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Abstract—In this paper we investigate repeated root cyclic and
negacyclic codes of lengthprm over Fps with (m,p) = 1. In the
casep odd, we give necessary and sufficient conditions on the
existence of negacyclic self-dual codes. Whenm = 2m′ with
m

′ odd, we characterize the codes in terms of their generator
polynomials. This provides simple conditions on the existence of
self-dual negacyclic codes, and generalizes the results ofDinh [6].
We also answer an open problem concerning the number of self-
dual cyclic codes given by Jia et al. [11].

I. I NTRODUCTION

Let p be a prime number andFps the finite field with
ps elements. An [n, k] linear codeC over Fps is a k-
dimensional subspace ofFn

ps . A linear codeC over Fn
ps is

said to be constacyclic if it is an ideal of the quotient ring
Rn = Fps [x]/〈xn − a〉. When a = 1 the code is called
cyclic, and whena = −1 the code is called negacyclic. The
Euclidean dual codeC⊥ of C is defined asC⊥ = {x ∈
F
n
q :

∑n
i=1 xiyi = 0 ∀ y ∈ C}. An interesting class of codes

is the so-called self-dual codes. A code is called Euclidean
self-dual if it satisfiesC = C⊥. Note that the dual of a
cyclic (respectively negacyclic) code is a cyclic (respectively
negacyclic) code.

Cyclic codes are interesting from both theoretical and practi-
cal perspectives. For example, they can easily be encoded, and
decoding algorithms exist in many cases. When(n, p) = 1,
these codes are called simple root codes, otherwise they are
called repeated root codes. Castagnoli et al. and van Lint [4],
[12] studied repeated root cyclic codes. They proved that these
codes have a concatenated structure and are not asymptoti-
cally better than simple root codes. Negacyclic codes were
introduced by Berlekamp [2]. Simple root self-dual negacyclic
codes were studied by Blackford [3] and Guenda [8]. The
algebraic structure of repeated root constacyclic codes of
length2pr overFps as well as the self-duality of such codes
has also been investigated by Dinh [6]. Conditions on the
existence of cyclic self-dual codes of length2rm over F2s

were studied independently by Kai and Zhu [10] and Jia et
al. [11]. Jia et al. also determined the existence and the number
of cyclic self-dual codes forq = 2m.

In this paper, we investigate repeated root cyclic and nega-
cyclic codes of lengthprm overFps with (m, p) = 1. When
p is odd, we give necessary and sufficient conditions on the

existence of negacyclic self-dual codes. Whenm = 2m′,m′

odd, we determine explicitly the generator polynomials using
ring isomorphisms. This provides simple conditions on the
existence of negacyclic self-dual codes. We also answer an
open problem concerning the number of self-dual cyclic codes
given by Jia et al. [11].

II. SELF-DUAL NEGACYCLIC CODES OFLENGTHmpr

OVER Fps

Throughout this section,p is an odd prime number andn =
mpr, with m an integer (odd or even) such that(m, p) = 1.
This section provides conditions on the existence of self-dual
negacyclic codes of lengthn = mpr overFps . It is well known
that negacyclic codes overFps are principal ideals generated
by the factors ofxmpr

+1. SinceFps has characteristicp, the
polynomialxmpr

+ 1 can be factored as

xmpr

+ 1 = (xm + 1)p
r

. (1)

The polynomialxm + 1 is a monic square free polynomial,
hence from [7, Proposition 2.7] it factors uniquely as a
product of pairwise coprime monic irreducible polynomials
f1(x), . . . , fl(x). Thus from (1) we obtain the following
factorization ofxmpr

+ 1

xmpr

+ 1 = f1(x)
pr

. . . fl(x)
pr

. (2)

A negacyclic code of lengthn = mpr over Fps is then
generated by a polynomial of the form

A(x) =
∏

fi
ki , (3)

wherefi(x), i ≤ l, are the polynomials given in (2) and0 ≤
ki ≤ pr.

