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Abstract—A simple encoding scheme based on Sato’s non-naı̈ve
frequency division is proposed for a class of Gaussian interference
channels with mixed interference. The achievable region isshown
to be equivalent to that of Costa’snoiseberg region for the one-
sided Gaussian interference channel. This allows for an indirect
proof that this simple achievable rate region is indeed equivalent
to the Han-Kobayashi (HK) region with Gaussian input and with
time sharing for this class of Gaussian interference channels with
mixed interference.

I. I NTRODUCTION

The interference channel (IC) describes a network where
multiple transmitters communicate with their intended re-
ceivers via a common medium. The characterization of the
capacity region for a two-user IC is an open problem except
for the strong and very strong interference cases [1]–[3].
To date, the largest achievable rate region is the celebrated
Han-Kobayashi (HK) region that employs rate splitting at the
transmitters and simultaneous decoding at the receivers [3].
Not surprisingly, for those ICs whose capacity regions are
completely characterized, it is without an exception that the
capacity region coincides with the HK region.

However, the general HK region involves a time sharing
variable that makes its evaluation intractable. For the Gaussian
interference channel (GIC), another difficulty is the input
distribution. A two-user GIC in its standard form can be
represented as

Y1 = X1 + bX2 + Z1,

Y2 = aX1 +X2 + Z2,
(1)

whereX1 and X2 are the input signals and are subject to
respective power constraintsP1 and P2; Y1 and Y2 are the
received signals;Z1 and Z2 are Gaussian noises of unit
variance and are independent of the inputsX1 andX2. This
model is depicted in Fig. 1. While for all the cases where
the capacity results are known for a GIC, the optimal input
distribution is invariably Gaussian, it is not yet known (or
proven) that such is the case for the general GIC.

There has been recent progress in obtaining computable
subregion of the HK achievable region using Sato’s non-naı̈ve
frequency division [4]. For the one-sided GIC (denoted as
ZGIC) shown in Fig. 2(a), Motahari and Khandani established
that such a non-naı̈ve frequency division scheme achieves the
HK region with Gaussian input [5]. Most recently, Costa intro-
duced the so-callednoiseberg scheme which uses water filling
to achieve optimal power sharing between two orthogonal
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Fig. 1. Two-user GIC

dimensions [6]. It turns out, as shown in the next section,
that this simple noiseberg scheme achieves precisely the same
HK region with Gaussian input.

This paper focuses on GICs with mixed interference
(MGIC) and with ab ≥ 1, a ≤ 1 and b ≥ 1 (cf. Fig. 1 and
Eq. (1)). We describe a simple coding scheme that combines
the noiseberg scheme with that of simultaneous decoding at
the receiver experiencing strong interference. The obtained rate
region is subsequently shown to coincide with the HK region
with Gaussian input.

The rest of the paper is organized as follows. In Section
II, we review the noiseberg scheme for the ZGIC and provide
a proof of its equivalence to the HK region with Gaussian
input. Section III describes the coding scheme for a class of
MGIC and proves that the scheme achieves the HK region
with Gaussian input. Section IV concludes this paper.

II. N OISEBERGREGION FOR THEZGIC

We consider the degraded GIC shown in Fig. 2(b), which
is equivalent to the ZGIC witha < 1 in Fig. 2(a) [7].

The noiseberg region, denoted byRN and introduced by
Costa in [6] for a ZGIC with weak interference (a < 1 in
Fig. 2(a)) is the set of all nonnegative rate pairs(R1, R2)
satisfying

R1 ≤ λ̄R
1λ̄ + λR1λ,

R2 ≤ λ̄R2λ̄,

where

R1λ̄ ≤
1

2
log

(

1 +
P1A

λ̄

)

+
1

2
log

(

1 +
a2 P1C

λ̄

1 + a2 P1A

λ̄
+ P2

λ̄

)

,

(2)

R2λ̄ ≤
1

2
log

(

1 +
P2

λ̄

1 + a2 P1A

λ̄

)

, (3)
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Fig. 2. ZGIC

R1λ ≤
1

2
log

(

1 +
P1B

λ

)

, (4)

and the power limitsP1A, P1B andP1C are determined by
two parametersh andλ such that

P1A

λ̄
= P1 −

P2λ

a2λ̄
− λmin

{

h,
1− a2

a2

}

−max

{

0, h−
1− a2

a2

}

,

P1B

λ
= P1 +

P2

a2
+ λ̄min

{

h,
1− a2

a2

}

,

P1C

λ̄
= max

{

0, h−
1− a2

a2

}

.

