
1

Codes Can Reduce Queueing Delay in Data Centers
Longbo Huang, Sameer Pawar, Hao Zhang, Kannan Ramchandran

Abstract—In this paper, we quantify how much codes can
reduce the data retrieval latency in storage systems. By combining
a simple linear code with a novel request scheduling algorithm,
which we call Blocking-one Scheduling (BoS), we show analyti-
cally that it is possible to reduce data retrieval delay by up to 17%
over currently popular replication-based strategies. Although in
this work we focus on a simplified setting where the storage
system stores a single content, the methodology developed can
be applied to more general settings with multiple contents. The
results also offer insightful guidance to the design of storage
systems in data centers and content distribution networks.

I. INTRODUCTION

In today’s data centers, one of the most demanding tasks
(in terms of latency) is “disk-read,” e.g., fetching the data
for performing analytics such as MapReduce, or to serve the
data to the end consumer. In many cases, this task is greatly
complicated by the highly non-uniform data popularity, where
the most popular data objects can be accessed ten times more
frequently than the bottom third [1]. This skewed demand
leads to high contention for read tasks of the most popular
data. To meet the demand and reduce data retrieval latency,
current systems often introduces data redundancy by replicat-
ing many copies of each content, e.g., Hadoop replicates each
content three or more times, to make the popular data more
available and relieve the hot spots of read contentions, thereby
reducing the average request latency.

This motivates us to investigate the fundamental role of
redundancy in improving the system latency. In particular, we
compare two systems, one using codes and the other using
simple replication. Heuristically, codes offer more flexibility
when retrieving the data from the servers, thus may improve
content retrieval latency. In this paper, we use a non-asymptotic
analytical approach to quantify this intuition.

To make the problem more concrete, consider an abstracted
example of retrieving a file in a data center shown in Fig. 1.
The storage system consists of 4 storage units, each capable
of storing 1 packet of the desired file that consists of 2 packets
A and B. We consider two possible storage strategies 1) each
packet is replicated two times; 2) file is encoded using a (4, 2)
Maximum-Distance-Code (MDS) code. It is easy to see the
redundancy factor is 2 in both cases. There is a common
dispatcher that queues and schedules the incoming requests.
We assume the request process is Poisson and the service time
of the storage unit is exponentially distributed.

Quantifying the exact request delay in a coded system is
a challenging task. The main difficulty is that the schedul-
ing algorithm needs to remember which SUs served earlier
requests to ensure that the request of a particular content

The authors are with the EECS dept at UC Berkeley, Berkeley, CA, 94720,
USA. Emails: {huang, spawar, zhanghao, kannanr}@eecs.berkeley.edu.

is always served by distinct SUs. This makes the analysis
extremely difficult. Moreover, since data centers cannot afford
a redundancy factor of more than a few tens at most, the
asymptotic analysis based approach advocated in [3] [9] are
not relavent.

To tackle this challenge, we develop a novel scheduling
algorithm called Blocking-one Scheduling (BoS). The idea
is to block some subsequent content retrieval requests until
the head-of-line request is processed. This helps remove the
dependency in the scheduling actions, and allows a clean
analysis of the delay performance of system using codes.
Fortunately, as we will see later, the fraction of throughput
loss due to BoS is O(1/r2), where r is the redundancy factor.
Indeed, even for r = 2 in our simple example, the BoS
achieves 96% of the maximum system throughput.

Under the above settings, we analytically show that strategy
2 that uses codes reduces the average request delay, for the
considered example, by 7% or more compared to strategy
1 that uses replication. The intuition behind this is that
in the replication system, the requests for packet A or B
can be satisfied by only two specific servers, while in the
coded system any two servers are sufficient to serve the file.
Therefore, codes offer more flexibility in data retrieval due to
multiplexing gain of available servers.

A A B BReplication

Coding

Storage units (SU)
storing the contents

A B A+B A+2B

Or?

Requests for
contents

Dispatcher

SU1 SU2 SU3 SU4

SU1 SU2 SU3 SU4

Fig. 1. An example information storage system storing a file that consists
of two packets A and B. Requests for contents are assigned by a central
dispatcher to available storage units. In order to reduce the content retrieval
latency, we can either use replication, i.e., store the packets A,B twice, or
coding, i.e., store coded packets of A and B.

Related Work: The authors in [5] and [11] study the
throughput-delay gains of network coding in a single hop
wireless downlink with unreliable channels. The authors of
[8] consider the network coding gains in throughput when
packets have hard delay deadlines. The work of [4] studies
the gains in delay-throughput when using network coding over
a linear network with unreliable links. In [10], the authors
use network coding to prevent underflow in a multi-media
streaming application. While most of the earlier works focus
on use of codes to achieve the best effort throughput and

ar
X

iv
:1

20
2.

