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Abstract—We introduce a novel wireless device-to-device (D2D)
collaboration architecture that exploits distributed storage of
popular content to enable frequency reuse. We identify a funda-
mental conflict between collaboration distance and interference
and show how to optimize the transmission power to maximize
frequency reuse. Our analysis depends on the user content
request statistics which are modeled by a Zipf distribution.
Our main result is a closed form expression of the optimal
collaboration distance as a function of the content reuse dis-
tribution parameters. We show that if the Zipf exponent of
the content reuse distribution is greater than 1, it is possible
to have a number of D2D interference-free collaboration pairs
that scales linearly in the number of nodes. If the Zipf exponent
is smaller than 1, we identify the best possible scaling in the
number of D2D collaborating links. Surprisingly, a very simple
distributed caching policy achieves the optimal scaling behavior
and therefore there is no need to centrally coordinate what each
node is caching.

I. INTRODUCTION

Wireless mobile data traffic is expected to increase by
a factor of 40 over the next five years, from the current
93 Petabytes to 3600 Petabytes per month in the next five
years [1]. This explosive demand is fueled mainly by mobile
video traffic that is expected to increase by a factor of 65 times,
and become the by far dominant source of data traffic. Modern
smartphones and tablets have significant storage capacity often
reaching several gigabytes. Recent breakthroughs in dense
NAND flash will make 128GB smartphone memory chips
available in the coming months. In this paper we show how
to exploit these storage capabilities to significantly reduce
wireless capacity bottlenecks.

The central idea in this paper is that, for most types of
mobile video traffic, we can replace backhaul connectivity
with storage capacity. This is true because of content reuse,
i.e., the fact that popular video files will be requested by
a large number of users. Distributed storage enhances the
opportunities for user collaboration.

We recently introduced the idea of femtocaching helpers [2]
[3], small base stations with a low-bandwidth (possibly wire-
less) backhaul link and high storage capabilities. In this paper
we take this architecture one step further: We introduce a
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device-to-device (D2D) architecture where the mobiles are
used as caching storage nodes. Users can collaborate by
caching popular content and utilizing local device-to-device
communication when a user in the vicinity requests a popular
file. The base station can keep track of the availability of the
cached content and direct requests to the most suitable nearby
device. Storage allows users to collaborate even when they
do not request the same content at the same time. This is a
new dimension in wireless collaboration architectures beyond
relaying and cooperative communications.

Our contributions: In this paper we introduce the novel
D2D architecture and formulate some theoretical problems that
arise. Specifically, we identify a conflict between collaboration
distance and interference. We show how to optimize the D2D
collaboration distance and analyze the scaling behavior of
D2D benefits. The optimal collaboration distance depends on
the content request statistics which are modeled by a Zipf
distribution. Our main result is a closed form expression
of the optimal collaboration distance as a function of the
content reuse distribution parameters. We show that if the
Zipf exponent of the content reuse distribution is greater than
1, it is possible to have a number of D2D interference-free
collaboration pairs that scales linearly in the number of nodes.

If the Zipf exponent is smaller than 1, we identify the best
possible scaling in the number of D2D collaborating links.
Surprisingly, a very simple distributed caching policy achieves
the optimal scaling behavior and therefore there is no need to
centrally coordinate what each node is caching.

The remainder of this paper is organized as follows: In Sec-
tion II we setup the D2D formulation and explain the tradeoff
between collaboration distance and interference. Section III
contains our two main theorems, the scaling behavior for Zipf
exponents greater and smaller than 1. In Section IV we discuss
future directions, open problems and conclusions. Finally, in
the Appendix we include some interesting technical parts of
our proofs. Due to space constraints we omit the complete
proofs from this version of the paper.

II. MODEL AND SETUP

We consider n users distributed uniformly in a unit square
and consider this as single cell. The base station (BS) might be
aware of the stored files and channel state information of the
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Fig. 1. Random geometric graph example with collaboration distance r(n).

users and control the D2D communications. For simplicity,
we neglect inter-cell interference and consider one cell in
isolation. We further assume that the D2D communication
does not interfere with communication between the BS and
users. This assumption is justified if the D2D communications
occur in a separate frequency band (e.g., WiFi). For the device-
to-device throughput, we henceforth do not need to consider
explicitly the BS and its associated communications.