For a polynomialf(x) = a0 + a1x . . . + arx
r, with a0 6=

0 and degreer (hencear 6= 0), the reciprocal off is the
polynomial denoted byf∗ and defined as

f∗(x) = xrf(x−1) = ar + ar−1x+ . . .+ a0x
r . (4)

If a polynomialf is equal to its reciprocal, thenf is called
self-reciprocal. We can easily verify the following equalities

(f∗)∗ = f and (fg)∗ = f∗g∗. (5)
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It is well known (see [6, Proposition 2.4] or [9, Theorem
4.4.9]), that the dual of the negacyclic code generated byA(x)
is the negacyclic code generated byB∗(x) where

B(x) =
xn + 1

A(x)
. (6)

Hence we have the following lemma.
Lemma 2.1:A negacyclic codeC of lengthn generated by

a polynomialA(x) is self-dual if and only if

A(x) = B∗(x).

Denote the factorsfi in the factorization ofxm + 1 which
are self-reciprocal byg1, . . . gs, and the remainingfj grouped
in pairs by h1, h

∗
1, . . . , ht, h

∗
t . Hence l = s + 2t, and the

factorization given in (2) becomes

xn + 1 = (xm + 1)p
r

= gp
r

1 (x) . . . gp
r

s (x)

×hpr

1 (x)h∗pr

1 (x) . . . hpr

t (x)h∗pr

t (x).
(7)

Theorem 2.2:There exists a self-dual negacyclic code of
length mpr over Fps if and only if there is nogi (self-
reciprocal polynomial) in the factorization ofxmpr

+ 1 given
in (7). Furthermore, a self-dual negacyclic codeC is generated
by a polynomial of the following form

hb1
1 (x)h∗pr

−b1
1 (x) . . . hbt

t (x)h∗pr
−bt

t (x). (8)

Proof. Assume there exists a negacyclic self-dual codeC
of length n = mpr over Fps . Hence from (3) the codeC
is generated byA(x) =

∏

fi
ki , where thefi are factors of

xm + 1. From (7), we can write

A(x) = ga1

1 (x) . . . gas
s (x)hb1

1 (x)h∗c1
1 (x) . . . hbt

t (x)h∗ct
t (x),

where0 ≤ ai ≤ ps for 1 ≤ i ≤ s, and 0 ≤ bj ≤ ps and

0 ≤ cj ≤ ps for 1 ≤ j ≤ t. Let B(x) = xmps+1
A(x) , and

substitutingA(x) above gives

B(x) = gp
r
−a1

1 (x) . . . gp
r
−as

s (x)

×hpr
−b1

1 (x)h∗pr
−c1

1 (x) . . . hpr
−bt

t (x)h∗pr
−ct

t (x).

Using (5) repeatedly in the factorization ofH(x), we obtain

B∗(x) = gp
r
−a1

1 (x) . . . gp
r
−as

s (x)

×h∗pr
−b1

1 (x)hpr
−c1

1 (x) . . . h∗pr
−bt

t (x)hpr
−ct

t (x).

SinceC is self-dual, from Lemma 2.1 we have thatA(x) =
B∗(x), and then by equating factors ofA(x) andB∗(x), the
powers of these factors must satisfyai = ps−ai for 1 ≤ i ≤ s,
and bj = ps − bj for 1 ≤ j ≤ t. Equivalently,ps = 2ai for
1 ≤ i ≤ s, andcj = ps − bj for 1 ≤ j ≤ t. Sincep is odd,
the last equalities are possible if and only if there is nogi in
the factorization ofxmps

+1 andcj = ps− bj, for 1 ≤ j ≤ t,
i.e, s = 0 in (7) andcj = ps − bj, for 1 ≤ j ≤ t. Hence a
negacyclic self-dual code is generated by

hb1
1 (x)h∗pr

−b1
1 (x) . . . hbt

t (x)h∗pr
−bt

t (x).

�

Lemma 2.3:Let ps be an odd prime. Then the following
holds
(i) If p ≡ 1 mod 4, s any integer orp ≡ 3 mod 4 and s

even, thenx2 + 1 = 0 has a solutionγ ∈ Fps .
(ii) If p ≡ 3 mod 4, s odd, thenx2+1 is irreducible inFps .
Proof. Sincep ≡ 1 (mod 4), −1 is a quadratic residue in
Fp ⊂ Fps [9, Lemma 6.2.4]. Thus there existsγ ∈ Fps such
that γ2 = −1. If p ≡ 3 (mod 4), thenp2 ≡ 1 (mod 4), so
that−1 is a quadratic residue inFp2 ⊂ Fps . The proof of (ii)
is in [6, Proposition 3.1 (ii)]. �

III. N EGACYCLIC CODES OFLENGTH 2mpr OVERFps

In this section, we consider the structure of negacyclic
codes overFps of length2mpr. We begin with the following
lemma. When(m, p) = 1, m an odd integer, Dinh and
López-Permouth [7, Proposition 5.1] proved that negacyclic
codes of lengthm are isomorphic to cyclic codes. Batoul et
al. [1] proved that under some conditions, there also exists
an isomorphism between constacyclic codes and cyclic codes
of lengthm. In the following lemma, we prove that there is
an isomorphism between cyclic codes and some constacyclic
codes with conditions different from those in [1], [7].