13
59

v1
 [

m
at

h.
O

C
]

 7
 F

eb
 2

01
2

2

or delay over unreliable wireless channels, non-asymptotic
and theoretical analysis of queueing delay in coded systems
remains largely unaddressed, to the best of our knowledge.

The paper is organized as follows. In Section II, we state
our system model. In Section III, we present the schemes that
will be used in the uncoded and coded systems, and present
the Blocking-one Scheduling (BoS) algorithm. We analyze
the performance of BoS in Section IV. We then conclude the
paper in Section V.

II. SYSTEM MODEL

We consider an information storage system that consists
of n homogeneous storage servers, called storage units. Each
SU has a storage capacity of one, and is capable of serving
each incoming content request in a time that is exponentially
distributed with mean µ = 1. The system stores and serves a
set of contents, denoted by C = {1, 2, ..., C}. Each content
is striped into k packets of size one. A total of k SU is
needed to store a single content. In practice, for reliability
and availability purposes, a content is stored redundantly on
multiple servers.

Assume the content retrieval requests for each content c
form a Poisson arrival process with rate λc. Since a content
is striped into k packets that are stored on distinct SUs, every
request needs to be served at k servers with distinct packets
in order to fully retrieve the desired content. We model this
behavior by duplicating each arrived request into k packet-
requests and by making sure that no two packet-requests are
processed by servers with identical packets.

There is a central dispatcher that delegates the incoming
requests to the SUs. Upon arrival, the requests are first queued
at the central dispatcher, and then sent to the servers once they
become available1. In such a scenario, we are interested in
quantifying the reduction in average content delay between a
coding-based system and a replication-based system.

To illustrate the problem further, consider a simple example
depicted in the Fig. 2. The system contains 4 storage units
and 1 content. The content is striped into 2 packets A
and B, and is stored with a redundancy factor of 2. Each
arriving content request brings into the system two packet-
requests, e.g., 3A, 3B. In Fig. 2(a) we show a system that uses
replication to introduce redundancy, where packets A and B
are replicated twice. In contrast, Fig. 2(b) shows a system
that uses a MDS code of rate 0.5 to introduce the desired
redundancy. The question we aim to answer in this paper is
by how much can we reduce the average delay of a coding-
based system over a replication-based one?

In general, quantifying the delay performance of a system
with multiple contents, multiple servers and multiple coded
packets that are replicated multiple times can be quite chal-
lenging. The main difficulty lies in the fact that the SUs
now store coded data, thus the scheduling algorithm has to
ensure that the requests for the same content are not served
by a same SU. This means that the scheduling algorithm may
need to remember at which SUs all the earlier requests are

1Note that such shared queue models have also been widely used to study
data center problems, e.g.,[7] [6].

A A B B

1A 1B

2A 2B

A req B req

User request [3A, 3B]

SU 1 SU 2 SU 3 SU 4

A B A+B A
+2B

R11 R12

R21 R22

SU 1 SU 2 SU 3 SU 4

Uncoded system Coded system

All
req

User request [R31, R32]

Request
queue

Request
queue

(a) (b)

Fig. 2. An example storage system with 4 storage units (SU). The letter
inside the SU box corresponds to the packet it stores. Each request arrival
brings two packet requests into the system, which must be served by 2 SUs
with distinct packets. A single queue is maintained for all the requests. (a)
shows the uncoded system, where the packet A requests are served by SU 1
and 2, and the packet B requests are served by SU 3 and 4. (b) shows the
coded system, where any two distinct SUs can serve the both packet requests
A and B.

served. With such a long memory, even defining an appropriate
system state is very hard, let alone analyzing it. To make the
analysis tractable, we focus on a small-sized problem with
a single content, 2 packets, and n servers. We provide a
theoretical upper bound on the average content retrieval delay
performance of the coded system, which we show still beats
that of a replication-based system with identical amount of SU
resources. We believe that the methodology and algorithms
developed in this paper will provide useful insights to more
general cases, which are part of our ongoing work.

III. STORAGE AND SCHEDULING SCHEMES

In this section, we present the storage and scheduling
schemes for both uncoded and coded systems. We assume
that both systems have identical resources: each system hosts
a single content that is divided into k = 2 packets, and has
n = 2r, r ≥ 2 SUs, each capable of storing 1 packet. Each
server can serve requests with rate of µ = 1. Here r is a
redundancy factor in the system for both content availability
as well as reliability of the content.

A. Uncoded system

In this case, due to inherent symmetry of arrivals of sub-
requests for packets A,B, r SUs store packet A and the
remaining r store packet B. Then, whenever there is an idle
SU that stores packet A, the packet A request from the head-
of-line request is assigned to this server. The same happens
for packet B requests.

