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Abstract—A simple encoding scheme based on Sato’s non-naive Zy ~ N(0,1)
frequency division is proposed for a class of Gaussian intégrence Power Py
channels with mixed interference. The achievable region ishown X b—=v;
to be equivalent to that of Costa’snoiseberg region for the one- a
sided Gaussian interference channel. This allows for an indect
proof that this simple achievable rate region is indeed equialent b
to the Han-Kobayashi (HK) region with Gaussian input and with X, Ny,
time sharing for this class of Gaussian interference channs with Power P,
mixed interference. Zs ~ N(0,1)

I. INTRODUCTION )
Fig. 1. Two-user GIC

The interference channel (IC) describes a network where
multiple transmitters communicate with their intended re-
ceivers via a common medium. The characterization of tlhiémensions[[5]. It turns out, as shown in the next section,
capacity region for a two-user IC is an open problem excegpiat this simple noiseberg scheme achieves precisely the sa
for the strong and very strong interference cases [1]-[3}K region with Gaussian input.

To date, the largest achievable rate region is the celabrate This paper focuses on GICs with mixed interference
Han-Kobayashi (HK) region that employs rate splitting & th(MGIC) and withab > 1, a < 1 andb > 1 (cf. Fig.[d and
transmitters and simultaneous decoding at the receivérs Bq. (1)). We describe a simple coding scheme that combines
Not surprisingly, for those ICs whose capacity regions athe noiseberg scheme with that of simultaneous decoding at
completely characterized, it is without an exception the t the receiver experiencing strong interference. The obthiate
capacity region coincides with the HK region. region is subsequently shown to coincide with the HK region

However, the general HK region involves a time sharingith Gaussian input.
variable that makes its evaluation intractable. For thesSian The rest of the paper is organized as follows. In Section
interference channel (GIC), another difficulty is the inpdlf] we review the noiseberg scheme for the ZGIC and provide
distribution. A two-user GIC in its standard form can be proof of its equivalence to the HK region with Gaussian
represented as input. Sectiori Tl describes the coding scheme for a class of

Vi = Xy 40Xyt 2, M_GIC and proves that th_e scheme achieves the HK region
Yy = aXy+Xo+Zs (1) with Gaussian input. Sectidn]V concludes this paper.
where X; and X, are the input signals and are subject to IIl. NOISEBERGREGION FOR THEZGIC
respective power constrain, and P,; Y; and Y, are the  We consider the degraded GIC shown in Kig. 2(b), which
received signals;Z; and Z, are Gaussian noises of unitis equivalent to the ZGIC with < 1 in Fig.[2(a) [7].
variance and are independent of the inpiitsand X,. This . € noiseberg region, denoted &) and introduced by
. . o . Costa in [6] for a ZGIC with weak interference (< 1 in
model is (_jep|cted in FigJ1. While for all the cases vv_hergig_ 2(a)) is the set of all nonnegative rate paiis,, Ro)
the capacity results are known for a GIC, the optimal inpghtisfying
distribution is invariably Gaussian, it is not yet known (or

proven) that such is the case for the general GIC. By s AR+ AR,
There has been recent progress in obtaining computable Re = ARy,
subregion of the HK achievable region using Sato’'s nonaaiwhere
frequency division [[4]. For the one-sided GIC (denoted as P Ry
ZGIC) shown in Fig[R(a), Motahari and Khandani establishe#,; < Zlog (1 + ;A) + - log (1 + 5 Pli 7 ) ;
that such a non-naive frequency division scheme achiéees t A 2 1t+a T

HK region with Gaussian input[5]. Most recently, Costa datr - @
duced the so-calledoiseberg scheme which uses water filling ,, Liog [1+ e 3)
to achieve optimal power sharing between two orthogon:ﬁ2A -2 1+ aQ%A ’
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Fig. 4. Multipl i
Costa [6] showed thafR, is achievable for the ZGIC 9 HipTex region

with weak interference by a coding scheme that uses a two-
band non-naive freguency division mqupIexmg (FDM) kit Overflow region This corresponds té& > 1*32. As shown
water filling for optimal power allocation between the twag a