The communication is modeled by random geometric graph
G(n, r(n)) where two users (assuming D2D communication is
possible) can communicate if their physical distance is smaller
than some collaboration distance r(n) [4], [5]. The maximum
allowable distance for D2D communication r(n) is determined
by the power level for each transmission. Figure 1 illustrates
an example of random geometric graph (RGG).

We assume that users may request files from a set of size
m that we call a “library”. The size of this set should increase
as a function of the number of users n. Intuitively, the set of
YouTube videos requested in Berkeley in one day should be
smaller than the set of requested in Los Angeles. We assume
that this growth should be sublinear in n, e.g. m could be
Θ(log(n)).

Each user requests a file from the library by sampling
independently using a popularity distribution. Based on nu-
merous studies, Zipf distributions have been established as
good models to the measured popularity of video files [6],
[7]. Under this model, the frequency of the ith popular file,
denoted by fi, is inversely proportional to its rank:

fi =
1
iγr

m∑
j=1

1
jγr

, 1 ≤ i ≤ m. (1)

The Zipf exponent γr characterizes the distribution by con-
trolling the relative popularity of files. Larger γr exponents
correspond to higher content reuse, i.e., the first few popular
files account for the majority of requests.

Each user has a storage capacity called cache which is
populated with some video files. For our scaling law analysis
we assume that all files have the same size, and each user
can store one file. This yields a clean formulation and can be
easily extended for larger storage capacities.

Our architecture works as follows: If a user requests one of
the files stored in neighbors’ caches in the RGG, neighbors
will handle the request locally through D2D communication;
otherwise, the BS should serve the request. Thus, to have D2D
communication it is not sufficient that the distance between
two users be less than r(n); users should find their desired
files locally in caches of their neighbors. A link between
two users will be called potentially active if one requests a
file that the other is caching. Therefore, the probability of
D2D collaboration opportunities depends on what is stored
and requested by the users.

The decision of what to store can be taken in a distributed
or centralized way. A central control of the caching by the
BS allows very efficient file-assignment to the users [8].
However, if such control is not desired or the users are highly
mobile, caching has to be optimized in a distributed way. The
simple randomized caching policy we investigate makes each
user choose which file to cache by sampling from a caching
distribution. It is clear that popular files should be stored
with a higher probability, but the question is that how much
redundancy we want to have in our distributed cache.

We assume that all D2D links share the same time-frequency
transmission resource within one cell area. This is possible
since the distance between requesting user and user with the
stored file will typically small. However, there should be no
destructive interference of a transmission by others on an
active D2D link. We assume that (given that node u wants
to transmit to node v) any transmission within range r(n)
from v (the receiver) can introduce interference for the u− v
transmission. Thus, they cannot be activated simultaneously.
This model is known as protocol model; while it neglects
important wireless propagation effects such as fading [9], it
can provide fundamental insights and has been widely used in
prior literature [4].

To model interference given a storage configuration and user
requests we start with all potential D2D collaboration links.
Then, we construct the conflict graph as follows. We model
any possible D2D link between node u as transmitter to node
v as a receiver with a vertex u − v in the conflict graph.
Then, we draw an edge between any two vertices (links) that
create interference for each other according to the protocol
model. Figure 2 shows how the RGG is converted to the
conflict graph. In Figure 2(a), receiver nodes are green and
transmitter nodes are yellow. The nodes that should receive
their desired files from the BS are gray. A set of D2D links is
called active if they are potentially active and can be scheduled
simultaneously, i.e., form an independent set in the conflict
graph. The random variable counting the number of active
D2D links under some policy is denoted by L.