Under this setting, the uncoded system can be modeled as
two M/M/r queueing systems (See Fig. 2). 2 Now denote by
πi the steady-state probability that there are i packet requests
in an M/M/r system, and denote ρ , λ

rµ . We note that
{π0, π1, . . . , } can be computed as follows [2].

π0 =

(r−1∑
m=0

(rρ)m

m!
+

(rρ)r

r!
· 1

1− ρ

)−1
, (1)

πm =
(rρ)m

m!
π0, ∀ m ∈ {1, . . . , r}, (2)

2Note that the two separate systems are indeed not independent, since the
arrivals to the systems happen at the exact same time. However, this does not
affect the analysis for the average request delay.

3

πr+m = ρm
(rρ)r

r!
π0, ∀ m ≥ 1. (3)

And the average packet request delay duncoded
packet can be computed

by:

duncoded
packet =

∑∞
n=0 nπn
λ

. (4)

Although the uncoded system admits an easy analysis of the
average packet request delay, we see that finding the average
request delay can be quite challenging. However, as we will
see in the coded system, the average request delay can be
easily computed under our algorithm.

B. Coded system: Blocking-One Scheduling (BoS)

We now specify our coding and scheduling schemes for the
coded system. We have n = 2r SUs and k = 2 packets A,B.
We adopt a simple linear (n, 2) MDS code (any family of
MDS code will do) to generate n encoded packets that are
stored at each of the SU. Due to the MDS nature of the code,
any request that is served at any two distinct SUs will be able
to retrieve the full content, e.g., see Fig. 2(b). Under such a
coding scheme, in order to minimize average packet request
delay, a simple greedy scheduling strategy would be: queue all
the requests in a single queue. Whenever there is an idle SU
that can serve any request in the queue, assign the request to
that SU. Although the suggested greedy scheme seems simple,
it has inherent memory/dependency in scheduling the requests
due to the use of codes. For example, if the first packet request
of the ith request, denoted by Ri1, is served at SU j, then
the greedy scheduler has to remember not to assign the other
packet request Ri2 to SU j even if it becomes idle. This
dependency builds infinite memory into the system, which
makes it very challenging to exactly analyze the average delay
performance of requests in the coded system.

In order to resolve this difficulty, we propose a novel
scheduler called Blocking-one Scheduling (BoS), for the
coded system. The main idea of BoS is to break the memory
in the scheduler by blocking the requests beyond the head-
of-line request until both the packet requests of the head-of-
line request are served. The BoS scheduler also corresponds
to first-come-first-serve (FCFS). As we will see, the BoS
algorithm not only greatly simplifies the analysis of the packet
request delay, but also allows us to directly calculate the
average request delay.

Algorithm 1 Blocking-one Scheduling (BoS)
1: At any time t, denote the set of idle SUs as SIdle, do:

1) If SIdle 6= φ, assign the packet requests from the
head-of-line request to an idle SU in SIdle as follows:
• If packet request 1 has not yet been assigned,

assign it to the idle SU.
• Else assign packet request 2 if corresponding

packet request 1 was not served by the idle server.
2) If a packet request is assigned to the SU, change the

state of SU from idle to busy and remove it from
SIdle, and remove the packet request from queue.

3) Repeat step 1) until no further assignment can be
made.

Note that under BoS, it can happen that there exists an
idle SU but no assignment is made even when the queue is
non-empty. For example, when the free SU has served the
packet request 1 of the head-of-line request and no other
SU is idle. In this case, the requests beyond the head-of-line
request are “blocked.” Due to this blocking effect, there will
be a throughput loss due to the lost scheduling opportunity.
Fortunately, as we will see later, the fraction of throughput loss
is O(1

r2) that goes to zero as the r increases. Indeed, even
for r = 2, the BoS achieves 96% of the maximum system
throughput.

IV. ANALYZING THE BOS ALGORITHM

We now analyze the BoS algorithm by finding the steady-
state distribution of the coded system under BoS. The ap-
proach works as follows. We first derive the continuous-time
Markov chain that captures the system evolution. Then, we
analyze the Markov chain by carefully choosing a set of global
balance equations that allow us to compute the steady-state
distribution.