Lemma 3.1:Let ps be an odd prime power such thatp ≡ 1
mod 4, s any integer orp ≡ 3 mod 4 and s even. Then
there is a ring isomorphism between the ringFps [x]

xm−1 and the

ring Fps [x]
xm−γ

given by

µ(f(x)) =

{

f(γx) if m ≡ 3 mod 4,
f(−γx) if m ≡ 1 mod 4.

Furthermore, there is a ring isomorphism between the ring
Fps [x]
xm−1 and the ringFps [x]

xm+γ
given by

µ(f(x)) =

{

f(−γx) if m ≡ 3 mod 4,
f(γx) if m ≡ 1 mod 4.

Proof. From the assumptions onp ands in Lemma 2.3, there
exists a solutionγ to x2 + 1 = 0. We only prove the ring
isomorphism between the ringFps [x]

xm−1 and the ringFps [x]
xm−γ

. The
other isomorphism can easily be obtained in a similar manner.
Sinceγ2 = −1, we have thatγm = γ if m ≡ 1 mod 4, and
γm = −γ if m ≡ 3 mod 4. Assume thatm ≡ 3 mod 4, so
thatµf(x) = f(γx) for f(x) ∈ Fps [x]. It is obvious thatµ is
a ring homomorphism, hence we only need to prove thatµ is
a one-to-one map. For this, letf(x) andg(x) be polynomials
in Fps [x] such that

f(x) ≡ g(x) (mod xm − 1).

This is equivalent to the existence ofh(x) ∈ Fps [x] such
that f(x) − g(x) = h(x)(xm − 1), and this equality is
true if and only if f(γx) − g(γx) = h(γx)((γx)m − 1) is
true. The assumption onm gives thatγm = −γ. Then we
havef(γx) − g(γx) = −γh(γx)(xm − γ). This equality is
equivalent tof(γx) − g(γx) ≡ 0 mod xn − γ. This means
that for f andg in Fps [x]/〈xm − 1〉, we havef(x) = g(x) if
and only ifµ(f(x)) = µ(g(x)). Hence it follows thatµ is an
isomorphism. A similar argument holds withm ≡ 1 mod 4



for µ(f(x)) = f( −γx). �

Theorem 3.2:Let ps be an odd prime power such thatp ≡
1 mod 4, s any integer orp ≡ 3 mod 4 and s even, and
n = 2mpr be an oddly even integer with(m, p) = 1. Then
a negacyclic code of lengthn overFps is a principal ideal of
Fps [x]/〈xn + 1〉 generated by a polynomial of the following
form

∏

i∈I

f ti
i (γx)

∏

j∈J

f
tj
j (−γx),

wherefi(x), fj(x) are monic irreducible factors ofxm − 1,
and0 ≤ ti, tj ≤ ps.
Proof. It suffices to find the factors ofx2mpr

+ 1.
From Lemma 2.3,x2 + 1 = 0 has a solutionγ ∈ Fps , so
x2mpr

+ 1 can be decomposed as(x2m + 1)p
r

= (xm +
γ)p

r

(xm − γ)p
r

. The result then follows from the isomor-
phisms given in Lemma 3.1. �

Example 3.3:In the casep ≡ 1 mod 4, s any integer or
p ≡ 3 mod 4 and s even,n = 2pr, (i.e. m = 1), there is a
unique factor ofx − 1 which is f(x) = x − 1. Hence from
Theorem 3.2, negacyclic codes of length2pr over Fps are
generated by

C = 〈(x− γ)i(x+ γj)〉, where0 ≤ i, j ≤ pr. (9)

The result given in (9) was also proven in [6, Theorem 3.2].