Figure 2(b) shows the conflict graph and one of maximum
independent sets for the conflict graph. We can see that out of
14 possible D2D links 9 links can co-exist without interfer-
ence. As is well known, determining the maximum indepen-
dent set of an arbitrary graph is computationally intractable
(NP complete [10]). Despite the difficulty of characterizing
the number of interference-free active links, we can determine



the best possible scaling law in our random ensemble.

(a)

(b)

Fig. 2. a) Random geometric graph, yellow and green nodes indicate
receivers, transmitters in D2D links. Gray nodes get their request files from
the BS. Arrows show all possible D2D links. b) conflict graph based on Figure
2(a) and one of maximum independent set of the conflict graph; pink vertices
are those D2D links that can be activated simultaneously.

III. ANALYSIS

A. Finding the optimal collaboration distance

We are interested in determining the best collaboration
distance r(n) and caching policy such that the expected
number of active D2D links is maximized. Our optimization
is based on balancing the following tension: The smaller
the transmit power, the smaller the region in which a D2D
communication creates interference. Therefore, more D2D
pairs can be packed into the same area allowing higher
frequency reuse. On the other hand, a small transmit power
might not be sufficient to reach a mobile that stores the desired
file. Smaller power means smaller distance and hence smaller
probability of collaboration opportunities. The optimum way
to solve this problem would be to assign different transmit
power to each node dynamically, to maximize the number

of non-interfering collaborating pairs. However this approach
would be intractable and non-practical.

Our approach is to enforce the same transmit power for
all the users and show how to optimize it based on the
content request statistics. Our analysis involves finding the
best compromise between the number of possible parallel D2D
links and the probability of finding the requested content. Our
results consist of two parts. In the first part (upper bound),
we find the best achievable scaling for the expected number
of active D2D links. In the second part (achievability), we
determine an optimal caching policy and r(n) to obtain the
best scaling for the expected number of active links E[L].

The best achievable scaling for the expected number of ac-
tive D2D links depends on the extend of content reuse. Larger
Zipf distribution exponents correspond to more redundancy in
the user requests and a small number of files accounts for
the majority of video traffic. Thus, the probability of finding
requested files through D2D links increases by having access
to few popular files via neighbors.

We separate the problem into two different regions depend-
ing on the Zipf exponent: γr > 1 and γr < 1. For each
of these regimes, we find the best achievable scaling for E[L]
and the optimum asymptotic r(n) denoted by ropt(n). We also
show that a simple distributed caching policy with the properly
chosen caching distribution has optimal scaling, i.e., matches
the scaling behavior that any centralized caching policy could
achieve1.

Our first result is the following theorem:
Theorem 1: If the Zipf exponent γr > 1,
i) Upper bound: For any caching policy, E[L] = O(n),

ii) Achievability: Given that
√

c1
n ≤ ropt(n) ≤

√
c2
n and

using a Zipf caching distribution with exponent γc > 1
then E[L] = Θ(n).

The first part of the theorem 1 is trivial since the number of
active D2D links can at most scale linearly in the number of
users. The second part indicates that if we choose ropt(n) =

Θ(
√

1
n ) and γc > 1, E[L] can grow linearly with n. There is

some simple intuition behind this result: We show that in this
regime users are surrounded by a constant number of users in
expectation. If the Zipf exponent γc is greater than one, this
suffices to show that the probability that they can find their
desired files locally is a non-vanishing constant as n grows.
Our proof is provided in the Appendix A.

For the low content reuse region γr < 1, we obtain the
following result:

Theorem 2: If γr < 1,
i) Upper bound: For any caching policy, E[L] = O( n

mη )
where η = 1−γr

2−γr ,

ii) Achievability: If ropt(n) = Θ(
√

mη+ε

n ) and users cache
files randomly and independently according to a Zipf dis-

1We use the standard Landau notation: f(n) = O(g(n)) and f(n) =
Ω(g(n)) respectively denote |f(n)| ≤ c1g(n) and |f(n)| ≥ c2g(n) for
some constants c1, c2. f(n) = Θ(g(n)), stands for f(n) = O(g(n)) and
f(n) = Ω(g(n)). Little-o notation, i.e., f(n) = o(g(n)) is equivalent to
limn→∞

f(n)
g(n)

= 0.



tribution with exponent γc, for any exponent η+ ε, there
exists γc such that E[L] = Θ( n

mη+ε ) where 0 < ε < 1
6

and γc is a solution to the following equation

(1− γr)γc
1− γr + γc

= η + ε.