A. The system evolution

In this section, we present the Markov chain that models the
system evolution. Towards that end, we first take a closer look
at the state evolution of the example system in Fig.2 (b) with 4
SUs. Suppose the system is in a state as shown in Fig. 4 (a). In

R11 R12 R21 R31

R32

R41 R42

R11 R32 R21 R31

R41 R42

R11 R12 R21

R32

R41 R42

State 7 State (6, p) State (6, g)R12 R31

A B A+B A+2B A B A+B A+2B A B A+B A+2B

(a) (b) (c)

SU 1 SU 2 SU 3 SU 4 SU 1 SU 2 SU 3 SU 4 SU 1 SU 2 SU 3 SU 4

Fig. 4. System evolution of an example with 4 storage units (SU). (a) shows
a state with 7 packet requests in the system with an aggregate service rate
of 4µ. (b) shows the resulting state after the departure of R12 from SU 2,
denoted by (6, p), where the system “renews” itself and every queued requests
can go to any SU. (c) shows the resulting state after the departure of R31 from
SU 4, denoted by (6, g). In this case, one SU is “wasted” due to blocking,
and the system serves requests with rate 3µ.

this case, the 4 SUs are serving packet requests R11, R12, R21,
and R31. There are three more packet requests R32, R41 and
R42 in the queue. Thus, the total number of packet requests
in the system is 7. We denote the state of the system by the
total number of packet requests in the system i.e., state is 7.

Now, if SU 2 completes its service, the packet request R32

can be assigned to SU 2. This results in a state (6, p) as
shown in the Fig. 4 (b), which we refer to as a “perfect-state.”
This state is called “perfect” because once in this state, past
evolution is irrelevant in determining the future scheduling
events and the total service rate is maximum i.e., 4µ. Note that
the system will also enter (6, p) if either SU 1 or 3 completes
its service. Hence, the transition rate from state 7 into (6, p)
is 3µ. However, if starting from state 7 but SU 4 completes
the service, then we cannot assign request R32 to SU 4, since
R31 was served at SU 4. In this case BoS will block the

4

0 2r-2

2r-3

2r
p

2r
g

2r-1

2r+2
p

2r+2
g

2r+1

2r+4
p

2r+4
g

2r+3 2r+5

2

1

4

3

λ

2μ

λ
λ

λ λ λ

λ λ λ λ λ

μ 4μ3μ (2r-2)μ
(2r-1)μ

2rμ

(2r-1)μ

(2r-1)μ

μ μ μ

(2r-1)μ (2r-1)μ

λ λ λ
2rμ 2rμ

(2r-1)μ (2r-1)μ

Type 1
cuts

Type 2
cuts

Type 2
cuts

Type 1
cuts Type 3

cuts
Type 3

cuts

Fig. 3. The continuous-time Markov chain of the system with 2r storage units. The request arrival rate is λ and the service rate of each storage unit is µ.
Each state of the chain represents the number of packet requests in the system. The letters “p” and “g” represent the perfect and good states. The cuts are
used to specify the global balance equations we will use in our analysis.

requests R41, R42 until R32 gets assigned to some other SU.
This results in a not so perfect state, which we denote by
(6, g), i.e., good state with 6 packet requests in the system
(see Fig.4 (c)). In this good state, the aggregate service rate
is 3µ. Note that different from (6, p), the system enters (6, g)
from state 7 only when SU 4 finishes its service. Hence, this
transition happens only with rate µ.

Although BoS performs sub-optimally as compared to a
system with codes that maintains an infinite memory and
assigns R41 to SU 4 when it becomes idle, it permits analytical
treatment of average request delay. It can be verified that this
blocking situation appears only when the system is in a state
that has more than 2r packet requests in the system, and the
number of packet requests is even. Thus, to characterize the
system state, we introduce the suffix “p” and “g,” which stand
for “perfect” and “good,” for all the states with 2r+2m,m ≥ 0
packet requests in the system. When the number of packet
requests in the system is less than 2r, we simply use the total
number of packet requests in the system to denote the state of
the system.

Now that the system states have been defined, the Markov
chain in Fig. 3 explains the evolution of the system under
BoS. The chain can be understood as follows:

• With rate λ, there is an request arrival event, and two
new packet requests are added to the system. If system
was in a good state before arrival it remains in the good
state after arrival and likewise for a perfect state.

• For any state < 2r transition rate for service completion
is equal to µ times the state.

• For any odd state > 2r there are two outgoing transitions
for service completion:

1) With rate (2r − 1)µ, there is transition to an even
perfect state.

2) With rate µ, there is transition to an even good state.

• From an even-perfect state ≥ 2r, there is a service
completion transition to an odd state with rate 2rµ.

• From an even-good state ≥ 2r, there is a service com-
pletion transition to an odd state with rate (2r − 1)µ.

B. Performance of BoS: Average packet request delay

Here we present the performance results of BoS. To state
the theorem, we first define a few notations:

η ,
λ

2rµ
+
λ(2r − 1)µ

(2rµ)2
+

λµ

(2r − 1)µ2rµ
,

γp ,
2rµ(λ+ (2r − 1)µ)

µ
+ (λ+ 2rµ),

γg ,
−(2r − 1)µ(λ+ 2rµ)

2rµ
− (2r − 1)(λ+ (2r − 1)µ),

βp ,
λ(λ+ (2r − 1)µ)

µ
, βg ,

−λ(λ+ 2rµ)

2rµ
.