A. Self-dual Negacyclic Codes of Length2mpr

The purpose of this section is to provide conditions on the
existence of self-dual codes. This is done considering onlythe
length and characteristic. This gives equivalent conditions to
those in Theorem 2.2 which are much simpler to verify. We
first present an example.

Example 3.4:For m = 1, we have the following.

(i) If p ≡ 1 mod 4, s any integer orp ≡ 3 mod 4 and s
even, then from Theorem 2.2 there exist self-dual codes of
length2ps overFps if and only if none of the irreducible
factors of x2 + 1 are self-reciprocal. From Lemma 2.3,
there is a solutionγ of x2 + 1 = 0 in Fps . Hence the
irreducible factors ofx2 + 1 arex− γ andx+ γ. Neither
of these polynomials can be self-reciprocal, as we have
(x−γ)∗ = −γ(x+γ) and(x+γ)∗ = γ(x−γ). Hence by
Theorem 2.2 there exist negacyclic self-dual codes of the
following form

〈(x − γ)i(x+ γ)p
r
−i, where0 ≤ i ≤ pr.

(ii) If p ≡ 3 mod 4, s odd, then from Lemma 2.3x2 + 1 is
irreducible inFps . Furthermore, we have(x2+1)∗ = x2+
1. Hence by Theorem 2.2 there are no self-dual negacyclic
codes in this case.

The results in Example 3.4 are also given in [6, Corollary 3.3].
We now require the following Lemma.
Lemma 3.5:Let m be an odd integer andClm(i) the ps

cyclotomic class ofi modulom. The polynomialfi(x) is the

minimal polynomial associated withClm(i), hence we have
Clm(i) = Clm(−i) if and only if fi(x) = f∗

i (x).
Proof. Let α be an mth primitive root of unity. The
elements ofCl(i) are such thatαi is a root of a monic
irreducible polynomial fi(x) = a0 + a1x + . . . + xr.
Hencef∗

i (x) = xdeg fifi(x
−1) hasα−i as a root. Therefore

Clm(i) = Clm(−i) if and only if the polynomialsfi(x) and
f∗
i (x) are monic with the same degree and the same roots,

and hence are equal. �

Lemma 3.6:Let m be an odd integer andp a prime number.
Thenordm(ps) is even if and only if there exists a cyclotomic
classClm(i) which satisfiesClm(i) = Clm(−i).
Proof. Assume thatordm(ps) is even. We start with the case
wherem = qα is a prime power. We first prove the following
implication

ordqα (p
r) is even ⇒ ordq(p

r) is even.

Assume thatordqα (pr) is even andordq(pr) is odd. Then
there exists oddi > 0 such thatpri ≡ 1 mod q ⇔ pri =
1+ kq. Hencepriq

α−1

= (1+ kq)q
α−1

≡ 1 mod qα, because
(1 + kq)q

α−1

≡ 1 + kqα mod q(α+1) (the proof of the last
equality can be found in [5, Lemma 3.30]). Therefore we have
that

priq
α−1

≡ 1 mod qα. (10)

If both i and qα−1 are odd, thenordqα (pr) is odd, which
is absurd. Then it must be thatordq(pr) is even, so there
exists some integerj such that0 < j < ordq(p

r) and
pj ≡ −1 mod q. Therefore we haveprjq

α−1

≡ −1
mod qα, which gives that Clqα(1) = Clqα(−1).
Then for all i in the cyclotomic classes we have
Clqα(i) = Clqα(−i). Assume now thatm = p1p2 such
that (p1, p2) = 1 and ordm(ps) is even. Sincem = p1p2,
we have that ordm(ps) = lcm(ordp1

(ps), ordp2
(ps))

is even, and hence eitherordp1
(ps) or ordp2

(ps) is
even. Assume thatordp1

(ps) is even, then there exists
1 ≤ k ≤ ordp1

(ps) such that(ps)k ≡ −1 mod p1. Therefore
(ps)k(m − p2) ≡ −(m − p2) mod m, with k ≤ ordp1

(ps),
and henceClm(m−p2) = Clm(−(m−p2)). The same result
is obtained form = pα1

1 pα2

2 . Conversely, assume there exists
a class for whichClm(i) = Clm(−i). Then the elements
of Clm(i) are ±iqj for somej, so Cl(i) contains an even
number of elements. On the other hand the size of eachq
cyclotomic class is a divisor ofordm(ps) [9, Theorem 4.1.4].
This gives thatordm(ps) is even. �

