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Abstract

Distributed storage systems for large-scale applications typically use replication for reliability. Recently,
erasure codes were used to reduce the large storage overhead, while increasing data reliability. A main limi-
tation of off-the-shelf erasure codes is their high-repair cost during single node failure events. A major open
problem in this area has been the design of codes that i) are repair efficient and ii) achieve arbitrarily high data
rates.

In this paper, we explore the repair metric of locality, which corresponds to the number of disk accesses
required during a single node repair. Under this metric we characterize an information theoretic trade-off that
binds together locality, code distance, and the storage capacity of each node. We show the existence of optimal
locally repairable codes (LRCs) that achieve this trade-off. The achievability proof uses a locality aware flow-
graph gadget which leads to a randomized code construction. Finally, we present an optimal and explicit LRC
that achieves arbitrarily high data-rates. Our locality optimal construction is based on simple combinations of
Reed-Solomon blocks.

1 Introduction

Traditional architectures for large-scale storage rely on systems that provide reliability through block replica-
tion. The major disadvantage of replication is the large storage overhead. As the amount of stored data is
growing faster than hardware infrastructure, this becomes a major data center cost bottleneck. Erasure cod-
ing techniques achieve higher data reliability with considerably smaller storage overhead [2]. For that reason
various erasure codes are currently implemented and deployed in production storage clusters. Applications
where coding techniques are being currently deployed include cloud storage systems like Windows Azure [3],
big data analytics clusters (e.g., the Facebook Analytics Hadoop cluster [4]), archival storage systems, and
peer-to-peer storage systems like Cleversafe and Wuala.

It is now well understood that classical erasure codes (such as Reed-Solomon codes) are highly suboptimal
for distributed storage settings [5]. For example, the Facebook analytics Hadoop cluster discussed in [4], de-
ployed Reed-Solomon encoding for 8% of the stored data. This 8% of the stored data was reported to generate
repair traffic that was approximately equal to 20% of the total network traffic. The fact that traditional erasure
codes are not optimized for node repairs, is the main reason why they are not widely deployed in current
storage systems.

Three major repair cost metrics have been identified in the recent literature: i) the number of bits communi-
cated in the network, also known as the repair-bandwidth [5–10], ii) the number of bits read during each repair,
i.e., the disk-I/O [8, 11], and iii) more recently the number of nodes that participate in the repair process, also
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known as repair locality. Each of these metrics is more relevant for different systems and their fundamental
limits are not completely understood.

In this work, we focus on the metric of repair locality [12, 13]. Consider a code of length n, with k informa-
tion symbols. A symbol i has locality ri, if it can be reconstructed by accessing ri other symbols in the code.
For example, in an (n, k) maximum-distance separable (MDS) code, every symbol has trivial locality k. We
will say that a systematic code has information-symbol locality r, if all the k information symbols have locality r.
Similarly, a code has all-symbol locality r, if all n symbols have locality r.

Different repair metrics optimize alternative objectives which may be useful in various storage systems
depending on the specific architectures and workloads. Locality allows repairs by communicating with a very
small subset of nodes. However, codes with small locality are suboptimal in terms of the repair bandwidth
and disk-I/O metrics. Further, as we show in this paper, LRCs must either sacrifice some code distance,
or use more storage compared to MDS codes to achieve low locality. A recent alternative family of storage
codes that seems to be practically applicable and offers higher storage efficiency and small repair bandwidth
was proposed in [14]. One important benefit of codes with small locality is that their simple designs are easily
implementable in distributed file systems like Hadoop [4] and Windows Azure Storage [3]. Further, codes with
low locality were recently deployed in production clusters [3] and operating systems like Windows Server and
Windows 8.1 [15].

Codes with small locality were initially introduced in [16, 17]. Gopalan et al. [12] pioneered the theoretical
study of locality by discovering a trade-off between code distance and information-symbol locality. In [12] the
trade-off was obtained for scalar linear codes, i.e., codes where each source and coded symbol is represented by
a scalar over some finite field, and the each coded symbol is a linear function of the source symbols. Bounds on
the code-distance for a given locality as well as code constructions were presented in parallel and subsequent
works [18–21]. Some works extend the designs and distance bounds to the case where repair bandwidth and
locality are jointly optimized, under multiple local failures [19, 20], and under security constraints [20].

Our Contributions: We generalize the prior work of [12] and provide a distance bound that is universal:
it holds for both linear and nonlinear codes, while it allows both scalar and vector code designs, where input
and output symbols can have arbitrary sizes. We proceed to show that this information theoretic trade-off is
achievable, when r+1 divides the length of the code n. We conclude with presenting explicit constructions for
codes with all-symbol locality. We provide a formal definition of an LRC and then proceed with stating our
three contributions in more detail.

Definition 1. An (n, r, d,M,α)-LRC is a code that takes a file of size M bits, encodes it in n coded symbols of size α bits,
and any of these n coded symbols can be reconstructed by accessing and processing at most r other symbols. Moreover,
the minimum-distance of the code is d, i.e., the file of size M can be reconstructed by accessing any n− d+ 1 of the n
coded symbols.1

Our three contributions follow:
1) An information theoretic bound on code distance d: We present a bound that binds together the code distance
d, the locality r, and the size of each coded symbol α (i.e., the storage capacity of each node). The bound is
information theoretic and covers all codes, linear or nonlinear, and reads as follows:

Theorem 1. An (n, r, d,M,α)-LRC, as defined above, has distance d that is bounded as

d ≤ n−
⌈

M

α

⌉

−
⌈

M

rα

⌉

+ 2.

We establish our bound using an impossibility result for values of distance d larger than the above. The im-
possibility result uses an algorithmic proof similar to [12] and counting arguments on the entropy of subsets of
coded symbols. We would like to note that when we set M = k and α= 1, which corresponds to the scalar-code
regime, we obtain the same bound as [12], that is

d ≤ n− k−
⌈

k

r

⌉

+ 2.

1 In comparison, the definition of an information-symbol (or all-symbol) locality code in [12] assumes that the encoding is a linear
mapping from k input to n output symbols. Moreover, the input and output symbols are assumed to be of the same size, i.e., of the same
number of bits. Our definition is more general: both linear and non-linear codes are allowed, and the size of the input and output symbols
can be different.
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2) Achievability of the distance bound when (r +1) divides n:

Theorem 2. Let (r+ 1)|n and r ≤ n− d. Then, there exist (n, r, d,M,α)-LRCs with minimum code distance

d = n−
⌈

M

α

⌉

−
⌈

M

ra

⌉

+ 2,

over a sufficiently large finite field.