Also, for l ∈ {0, ..., 2r − 1}, define al as follows:

a0 = 1, a1 =
λ

µ
a0, al =

λ

lµ
(al−1 + al−2). (5)

Now denote by π0, ..., π2r−1, π
p
2r, π

g
2r, π2r+1, ... the stationary

distribution of the Markov chain in Fig. 3, where superscripts
“p” and “g” stand for perfect and good states. We now have
the following theorem.

Theorem 1: Under BoS, we have the following:
(a) The maximum rate the coded system can support is:

0 ≤ λ < rµ

(
1− 1

8r2 − 4r + 1

)
. (6)

(b) If the system is stable, i.e., (6) is satisfied, the steady
state probabilities can be computed by the following
iterative process:

π0 =
1− η

(1− η)
∑2r−2
l=0 al +

λa2r−2

2rµ + a2r−1
,

πl = alπ0, ∀ l ∈ {1, ..., 2r − 1},

π2r+2m−1 =
λ

2rµ
(πp2r+2m−2 + πg2r+2m−2 + π2r+2m−3),

πp2r =
1

γp

[
βp(π2r−1 + π2r−2) + λπ2r−2

]
πp2r+2m =

1

γp

[
βp(π

p
2r+2m−2 + πg2r+2m−2 + π2r+2m−1)

+λπp2r+2m−2 − (2r − 1)λπg2r+2m−2
]
, ∀ m ≥ 1.

πg2r and πg2r+2m can be similarly computed by replacing
γp, βp with γg, βg . 3

Proof: See Appendix A.

5

Note that a system with 2r servers should ideally support any
arrival rate 0 ≤ λ < rµ. However, we see from equation
(6) of Theorem 1 that, under BoS, the there is a loss in
throughput of order O(1

r2). This loss quickly goes to zero
as r increases. Thus, BoS indeed ensures high throughput of
the coded system even for moderate values of r. Part (b) of
Theorem 1 then provides an efficient way for analyzing the
system. We also note that our results are not asymptotic and
can be applied to systems of small sizes.

Using the approach in Theorem 1, we can compute the
average packet request delay in the system using the equation
(4). We then compute the delay gain of coding by:

Delay Gain = (duncoded
packet − dcoded

packet)/d
uncoded
packet . (7)

Fig. 5 shows the delay gain for different values of r. We see
that the gain is significant even for small r, e.g., gain is 13%
for r = 4, and can be up to 17% when r = 10. Finally,
we emphasize that Fig. 5 is obtained analytically, computed
using results in Theorem 1. We note that in Fig. 5, for every
r value, delay gain is only plotted for arrivals that are within
the capacity region of the system, i.e., (6).

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

h

De
la

y
G

ai
n

r=4

r=6

r=8
r=10

r=2

r=3

Fig. 5. Delay reduction of BoS over the replication scheme. When r = 4, the
delay gain is around 13%, and when r = 10, the gain is 17%. The plots are
generated using analytical results in Theorem 1. The reason the gain decreases
as the arrival rate increases is because BoS has a slightly smaller capacity
region. Thus, if the rate is very close to the capacity region of BoS, the delay
under BoS will be larger than that under the replication scheme. However,
this happens only when the rate is very close to the capacity boundary. For
most of the rates, codes achieve a significant delay reduction.

C. Average request delay

Notice that the above analysis allows us to derive the
average packet request delay. However, in practice, we care
more about the average request delay, which is defined as the
average time it takes for both packet requests of a request to
get served. Our following lemma shows that under BoS, the
average request delay is roughly equal to the packet delay.
This is a very desired feature not possessed by the uncoded
system.

Lemma 1: Let dcoded
req and dcoded

packet be the average request
delay and average packet request delay under BoS, then:

dcoded
req = dcoded

packet +
2r − 1

2r − 2

1

2µ
(8)

− 1

(2r − 2)(2r − 1)2rµ
− 1

2(2r − 1)µ
.3

Proof: See Appendix B.
We see from the lemma that as number of servers 2r gets
large, the difference between the packet delay and the request

delay roughly equals 1
2µ . This is exactly the difference between

the average of two requests service times and the maximum
of them. Hence, it will appear under any scheduling policies
regardless of using coding or not. Therefore, Lemma 1 shows
that BoS ensures that the average packet latency is almost
equal to the average request latency. This is a very important
feature of the BoS algorithm.