We show that when there is low content reuse, linear scaling
in frequency re-use is not possible. At a high level, in order
to achieve the optimal scaling, on average a user should be
surrounded by Θ(mη) users. Comparing with the first region
where γr > 1, we can conclude that when there is less
redundancy, users have to see more users in the neighborhood
to find their desired files locally. Due to space constraints we
omit this proof.

IV. DISCUSSION AND CONCLUSIONS

The study of scaling laws of the capacity of wireless
networks has received significant attention since the pioneering
work by Gupta and Kumar [4] (e.g. see [11]–[13]). The first
result was pessimistic: if n nodes are trying to communicate
(say by forming n/2 pairs), since the typical distance in a
2D random network will involve roughly Θ(

√
n) hops, the

throughput per node must vanish, approximately scaling as
1/
√
n. There are, of course, sophisticated arguments perform-

ing rigorous analysis that sharpens the bounds and numerous
interesting model extensions. One that is particularly relevant
to this project is the work by Grossglauser and Tse [12]
that showed that if the nodes have infinite storage capacity,
full mobility and there is no concern about delay, constant
(non-vanishing) throughput per node can be sustained as the
network scales.

Despite the significant amount of work on ad hoc networks,
there has been very little work on file sharing and content
distribution over wireless ( [2], [14]) beyond the multiple
unicast traffic patters introduced in [4]. Our result shows that if
there is sufficient content reuse, non-vanishing throughput per
node can be achieved, even with constant storage and delay.
In our recent work [15] we empirically analyzed the optimal
collaboration distance for fixed number of users.

On a more technical note, the most surprising result is per-
haps the fact that in Theorem 2, a simple distributed policy can
match the optimal scaling behavior E[L] = O( n

mη ). Further,
for both regimes, the distributed caching policy exponent γc
should not match the request Zipf exponent γr, something that
we found quite counter intuitive.

Overall, even if linear frequency re-use is not possible, we
expect the scaling of the library m to be quite small (typically
logarithmic) in the number of users n. In this case we obtain
near-linear (up to logarithmic factors) growth in the number of
D2D links for the full spectrum of Zipf exponents. Our results
are encouraging and show that distributed caching can enable
collaboration and mitigate wireless content delivery problems.

APPENDIX A
PROOF OF THEOREM 1

The first part of the theorem is easy to see since the number
of D2D links cannot exceed the number of users.

For the second part of theorem 1, we divide the cell into
2

r(n)2 virtual square clusters. Figure 3(a) shows the virtual
clusters in the cell. The cell side is normalized to 1 and the side
of each cluster is equal to r(n)√

2
. Thus, all users within a cluster

can communicate with each other. Based on our interference
model, in each cluster only one link can be activated. Thus,
to prove the theorem, it is enough to show that in a constant
fraction of virtual clusters, there are active D2D links that
do not introduce interference to each other. This is because
r(n) = Θ(

√
1
n ) and there are Θ(n) virtual clusters in the

cell. When there is an active D2D link within a cluster, we
call the cluster good. But not all good clusters can be activated
simultaneously. One good cluster can at most block 16 clusters
(see Figure 3(b)). The maximum interference happens when
a user in the corner of a cluster transmits a file to a user in
the opposite corner. So, we have E[L] ≥ E[G]

17 where E[G] is
the expected number of good clusters. Since we want to find
the lower bound for E[L], we can limit users to communicate
with users in virtual clusters they belong to. Therefore, we
have

E[G] ≥ 2

r(n)2

n∑
k=0

Pr[good|k] Pr[K = k],

where 2
r(n)2 is the total number of virtual clusters. K is

the number of users in the cluster, which is a binomial
random variable with n trials and probability of r(n)2