We prove the achievability using a novel information flow-graph gadget, in a similar manner to [5]. In con-
trast to [5], the flow-graph that we construct is finite, locality aware, and simpler to analyze. The existence of
(n, r, d,M,α)-LRCs is established through a capacity achieving scheme on a multicast network [22], specified
by the aforementioned flow-graph. The obtained LRCs are vector codes: codes where each source and coded
symbol is represented as a vector (not necessarily of the same length). This is yet another case where vector
codes are employed to achieve an optimal trade-off. In [5], the codes achieving the optimal repair bandwidth-
storage trade-off are also vector linear.

3) Explicit code constructions of optimal LRCs: We construct explicit LRCs for the following set of coding param-
eters:

(

n, r, d = n− k+ 1,M,α=
r+1

r
· M
k

)

, such that (r+ 1)|n.

Our codes are optimal when (r + 1) ∤ k. The above parameters correspond to codes with all-symbol locality r
and rate

(

1 + 1
r

)

· k
n , where any k coded symbols suffice to recover the file. Our designs are vector-linear and

each symbol stored requires only r · O(log(n)) bits in its representation. We show that these codes not only
have optimal locality, but also admit simple node repairs based on XORs.

The remainder of this paper is organized as follows. In Section 2, we provide the coding theoretic defini-
tions used in the subsequent sections. In Section 3, we provide a distance bound for codes with all-symbol
locality. In Section 4, we prove that this bound is achievable using random vector codes. In Section 5, we
provide an explicit LRC construction, and discuss its properties.

2 Preliminaries

A way to calculate the code distance of a linear code is through its generator matrix: calculating the minimum
distance is equivalent to finding the largest set of columns of the generator matrix that are not full-rank [12,19].
In the following, we use entropy to characterize the distance of a code. This is the key difference to the related
works in [12], [19], which provide results only for linear codes. The use of the entropy of coded symbols ensures
that our bounds are universal: they hold for linear and nonlinear codes, for any file and coded symbol size,
irrespective of a vector or scalar representation. The main properties that we exploit here are the following:
entropy is oblivious to the encoding process (linear or nonlinear), it can accommodate different input or output
symbol sizes, and different symbol representations (scalar or vector). We will now proceed with our technical
discussion.

Let a file of size M bits2 be represented as an M -dimensional vector x, whose elements can be considered
as independent and identically distributed (i.i.d.) uniform random variables, each drawn from a Galois Field
GF(2), referred to as F2 for convenience.3 The (binary) entropy of x will then be4

H(x) =M. (1)

Moreover, let G : FM
2 7→ Fn·α

2 be an encoding (generator) function, that takes as input the file x and maps it to n
coded symbols, each of size α:

G(x) = y = [Y1 . . . Yn]

2 The M file elements can also be elements of an appropriate q-ary alphabet, for any q ≥ 2. We keep the discussion in bits for simplicity.
3 We assume that x consists of i.i.d. uniform random variables, since all M bits are assumed to hold the same amount of useful

information (are of equal entropy).
4If the base alphabet was q-ary instead of binary, then we would need to use q-ary entropies.
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where each encoded symbol has entropy
H(Yi) ≤ α,

for all i ∈ [n], where [n] = {1, . . . , n}. In the following, we frequently refer to α as the storage cost per coded
symbol.

The generator function G defines an n-length code C. The effective data rate of the code is the ratio of the
total source entropy to the aggregate entropy of the stored encoded information

R =
H(x)

∑n
i=1H(Yi)

.

We continue with a definition for the minimum code distance.

Definition 2 (Minimum code distance). The minimum distance d of the code C is equal to the minimum number of
erasures of coded symbols in y after which the entropy of the non-erased symbols is strictly less than M , that is,

d = min
H({Y1,...,Yn}\E)<M

|E|

where E ∈ 2{Y1,...,Yn} and 2{Y1,...,Yn} is the power set of the symbols in {Y1, . . . , Yn}.

In other words, when a code has minimum distance d, this means that there is sufficient entropy after any d− 1
erasures of coded symbols to reconstruct the file. The above definition can be restated in its dual form: the
minimum distance d of the code C is equal to the length of the code n, minus the maximum number of coded
symbols in y that cannot reconstruct the file, that is,

d = n− max
H(S)<M

|S|

where S ∈ 2{Y1,...,Yn}.

Remark 1. Observe that the above distance definition applies to linear, or nonlinear codes, and to any length of input
and output symbols.

We continue with the definition of repair locality.

Definition 3 (Repair Locality). A coded symbol Yi, i ∈ [n], is said to have repair locality r, if there exists at least one set
of coded symbols with indices in R(i) ⊆ [n]\{i}, call it YR(i), of cardinality |R(i)| = r, and a function gi : F

r·α
2 → Fα

2 ,
such that Yi can be expressed as a function of these r coded symbols, i.e., Yi = gi(YR(i)).

3 A Universal bound between code distance, locality, and storage cost

In this section, we provide an information theoretic bound for locally repairable codes. Specifically, we answer
the question: what is the maximum possible distance d of a code that has locality r? We provide a universal
upper bound on the minimum distance of a code of length n, with all-symbol locality r, where each coded
symbol has size α. We do so by an algorithmic proof, in a similar manner to [12]. Deriving such a distance
bound reduces to lower bounding the cardinality of the largest set S of coded symbols whose entropy is less
than M .

In our proof, the only structural property that we use, is the fact that every coded symbol has locality r.
Specifically, if a code C has locality r, then for each of its coded symbols, say Yi, there exist at least one group
of at most r other coded symbols YR(i) that can reconstruct Yi, for i ∈ [n]. We define as

Γ(i) = {i,R(i)}

a set of r+1 coded symbols that has the property

H(YΓ(i)) =H(Yi, YR(i)) = H(YR(i)) ≤ rα,

for all i ∈ [n]; the above comes due to the functional dependencies induced by locality. We refer to such a set
of coded symbols as an (r+ 1)-group. The theorem and its proof follow.
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Theorem 1. An (n, r, d,M,α)-LRC has minimum distance d that is bounded as

d ≤ n−
⌈

M

α

⌉

−
⌈

M

rα

⌉

+ 2.

Proof. In this proof we use some of the algorithmic techniques that were introduced in [12]. Our aim is to
lower bound the cardinality of a set S, consisting of the maximum number of coded symbols with entropy
H(S) strictly less than the filesize M . This bound will be equivalent to an upper bound on the minimum code
distance d, since

d = n− max
S⊂{Y1,...,Yn}

H(S)<M

|S|.

To build such a maximally sized set described above, we need to collect as many symbols as possible that
have as small joint entropy as possible. Subsets of coded symbols that have many dependencies (small joint
entropy) are preferred to subsets of the the same cardinality, but of larger joint entropy. The only structural
information about the code that we can exploit to introduce dependencies is that of repair locality: every repair
group YΓ(i) has joint entropy at most r · α, while an arbitrary set of r+ 1 symbols can have joint entropy up to
(r+ 1) · α.