V. CONCLUSION

In this paper, we pose a fundamental question of the role of
codes in improving the latency of content retrieval in storage
systems. The interplay between coding and queueing delay
is of complex nature. As a first step to make progress on
this complex problem we propose and analyze a simplified
setting of a single content divided into two parts and served by
multiple servers. We see that even in this simplified setting the
exact analysis of queueing delay for the systems using codes
is intractable. As a result we provide a sub-optimal scheduling
algorithm called Blocking-one Scheduling (BoS) that allows
us to theoretically quantify the gains in latency achieved by
coded system as compared to a system that uses replication.
The methodology we developed in this paper is applicable to
a more general setting that allows splitting the content into
more than 2 parts. Further generalizations of our work a)
extending our scheduling algorithm to incorporate more than
one blocking to improve the analytical gains in latency, and
b) considering scenario of serving multiple contents, is part of
our future work.

APPENDIX A – PROOF OF THEOREM 1
We now proof Theorem 1 by analyzing the Markov chain

using a set of carefully chosen global balance equations,
which we call “cuts.” Our approach is to first compute π0.
Then starting from π0, we iteratively compute all the other
probabilities.

Proof: (Theorem 1) First consider the sets that contain
the (2r + 2m, p) and (2r + 2m, g) states, i.e., the Type 3
cuts in Fig. 3. We note that if the system is stable, then the
total transition rate going out from any set of states must be
equal to the total rate going into them. Thus, we first have the
following equation for the states (2r, p) and (2r, g):

πp2r(λ+ 2rµ) + πg2r(λ+ (2r − 1)µ) (9)
= π2r−2λ+ π2r+12rµ.

Then for states (2r + 2m, p) and (2r + 2m, g) with m ≥ 1,
we have:

πp2r+2m(λ+ 2rµ) + πg2r+2m(λ+ (2r − 1)µ) (10)
= λ(πp2r+2m−2 + πg2r+2m−2) + π2r+2m+12rµ.

Summing (9) and (10) over m = 1, 2, ..., we get:

2rµ

∞∑
m=0

πp2r+2m + (2r − 1)µ

∞∑
m=0

πg2r+2m

= λπ2r−2 + 2rµ

∞∑
m=0

π2r+2m+1. (11)

Now consider the diagonal cuts, i.e., the Type 2 cuts, starting
from states (2r, p) and (2r, g). We have:
(π2r−2 + π2r−1)λ = πp2r2rµ+ πg2r(2r − 1)µ, (12)

6

(πp2r+2m + πg2r+2m + π2r+2m+1)λ (13)
= πp2r+2m+22rµ+ πg2r+2m+2(2r − 1)µ, m ≥ 0.

Summing (12) and (13) over m = 0, 1, ..., we get:

2rµ

∞∑
m=0

πp2r+2m + (2r − 1)µ

∞∑
m=0

πg2r+2m

= λ
[
1−

2r−3∑
l=0

πl
]
. (14)

Using (11) and (14), we thus obtain:

2rµ

∞∑
m=0

π2r+2m+1 = λ
[
1−

2r−2∑
l=0

πl
]
. (15)

We now try to first find π0. Consider only the “p” states, we
get:

πp2r(λ+ 2rµ) = π2r−2λ+ π2r+1(2r − 1)µ, (16)
πp2r+2m(λ+ 2rµ) = πp2r+2m−2λ+ π2r+2m+1(2r − 1)µ. (17)
Summing (16) and (17) over m ≥ 1, we obtain:

2rµ
∞∑
m=0

πp2r+2m = λπ2r−2 + (2r − 1)µ

∞∑
m=0

π2r+2m+1. (18)

Similarly, we can look at the “g” states and get:
πg2r(λ+ (2r − 1)µ) = π2r+1µ, (19)

πg2r+2m(λ+ (2r − 1)µ) = πg2r+2m−2λ+ π2r+2m+1µ. (20)
Summing these up, we get:

(2r − 1)µ

∞∑
m=0

πg2r+2m = µ

∞∑
m=0

π2r+2m+1. (21)

Using (15), (18) and (21), we obtain:
∞∑
m=0

[
πp2r+2m + πg2r+2m + π2r+2m+1

]
=

[
λ

2rµ
+
λ(2r − 1)µ

(2rµ)2
+

λµ

(2r − 1)µ2rµ

][
1−

2r−2∑
l=0

πl
]

+
λ

2rµ
π2r−2.

Therefore, we get:[
λ

2rµ
+
λ(2r − 1)µ

(2rµ)2
+

λµ

(2r − 1)µ2rµ

][
1−

2r−2∑
l=0

πl
]

(22)

+
λ

2rµ
π2r−2 =

[
1−

2r−2∑
l=0

πl
]
− π2r−1.

