−txi
)

+ λ

(
n∑
i=1

xi − T

)

−
n∑
i=1

uixi +

n∑
i=1

vi(xi − 1)

where λ ∈ R, u,v ∈ Rn+ are the corresponding Lagrange
multipliers. The gradient is given by ∇xiL(x,u,v, λ) =

− rit

ri + etxi
+λ−ui+vi , and the KKT necessary and sufficient

conditions for optimality yield:

− rit

ri + etx
∗
i

+ λ− ui + vi = 0 , ∀i (8)

n∑
i=1

x∗i = T (9)

0 ≤ x∗i ≤ 1 , ∀i (10)
λ ∈ R , vi, ui ≥ 0 , ∀i (11)
vi(xi − 1) = 0 , uixi = 0 , ∀i (12)

Using the results from [8], the optimal solution to R2 is
given by

x∗i =


0 if rit

1+ri
≤ λ∗

1 if λ∗ ≤ rit
et+ri

1
t log

(
rit
λ∗ − ri

)
if rit

et+ri
< λ∗ < rit

1+ri

(13)

where λ∗ is chosen such that Eq.(9) is satisfied, i.e,

n∑
i=1

1

t
log

(
rit

λ∗
− ri

)
1

{
λ∗ ∈

(
rit

et + ri
,
rit

1 + ri

)}
+

n∑
i=1

1

{
λ∗ ≤ rit

et + ri

}
= T (14)

Numerically, λ∗ can be computed via an iterative O(n2)
algorithm described in [8], and hence this approach gives an
even more efficient way to solve R2.

However, the most important aspect of the above result is
that we can use equations (13), (14) to obtain closed form
solutions for a certain region of problem parameters and
analyze the performance of the resulting allocations.

D. The choice of parameter t ≥ 0

It is clear that the optimal solution to R2 depends on our
choice of t ≥ 0. For example, rit

et+ri
→ 0, rit

1+ri
→ ∞, as

t → ∞ and x∗i = lim
t→∞

t−1 log (rit/λ
∗ − ri), ∀i. Equation

(14) yields x∗i = T
n , ∀i and hence the maximal spreading

allocation becomes optimal for R2 as t → ∞. Even though
this motivates the choice of maximal spreading allocations
as approximate “one-shot” solutions for the original problem
Q1, explicitly tuning the parameter t can provide significantly
better approximations.

In order to obtain the tightest bound from Lemma 3, we
have to jointly minimize the objective in R2 with respect to
t ≥ 0 and x. Towards this end, one can iteratively optimize
R2 by fixing the value of one variable (t or x) at each
step and minimizing over the other. After each iteration the
objective function decreases and hence the above procedure
converges to a (possibly local) minimum. The above algorithm
iteratively tunes the Chernoff bound introduced in this section
and produces a minimizing allocation that can serve as an
approximate solution to the original problem Q1.

For analytic purposes though, we can choose a value for t as
follows. Recall from Lemma 3 that P[Z < 1] ≤ gt(x) for any
t ≥ 0. After taking logarithms, we would like to find a value
for t ≥ 0 that minimizes b(t) , t +

∑n
i=1 log(1 + rie

−txi).
Notice that b(t) is a convex function of t, with b(t) > 0, ∀t ≥
0, b(0) =

∑n
i=1 log(1 + ri) and limt→∞ b(t) =∞. The slope

of b(t) at zero is b′(0) = 1 −
∑n
i=1

rixi

1+ri
= 1 −

∑n
i=1 pixi,

which is negative if the allocation is reliable.
When t is large, log(1 + rie

−txi) ≈ 0, whereas for small
values of t, log(1+rie

−txi) ≈ −txi+log ri and hence b(t) ≈
t +

∑n
i=1 max{−txi + log ri, 0} ≥ t + max{−

∑n
i=1 txi +

log ri, 0}. One way to choose t that does not depend on xi is
to make −

∑n
i=1 txi + log ri = 0 ⇒ t = 1

T

∑n
i=1 log ri.

E. A closed-form allocation: x̂nT
In view of the above results we provide here a closed form

allocation (each xi is given as a function of p and T) that can
be used to study the asymptotic performance of R2 and serve
as a better “one-shot” approximate solution to Q1.

Let E(·) be a shorthand notation for the sample average
such that Ef(x) = 1

n

∑n
i=1 f(xi), in order to simplify the

expressions. For the above choice of t = 1
T

∑n
i=1 log ri =

nE log r/T , equation (13) becomes:

x∗i =


0 if ri

1+ri

nElog r
T ≤ λ∗

1 if λ∗ ≤ rinElog r/T
enElog r/T +ri

T
nElog r log

(
nriElog r
Tλ∗ − ri

)
otherwise

(15)

Lemma 7. If pi > 1
2 , ∀i and T < nElog r

log rmax
, rmax = max{ri},

then x∗i = T
nElog r log ri, ∀i.

Proof: Assume that λ∗ ∈
(
rinElog r/T
enElog r/T +ri

, ri
1+ri

nElog r
T

)
.