We build the set S in an algorithmic way through iterative steps. The algorithm picks as many (r + 1)-
groups as possible, until it exits. The algorithm that builds the set follows in Fig. 1. We proceed with analyzing
the size and entropy of the sets that it can possibly construct. The goal of our analysis is to lower bound the
size of the set Sl that the algorithm can possibly produce. This will tell us that no matter how the code is
constructed, its minimum distance cannot be more than n− |Sl|.

step
1 Set S0 = ∅ and i = 1
2 WHILEH(Si−1) <M
3 Pick a coded symbol Yj /∈ Si−1

4 IFH(Si−1 ∪ {YΓ(j)}) <M
5 set Si = Si−1 ∪ YΓ(j)

6 ELSE IFH(Si−1 ∪ {YΓ(j)}) ≥M
7 T = argmax

T ′⊂Γ(j);H(YT ′∪Si−1)<M

|T ′|

8 IF T = ∅
9 EXIT

10 ELSE

11 set Si = Si−1 ∪ YT

12 EXIT

13 i = i+1

Figure 1: The algorithm that builds set S.

We denote the collection of coded symbols at each step of the iteration as Si. At each step i, the difference
in cardinality between Si and Si−1 is denoted as

si = |Si| − |Si−1| (2)

and the difference between the entropy of the two sets as

hi =H(Si)−H(Si−1). (3)

The algorithm exits before reaching H(Si) ≥M . There are two ways that the algorithm terminates:
i) it either collects (r+ 1)-groups until it exits at line 9, or
ii) the last subset of coded symbols that is added to Si−1 is smaller than r+1 and the algorithm exits at line 12,
after collecting some subset of an (r+ 1)-group, such that H(Si) < M is not violated.
Let us denote by l the last iteration of the algorithm during which a new non-empty set of coded symbols is

5



added to the current set of coded symbols. We shall now proceed with lower bounding |Sl|.

Case i) The algorithm exits at line 9:

Since the algorithm exits at 9, this means that its last iteration is the (l + 1)-st, where no more symbols are
added. Again, we denote by l the last iteration during which our set of coded symbols is expanded by a
non-empty set. First observe that, for any 1 ≤ i ≤ l, we have

1 ≤ si ≤ r+ 1 (4)

since at each iteration the algorithm augments the set Si−1 by at least one new symbol, i.e., Yj , which is always
possible since H(Si−1) < M , for all i ≤ l and H(Y1, . . . , Yn) = M . Then, si ≤ r+ 1 is a consequence of the fact
that

|Si| = |Si−1 ∪ YΓ(i)| ≤ |Si−1|+ |YΓ(i)| ≤ |Si−1|+ r+ 1.

We also have that
hi ≤ (si − 1)α. (5)

To see why the above is true, let Si−1 = A∪B, where B = Si−1 ∩ YR(j) is the subset of symbols from YR(j) that
are already in Si−1 (B can be empty if no symbols from R(j) are in Si−1). Then,

H(Si) = H(Si−1 ∪ YΓ(j)) =H(Si−1 ∪ {YR(j)\B})≤H(Si−1) +H(YR(j)\B)
≤H(Si−1) + |YR(j)\B|α (6)

=H(Si−1) + (si − 1)α,

where the second equality comes from the fact that Yj is a function of some symbols in Si−1 ∪ {YR(j)\B}, due
to locality, and the last equality is due to

si = |Si| − |Si−1| = |YΓ(j)\B|= |YR(j)\B|+1.

From (5), we also obtain
α · si ≥ hi + α. (7)

Now, we can start bounding the size of Sl as follows

α|Sl| = α

l
∑

i=1

si
(7)

≥
l
∑

i=1

(hi + α) =

(

l
∑

i=1

hi

)

+ l · α =H(Sl) + l · α. (8)

We continue with lower bounding the two quantities in (8): H(Sl) and l · α. First observe that since the algo-

rithm is exiting, it means that the aggregate entropy H(Sl) =
∑l

i=1 hi is so large that no other symbol can be
added to our current set Sl, without violating the entropy condition. Hence,

H(Sl) ≥ M − α. (9)

Assume otherwise, i.e., for example H(Sl) ≤M −α− ǫ, for any ǫ > 0. Then, any coded symbol not in Sl can be
added in Sl so that the aggregate entropy is at most M − ǫ: the new symbol can only increase the joint entropy
by at most α. Hence, H(Sl) has to be at least M −α.

Now we will lower bound l, the number of iterations to reach an entropy of at least M − α. Since the
algorithm is assumed to exit at line 9, as mentioned before, at every iteration i we have si ≤ r + 1 and hi ≤
(si − 1)α, for all 1 ≤ i ≤ l. The minimum number of iterations occurs, when at each iteration the algorithm
picks sets such that the entropy increase hi is equal to its upper bound r · α. Therefore,

l ≥
⌈

H(Sl)

r · α

⌉

≥
⌈

M −α

r · α

⌉

. (10)
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Using (9) and (10), we can rewrite (8) as

α|Sl| ≥ H(Sl) + l · α ≥M −α+ α ·
⌈

M −α

r · α

⌉

⇒ |Sl| ≥
⌈

M − α+α ·
⌈

M−α
r·α

⌉

α

⌉

=

⌈

M

α
− 1 +

⌈

M −α

r · α

⌉⌉

(i)
=

⌈

M

α

⌉

− 1+

⌈

M − α

r · α

⌉

=

⌈

M

α

⌉

− 1 +

⌈

M

r · α − 1

r

⌉

≥
⌈

M

α

⌉

− 1 +

⌈

M

r · α

⌉

− 1

⇒ d ≤ n− |Sl| ≤ n−
⌈

M

α

⌉

−
⌈

M

r · α

⌉

+ 2, (11)

where the equality in (i) comes from the fact that ⌈x+ n⌉ = ⌈x⌉+ n, for any real number x and any integer
n [23]; in our case x = M

α and n = −1+
⌈

M−α
r·α

⌉

.

Case ii) The algorithm exits at line 12:

In this case, the algorithm runs for l iterations; during the l− 1 first iterations, the algorithm augments Si−1 at
step 1 ≤ i ≤ l− 1, by entire (r+1)-groups. During the last step i = l, the algorithm augments Sl−1, by a partial
subset of YΓ(j), for some coded symbol Yj not in Sl−1. From the above, we get the following bounds

si ≤ r+1, for all 1 ≤ i ≤ l− 1, and sl ≤ r, (12)

and
hi ≤ (si − 1)α, for all 1 ≤ i ≤ l− 1, and hl ≤ slα. (13)

The right most part of the above bounds comes from the fact that, during the last iteration, at most r coded
symbols can be added to the set Sl−1. Moreover, in contrast to all other iterations, during the last iteration it is
possible to augment Sl−1 by sl new coded symbols, all being independent to each other and any other symbols
in Sl−1; that is hl can be as large as slα.