Costa [6] showed thatRN is achievable for the ZGIC
with weak interference by a coding scheme that uses a two-
band non-naı̈ve frequency division multiplexing (FDM) with
water filling for optimal power allocation between the two
subbands. The coding scheme, as well as its achievable region,
involves two parameters0 ≤ λ ≤ 1 and h ≥ 0. They vary
over the admissible region as shown in Fig. 3, resulting in
different transmission schemes depending on the values of the
parameters. The parameterλ determines how to allocate the
frequency band.

• The λ subband is reserved for the communication be-
tween transmitter 1 and receiver 1.

• Theλ̄ subband is shared by both transceiver pairs and the
corresponding coding scheme is determined by the other
parameterh.

As the noiseZ2 does not affect the transmission ofX1,
water filling allows the overall power level in theλ-subband
to be raised above that of thēλ-subband, with part of the
noise spectrum ofZ2 floating above the signal level. This phe-
nomenon, i.e., the existence of difference in heights of power
spectrum for the two subbands is referred to as thenoiseberg.
The parameter h is defined as the height of total power density
in the λ-subband above that ofX2’s power density in the
λ̄-subband. Differenth values divide the admissible region
for the parameter pairs into two regions, each employing a
different coding scheme in thēλ-subband:
Multiplex region This corresponds toh ≤ 1−a2

a2 . As shown
in Fig. 4,Z ′

2 prevents user 1’s power from spilling over to the
λ̄-band thus no rate-splitting is involved. Receiver 2 decodes
W1 first, subtracts it and decodesW2.

Overflow
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Multiplex
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Fig. 3. Admissible region for(λ, h)
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Fig. 4. Multiplex region

Overflow region This corresponds toh > 1−a2

a2 . As shown
in Fig. 5, water-filling of user 1’s power occurs as the power
spills over from theλ-subband to thēλ-subband. The encoding
scheme in thēλ subband thus involves rate splitting forW1:
a common messageW1c with power P1c decoded by both
receivers and a private messageW1p with powerP1A decoded
only by receiver 1. Receiver 2 decodesW1c first, subtracts it,
and decodesW2, all the while treatingW1p as noise.

It is remarkable that such a simple transmission scheme
turns out to achieve precisely the same HK region with time
sharing and with Gaussian input.

Theorem 1: For the weak ZGIC,RN = RHK.
Proof: Motahari and Khandani showed that for the ZGIC,

Noiseberg

Band

Power density

1

λ̄

P
1A
λ̄

1−a2

a2

P2

λ̄a2

P
1C
λ̄

1

λ

P
1B
λ

1−a2

a2

h

Fig. 5. Overflow region



the non-naı̈ve FDM region, denoted byRFDM, is equivalent
to RHK, whose boundary points can be characterized by the
optimization problem [5, Eq. (151)]. It suffices to verify the
equivalence betweenRN andRFDM.

We start by considering water filling in the two-band FDM
applied to the degraded GIC shown in Fig. 2(b). First, we split
W1 into private messageW1p with power constraintP1p and
common messageW1c with power constraintP1c such that
P1p + P1c = P1. Power allocation intoλ and λ̄ subbands is
done in the following order. First,P1p is allocated to the two
subbands in an arbitrary way. On top of that,P2 is allocated to
the two subbands via waterfilling. AsY ′

2 sees additional noise
Z ′
2, P2 is allocated on top ofZ ′

2 (see, e.g., Fig. 6(d)). Finally,
P1c is allocated to the two subbands, again, using waterfilling.