. . . in Fig.[3, water-filling of user 1's power occurs as the power
subbands. The coding scheme, as well as its achlevablmreggs%ms over from the\-subband to thé-subband. The encoding
involves two parameter8 < A\ < 1 andh > 0. They vary X

scheme in the\ subband thus involves rate splitting foir;

e e oo o e common messagi', with power 1, decoced by o
: ISSI P ng valu eceivers and a private messdgg, with powerP; 4 decoded

parameters. The parametkrdetermines how to allocate theonly by receiver 1. Receiver 2 decodds.. first, subtracts it,

frequency band. . o and decodes$l;, all the while treating¥;,, as noise.
« The A subband is reserved for the communication be- It is remarkable that such a simple transmission scheme

tween transmitter 1 and receiver 1. _ urns out to achieve precisely the same HK region with time
o The\ subband is shared by both transceiver pairs and t ﬁaring and with Gaussian input

corresponding coding scheme is determined by the other.l_heorem 1: For the weak ZGICRy = R
parameters. ‘ N = e

) . Proof: Motahari and Khandani showed that for the ZGIC,
As the noiseZ, does not affect the transmission &f;,
water filling allows the overall power level in the-subband

to be raised above that of the-subband, with part of the
noise spectrum of; floating above the signal level. This phe-

Power density

nomenon, i.e., the existence of difference in heights ofgyow NO'Se&‘bergg v
spectrum for the two subbands is referred to asnthiecberg. e N

The parameter h is defined as the height of total power density X

in the A\-subband above that aKy's power density in the % N 3
A-subband. Different, values divide the admissible region 1—a? RN

for the parameter pairs into two regions, each employing a Pia

different coding scheme in thie-subband: 2

Multiplex region This corresponds téd < 1;32. As shown 1 1 Band

in Fig.[4, Z; prevents user 1's power from spilling over to the
A-band thus no rate-splitting is involved. Receiver 2 desode
W first, subtracts it and decodé®;. Fig. 5. Overflow region



the non-naive FDM region, denoted B/=p A4, IS equivalent A-subband, only transmitter 1 transmits and receiver 1 degod

to Ry, whose boundary points can be characterized by thi, with a rate constraint defined ial(4).

optimization problem[[5, Eq. (151)]. It suffices to verifyeth  In the A\-subband, transmitter 2 does not use rate splitting.

equivalence betweeR s and R rpas. Transmitter 1, on the other hand, employs two encoding
We start by considering water filling in the two-band FDMschemes depending on the value /af The corresponding

applied to the degraded GIC shown in Hi§j. 2(b). First, wet sptiecoding schemes are also different. We describe them in

W, into private messag#/;, with power constraini’;, and details below. ,

common messag#/;. with power constraint?;, such that Multiplex region This corresponds té < i—¢~. Sequential

Py, + Pi. = Pi. Power allocation into\ and \ subbands is decodhnghlsl, u?jed athboth receivers. Receiver 1 first decodes

done in the following order. First?,, is allocated to the two W2, which leads to the constraint -

subbands in an arbitrary way. On top of tha,is allocated to Ry < llog (1 " b’ Py /X _) . )

the two subbands via waterfilling. A sees additional noise -2 1+ Pia/A

Z3, P, is allocated on top of; (see, e.g., Fid.16(d)). Finally, SubsequentlyX, is subtracted from¥; and W; is decoded

Py is allocated to the two subbands, again, using waterfillingith constraint[(R). Receiver 2 decodds with constraint[(B).
Depending onPy;, and its allocation between the twoComparing[(B) and{5), we see thak (5) is redundant. Thezefor

subbands, there are four possible power allocation outsom@quential decoding in the multiplex region achiefes.

of this SCheme, as shown in F|@ 6. Since the Scenari@/erﬂow region This Corresponds td > 1_52_ Receiver

illustrated in Fig[6(a)(b)(c) are equivalent to noisebeages, 1 employs simultaneous decoding while receiver 2 still uses

it remains to argue that the power allocation scheme with ﬂ@@quer}tiall d?ﬁgciier\]tgels z(f)rtr;encser%?tcrarli’s@é'r i\z;\ltearmdeg%&’ g;,

spectrum top as in Fig] 6(d) is not optimal. This is because tFESPECUVElY,

achievable rates under such a scheme are formed by conyg% "on messag®, and W,. Then 25 = 51 + T1 and

o . ) 3 = T». Evaluation of error probability will give us
combinations of points on the curve of associated broadcast' 2 P 4 ¢

channel capacity, as the flat top requirés* = £ As Si < llog (1 n ﬂ) 7 ©6)

the broadcast channel capacity curve is convex, we can only 2 A

achieve the points on the chord, _Which are dominated _by the T < llog (1 + @) 7 @

points on the curve corresponding to the scheme with no 2 A

frequency division. Thus they are not optimal. T, < llog (1 . b2}32> ®)
Next we generalize this conclusion to three-band FDM. -2 A )