We will again bound the size of Sl, the maximal set of coded symbols that has entropy less than M . We use
(13) and sum over all si’s to obtain our bound on the size of Sl:

l
∑

i=1

hi

(13)

≤
(

l−1
∑

i=1

siα

)

− (l− 1) · α+ sl · α

⇒α ·
l
∑

i=1

si ≥
l
∑

i=1

hi + (l− 1) · α ⇒ α · |Sl| ≥
l
∑

i=1

hi + (l− 1) · α

⇒α · |Sl| ≥H(Sl) + (l− 1) · α. (14)

We now need to bound again the two quantities that control the bound in (14): H(Sl) and l. We can use the

same bound as used in Case i) for H(Sl) =
∑l

i=1 hi, i.e., the entropy of the constructed set H(Sl) has to be large
enough, so that another iteration cannot be carried on:

H(Sl) ≥ M − α. (15)

Again, let us assume otherwise: H(Sl) ≤ M − α− ǫ, for any ǫ > 0. Then, any coded symbol not in Sl can be
added in Sl so that the aggregate entropy is at most M − ǫ. Hence, H(Sl) ≥ M −α.

Now we will bound the number of iterations l. The last added subset of symbols T that augments Sl−1 has
cardinality less than, or equal to r. Otherwise, if T was an entire (r + 1)-group, then the statement in line 6 of
the algorithm would have been FALSE. This means that adding (r + 1)-groups for all iterations, including the
l-th one, can have as much entropy as r · l ·α, which has to be at least as much as M , or else we would not have
been under Case ii) of the algorithm. Hence,

r · l · α ≥M ⇒ l ≥
⌈

M

r · α

⌉

. (16)

7



We can now use the bounds in (15) and (16) to rewrite (14) as

α|Sl| ≥H(Sl) + (l− 1) · α ≥M − α+ α ·
(⌈

M

r · α

⌉

− 1

)

⇒|Sl| ≥
⌈

M − 2α+ α ·
⌈

M
r·α

⌉

α

⌉

=

⌈

M

α
− 2 +

⌈

M

r · α

⌉⌉

(i)
=

⌈

M

α

⌉

− 2+

⌈

M

r · α

⌉

⇒d ≤ n− |Sl| ≤ n−
⌈

M

α

⌉

−
⌈

M

r · α

⌉

+2, (17)

where (i) comes from the fact that ⌈x+n⌉= ⌈x⌉+n, for any real number x and any integer n [23]. The bounds
of (11) and (17) establish our theorem.

Remark 2. Observe that when (r + 1)|n, we can partition the set of n coded symbols in n
r+1 non-overlapping (r + 1)-

groups. The algorithmic proof that we used, relied on the fact that collecting (r+ 1)-groups, is one of the ways to achieve
the lower bound on the size of S. This observation will lead us to an achievability proof for the case of (r + 1)|n. We will
see that pair-wise disjoint repair groups is one of the (possibly many) arrangements of repair groups that leads to optimal
constructions.

Remark 3. In the above bound, if we set α = 1 and M = k, we get the same bound as [12]. The α = 1 case is equivalent
to considering scalar codes. As it turns out, for the scalar case, linear codes are sufficient for this bound and nonlinearity
in the encoding process does not come with any improvements in code distance.

In the following section, we show that the above distance bound is tight when (r+1)|n. This does not rule
out that the bound is tight under more general assumptions, however, this is left as an open question. For linear
codes, [12] shows that codes with information-symbol locality can be constructed under different assumptions
(for example when r|k and 2 < d < r+3), using a structure theorem (e.g., see Theorem 15 in [12]). At the same
time, it is impossible to construct optimal and linear LRCs (with all-symbol locality) when 2 < d < r + 3 and
r|k (e.g., see Corollary 10 in [12]). It would be interesting to explore the use of the tools presented in [12], to
provide further impossibility, or achievability results that extend the (r+ 1)|n case that we study.

4 Achievability of the Bound: Random LRCs

In this section, we establish the following existence result:

Theorem 2. Let (r+ 1)|n and r ≤ n− d. Then, there exist (n, r, d,M,α)-LRCs with minimum distance

d = n−
⌈

M

α

⌉

−
⌈

M

ra

⌉

+ 2,

over a sufficiently large finite field.

We establish the theorem through capacity achieving schemes for a specific communication network; such
network will be defined through a directed and acyclic flow-graph. In the first subsection, we introduce the
communication model for our network. In the second subsection, we show that a capacity achieving scheme
for the aforementioned network maps to specific codes with specified parameters. In the third and fourth
subsections, we construct randomized capacity achieving schemes and then map them to (n, r, d,M,α)-LRCs.
The distance d of the aforementioned codes will be equal to the upper bound of Theorem 1.

4.1 The flow-graph network, multicast sessions, and its multicast capacity

Our achievability proof relies on using random linear network coding (RLNC) on a directed acyclic flow-graph,
borrowing ideas from [5, 22]. Fig. 2 shows the directed and acyclic flow-graph that we use, which is formally
defined subsequently.

At a conceptual level our proof analyzes a nested multicast problem that consists of two parts. We show
that when RLNC is employed on the flow-graph in Fig. 2, i) it multicasts the source transmitted by node X to

8
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Figure 2: The directed acyclic information flow-graph G(n, r, d,α). The left-most vertex is the source node
X . The n

r+1 vertices Γi correspond to nodes that limit the in-flow to specific groups of intermediate nodes.

The right-most T =
(

n
n−d+1

)

vertices DCi are the destination nodes (referred to as the data collectors) of the

network. Each DC is connected to a different (n− d+ 1)-tuple of Y out
i nodes.

all data collectors (global decoding requirements) and ii) it simultaneously allows each collection of r nodes
Y out
j , originating from the same Γi node, to reconstruct whatever Γi transmits (local decoding requirements).

The first part of the proof is a standard application of RLNC [22]. For the second part, our proof relies on a
further subtle technicality that we discuss below.

General nested multicasting problems can be very challenging, but our problem has a very special structure:
there are no edges between Y in

j , Y out
j′ nodes that originate from different Γi vertices. This means that there is

no “algebraic interference” between the linear combinations of packets transmitted/received by these nodes.
We use this fact to show that if the T data collectors DC1, . . . ,DCT receive linearly independent equations of
the source information, then each group of r nodes Y out

j that originate from the same Γi node, receive linearly
independent equations of the packets that node Γi transmits. This allows us to essentially use the technique of
Ho et al. [22] to establish that both the global and local decoding requirements are simultaneously satisfied.

We now proceed with the detailed description of our proof. Let G(n, r, d,α), be a directed acyclic graph that
represents a communication network with 1 source node and T destination nodes and has vertex set

V =
{

X,Γ1, . . . ,Γ n
r+1

, Y in
1 , Y out

1 , . . . , Y in
n , Y out

n ,DC1, . . . ,DCT

}

,

where X denotes the source node, DC1,DC2, . . . ,DCT are the T =
(

n
n−d+1

)

destination nodes, referred to as the
Data Collectors (DCs), and the remaining nodes are the intermediate nodes. Each vertex in V is assumed to be a
receive and/or transmit node. It will become clear what that means after the following definitions, which are
introduced to make our proof self-contained, while requiring minimal familiarity with network coding theory.
For further details on our network model please refer to [24].