Depending onP1p and its allocation between the two
subbands, there are four possible power allocation outcomes
of this scheme, as shown in Fig. 6. Since the scenarios
illustrated in Fig. 6(a)(b)(c) are equivalent to noisebergcases,
it remains to argue that the power allocation scheme with flat
spectrum top as in Fig. 6(d) is not optimal. This is because the
achievable rates under such a scheme are formed by convex
combinations of points on the curve of associated broadcast
channel capacity, as the flat top requiresP

1cλ̄

λ̄
= P1cλ

λ
. As

the broadcast channel capacity curve is convex, we can only
achieve the points on the chord, which are dominated by the
points on the curve corresponding to the scheme with no
frequency division. Thus they are not optimal.

Next we generalize this conclusion to three-band FDM.
Similarly we argue that the power-bandwidth allocation
schemes with two or more subbands sharing the same flat
top are not optimal. If two subbands are occupied solely by
the transmission ofX1, they can be merged into one and this
reduces to one of the noiseberg scenarios.

III. A CHIEVABLE REGION FOR ACLASS OFMGIC
For the MGICs with0 < a ≤ 1, b ≥ 1 andab ≥ 1, the HK

region with Gaussian input can be simplified to be the set of
all rate pairs(R1, R2) satisfying

R1 ≤

q
∑

i=1

λi

{

1

2
log(1 + P1i)

}

,

R2 ≤

q
∑

i=1

λi

{

1

2
log

(

1 +
P2i

1 + a2αiP1i

)}

,

R1 +R2 ≤

q
∑

i=1

λi

{

1

2
log

(

1 +
P2i + a2ᾱiP1i

1 + a2αiP1i

)

+
1

2
log(1 + αiP1i)

}

,

whereq ∈ N, i ∈ {1, . . . , q}, 0 ≤ αi ≤ 1, , ᾱi = 1 − αi,

λi ≥ 0,
q∑

i=1

λi = 1,
q∑

i=1

λiP1i ≤ P1 and
q∑

i=1

λiP2i ≤ P2. We

refer to RHK as the above HK region with Gaussian input.
The difficulty in using this region is largely due to the presence
of the time sharing variable.

We now describe a simple transmission scheme for a MGIC
with ab ≥ 1. The scheme resembles the noiseberg scheme as it
also utilizes the two-band non-naı̈ve FDM. Specifically, inthe

λ-subband, only transmitter 1 transmits and receiver 1 decodes
W1 with a rate constraint defined in (4).

In the λ̄-subband, transmitter 2 does not use rate splitting.
Transmitter 1, on the other hand, employs two encoding
schemes depending on the value ofh. The corresponding
decoding schemes are also different. We describe them in
details below.
Multiplex region This corresponds toh ≤ 1−a2

a2 . Sequential
decoding is used at both receivers. Receiver 1 first decodes
W2, which leads to the constraint

R2λ̄ ≤
1

2
log

(

1 +
b2P2/λ̄

1 + P1A/λ̄

)

. (5)

Subsequently,X2 is subtracted fromY1 andW1 is decoded
with constraint (2). Receiver 2 decodesW2 with constraint (3).
Comparing (3) and (5), we see that (5) is redundant. Therefore
sequential decoding in the multiplex region achievesRN .
Overflow region This corresponds toh > 1−a2

a2 . Receiver
1 employs simultaneous decoding while receiver 2 still uses
sequential decoding. For receiver 1, letS1, T1 and T2 be,
respectively, the rates of transmitter 1’s private messageW1p,
common messageW1c and W2. ThenR1λ̄ = S1 + T1 and
R2λ̄ = T2. Evaluation of error probability will give us

S1 ≤
1

2
log

(

1 +
P1A

λ̄

)

, (6)

T1 ≤
1

2
log

(

1 +
P1C

λ̄

)

, (7)

T2 ≤
1

2
log

(

1 +
b2P2

λ̄

)

, (8)

S1 + T1 ≤
1

2
log

(

1 +
P1A

λ̄
+

P1C

λ̄

)

, (9)

S1 + T2 ≤
1

2
log

(

1 +
P1A

λ̄
+

b2P2

λ̄

)

, (10)

T1 + T2 ≤
1

2
log

(

1 +
P1C

λ̄
+

b2P2

λ̄

)

, (11)

S1 + T1 + T2 ≤
1

2
log

(

1 +
P1A

λ̄
+

P1C

λ̄
+

b2P2

λ̄

)

. (12)

