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Abstract—In this paper we investigate repeated root cyclic and existence of negacyclic self-dual codes. When= 2m’, m’
negacyclic codes of lengtlp"m over Fy« with (m,p) =1. Inthe odd, we determine explicitly the generator polynomialsigsi
casep odd, we give necessary and sufficient conditions on the ring isomorphisms. This provides simple conditions on the

existence of negacyclic self-dual codes. Whem = 2m’ with ; .
m’ odd, we characterize the codes in terms of their generator existence of negacyclic self-dual codes. We also answer an

polynomials. This provides simple conditions on the existece of OP€N problem concerning the number of self-dual cyclic sode
self-dual negacyclic codes, and generalizes the results@inh [6].  given by Jia et al.[[11].
We also answer an open problem concerning the number of self-

dual cyclic codes given by Jia et al.[[11]. Il. SELF-DUAL NEGACYCLIC CODES OFLENGTH mp"

OVERF s
|I. INTRODUCTION

L b . b @ . the finite field with Throughout this sectiom is an odd prime number and=
et p be a prime number and . the finite 1€ wit mp”, with m an integer (odd or even) such that,p) = 1.
p® elements. An[n,k] linear codeC over Fp- is a k-

di ional sub & Al deC i This section provides conditions on the existence of setfid
wy:jensuz)na su spacle; .fPS.' ; mezr CIO ? h OVer &y, IS negacyclic codes of length= mp” overF .. Itis well known
said to be constacyclic If it is an ideal of the quotient ring, negacyclic codes ovét,. are principal ideals generated

R, = Fp:[2]/{a" —a). Whena = 1 the code is called by the factors of:™?" + 1. SinceF,. has characteristip, the
cyclic, and wheru = —1 the code is called negacyclic. The

Euclidean dual code&”+ of C is defined asC+ = {x € polynomiala™?" -1 can be factored as

Fp S zy; = 0Vy € C}. An interesting class of codes ™ 4] = (™ + 1)1“, 1)

is the so-called self-dual codes. A code is called Euclidean

self-dual if it satisfiesC = C*. Note that the dual of a The polynomialz™ + 1 is a monic square free polynomial,

cyclic (respectively negacyclic) code is a cyclic (respty hence from [[7, Proposition 2.7] it factors uniquely as a

negacyclic) code. product of pairwise coprime monic irreducible polynomials
Cyclic codes are interesting from both theoretical andtprac/1(z), - .-, fi(z). Thus from [1) we obtain the following

cal perspectives. For example, they can easily be encoddd, ctorization ofz™?" +1

decoding algorithms exist in many cases. Whenp) = 1, " r r

these codes are called simple root codes, otrrgerw)ise they are a" +1=h(2)" - fil@)” 2)

called repeated root codes. Castagnoli et al. and vanlLint [A negacyclic code of lengthe = myp" over F,- is then

[12] studied repeated root cyclic codes. They proved theseh generated by a polynomial of the form

codes have a concatenated structure and are not asymptoti-

cally better than simple root codes. Negacyclic codes were A(z) = Hfiki, 3

introduced by Berlekamp [2]. Simple root self-dual negéicyc

codes were studied by Blackfordl [3] and Guenda [8]. Thehere f;(z),i <[, are the polynomials given ifl(2) ard<

algebraic structure of repeated root constacyclic codes %f< p".

length2p” overF,. as well as the self-duality of such codes For a polynomialf(z) = ag + a1z ...+ a,x", with ag #

has also been investigated by Dirfi [6]. Conditions on tHeand degree- (hencea, # 0), the reciprocal off is the

existence of cyclic self-dual codes of leng?fim over F,. polynomial denoted by * and defined as

were studied independently by Kai and Zhul[10] and Jia et

al. [11]. Jia et al. also determined the existence and thebeam

of cyclic self-dual codes fog = 2. If a polynomial f is equal to its reciprocal, thefi is called

In this paper, we investigate repeated root cyclic and neggis-reciprocal. We can easily verify the following eqtiat
cyclic codes of length"m overF,: with (m,p) = 1. When

p is odd, we give necessary and sufficient conditions on the (f5) = fand(fg)* = f*g". (5)

ff@)y=a"fzH =a, +a,_12+... +aox". (4)
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It is well known (seell6, Proposition 2.4] orl[9, Theorem Lemma 2.3:Let p®* be an odd prime. Then the following

4.4.9)), that the dual of the negacyclic code generated (ay)
is the negacyclic code generated By(x) where
w41

Alz)

Hence we have the following lemma.