Definition 4 (edge capacity/network use/local encoding function/source message). A directed edge between

9



two vertices v and u denotes a communication link between two nodes, over which bits are transmitted. All links are
assumed to introduce no error. The directed edge capacity c(v, u), between vertices v, u, denotes the maximum number
of bits that can be communicated from node v to node u during a single network use. A single network use denotes
the sequence of single transmissions over every directed edge. A message m(v,u) is a collection of c(v, u) bits that are
transmitted from node v to node u, during a single network use. A message m(v,u) can be considered as a collection of
c(v, u) binary uniform variables5 with joint binary entropy equal to H(m(v,u)) = c(v, u). Let Iv denote the (in-coming)
vertices incident to vertex v. Then, the message m(v,u) that is transmitted on a link e(v, u) during a single network use,
is the output of a local encoding function

fv,u
({

m(v′,v);v
′ ∈ Iv

})

: F
∑

v′∈Iv
c(v′,v)

2 → F
c(v,u)
2 ,

that takes as input the set of messages
{

m(v′,v);v
′ ∈ Iv

}

received by node v via the incident nodes in Iv . The source node
of the network holds a source bit sequence x of size H(x) bits and wishes to transmit it to the T destination nodes.

We are now ready to define the directed weighted edge (link) set, that is determined by the following link
capacities

c(v, u) =































r · α, (v, u) = (X,Γj),∀j ∈
[

n
r+1

]

,

r · α, (v, u) = (Γj , Y
in
l ),∀j ∈

[

n
r+1

]

and l ∈ {(j − 1)(r+ 1)+ 1, . . . , j(r+ 1)},
α, (v, u) =

(

Y in
j , Y out

j

)

,∀j ∈ [n],

α, (v, u) = (Y out
j ,DCt),∀j ∈ Ft and t ∈ [T ],

0, otherwise,

where the T sets F1, . . . ,FT are all T =
(

n
n−d+1

)

possible subsets of n− d+ 1 integers in [n]. Observe that the
in-degree of any DCt node (the number of incident directed edges arriving at that node) is n− d+ 1.

The G(n, r, d,α) network comes together with T decoding requirements: each destination node DCt, for t ∈ [T ],
is required, after a network use, to be able to reproduce from its received bits the source sequence x. The
decoding requirements can be stated as the following conditional entropy requirements:

Dt : H
(

x
∣

∣

∣

{

m(Y out
j

,DCt) : j ∈ Ft

})

= 0, ∀t ∈ [T ].

We are now ready to provide the main definition needed for our proof.

Definition 5 (multicast capacity and capacity achieving schemes). The directed graph G(n, r, d,α) and a set of
decoding requirements D1, . . . ,DT , specify a multicast connection problem. Let C be the maximum number of source
bits such that all decoding requirements are satisfied, after a single network use. Then, C is defined as the multicast
capacity of G(n, r, d,α). A capacity achieving scheme, is a collection of local encoding functions such that all T decoding
requirements are satisfied for H(x) = C.

In the following subsection, we derive a connection between a capacity achieving scheme on G(n, r, d,α)
and the existence of a code of well specified parameters. Then, we calculate the capacity of G(n, r, d,α).

4.2 Connecting capacity achieving schemes to codes

The following lemma connects capacity achieving schemes on G(n, r, d,α), to the existence of codes.

Lemma 1. The set of n local encoding functions f(Y in
i
,Y out

i
), i ∈ [n], of a capacity achieving scheme on G(n, r, d,α), can

be mapped to a code of length n, that encodes a file of size C in n coded symbols, each of size α bits. This code has distance
d.

5Although we assume that the messages transmitted over the links are sets of binary variables, this can be generalized to 2τ -ary
variables (i.e., each variable will now be an element of a finite field of order q = 2τ ). This is possible, if we consider τ consecutive transmit
sessions per link, during a network use. We can then consider an equivalent network where the alphabet is 2τ -ary. As a consequence, the
entropies used under this setting should be 2τ -ary, and all the following results carry on to that case.
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Proof. Observe that any local encoding function fv,u can be re-written as some global encoding function of the
C source bits in x [24]. Let fi(x) : F

M
2 → Fα

2 be the global function representation for f(Y in
i
,Y out

i
). If the n local

encoding functions f(Y in
1
,Y out

1
),. . . ,f(Y in

n ,Y out
n ) are part of a capacity achieving scheme, then due to the decoding

requirements being satisfied, we have

H
(

x|
{

m(Y out
j

,DCt) : j ∈ Ft

})

= 0 ⇒ H (x |{fj(x) : j ∈ Ft}) = 0 (18)

since m(Y out
j

,DCt) is a function of fj(x), t ∈ [T ]. Now, let Yi = fi(x) and observe that each Yi is a collection of α

bits. Then, the T decoding requirements H (x |{fi(x) : i ∈ Ft} ) = 0, for t ∈ [T ], are equivalent to the following
statement: “any collection of n− d+ 1 symbols Yi, with i ∈ [n], are sufficient to reconstruct x”. This implies
that

[Y1, . . .Yn] = [f1(x) . . . fn(x)] , (19)

defines a code of length n, that encodes a files of size C, each coded symbol is of size α, and any n− d+ 1
coded symbols can reconstruct x, i.e., the code has distance d.

Remark 4. Observe that the above result does not guarantee that the code defined by f(Y in
i ,Y out

i ) has locality r. Locality

comes as an artifact of the graph structure and the random capacity achieving scheme that we will use.

4.3 Computing the source-destination cuts and achieving the capacity

In this subsection, we calculate the capacity of G(n, r, d,α), and show how to achieve it. Let us first define the
minimum cuts of the above network.

Definition 6 (minimum cut). A directed cut between nodes v and u, referred to as Cut(v, u)⊆ E, is a subset of directed
edges, such that if these edges are removed, then there does not exist a directed path between nodes v and u; |Cut(v, u)| is
the sum of all edge capacities in the set Cut(v, u), referred to as the capacity of Cut(v, u). A minimum cut MinCut(v, u)
is the cut with the minimum aggregate edge capacity among all cuts between v and u.

It is a well-known fact for communication networks, that |MinCut(v, u)| is an upper bound on the number
of bits that one can communicate from node v to node u [24]. Consequently, the cut with the minimum capacity,
among the cuts of all source-destination pairs, is an upper bound on the multicast capacity of a network. Most
importantly, we know that this bound is achievable for multicast session networks. We state as Theorem 3,
what is a collection of breakthrough results from [22, 25].