As receiver 2 decodesW1C andW2 sequentially, there will
be two constraints

T1 ≤
1

2
log

(

1 +
a2 P1C

λ̄

1 + a2 P1A

λ̄
+ P2

λ̄

)

, (13)

T2 ≤
1

2
log

(

1 +
P2

λ̄

1 + a2 P1A

λ̄

)

. (14)

Fourier-Motzkin elimination on (6)-(14) gives us

R1λ̄ ≤
1

2
log

(

1 +
P1A

λ̄
+

P1C

λ̄

)

, (15)

R1λ̄ ≤
1

2
log

(

1 +
P1A

λ̄

)

+
1

2
log

(

1 +
a2 P1C

λ̄

1 + a2 P1A

λ̄
+ P2

λ̄

)

, (16)

R2λ̄ ≤
1

2
log

(

1 +
P2

λ̄

1 + a2 P1A

λ̄

)

, (17)

R
1λ̄ +R

2λ̄ ≤
1

2
log

(

1 +
P1A

λ̄
+

P1C

λ̄
+

b2P2

λ̄

)

, (18)
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Fig. 6. Possible power allocation outcomes of the two-band non-naı̈ve FDM scheme with ZGIC

R1λ̄ +R2λ̄ ≤
1

2
log

(

1 +
P1A

λ̄
+

b2P2

λ̄

)

+
1

2
log

(

1 +
a2 P1C

λ̄

1 + a2 P1A

λ̄
+ P2

λ̄

)

, (19)

R1λ̄ + 2R2λ̄ ≤
1

2
log

(

1 +
P1A

λ̄
+

b2P2

λ̄

)

+
1

2
log

(

1 +
P1C

λ̄
+

b2P2

λ̄

)

. (20)

Then the achievable rate region in overflow region is

R1 ≤ λ̄R1λ̄ + λR1λ,

R2 ≤ λ̄R
2λ̄,

whereR1λ̄, R2λ̄ and R1λ satisfy (15)-(20) and (4). In the
appendix we simplify this region and prove that it is equivalent
to RN .

Combining the results in both the multiplex and overflow
regions, we conclude thatRN is achievable for the MGICs
with ab > 1. Thus we have,

Theorem 2: For the MGICs withab > 1, RN associated
with the ZGIC obtained by removing the interfering link with
gain b is achievable.

Corollary 1: For the MGICs withab > 1, RN = RHK.
Proof: On the one hand, with Gaussian input,RHK of

the MGIC is a subset of that of the ZGIC. On the other
hand,RN ⊆ RHK for the MGIC in general. But Theorem
1 states thatRN = RHK for the ZGIC. This establishes

the equivalence betweenRN andRHK for the MGICs with
ab > 1.

This is consistent with [5, Theorem 12] that states for
the MGICs with ab > 1, RHK is equivalent to that of the
corresponding ZGIC.

IV. CONCLUSION

This paper established the equivalence between Costa’s
noiseberg region and the HK region with Gaussian input
for the ZGIC. For the MGICs withab > 1, an achievable
rate region was developed by rate splitting and a mixture of
sequential and simultaneous decoding. By comparing the new
region to the noiseberg region of the ZGIC, we proved that
it is a simplification of the HK region for the MGICs with
ab > 1 and with Gaussian codebook.
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APPENDIX

In the appendix we prove the equivalence between the
achievable rate region in the overflow region andRN .

Comparing this region withRN , we see that (16)(17) and
(2)(3) are identical. Then it remains to show that (15)(18)-(20)
are redundant given (16)(17).



Eq. (15) is redundant since

1

2
log

(

1 +
P1A

λ̄

)

+
1

2
log

(

1 +
a2 P1C

λ̄

1 + a2 P1A

λ̄
+ P2

λ̄

)

≤
1

2
log

(

1 +
P1A

λ̄
+

P1C

λ̄

)

⇔
a2P1C

λ̄+ a2P1A + P2

(

1 +
P1A

λ̄

)

≤
P1C

λ̄

⇔ a2λ̄+ a2P1A ≤ λ̄+ a2P1A + P2

⇔ (1− a2)λ̄+ P2 ≥ 0,

which is trivially true.
Eq. (18) is redundant, since it is superseded by (16) and

(17), i.e., we will show

1

2
log

(

1 +
P1A

λ̄

)