We see that (22) provides one equation in terms of only
π0, ..., π2r−1. Below we show that all the probabilities
π1, ..., π2r−1 can be expressed in terms of π0. In this case
(22) will allow us to compute π0 exactly. This in turn enables
us to compute π1, ..., π2r−1. To do so, we first consider the
type 1 and type 2 cuts shown in Fig. 3 to get:

π1 =
λ

µ
π0, (23)

π2i =
λ

2iµ
(π2i−2 + π2i−1), ∀ i ∈ {1, ..., r − 1}, (24)

π2i+1 =
λ

(2i+ 1)µ
(π2i−1 + π2i), ∀ i ∈ {1, ..., r − 1}. (25)

Using (23), (24) and (25), one can obtain:
πl = alπ0, ∀ l ∈ {0, ..., 2r − 1}, (26)

where {al, l = 0, ..., 2r−1} are defined as in (5). Plugging (26)
back into (22) and denote η , λ

2rµ + λ(2r−1)µ
(2rµ)2 + λµ

(2r−1)µ2rµ ,
we have:

1−
2r−2∑
l=0

alπ0 = η − η
2r−2∑
l=0

alπ0 +
λ

2rµ
a2r−2π0 + a2r−1π0.

Therefore:

π0 =
1− η

(1− η)
∑2r−2
l=0 al +

λa2r−2

2rµ + a2r−1
. (27)

It is not difficult to verify that π0 is a valid probability if
1− η > 0, i.e.,

λ

2rµ
+
λ(2r − 1)µ

(2rµ)2
+

λµ

(2r − 1)µ2rµ
< 1. (28)

This implies that the supportable rate is:

λ < rµ
1− 1

2r

1− 1
2r +

1
8r2

= rµ

(
1− 1

8r2 − 4r + 1

)
. (29)

Here rµ is the total rate the system can ever support. Hence,
we see that BoS only lose a fraction 1

8r2−4r+1 . This proves
Part (a).

To prove Part (b), we first see that one can now use (26)
to compute π0, ..., π2r−1. To compute πp2r+2m, π

g
2r+2m, for all

m ≥ 0, we start from m = 0. We have from (12) that:
πp2r2rµ+ πg2r(2r − 1)µ = λ(π2r−1 + π2r−2). (30)

Now if we look at the state (2r, p) and (2r, g) separately, we
get:

πp2r(λ+ 2rµ) = π2r−2λ+ π2r+1(2r − 1)µ, (31)
πg2r(λ+ (2r − 1)µ) = π2r+1µ. (32)

Canceling the term π2r+1 in (31) and (32), we get that:
πp2r(λ+ 2rµ)− πg2r(2r − 1)(λ+ (2r − 1)µ) = λπ2r−2. (33)
With (30) and (33), we can now compute πp2r, π

g
2r. To make

the expressions more concise, we define:

γp ,
2rµ(λ+ (2r − 1)µ)

µ
+ (λ+ 2rµ),

γg ,
−(2r − 1)µ(λ+ 2rµ)

2rµ
− (2r − 1)(λ+ (2r − 1)µ),

βp ,
λ(λ+ (2r − 1)µ)

µ
, βg ,

−λ(λ+ 2rµ)

2rµ
.

Then we get:

πp2r =
1

γp

[
βp(π2r−1 + π2r−2) + λπ2r−2

]
, (34)

πg2r =
1

γg

[
βg(π2r−1 + π2r−2) + λπ2r−2

]
. (35)

Now for all the states (2r + 2m, p) and (2r + 2m, g) with
m ≥ 1, using (13), (17) and (20), we get:

2rµπp2r+2m + (2r − 1)µπg2r+2m

= λ(πp2r+2m−2 + πg2r+2m−2 + π2r+2m−1),

(λ+ 2rµ)πp2r+2m − (2r − 1)(λ+ (2r − 1)µ)πg2r+2m

= λπp2r+2m−2 − (2r − 1)λπg2r+2m−2.

We can thus obtain the following equations for all states 2r+
2m,m ≥ 1: 3

πp2r+2m =
1

γp

[
βp(π

p
2r+2m−2 + πg2r+2m−2 + π2r+2m−1)

3It can be verified that both πp
2r+2m and πg

2r+2m are both positive. Thus
they are valid probabilities.

+λπp2r+2m−2 − (2r − 1)λπg2r+2m−2
]
,

πg2r+2m =
1

γg

[
βg(π

p
2r+2m−2 + πg2r+2m−2 + π2r+2m−1)

+λπp2r+2m−2 − (2r − 1)λπg2r+2m−2
]
.

Then, the probabilities π2r+2m−1 with m ≥ 1 can be com-
puted using type 1 cuts, i.e.,
2rµπ2r+2m−1 = λ(πp2r+2m−2 + πg2r+2m−2 + π2r+2m−3). (36)
With all the above results, the average packet request delay in
the system can be computed as:

dcoded
packet =

1

2λ

[2r−1∑
l=1

lπl +
∑
m≥0

(2r + 2m+ 1)π2r+2m+1

+
∑
m≥0

(2r + 2m)(πp2r+2m + πg2r+2m)

]
.