Lemma 2.1:A negacyclic cod&” of lengthn generated by
a polynomialA(z) is self-dual if and only if

A(z) = B*(z).

B(z) = (6)

Denote the factorg; in the factorization oft™ + 1 which
are self-reciprocal by, . .. g5, and the remaining; grouped
in pairs by hy,hi,..., ks, hy. Hencel = s + 2t, and the
factorization given in[(2) becomes

(a™ + 17" =g (2)... g% (a)
xhi (z)hi? (z)...hY (z)h? ().

z" +1

(@)

holds
(i) If p=1 mod 4, s any integer orp = 3 mod 4 and s
even, thenz? + 1 = 0 has a solutiony € F,..

(i) If p=3 mod 4, s odd, thenz? + 1 is irreducible infF,.:.
Proof. Sincep = 1 (mod 4), —1 is a quadratic residue in
F, C Fps [9, Lemma 6.2.4]. Thus there existsc F,- such
thaty? = —1. If p = 3 (mod 4), thenp? = 1 (mod 4), SO
that —1 is a quadratic residue if,: C IF,,.. The proof of (ii)
is in [6, Proposition 3.1 (ii)]. O

[1l. NEGAcYCLIC CODES OFLENGTH 2mp"” OVERFps

In this section, we consider the structure of negacyclic
codes ovett,: of length2mp”. We begin with the following
lemma. When(m,p) = 1, m an odd integer, Dinh and
Lopez-Permouth[ 7, Proposition 5.1] proved that negacycl
codes of lengthn are isomorphic to cyclic codes. Batoul et
al. [1] proved that under some conditions, there also exists

Theorem 2.2:There exists a self-dual negacyclic code 0f, jsomorphism between constacyclic codes and cyclic codes

length mp™ over F,. if and only if there is nog; (self-
reciprocal polynomial) in the factorization af**" + 1 given
in (@). Furthermore, a self-dual negacyclic cadés generated
by a polynomial of the following form

Ry (@)hi” P (@) LAY ()R T (2). 8)

Proof. Assume there exists a negacyclic self-dual cdade
of lengthn = mp” over F,.. Hence from[(B) the cod€
is generated byd(z) = [] f;*", where thef; are factors of
2™ + 1. From [7), we can write

Az) = g7 (@) ... g2 (@)hT (@) (2) .. A (@) Ry (),

where(0 < a; < p®* for1 < i < s, and0
0 <¢ <p°forl < j <t Let B(x)
substitutingA(z) above gives

R R
xhy "7 (@)hi? TN (@) . A T (o) Ry T ().

Using [B) repeatedly in the factorization &f(z), we obtain

g (@) gt T (2) )
X PP TP (@)Y T (@) LR T ()R T ().

SinceC is self-dual, from Lemmg2.1 we have th&fz) =
B*(x), and then by equating factors df(z) and B*(x), the
powers of these factors must satigfy= p®—a; for1 <i < s,
andb; = p® —b; for 1 < j < t. Equivalently,p® = 2a; for
1<i<s,andce; = p®* —b; for1 < j < t. Sincep is odd,
the last equalities are possible if and only if there isgndn
the factorization of:?" +1 andc; = p® — by, for 1 < j <t,
i.e,s =0in (@) andc¢; = p* — b;, for 1 < j < ¢. Hence a
negacyclic self-dual code is generated by

WY ()R () LR ()R ().

<

B(x)

B*()

of lengthm. In the following lemma, we prove that there is
an isomorphism between cyclic codes and some constacyclic
codes with conditions different from those [n [1]] [7].

Lemma 3.1:Let p* be an odd prime power such that= 1
mod 4, s any integer orp = 3 mod 4 and s even. Then
there is a ring isomorphism between the riEng[_ill and the

ring if’j—ﬂ given by

if m=3 mod 4,
if m=1 mod 4.

sy ={ 10,

Furthermore, there is a ring isomorphism between the ring

Fs [z] iy Fpsla] s
— and the rlngw glv)en pfy ; w
. —Yx ITm= mo )
u(f(z)) = { flyz)  ifm=1 mod 4.