+
1

2
log

(

1 +
a2 P1C

λ̄

1 + a2 P1A

λ̄
+ P2

λ̄

)

+
1

2
log

(

1 +
P2

λ̄

1 + a2 P1A

λ̄

)

≤
1

2
log

(

1 +
P1A

λ̄
+

P1C

λ̄
+

b2P2

λ̄

)

,

or, equivalently,

a2P1C

λ̄+ a2P1A + P2

(

1 +
P1A

λ̄

)

+
P2

λ̄+ a2P1A

(

1 +
P1A

λ̄

)

+
P2

λ̄+ a2P1A

(

1 +
P1A

λ̄

)

a2P1C

λ̄+ a2P1A + P2

≤
P1C

λ̄
+

b2P2

λ̄
. (21)

In order to prove (21), it suffices to show

P2

λ̄+ a2P1A

(

1 +
P1A

λ̄

)

≤
b2P2

λ̄
(22)

and

P2

λ̄+ a2P1A

(

1 +
P1A

λ̄

)

a2P1C

λ̄+ a2P1A + P2

+
a2P1C

λ̄+ a2P1A + P2

(

1 +
P1A

λ̄

)

≤
P1C

λ̄
. (23)

Eq. (22) is equivalent to

b2

λ̄
≥

1 + P1A

λ̄

λ̄+ a2P1A

⇔ (b2 − 1)λ̄+ (a2b2 − 1)P1A ≥ 0

which is obviously true. Eq. (23) is equivalent to

P1C

λ̄
≥

a2P1C

λ̄+ a2P1A + P2

(

1 +
P1A

λ̄

)(

1 +
P2

λ̄+ a2P1A

)

(24)

⇔ λ̄+ a2P1A + P2 ≥ a2(λ̄+ P1A)

(

1 +
P2

λ̄+ a2P1A

)

⇔ λ̄(1− a2)(λ̄+ a2P1A + P2) ≥ 0.

Thus (22) and (23) are true and (18) is redundant.

Comparing (16)(17) and (19), we see that (19) being redun-
dant is equivalent to

1

2
log

(

1 +
P1A

λ̄

)

+
1

2
log

(

1 +
P2

λ̄

1 + a2 P1A

λ̄

)

≤
1

2
log

(

1 +
P1A

λ̄
+

b2P2

λ̄

)

(25)

⇔ 1 +
P1A

λ̄
+

P2

λ̄+ a2P1A

+
P1A

λ̄

P2

λ̄+ a2P1A

≤ 1 +
P1A

λ̄
+

b2P2

λ̄

which is equivalent to (22). Thus (19) is redundant.
Comparing (16)(17) and (20), we see that (20) being redun-

dant is equivalent to

2 ∗
1

2
log

(

1 +
P2

λ̄

1 + a2 P1A

λ̄

)

+
1

2
log

(

1 +
P1A

λ̄

)

+
1

2
log

(

1 +
a2 P1C

λ̄

1 + a2 P1A

λ̄
+ P2

λ̄

)

≤
1

2
log

(

1 +
P1A

λ̄
+

b2P2

λ̄

)

+
1

2
log

(

1 +
P1C

λ̄
+

b2P2

λ̄

)

.

It suffices to show (25) and

1

2
log

(

1 +
a2 P1C

λ̄

1 + a2 P1A

λ̄
+ P2

λ̄

)

+
1

2
log

(

1 +
P2

λ̄

1 + a2 P1A

λ̄

)

≤
1

2
log

(

1 +
P1C

λ̄
+

b2P2

λ̄

)

which is equivalent to

1 +
P2

λ̄+ a2P1A

+
P2

λ̄+ a2P1A

a2P1C

λ̄+ a2P1A + P2

+
a2P1C

λ̄+ a2P1A + P2

≤ 1 +
P1C

λ̄
+

b2P2

λ̄
.

Then it is sufficient to show
P2

λ̄+ a2P1A

≤
b2P2

λ̄

and
(

1 +
P2

λ̄+ a2P1A

)

a2P1C

λ̄+ a2P1A + P2

≤
P1C

λ̄
,

which are trivially true from (22) and (24). Thus (20) is
redundant given (16) and (17).
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