This completes the proof of Part (b).

APPENDIX B – PROOF OF LEMMA 1

Here we prove Lemma 1.
Proof: (Lemma 1) Consider any request u that enters and

departs from the system. Let wu1 and wu2 be the waiting times
of its first and second packet requests in the queue. Then let
su1 and su2 be the service times of the two packet requests.

We now derive a relationship between wu1 and wu2. Ac-
cording to BoS, packet request 1 always goes before packet
request 2, thus wu1 ≤ wu2. Now suppose packet request 1
goes to a storage unit j at a time t. Then, the extra waiting
time of packet request 2 in the queue is exactly the time it
takes for any of the other 2r − 1 storage units to be free. By
the exponential service time nature, this time is exponentially
distributed with rate (2r − 1)µ, i.e.,

wu2 = wu1 + τu, where τu ∼ exp((2r − 1)µ). (37)
Now let tu1 and tu2 be the total times packet request 1 and 2
stay in the system, and let tu be the time the request spends
in the system, we have:

tu1 = wu1 + su1, (38)
tu2 = wu2 + τu + su2, (39)
tu = wu1 +max(su1, su2 + τu). (40)

Denote Z = max(su1, su2 + τu). It can be verified that:

fZ(z) =
2r − 1

2r − 2
µe−µz − (2r − 1)µ

2r − 2
e−(2r−1)µz

+µe−µz − 2r − 1

2r − 2
2µe−2µz +

1

2r − 2
µe−2rµz,

and:

E
[
Z

]
=

1

µ
+

2r − 1

2r − 2

1

2µ
− 1

(2r − 2)(2r − 1)2rµ
. (41)

It thus follows that the difference between the average request
delay and the average packet request delay under BoS is given
by:

dcoded
req − dcoded

packet = E
[
tu

]
− 1

2

(
E
[
tu1

]
+ E

[
tu2

])
=

2r − 1

2r − 2

1

2µ
− 1

(2r − 2)(2r − 1)2rµ
− 1

2(2r − 1)µ
.

This completes the proof.

REFERENCES

[1] G. Ananthanarayanan, S. Agarwal, S. Kandula, A Greenberg, and
I. Stoica. Scarlett: Coping with skewed content popularity in mapreduce
clusters. Proceedings of ACM EuroSys, 2011.

[2] D. P. Bertsekas and R. G. Gallager. Data Networks (2nd Edition). 1992.
[3] M. Bramson, Y. Lu, and B. Prabhakar. Randomized load balancing with

general service time distributions. Proceedings of ACM Sigmetrics, 2010.
[4] T. Dikaliotis, A. G. Dimakis, T. Ho, and M. Effros. On the delay of

network coding over line networks. IEEE International Symposium on
Information Theory (ISIT), 2009.

[5] A. Eryilmaz, A. Ozdaglar, M. Medard, and Ebad Ahmed. On the
delay and throughput gains of coding in unreliable networks. IEEE
Transactions on Information Theory, Dec 2008.

[6] A. Gandhia and M. Harchol-Baltera. How data center size impacts the
effectiveness of dynamic power management. Proc. of the Forty-Ninth
Annual Allerton Conference, 2011.

[7] A. Gandhia, M. Harchol-Baltera, and I. Adan. Server farms with setup
costs. Performance Evaluation,Volume 67 Issue 11, Nov 2010.

[8] X. Li, C.-C. Wang, and X. Lin. Throughput and delay analysis on
uncoded and coded wireless broadcast with hard deadline constraints.
Proceedings of IEEE INFOCOM Mini-Conference, March 2010.

[9] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. Larus, and A. Greenberg. Join-
idle-queue: A novel load balancing algorithm for dynamically scalable
web services. 29th International Symposium on Computer Performance,
Modeling, Measurements, and Evaluation (Performance), 2011.

[10] A. ParandehGheibi, M. Medard, A. Ozdaglar, and S. Shakkottai. Avoid-
ing interruptionsa qoe reliability function for streaming media applica-
tions. to appear in IEEE Journal on Selected Areas in Communications,
special issue on Trading rate for Delay at the Transport and Application
layers, 2012.

[11] W. Yeow, A. Hoang, and C. Tham. Minimizing delay for multicast-
streaming in wireless networks with network coding. Proceedings of
IEEE INFOCOM, 2009.

	I Introduction
	II System Model
	III Storage and scheduling schemes
	III-A Uncoded system
	III-B Coded system: Blocking-One Scheduling (BoS)

	IV Analyzing the BoS algorithm
	IV-A The system evolution
	IV-B Performance of BoS: Average packet request delay
	IV-C Average request delay

	V Conclusion
	References