Proof. From the assumptions gnands in Lemmd 2.8, there
exists a solutiony to 22 + 1 = 0. We only prove the ring
isomorphism between the rin%% and the ringfffi]. The
other isomorphism can easily be obtained in a similar manner
Sincey? = —1, we have thaty™ = v if m =1 mod 4, and

™ = —~ if m =3 mod 4. Assume thatn = 3 mod 4, so
that uf (z) = f(yx) for f(z) € Fp=[x]. It is obvious thatu is

a ring homomorphism, hence we only need to prove thit

a one-to-one map. For this, I1¢{z) andg(z) be polynomials

in Fp-[2] such that

f(@) = g(x)

This is equivalent to the existence @fz) € F,:[z] such
that f(z) — g(x) = h(z)(2™ — 1), and this equality is
true if and only if f(vz) — g(yz) = h(yz)((yz)™ — 1) is
true. The assumption om gives thaty™ = —~. Then we
have f(vz) — g(yx) = —vh(yz)(«™ — 7). This equality is
equivalent tof (yz) — g(yz) = 0 mod 2™ — ~. This means
that for f andg in Fp: [z]/(z™ — 1), we havef(z) = g(z) if
and only if u(f(z)) = pu(g(x)). Hence it follows tha is an
isomorphism. A similar argument holds with = 1 mod 4

(mod 2™ — 1).



for u(f(x)) = O

Theorem 3.2:Let p* be an odd prime power such that=
1 mod 4, s any integer orp = 3 mod 4 and s even, and

f(=z).

minimal polynomial associated wittil,, (), hence we have
Cly (i) = Cly (1) if and only if f;(z) = fF(x).

Proof. Let o be an mth primitive root of unity. The
elements ofCI(i) are such thain’ is a root of a monic

n = 2mp” be an oddly even integer withm,p) = 1. Then irreducible polynomial f;(z) = a¢ + a1z + ... + z".

a negacyclic code of length overF, is a principal ideal of Hencef;(z) = z9°¢/i f;(z~1) hasa~* as a root. Therefore
F,:[z]/ (=™ + 1) generated by a polynomial of the followingCl!,, (i) = Cl,,,(—%) if and only if the polynomialsf;(x) and
form f#(x) are monic with the same degree and the same roots,

T17% ) T £ (=) l

and hence are equal. O
i€l JjeJ

Lemma 3.6:Let m be an odd integer anga prime number.
Thenord,, (p®) is even if and only if there exists a cyclotomic
classCl,, (i) which satisfiesCl,, (i) = Cl,,,(—1).

Proof. Assume thavrd,,(p®) is even. We start with the case
wherem = ¢“ is a prime power. We first prove the following

where f;(z), f;(z) are monic irreducible factors af™ — 1,
ando0 < ti,tj < p°.

Proof. It suffices to find the factors ofr®>™?" + 1.
From Lemma 2Bz? + 1 = 0 has a solutiony € F., so

z?™" 41 can be decomposed d$>™ + 1)?" = (™ + . .
r r X implication
¥)P (™ — )P . The result then follows from the isomor-
phisms given in Lemma 3.1. O ordge (p") is even = ord,(p") is even

Example 3.3:In the casep = 1 mod 4, s any integer or Assume thatordg. (p") is even andord,(p") is odd. Then
p=3 mod 4 ands even,n = 2p", (i.e. m = 1), there is a there exists odd > 0 such thatp™ =1 mod ¢ < p"*
unique factor ofz — 1 which is f(z) = « — 1. Hence from 1+ kg. Hencep™@™ " = (1+kg)?” =1 mod ¢, because

Theorem[3.2, negacyclic codes of length” over F,. are (1+ lffl)qw1 =1+ k¢® mod ¢+ (the proof of the last
generated by equality can be found in[5, Lemma 3.30]). Therefore we have
that