Theorem 3.7:Let ps be an odd prime power such thatp ≡
1 mod 4, s any integer orp ≡ 3 mod 4 and s even, and
n = 2mpr be an oddly even integer with(m, p) = 1. Then
there exists a negacyclic self-dual code of length2mps over
Fps if and only if ordm(ps) is odd.
Proof. Under the hypothesis onp, s and m we have
from Theorem 3.2 that the polynomialx2mpr

+ 1 =
∏

fi(γx)
pr

(x)
∏

fpr

j (−γx), wherefi(x) and fj(x) are the



monic irreducible factors ofxm − 1 in Fps . By Lemma 3.6,
ordm(ps) is odd if and only if there is no cyclotomic class such
thatClm(i) = Clm(−i). From Lemma 3.5, this is equivalent
to saying that there are no irreducible factors ofxm − 1 such
that fi(x) = f∗

i (x). From the ring isomorphisms given in
Lemma 3.1, we have thatfi(x) 6= f∗

i (x) for all i is true if
and only if fi(γx) 6= f∗

i (γx) and fj(−γx) 6= f∗
j (−γx) are

true. Then from Theorem 2.2 self-dual negacyclic codes exist.
�

Example 3.8:A self-dual negacyclic code of length70 over
F5 does not exist. There is no self-dual negacyclic code of
length 30 overF9, but there is a self-dual code overF9 of
length126.

Lemma 3.9:Let p and q be distinct odd primes such that
p is not a quadratic residue moduloq. Then we have the
following.

(i) If q ≡ 1 (mod 4), thenordq(p) ≡ 0 (mod 4).
(ii) If q ≡ 3 (mod 4), thenordq(p) ≡ 0 (mod 2).

Proof. Assume thatp is not a quadratic residue modulo
q. Then from [9, Lemma 6.2.2]ordq(p) is not a divisor of
p−1
2 , so from Fermat’s Little Theoremordq(p) = q − 1.

Henceordq(p) ≡ 0 (mod 4) sinceq ≡ 1 (mod 4). If q ≡ 3
(mod 4), thenordq(p) = q − 1 ≡ 0 (mod 2). �

Lemma 3.10:Let n be a positive integer andq a prime
power such that(q, n) = 1. Then we have the following.

(i) If ordn(q) is even, thenordn(q2) =
ordn(q)

2 .

(ii) If ordn(q) is odd, thenordn(q2) = ordn(q).

Proof. Let r = ordn(q) and r′ = ordn(q
2). Then we have

q2r
′

≡ 1 mod n, which implies thatr|2r′. Sincer is even,
we have(q2)

r
2 = qr ≡ 1 mod n, and thenr′| r2 . Hence we

obtain thatr′ = r
2 . This proves part (i). For part (ii), assume

again thatr = ordn(q) is odd andr′ = ordn(q
2). We then

have thatr|2r′, and sincer is odd it must be thatr|r′. On
the other hand, we haveq2r ≡ n, so thatr′|r, and therefore
r = r′. �

Corollary 3.11: Let p and q be two distinct primes such
that p is not a quadratic residue moduloq. Then if q ≡ 1
(mod 4) andp ≡ 1 (mod 4), there is no self-dual negacyclic
code of length2pqα overFp or Fp2 .
Proof. From Lemma 3.9, ifq ≡ 1 (mod 4) and p is not
a quadratic residue moduloq, then ordq(p) ≡ 0 (mod 4).
Hence from Lemma 3.10,ordq(p2) is even. Then the proof of
Lemma 3.6 implies thatordqα (p2) is even. Hence from Theo-
rem 3.7 there are no self-dual negacyclic codes of length2qαp
overFp or Fp2 . �

Example 3.12:For p = 5, q = 13 and q = 17 satisfy
the hypothesis of Corollary 3.11. Hence there are no self-dual
negacyclic codes overF5 and F25 with lengths 130, 170 or
1690.

IV. REPEATEDROOT CYCLIC CODES

It is well known that the cyclic codes of lengthn overFps

are principal ideals ofFps [x]/(xn − 1), and these ideals are
generated by the monic factors ofxn−1. Hence the importance
of the decomposition of the polynomialxn − 1 overFps .