Similarly we argue that the power-bandwidth allocation 1 ( Pia PlC)

. . Si+T1 < Zlog |1+ —==+"%2), 9
schemes with two or more subbands sharing the same flat TR = g A A ©
top are not optimal. If two subbands are occupied solely by 1 P4 VP

o . . < = A2
the transmission of;, they can be merged into one and this S+l s 2 log | 1+ A + x ) (10)
reduces to one of the noiseberg scenarios. ] 2
g T +T < %1og<1+@+b:132), (11)
1. ACHIEVABLE REGION FOR ACLASS OFMGIC A A )
For the MGICs with0 < a < 1,b>1andab > 1, the HK Si4+Ti+Ts < llog<1+ﬂ+ﬂ+bpz>.(1z)
region with Gaussian input can be simplified to be the set of 2 A A A

all rate pairs(R;, R2) satisfying

q
R1 S Z)\i{%log(l'i-Pu)},
=1

Ry < zq:,\- Liog (14—
2= = 12 s 1+ a20;Pi; ’

As receiver 2 decoddd’; and W, sequentially, there will
be two constraints

1 QQELQ
Tn < Zlog|1l4+ —2—], 13
P 1+a2Ba 2 49

1 2y
T, < <Zlog|l+—2—. 14
K 1 P2-+a264-P1- P 2 Og( +1+a2%i> ( )
Ri+ Ry < Aig =1 1+ —=——=-" . . S .
R ; {2 Og( T oy ) Fourier-Motzkin elimination on[{6)-(14) gives us
1 . . _ 1 PlA PlC
+5 log(1 + azph)} , Rix < ;log (1 + T) ; (15)
i ) 7 — 1 — v 1 P
where ¢ % N, i € {1q,...,q}, 0< oy §q1, , @y 1— oy Ry < §1Og <1+%A)
)\120,Z)\lzl,Z)\lPMSPlandZ)\leSPQWe 2 P
=1 i=1 i=1 1 ~
refer to Ry as the above HK region with Gaussian input. +3 log <1 + m> , (16)
The difficulty in using this region is largely due to the pnese » A A
of the time sharl_ng var_lable. o Ry < =log |1+ X 7 17)
We now describe a simple transmission scheme for a MGIC 2 1+a232
with ab > 1. The scheme resembles the noiseberg scheme as it Pia  Pio 0P
also utilizes the two-band non-naive FDM. Specificallythie Rix+Ryx < Slog (1 t5 t+tx 3 ) , (18)
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Fig. 6. Possible power allocation outcomes of the two-bam-maive FDM scheme with ZGIC

2
Ris + Ry < llog 1+ @ + b _P? the equivalence betweeR s and Ry for the MGICs with
- 2 A A
b ab > 1. |
+110g 14 a” == (19) This is consistent with[[5, Theorem 12] that states for
2 1+a28a 4 22 )7 the MGICs withab > 1, Ry is equivalent to that of the
2 corresponding ZGIC.
Rys + 2Ry < %m(u%ﬂ’f) P g
2 IV. CONCLUSION
—&—llog(l—l—i-&-b—]%) (20) _ . ,
2 A A This paper established the equivalence between Costa’s

Then the achievable rate region in overflow region is noiseberg region and the HK region with Gaussian input
for the ZGIC. For the MGICs withub > 1, an achievable

R < ARys + ARy, rate region was developed by rate splitting and a mixture of
Ry < ARy, sequential and simultaneous decoding. By comparing the new
region to the noiseberg region of the ZGIC, we proved that

where R;3, R,x and Ry, satisfy [I5){(2D) and[{4). In the it is a simplification of the HK region for the MGICs with
appendix we simplify this region and prove thatitis equival ;» >~ 1 and with Gaussian codebook.

to Ry

Combining the results in both the multiplex and overflow ACKNOWLEDGMENT
regions, we conclude tha  is achievable for the MGICs
with ab > 1. Thus we have,

Theorem 2. For the MGICs withab > 1, R associated
with the ZGIC obtained by removing the interfering link with
gainb is achievable.