C = {(z—7)'x++")), where0 <i,j <p". 9

(10)
The result given in[{9) was also proven f [6, Theorem 3.2].
If both i and ¢®~! are odd, therord,. (p") is odd, which
A. Self-dual Negacyclic Codes of Len@thup” is absurd. Then it must be thatd ( ") is even, so there

The purpose of this section is to provide conditions on tHf&ists some integey such that0 < j < ordq(p (p") and
existence of self-dual codes. This is done considering idy » = —1 mod g. Therefore we havep'/ = -1
length and characteristic. This gives equivalent conditito mod ¢%, which gives that Cle(1) = Clga(-1).
those in Theoreri 2.2 which are much simpler to verify. wéhen for all i in the CVC|0t0miC classes we have
first present an examp|e_ Clqa(l) = Clqa(—i). Assume now thatn = p1pP2 such

Example 3.4:For m = 1, we have the following. that (p1,p2) = 1 and ord,,(p®) is even. Sincem = pips,

(i) If p =1 mod 4, s any integer orp = 3 mod 4 and s we have thatordy(p*) = lem(ordy, (p*), ordy, (p°))

even, then from Theorem 2.2 there exist self-dual codes'g\;eﬁvez’sssgi ?r?;y? © P e'tzeDTgple%)e% ?Lezriﬁeﬁ )e)ldssts
length2p* overF, if and only if none of the irreducible rdp, (p°) :

s\Vk = _
factors of 22 + 1 are self-reciprocal. From Lemnia 2.3} < F = ordy, (p°) such thatp®) N 1 .?;10212' Tgereffre
there is a solutiony of 2> + 1 = 0 in F,-. Hence the (p°)*(m — p2) = —(m —pz) modm, Wi < ordy, (p*),

irreducible factors of:2 + 1 arexz — anda: + ~. Neither and henceClm(m—pg) Clin(—(m —p2)). The same result

of these polynomials can be self-reciprocal, as we ha{feObtamed form = py"py*. Conversely, assume there exists
(€ —7)* = —y(z+7) and(z+7)* = v(z—~). Hence by class for whichCl,, (i) = Cl,,(—i). Then the elements

. p . . :
Theoren{ 2 there exist negacyclic self-dual codes of tf éCZ i) are =ig’ for somej, so Ci() contains an even
following form number of elements. On the other hand the size of each

cyclotomic class is a divisor afrd,, (p®) [9, Theorem 4.1.4].
This gives thabrd,, (p®) is even. O

P =1 mod ¢°.

(. — ) (z+ )P ", where0 <i<p".

(i) If p=3 mod 4, s odd, then from Lemm&2.3* + 1 IS Theorem 3.7:Let p* be an odd prime power such that=
irreducible inF,.. Furthermore, we haver? +1)* = 22+ | 10d 4, s any integer orp = 3 mod 4 and s even, and
1. Hence by Theore@ 2 there are no self-dual negacycjic— 2,p" be an oddly even integer withm,p) = 1. Then
codes in this case. there exists a negacyclic self-dual code of lengjthp® over
The results in ExampleZ3.4 are also giver(ih [6, Corollary}.3.3F,- if and only if ord,, (p®) is odd.
We now require the following Lemma. Proof. Under the hypothesis op, s and m we have
Lemma 3.5:Let m be an odd integer an@,,(i) the p* from Theorem[3R that the polynomiat>™”" + 1 =
cyclotomic class of modulom. The polynomialf;(z) is the [] fi(yz)?" () Hfj’.’T(—w), where f;(z) and f;(x) are the



monic irreducible factors o™ — 1 in Fp-. By Lemma[3.5, IV. REPEATEDROOT CycLIC CODES