Theorem 3 ( [22, 25] ). The multicast capacity C of a network with 1 source and T destination nodes, is equal to the
minimum number among all capacities of minimum source-destination cuts. The capacity is achievable using random
linear network coding.

Remark 5. In our case, RLNC stands for having local encoding functions fv,u
({

m(v′,v);v
′ ∈ Iv

})

: F
∑

v′∈Iv
c(v′,v)

q →
F
c(v,u)
q , for all u, v, such that the outputs of each of those functions are c(v, u) symbols over a q-ary alphabet, and

each output symbol is a linear combination of the
∑

v′∈Iv
c(v′, v) input symbols; each of these linear combinations has

coefficients that are picked uniformly at random from the q-ary alphabet.

We use the above results and definitions to prove the key technical lemma of this subsection. Before we
proceed with that, we present some properties of the ceiling and floor functions that are used in our proof.

Proposition 1 ( [23] ). Let n and m be positive integer numbers, and x any real number. Then, the following hold

(i)
⌊

n
m

⌋

=
⌈

n+1
m

⌉

− 1, (ii)
⌈

x+m
n

⌉

=
⌈

⌈x⌉+m
n

⌉

, (iii)
⌈

⌈x/m⌉
n

⌉

=
⌈

x
nm

⌉

.

We now proceed with the main lemma.

Lemma 2. Let d = n−
⌈

M
α

⌉

−
⌈

M
r·α

⌉

+ 2. Then, then the multicast capacity of the G(n, r, d,α) network is equal to

C =

⌈

M

α

⌉

α ≥M. (20)
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Proof. Using Theorem 3, the capacity of G(n, r, d,α) is equal to

min
t∈[T ]

|MinCut (X,DCt)| .

Let us calculate the minimum cut capacity among all minimum cuts. Let us denote as the i-th (r+1)-group, the
set of r+ 1 intermediate nodes Y out

j that can be reached from Γi. Now consider a DC that connects to a set of
n− d+1 nodes including all the nodes of, say, the first (r+1)-group, and assume without loss of generality that
this is DC1. There are two (meaningful) choices for Cut(X,DC1): i) it can consist of all (r+1) edges (Y in

i , Y out
i ),

i ∈ [r+ 1], of the (r+ 1)-group, or ii) it can consist of simply the (X,Γ1) edge.6

Clearly, the latter choice leads to a smaller cut capacity, since (X,Γ1) has capacity r · α, whereas the r + 1
edges (Y in

i , Y out
i ), i ∈ [r + 1], have an aggregate capacity of (r + 1) · α. Hence, for every cut that includes r+ 1

edges of the (Y in
j , Y out

j ) kind that belong to the same (r+1)-group, say the i-th, then (X,Γi) can be used instead,
reducing the capacity of such cut. Therefore, the smallest source-destination cut is the one that contains the
largest possible number of (X,Γi) edges.

Now, the minimum aggregate capacity among all these T cuts, i.e., mint=1,...,T |MinCut(X,DCt)|, will be
the one that corresponds to the minimum cut of the DC that covers entirely as many (r+1)-groups as possible.
Since the total number of Y out

j nodes that a DC connects to is n− d+ 1, then the number of (r + 1)-groups it

can entirely cover is7
⌊

n−d+1
r+1

⌋

. The minimum cut will hence include

n1 =

⌊

n− d+ 1

r+ 1

⌋

edges of the (X,Γi) kind, which contribute to the cut an aggregate capacity of n1rα. The remaining capacity
comes from cutting a number of

n2 = n− d+ 1− n1 = n− d+1− (r+ 1)

⌊

n− d+ 1

r+ 1

⌋

edges of the (Y in
i , Y out

i ) kind. Therefore, we have that the smallest source-DC cut is equal to

min
t∈[T ]

|MinCut (X,DCt)| = n1 · r ·α+ n2 · α =

(

n− d+ 1−

⌊

n− d+ 1

r+ 1

⌋)

α =

(

⌈

M

α

⌉

+

⌈

M

rα

⌉

− 1−

⌊

⌈

M
α

⌉

+
⌈

M
rα

⌉

− 1

r+1

⌋)

α

(i)
=

(

⌈

M

α

⌉

+

⌈

M

rα

⌉

− 1−

⌈

⌈

M
α

⌉

+
⌈

M
rα

⌉

r+ 1

⌉

+1

)

α
(iii)
=





⌈

M

α

⌉

+

⌈

M

rα

⌉

−









⌈

M
α

⌉

+
⌈

⌈M/α⌉
r

⌉

r+ 1











α

(ii)
=

(

⌈

M

α

⌉

+

⌈

M

rα

⌉

−

⌈

⌈

M
α

⌉

+
⌈

M
α

⌉

1
r

r+ 1

⌉)

α =

(

⌈

M

α

⌉

+

⌈

M

rα

⌉

−

⌈

⌈

M
α

⌉

r+1
r

r+ 1

⌉)

α

=

(

⌈

M

α

⌉

+

⌈

M

rα

⌉

−

⌈

⌈

M
α

⌉

r

⌉)

α
(iii)
=

(⌈

M

α

⌉

+

⌈

M

rα

⌉

−

⌈

M

rα

⌉)

α =

⌈

M

α

⌉

· α ≥ M, (21)

where on the second, third, and fourth lines of derivations, we explicitly state which of the three properties of
the ceiling/floor function found in Proposition 1 we are using. The above establishes our lemma.

Using Lemma 2, Theorem 3, and Lemma 1, we obtain the following corollary.

Corollary 1. There exists a capacity achieving scheme for G(n, r, d,α), whose local encoding functions f(Y in
i
,Y out

i
), for

i ∈ [n], map to a code of length n that encodes M∗ ∈
[

M,
⌈

M
α

⌉

α
]

source symbols in n coded symbols of size α, and the

code has distance8 d = n−
⌈

M
α

⌉

−
⌈

M
r·α

⌉

+ 2.

Observe that we are not done yet: we still have to prove that be above code has locality r. The next
subsection finalizes our proof, by showing that RLNC on G(n, r, d,α) indeed implies codes with locality r and
distance matching our bounds, for a sufficiently large finite field.

6The assumption r ≤ n− d is made such that n− d+1 ≥ r+ 1. This implies that a DC has to connect to at least r+1 nodes.
7We would like to note here that the ratio inside the floor function is never an integer number: if it was, then all DCs could connect to

exactly one less Y out
i node while maintaining exactly the same source-destination cut.

8Observe that here we obtain the result for M∗ ∈

[

M,
⌈

M
α

⌉

α
]

. One can easily inspect that by substituting the M∗ value in the distance

bound, this value does indeed respect it.
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4.4 Establishing the locality of the code and concluding the proof

Γ1

Y in
1 Y out

1

Y in
2 Y out

2

Y in
3 Y out

3

LD1
1

LD1
2

LD1
3

α

α

α

2 · α

2 · α

2 · α

α

α

α

α

α

α

Figure 3: The G1 subgraph induced by the first (r+1)-group of a G(n, r = 2, d,α) network. The additional LDi
j

are local data collectors that are conceptual. These local DCs are not present in the original graph, and are used
here to finalize the proof of Theorem 2. We use them to establish the locality of the code obtained through the
RLNC capacity achieving scheme on G(n, r = 2, d,α).