Let n = 2mpr, with m an odd integer such that(m, p) = 1.
Then we have the decompositionxn − 1 = (x2m − 1)p

r

=
(xm − 1)p

s

(xm + 1)p
r

. Since (m, p) = 1, the polynomials
xm − 1 andxm + 1 factor uniquely as the product of monic
irreducible pairwise coprime polynomials given byxm − 1 =
∏k

i=1 fi andxm + 1 =
∏l

j=1 gj . This is due to the fact that
(m, p) = 1, so the roots are simple [7, Proposition 2.7]. Let
fi(x) be a monic irreducible divisor ofxm − 1. Then there
existsh(x) ∈ Fps [x] such thatfi(x)h(x) = xm−1, and hence
fi(−x)h(−x) = (−x)m − 1 = −(xm +1). Thereforefi(−x)
is a monic irreducible divisor ofxm + 1. This gives that the
factorization ofxn − 1 is

x2mpr

− 1 =
k
∏

i=1

(fi(x)fi(−x))p
r

.

Hence a cyclic code of lengthn = 2mpr over Fps is of the
form

C =
〈

∏

(fi(x))
αi

∏

(fj(−x))βj )
〉

,

where0 ≤ αi, βj ≤ pr, 1 ≤ i, j ≤ k, and fi, i ≤ k is an
irreducible factor ofxm − 1. This gives the following result.

Proposition 4.1:For p an odd prime, the cyclic codes of
lengthn = 2mpr, m an odd integer such that(m, p) = 1, are
generated by

〈

∏

(fi(x))
αi

∏

(fj(−x))βj

〉

,

where0 ≤ αi, βj ≤ pr, 1 ≤ i, j ≤ k, and fi, i ≤ k, is a
monic irreducible factor ofxm − 1.

A. The Number of Cyclic Self-dual Codes

It has been proven [6], [10], [11] that cyclic self-dual codes
exist if and only if the characteristic is 2. Since a self-dual
cyclic code must have even length and characteristic 2, cyclic
self-dual codes have repeated roots. In [11, Corollary 2], Jia
et al. gave the number of self-dual cyclic codes in some
cases. The remainder of this characterization was left as an
open problem, namely the case when the length of the code
contains a prime factor congruent to1 mod 8. The following
proposition is used in answering this problem.

Proposition 4.2:Let p ≡ 1 mod 8 be an odd prime num-
ber, andm be an odd number. Then we have the following
implication

ordp(2) = 2ke ⇒ ∀ 0 ≤ l ≤ k, ordp(2
2l) = 2k−le.

Proof. Since p ≡ 1 mod 8, from [9, Lemma 6.2.5]2
is a quadratic residue modulop. Henceordp(2)|

p−1
2 , i.e.,

ordp(2) = 2ke for somek > 0. Then from Lemma 3.10 (i)
we have thatordp(22) = 2k−1e. Using the same argumentl
times, the result follows. �



Corollary 4.3: Let n = 2rpα. Then there is a unique
cyclic self-dual code of lengthn over F2s generated by
g(x) = (xpα

+ 1)2
r−1

in the following cases
(i) p ≡ 3 mod 8, s odd,
(ii) p ≡ 5 mod 8, s odd ors ≡ 2 mod 4,
(iii) p ≡ 1 mod 8 andordp(2) = 2ke, ands = 2l,

0 < l < k.
Proof. Parts (i) and (ii) follow from [11, Proposition 2].
When p ≡ 1 mod 8 and ordp(2) = 2ke, for s = 2l with
0 < l < k, from Proposition 4.2 we have thatordp(2s)
is an even integer. Hence from [11, Theorem 4] there is
a unique self-dual code generated byg(x) = (xpα

+1)2
r−1

. �

Example 4.4:Let r andα be positive integers.
(i) For p = 3 ands = 5, the polynomialg(x) = (x3α+1)2

r−1

generates the unique self-dual cyclic code of length2r3α

overF25 .
(ii) For p = 5 ands = 6, the polynomialg(x) = (x5α+1)2

r−1

generates the unique self-dual cyclic code of length2r5α

overF26 .
(iii) For p = 17, ord17(2) = 23, so l = 2. Then g(x) =

(x17α + 1)2
r−1

generates the unique self-dual cyclic code
of length2r17α overF22 .
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