2 , i.e.,
K = B(n, r(n)

2

2 ). Pr[K = k] is the probability that there are
k users in the cluster and Pr[good|k] is the probability that
the cluster is good conditioned on k. The probability that a
cluster is good depends on what users cache. Therefore,

E[G] ≥ 2

r(n)2

n∑
k=0

Pr[K = k]

×
∑{

u
∣∣|u|=k}Pr[good|u, k] Pr[U = u], (2)

where U is a random vector of stored files by users in the clus-
ter. u is a realization of U and |u| denotes the length of vector
u. The ith element of u denoted by ui ∈ {1, 2, 3, . . . ,m}
indicates what user i in the cluster stores.

For each u, we define a value:

v(u) =
∑
i∈ũ

fi,

where ũ = ∪|u|j=1uj and ∪ is the union operation. Actually
v(u) is the sum of popularities of the union of files in u. The
cluster is considered to be good if at least a user i in the cluster
requests one of the files in ũ − {ui}. Note the possibility of
self-requests, i.e., a user might find the file it requests in its
own cache; in this case clearly no D2D communication will
be activated by this user. Accounting for these self-requests,
the probability that user i finds its request files locally within
the cluster is (v(u)− fui

). Thus, we obtain:

Pr[good|u, k] ≥ 1− (1− (v(u)−max
i
fui

))k. (3)



(a)

(b)

Fig. 3. a) Dividing cell into virtual clusters. b) In the worst case, a good
cluster can block at most 16 clusters. In the dashed circle, receiving is not
possible and in the solid circle, transmission is not allowed.

Let us only consider cases where at least one user in the cluster
caches file 1 (the most popular file). Then, from (2) and (3),
the following lower bound is achieved:

E[G] ≥ 2

r(n)2

n∑
k=1

Pr[K = k]

×
∑
u∈x

1− (1− (v(u)− f1))k Pr[U = u]. (4)

where x =
{
u
∣∣|u| = k and 1 ∈ u

}
. Let us further define a

random variable V which is sum of popularities of the union
of files stored by users in the cluster. Then, in equation (4),
we can take the expectation with respect to V , i.e.,

E[G] ≥ 2

r(n)2

n∑
k=1

Pr[K = k]EV [1− (1− (V − f1))k|Ak1 ]

≥ 2

r(n)2

n∑
k=1

Pr[K = k]EV [(V − f1)|Ak1 ],

where Ak1 is the event that at least one of k users in the cluster
caches file 1 and EV [.] is the expectation with respect to V .
Let Ak1,h for 1 ≤ h ≤ k denote the event that h users out of

k users in the cluster cache file 1. Then, we get:

E[G] ≥ 2

r(n)2

n∑
k=1

Pr[K = k]

k∑
h=1

EV [(V − f1)|Ak1,h]

×
(
k
h

)
(p1)h(1− p1)k−h, (5)

where pj represents the probability that file j is cached by a
user based on Zipf distribution with exponent γc. To calculate
EV [(V − f1)|Ak1,h], we define an indicator function 1j for
each file j ≥ 2. 1j is equal to 1 if at least one user in the
cluster stores file j. Hence,

EV [(V − f1)|Ak1,h] = E[

m∑
j=2

fj1j |Ak1,h]

=

m∑
j=2

fj(1− (1− pj)k−h).

Substituting EV [(V −f1)|Ak1,h] in (5) and limiting the interval
of k, we can obtain:

E[G] ≥ 2

r(n)2

∑
k∈I

Pr[K = k]×

k∑
h=1

m∑
j=2

fj(1− (1− pj)k−h)

(
k
h

)
(p1)h(1− p1)k−h, (6)

where 0 < δ < 1 and I = [nr(n)2(1−δ)/2, nr(n)2(1+δ)/2].
Define k∗ ∈ I such that it minimizes the expression in the last
line of (6). Considering that r(n) = Θ(

√
1
n ), k∗ is Θ(1). Then

from (6), we have:

E[G] ≥ 2

r(n)2
Pr[k ∈ I]

k∗∑
h=1

m∑
j=2

fj(1− (1− pj)k
∗−h)