To establish the locality of the code obtained in the previous subsection, we will show that an extra set of
local decoding requirements are satisfied when RLNC is used. For this part of the proof we will focus on the
subgraphs induced by the (r+ 1)-groups. Let Gi, be the subgraph that is induced by the vertices

Vi =
{

Γi, Y
in
(i−1)·(r+1)+1, Y

out
(i−1)·(r+1)+1, . . . , Y

in
i·(r+1), . . . , Y

out
i·(r+1)

}

,

for any i ∈
[

n
r+1

]

. Let us assume that for each of these subgraphs there exists an additional number of
(

r+1
r

)

=

r+1 local Data Collector nodes, LDi
1, . . . ,LDi

r+1. Each local DC is connected to one of the r+1 possible r-subsets
of Y out

j nodes of Gi, with
j ∈ {(i− 1)(r+1)+ 1, . . . , i(r+ 1)}.

In Fig. 3, we give an example of G1 with the added local DCs.
Each of these local DCs has a decoding requirement: it requires to be able to decode what was transmitted

by Γi. Let us refer to such a decoding requirement for the j-th local DC of Gi as LDi
j .

Remark 6. Observe that the decoding requirement LDi
j implies that the j-th local DC can reconstruct any single of the

r + 1 messages m(Y in
j
,Y out

j
), with j ∈ {(i− 1)(r + 1) + 1, . . . , i(r + 1)}. This is true since all these r + 1 messages are

functions of what is transmitted by the Γi node.

The above observation will be used to establish the locality of the codes obtained from RLNC on G(n, r, d,α).
Before we do that, we will state the following lemma, which will help us to conclude our proof.

Lemma 3. When RLNC is used on Gi, the decoding requirement LDi
j is equivalent to a full-rank requirement FRi

j on
an r · α× r · α matrix with random i.i.d. coefficients.

Proof. Without loss of generality, let us consider G1, moreover, let for simplicity

z1 ∈ F1×r·α
q

be the source message that Γ1 wishes to transmit to the local DCs. Since the capacity of a (Γ1, Y
in
j ) edge is

r · α, for j ∈ [r+ 1], then node Y in
j receives z1. Moreover, due to the RLNC scheme used, the coefficients of the

random linear combinations in the local encoding functions are picked independently. Hence, node Y in
j will

transmit to node Y out
j a vector of α symbols:

z1A1,j

13



where A1,j is an r · α× α matrix of random i.i.d. coefficients. Then, any node Y out
j transmits to the local DCs

of G1 exactly what it received, i.e., z1A1,j , since the capacity of the edge (Y out
j ,LD1

i ) is α. Hence, any local DC
receives r vectors of size α, which if put together form a vector of size r · α; this vector, for local DC j, can
be re-written as z1A1

j , where A1
j is an r · α × r · α matrix of random i.i.d. coefficients. Hence, any local DC

decoding requirement is equivalent a requirement on a square matrix of random coefficients being full-rank.
Let us refer to this full-rank requirement as FRi

j .

Observe that FRi
j is a requirement that can be stated independently of the existence of local DCs. Hence,

we can now go back on G(n, r, d,α) and show that RLNC allows all local decoding requirements and all FRi
j

conditions to be satisfied simultaneously.

Lemma 4. Let

d = n−
⌈

M

α

⌉

−
⌈

M

ra

⌉

+2

and let us employ RLNC on G(n, r, d,α). Then, all decoding requirements Di of G(n, r, d,α) and all full rank require-
ments FRi

j will be simultaneously satisfied, with nonzero probability, when the finite field is sufficiently large.

Proof. Let EG denote the event that some of the T DCs of G(n, r, d,α) cannot decode x successfully, which say,
has probability p1 that is a function of the size of the finite field used by the RLNC scheme [22]. Moreover,
let EFRi

j
denote the event that FRi

j is not satisfied, which say, has probability p2 that is also a function of the

size of the finite field used by the RLNC scheme. Then, the probability that RLNC does not satisfy some of the
above conditions is

Pr







EG

⋃







n/(r+1)
⋃

i=1

i(r+1)
⋃

j=(i−1)(r+1)+1

EFRi
j













≤ Pr{EG}+
n/(r+1)
∑

i=1

i(r+1)
∑

j=(i−1)(r+1)+1

Pr
{

EFRi
j

}

= p1 + n · p2.

We can now conclude our proof, since p1 and p2 can be made arbitrarily small, using a sufficiently large finite
field [22].

Due to the above lemma and Lemma 1, we use the f1(x), . . . , fn(x) global encoding functions (the global
representations of the f(Y in

i
,Y out

i
)s) of the RLNC scheme to obtain a code that encodes a file of size M in n coded

symbols, each of size α; such code has distance d.
Moreover, since all FRi

j requirements are satisfied, then as mentioned in Remark 6, each output of a global
encoding function fi(x) can be reconstructed from the outputs of a subset of r other global encoding functions:
this implies repair locality r. Hence, the code defined by the global encoding functions fi is an (n, r, d,M,α)-
LRC, with

d = n−
⌈

M

α

⌉

−
⌈

M

ra

⌉

+ 2.

This concludes the proof of Theorem 2.

5 Locally Repairable Codes: Explicit Constructions

In this section, we provide an explicit LRC family for the operational point on the distance trade-off, where
any k subsets of coded nodes can reconstruct all k file symbols, i.e., when d = n− k + 1. For this regime, that
resembles that of an (n, k)-MDS code, we will show how to achieve the distance of an (n, k)-MDS code, while
having locality r << n and sacrificing only a small fraction of the code rate: the rate of our codes will be 1

r
k
n

less than that of an (n, k)-MDS code. Specifically, the code parameters for our LRCs are

(

n, r, d = n− k+ 1,M,α=
r+1

r
· M
k

)

, such that (r+ 1)|n.

Our codes meet the optimal distance bound for all of the above coding parameters when (r+ 1) ∤ k.
The presented codes come with the following design advantages: i) they achieve arbitrarily high data

rates, ii) they can be constructed using Reed-Solomon encoded blocks, iii) the repair of a lost node requires
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downloading blocks and XORing them at a destination node, and iv) their vector size, or sub-packetization
length, is r, and each stored sub-symbol is over a small finite field with size proportional to n. This means that
we can represent each coded symbol by using only r ·O(logn) bits.

MDS Pre-coding and XORing
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Figure 4: MDS pre-coding, XORing, and block placement in nodes.