Corollary 1: For the MGICs withab > 1, Ry = Ryux- In the appendix we prove the equivalence between the

Proof: On the one hand, with Gaussian inp@y of achievable rate region in the overflow region &Rg:.
the MGIC is a subset of that of the ZGIC. On the other Comparing this region wittR -, we see that (16)(17) and
hand, Ry € Rux for the MGIC in general. But Theorem (2)(3) are identical. Then it remains to show thail (I5) (€&}
1 states thatRy = Ry for the ZGIC. This establishes are redundant giveh (L6){[17).

The authors would like to thank Prof. Max Costa for helpful
discussions about the noiseberg region.

APPENDIX



Eqg. (I5) is redundant since

Pic
1 P1A> 1 a? e
—log(1+—==)+zlog |1+ —2—F
2 g( A 2 g< 140284 + &2

2
PN aPio (1

A+ a2Pi4s + P>
o a®X+ad’Pia §5\—|—a2P1A+P2
e (1-d)A+P, >0,

which is trivially true.

Comparing[(IB)(17) and (19), we see tHail (19) being redun-
dant is equivalent to

1 Pia\ 1 2
-1 1+ — —1 1+ —2=—
2og<+ )\)+20g<+1+a2plTA

1 Pia b* Py
<zlog (14 ==+ — 25
< gog (14 52+ 52 @5)
P> Pia P
o 142 A f2
X A+a2Pis 0 A Ata2Pia
Pia  b2Ps
<1414, 7
= hy hy

which is equivalent to[{22). Thu§ (119) is redundant.
Comparing[(IB)(17) and (20), we see tHafl (20) being redun-

Eq. (I8) is redundant, since it is superseded[by (16) adént is equivalent to

(@7), i.e., we will show

1 P4\ 1 a?He
—log(1+ =& )+ Zlog|1+ —2>
2 g( )\) 2 g< 1—|—a2PlTA+%
. Py

- D S
+210g<1+1+a2P;A>

1 Pia  Pic | B’Ps
<Zlog 14 34 e Tz
=3 og( + X + 3 + 3 )

or, equivalently,

a’Pio Pia Py P1a
— = (1+=£ —2 (1+222
)\—|—a2P1A—|-P2< + A )+)\—|—a2P1A< + A )
L P Pia a’Pic
5\+a2P1A )y 5\+a2P1A+P2
Pic | bP,
< — —. 21
<<+ (21)
In order to prove[(21), it suffices to show
P, Py b’ P,
— 14+ — ) < — 22
)\+a2P1A<+)\>_)\ (22)
and
P, Pia a’Pic
X+ a2Pi4 b A+ a2Pia+ P
2
—che _(j ha) B g
A+ a2Pia+ P A A

Eq. (22) is equivalent to

P
L
AT A+ a?Pia
& B =1DA+ (a’ —1)Pia >0
which is obviously true. EqL{23) is equivalent to
Pic a’Pic P1a P,
—_— > — 1+ — 14+ =—F—
A T A+alPia+ P < + A ) < * )\+a2P1A)
(24)
& A+dPa+ P> a2(5\—|—PA) 1+ L
- ! 5\-"— a?Pi4
& AM1-ad)A+a*Pia+ P) >0.

Thus [22) and[(23) are true arld [18) is redundant.

P
1 =5 1 Pia
2% =1 14 —2— =1 14+ —
*2°g< +1+a2%i>+20g< * )\)

1 o
tolog (14— 2
2 8 1+a288a 4+ 22

1 Pia  b’P 1 P VP,
< = - — — —_— = .
7210g(1+ iy + )+210g<1+ X +

A
It suffices to show([(25) and

1 a?fﬁ 1 B
21 14 ——— 2 21 14 —2
5 log +1—|—a2PlTA+% +20g +1—|—a2p}\—A

1 P P
< =1 1+ — _
=308 ( LD W
which is equivalent to
2
1+ _ P2 4 — Pz _ a PlC
A+a2Pia A+ a2Piga A+ a?Pia+ P
2 2
a*Pic Pc bR
— Y <14 == .
+)\+a2P1A—|—P2 S A + A
Then it is sufficient to show
B ¥R
A+a?Pia — A
and
1 + _ P2 _ a2P1c S P£C7
A+a2Pia) N+ a2Pia+ P A

which are trivially true from [(2R) and[(24). Thu§ (20) is
redundant giver({16) an@ (1L7).
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