×
(
k∗

h

)
(p1)h(1− p1)k

∗−h (7)

≥ 2

r(n)2
(1− 2e−nr(n)

2δ2/6)

k∗p1(1+δ1)∑
h=k∗p1(1−δ1)

[( k∗

h

)

×
m∑
j=2

fj(1− (1− pj)k
∗−h)(p1)h(1− p1)k

∗−h
]
, (8)

where 0 < δ1 < 1. We apply the Chernoff bound in (7) to de-
rive (8) [16]. Since the exponent nr(n)2δ2/6 is Θ(1), we can
select the constant c1 such that the term (1 − 2e−nr(n)

2δ2/6)
becomes positive.

Let us define h∗ ∈ [k∗p1(1− δ1), k∗p1(1 + δ1)] such that it
minimizes the expression in the last line of (8). From (1) and
lemma 1, p1 is Θ(1) and as a result, h∗ is also Θ(1). Using
the Chernoff bound in (8), we get:

E[G] ≥ 2

r(n)2
(1− 2e−nr(n)

2δ2/6)(1− 2e−k
∗p1δ

2
1/3)

×
(
k∗

h∗

)
(p1)h

∗
(1− p1)k

∗−h∗
m∑
j=2

fj(1− (1− pj)k
∗−h∗

).

(9)



k∗ − h∗ should be greater than 1 which results in a constant
lower bound for c1. The second exponent, i.e., k∗p1δ21/3 is
Θ(1). The term (1 − 2e−k

∗p1δ
2
1/3) is a positive constant if

c1 ≥ 3 ln 2ζ(γc)
δ21(1−δ)

, where ζ(γ) =
∑
j=1

1
jγ is the Riemann zeta

function [17]. Further, the summation in (9) satisfies
m∑
j=2

fj(1− (1− pj)k
∗−h∗

) >

m∑
j=2

fjpj .

To show that E[G] scales linearly with n, the term
∑m
j=2 fjpj

should not be vanishing as n goes to infinity. It can been shown
that if γr, γc > 1,

∑m
j=2 fjpj = Θ(1) (see lemma 1).

Lemma 1: If γ > 1, a = o(b), and a = Θ(1),
then H(γ, a, b) = Θ(1) and

∑b
j=a fjpj = Θ(1) where

H(γ, a, b) =
b∑

j=a

1
iγ .

The proof is omitted due to lack of space.

REFERENCES

[1] “http://www.cisco.com/en/us/solutions/collateral/ns341/ns525/ns537
/ns705/ns827/white paper c11-520862.html.”

[2] N. Golrezaei, K. Shanmugam, A. Dimakis, A. Molisch, and G. Caire,
“Femtocaching: Wireless video content delivery through distributed
caching helpers,” in INFOCOM. IEEE, 2012.

[3] ——, “Wireless video content delivery through coded distributed
caching,” in ICC. IEEE, 2012.

[4] P. Gupta and P. Kumar, “The capacity of wireless networks,” Information
Theory, IEEE Transactions on, vol. 46, no. 2, pp. 388–404, 2000.

[5] M. Penrose and O. U. Press, Random geometric graphs. Oxford
University Press Oxford, 2003, vol. 5.

[6] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. Moon, “I tube, you tube,
everybody tubes: analyzing the world’s largest user generated content
video system,” in Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement. ACM, 2007, pp. 1–14.

[7] “http://traces.cs.umass.edu/index.php/network/network.”
[8] N. Golrezaei, A. Dimakis, and A. Molisch, “Asymptotic throughput of

base station assisted device-to-device communications,” pp. 382–390, to
be submitted for publication.

[9] A. Molisch, Wireless communications. Wiley, 2011.
[10] E. Lawler, J. Lenstra, A. Kan, and E. U. E. Institute, “Generating

all maximal independent sets: Np-hardness and polynomial-time algo-
rithms,” SIAM J. Comput., vol. 9, no. 3, pp. 558–565, 1980.
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