5.1 Code construction

Let a file x of size M = rk symbols9, that is sub-packetized in r parts,

x =
[

x(1) . . .x(r)
]

,

with each x(i), i ∈ [r], having size k. We encode each of the r file parts independently, into coded vectors y(i) of
length n, where (r+ 1)|n, using an outer (n, k) MDS code

y(1) = x(1)G, . . . , y(r) = x(r)G,

where G is an n× k MDS generator matrix.

9here the size of each symbol depends on the code construction, and is not necessarily binary. As we see in the following, the size of
each symbol will be proportional to log(n) bits.
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r y
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2 y
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3 . . . y
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(2)
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...
...

...
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y
(r)
r y

(r)
r+1 . . . y

(r)
r−2 y

(r)
r−1

sr+1 s1 . . . sr−1 sr

Table 1: The first r+1 nodes in our code construction. These nodes belong to the first (r+1)-repair group. The
nodes in the remaining repair groups have a block placement that follows the same circular-shifting pattern.

As MDS pre-codes, we use (n, k)-RS codes that require each of the k elements to be over a finite field F2p ,
for any p such that 2p ≥ n. This will imply that all stored sub-symbols in our code are over a finite field of size
2p ≥ n. We then generate a single parity XOR vector from all the coded vectors

s =

r
⊕

i=1

y(i).

The above pre-coding process yields a total of r · n coded blocks, the y(i) vectors and n XOR parity blocks in
the s vector. That is, we have an aggregate of (r+ 1)n blocks available to place in n nodes, hence we decide to
store r+ 1 blocks per node. Therefore, each node needs to have a storage capacity of

α =
M

k
+

1

r

M

k
= r+ 1 (coded blocks).

In Table 1, we state the circular placement of symbols in nodes of the first (r + 1)-group . There are three
key properties of the block placement:

1. each node contains r coded blocks coming from different y(l) coded vectors and 1 additional parity sym-
bol,

2. the blocks in the r+1 nodes of the i-th (r+1)-group have indices that appear only in that specific repair
group, and

3. the blocks of each row have indices that obey a circular pattern, i.e., the first row of symbols has index
ordering {1,2, . . . , r+ 1}, the second has ordering {2,3, . . . , r+ 1,1}, and so on.

In Fig. 4, we show an LRC of the above construction with M = 8, α = 3, n = 6 and k = 4, that has locality 2.

5.2 Repairing lost nodes

Here, we see that the repair of each lost node requires contacting r nodes, i.e., the locality of the code is r.
Without loss of generality, we consider the repair of a node in the first repair group of r + 1 nodes. This is
sufficient since the nodes across different repair groups follow the same placement properties.

The key observation is that each node within a repair group stores r+ 1 blocks of distinct indices: the r+1
blocks of a particular index are stored in r + 1 distinct nodes within a single repair group. When for example

the first node fails, then y
(1)
1 , the symbol of the first row, is regenerated by downloading s1 from the second

node, y
(r+1)
1 from the third, and so on. Once all these symbols are downloaded, a simple XOR of all of them is

exactly equal to y
(1)
1 . In the same manner, for each node, in each repair group when we need to reconstruct a

lost block, we first download the r remaining blocks of the same index and XOR them together to regenerate
the desired lost block. Since each block can be reconstructed by contacting r other blocks, and since the repair
is confined within a single repair group of r remaining nodes, the code has locality r.

In Fig. 5, we show how repair is performed for the code construction presented in Fig. 4.
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Figure 5: We show an example of a failed node repair. The repair locality here is 2 since 2 remaining nodes
are involved in reconstructing the lost information of the first node. Observe that we repair a failed node by
simply transferring blocks: no block combinations are need to be performed at the sender nodes. Once the
blocks are transferred to a newcomer, a simple XOR suffices for reconstruction.

Data Collector has access to nodes 2,3,4,5

y
(1)
1

node 1

y
(2)
2

s3 = y
(1)
3 + y

(2)
3

y
(1)
2

node 2

y
(2)
3

s1 = y
(1)
1 + y

(2)
1

y
(1)
3

node 3

y
(2)
1

s2 = y
(1)
2 + y

(2)
2

y
(1)
4

node 4

y
(2)
5

s6 = y
(1)
6 + y

(2)
6

y
(1)
5

node 5

y
(2)
6

s4 = y
(1)
4 + y

(2)
4

y
(1)
6

node 6

y
(2)
4

s5 = y
(1)
5 + y

(2)
5

Figure 6: We show how the file can be reconstructed by contacting k = 4 nodes. Observe that by accessing any
k nodes, a DC has access to k blocks from the first MDS code and k blocks from the second. Since the pre-codes
are (n, k)-MDS, this means that any k blocks from each of the two coded blocks suffice to reconstruct both file
parts.

5.3 Distance and code rate

The distance of the presented code is d = n− k + 1 due to the MDS pre-codes that are used in its design: any
k nodes in the system contain rk distinct coded blocks, k from each of the r file blocks. Hence, by performing
erasure decoding on each of these r k-tuples of blocks, we can generate the r blocks of the file.

When (r+ 1) ∤ k this distance matches the optimal bound,

n−
⌈

M

α

⌉

−
⌈

M

rα

⌉

+ 2 = n−
⌈

kr

r+ 1

⌉

−
⌈

k

r+ 1

⌉

+ 2 = n− k+1,

since
⌈rk/(r+ 1)⌉+ ⌈k/(r+ 1)⌉ = k+ ⌈−k/(r+ 1)⌉+ ⌈k/(r+ 1)⌉ = k+ 1,

when k/(r+ 1) is not an integer [23]. In Fig. 6, we give a file reconstruction example for the code of Fig. 4.
Finally, the effective coding rate of our LRC is

R =
size of useful information

total storage spent
=

M

n · α =
r

r+ 1

k

n
.

That is, the rate of the code is a fraction r
r+1 of the coding rate of an (n, k) MDS code, hence is always upper

bounded by r
r+1 . This loss in rate is incurred due to the use of the extra XOR stripe of blocks, that is required
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for efficient and local repairs. Observe that if we set the repair locality to r = f(k) and f is a sub-linear function

of k (i.e., log(k) or
√
k), then we obtain non-trivially low locality r << k, while the excess storage cost ǫ = 1

r is
vanishing when n, k grow.

6 Conclusions

In this work, we presented locally repairable codes, a new family of repair efficient codes that optimize the metric
of locality. We analyze what is the best possible reliability in terms of code distance, given the requirement that
each coded symbol can be reconstructed by r other symbols in the code. We provide an information theoretic
bound that ties together the code distance, the locality, and the storage cost of a code. We prove that this bound
is achievable using vector-linear codes. Eventually, we give an explicit construction of LRCs for the case where
we require that any k nodes can recover the encoded file. We show how this explicit construction not only has
optimal locality, but also requires small field size and admits very simple XOR based repairs.
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