Then from Eq.(14), λ∗ = nElog r
2T and x∗i = T

nElog r log ri. λ∗

is indeed in the required interval if nElog r
2T < ri

1+ri

nElog r
T , ∀i

⇒ ri > 1, ∀i ⇒ pi > 1/2, ∀i and nElog r
2T < rinElog r/T

enElog r/T +ri
, ∀i

⇒ ri < enElog r/T, ∀i ⇒ T < nElog r
log rmax

.
Clearly, when all pi > 1/2, x̂nT : xi = T

nElog r log ri, ∀i, is a
feasible suboptimal allocation for Q1. It is also suboptimal for
R2 in general, since solving R2 via the proposed algorithms
can only achieve a smaller probability of failed recovery. We
have Pe{Q1} ≤ Pe{R2} ≤ P

{∑n
i=1

T
nElog r log riYi < 1

}
.

In the following lemma we give an upper bound on the prob-
ability of failed recovery for x̂nT and establish its asymptotic
optimality.

Lemma 8. If pi > 1
2 , ∀i and T >

E log r

Ep log r
, the allocation x̂nT :

xi = T
nElog r log ri, ∀i, is strictly reliable, and the probability

of failed recovery, Pe = P[Z < 1], is upper bounded by

Pe ≤ exp

−2n

(
Ep log r − Elog r

T

)2

E log2 r


and hence, when T >

E log r

Ep log r
, Pe → 0, as n→∞.

Proof:
The proof follows directly from Lemma 1 and Equation (3).

Notice that x̂nT is reliable for values of T for which a
maximal spreading allocation xnT is not, since 1

p̄ ≥
Elog r
Ep log r ,

and hence its probability of failed recovery Pe goes to zero
exponentially fast for smaller values of T .

V. NUMERICAL EXPERIMENTS

In this section we evaluate the performance of the proposed
approximate distributed storage allocations in terms of their
probability of failed recovery and plot the corresponding

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Maximum Available Storage Budget (T)

Pr
ob

ab
ilit

y
of

 fa
ile

d
re

co
ve

ry
 (P

e)

Approximate DSA
 (filesize = 1, N=100)

MaxSpread (Pe)
Chernoff CF (Pe)
Hoeffding (Pe)
Chernoff IT (Pe)
MaxSpread (Bound)
Chernoff CF (Bound)
Hoeffding (Bound)
Chernoff IT (Bound)

Fig. 1. Performance of the proposed approximate distributed storage
allocations and their corresponding upper bounds for a system with n = 100
nodes and pi ∼ U(0.5, 1).

bounds. In our simulations we consider an ensemble of dis-
tributed storage systems with n = 100 nodes, in which the
corresponding access probabilities, pi ∼ U(0.5, 1), are drawn
uniformly at random from the interval (0.5, 1).

We consider the following allocations. 1) Maximal spread-
ing: xi = T

n , ∀i. 2) Chernoff closed-form: xi =
(T/nE log r) log ri, ∀i. 3) Hoeffding ε-optimal: obtained by
solving H1. 4) Chernoff iterative: obtained by solving R2
and iteratively tuning the parameter t.

Fig.1 shows, in solid lines, the ensemble average probability
of failed recovery of each allocation, P [

∑n
i=1 xiYi < 1], ver-

sus the maximum available budget T . In dashed lines, Fig.1
plots the corresponding bounds on Pe obtained from Corollary
1, Lemma 8 and the objective functions of H1, R1.

REFERENCES

[1] D. Leong, A. Dimakis, and T. Ho. Distributed storage allocations. CoRR,
abs/1011.5287, 2010.

[2] W. Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Stat. Association, 58(301):13–30,
March 1963.

[3] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, New
York, NY, USA, 2005.

[4] V. Ntranos, G. Caire, and A. Dimakis. Allocations for heterogenous
distributed storage (long version). http://www-scf.usc.edu/∼ntranos/docs/
HDS-long.pdf, January 2012.

[5] D. S. Hochbaum and J. George Shanthikumar. Convex separable opti-
mization is not much harder than linear optimization. J. ACM, 37:843–
862, October 1990.

[6] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex
programming, version 1.21. http://cvxr.com/cvx, April 2011.

[7] M. Grant and S. Boyd. Graph implementations for nonsmooth convex
programs. In V. Blondel, S. Boyd, and H. Kimura, editors, Recent
Advances in Learning and Control, Lecture Notes in Control and In-
formation Sciences, pages 95–110. Springer-Verlag Limited, 2008.

[8] S. M. Stefanov. Convex separable minimization subject to bounded
variables. Comp. Optimization and Applications, 18, 2001.

http://www-scf.usc.edu/~ntranos/docs/HDS-long.pdf
http://www-scf.usc.edu/~ntranos/docs/HDS-long.pdf

	I Introduction
	II Optimization Problem
	III The region of -optimal allocations
	III-A Hoeffding Approximation of Q1
	III-B Maximal Spreading Allocations and the Asymptotic Optimality of H1

	IV Chernoff Relaxation
	IV-A Upper Bounding the Objective Function
	IV-B The Relaxed Optimization Problem
	IV-C Insights from Optimality Conditions for R2
	IV-D The choice of parameter t0
	IV-E A closed-form allocation: Tn

	V Numerical Experiments
	References