ordy,(p*) is odd if and only if there is no cyclotomic class such ¢ js well known that the cyclic codes of lengthover F,,.
that Cly, (i) = Clyn(—i). From Lemmd_ 3J5, this is equivalenty o principal ideals oF . [z]/(z" — 1), and these ideals are
to saying that there are no irreducible factorsef — 1 such - generated by the monic factors:f—1. Hence the importance
that fi(z) = f7(x). From the ring isomorphisms given inof the decomposition of the polynomial® — 1 over[F,..
Lemmal3.1, we have thaf(z) # f(z) for all i is true if Letn = 2mp”, with m an odd integer such thét, p) = 1.
and only if fi(yz) # fi(yz) and fj(—yz) # fj(—=7z) &€  Then we have the decompositiaft — 1 = (22™ — 1)?" =
true. Then from Theorein 2.2 self-dual negacyclic codest.exi'(sxm — 1)?" (2™ + 1)". Since (m,p) = 1, the polynomials
O ™ — 1 andz™ + 1 factor uniquely as the product of monic
irreducible pairwise coprime polynomials given by§* — 1 =
Example 3.8:A self-dual negacyclic code of leng® over le fiandz™ +1 = szl g;- This is due to the fact that
F5 does not exist. There is no self-dual negacyclic code gl,,’p) = 1, so the roots are simplé&l[7, Proposition 2.7]. Let
length 30 overFy, but there is a self-dual code ovE% of  f (1) be a monic irreducible divisor af™ — 1. Then there
length 126. existsh(z) € Fp:[z] such thatf;(z)h(x) = 2™ —1, and hence
Lemma 3.9:Let p and ¢ be distinct odd primes such thatf;(—x)h(—z) = (—z)™ — 1 = —(z™ + 1). Thereforef;(—z)
p is not a quadratic residue modutp Then we have the is a monic irreducible divisor of™ + 1. This gives that the

following. factorization ofz™ — 1 is
(i) If ¢g=1 (mod 4), thenord,(p) =0 (mod 4). —_ u .
(i) If ¢ =3 (mod 4), thenord,(p) =0 (mod 2). g —l= H(fi(x)fi(_x))p :

i=1
Proof. Assume thatp is not a quadratic residue moduloHence a cyclic code of length

: . = 2mp" overF,. is of the
g. Then from [9, Lemma 6.2.2)rd,(p) is not a divisor of ¢ .

2=l so from Fermat's Little Theorenard,(p) = ¢ — 1 ; B,

7 q : o ()% (—2))P))
Henceord,(p) = 0 (mod 4) sinceqg =1 (mod 4). If ¢ =3 <H(f (@) H(fj( @) )>

(mod 4), thenord,(p) = ¢—1=0 (mod 2). U where0 < «;,8; <p", 1 <i4,j <k andf;, i <kisan

irreducible factor ofr™ — 1. This gives the following result.
Lemma 3.10:Let n be a positive integer ang a prime Proposition 4.1:For p an odd prime, the cyclic codes of
power such thatg,n) = 1. Then we have the following. lengthn = 2mp", m an odd integer such thatn, p) = 1, are

, , ord,, generated by
(i) If ord,(q) is even, therrd,, (¢?) = 2%nla),

(ii) If ord,(q) is odd, thenord,, (¢*) = ord,(q). <H(fz($))a7 H(fj(_x))6j>7

Proof. Letr = ordy,(q) andr’ = ord,(¢*). Then we have \here( < @B <p 1<ij<kandf,i<kisa

¢*" =1 mod n, which implies thatr|2". Sincer is even, monic irreducible factor of™ — 1.

we have(¢?)2 = ¢" = 1 mod n, and then’'|Z. Hence we _

obtain thatr’ = . This proves part (i). For part (ii), assumeA. The Number of Cyclic Self-dual Codes

again thatr = ord,(q) is odd andr’ = ord,(¢*). We then |t has been proven [6]; [10]; [11] that cyclic self-dual cede

have thatr|2:’, and sincer is odd it must be that|r’. On exist if and only if the characteristic is 2. Since a selfidua

the other hand, we hawg” = n, so thatr’|r, and therefore cyclic code must have even length and characteristic 2jacycl

r=r. U self-dual codes have repeated roots.[In [11, Corollary i2], J

et al. gave the number of self-dual cyclic codes in some

Corollary 3.11: Let p and ¢ be two distinct primes such cases. The remainder of this characterization was left as an

that p is not a quadratic residue modudp Then if ¢ = 1 open problem, namely the case when the length of the code

(mod 4) andp =1 (mod 4), there is no self-dual negacycliccontains a prime factor congruenttomod 8. The following

code of lengtiepg® overF, or [Fp.. proposition is used in answering this problem.

Proof. From Lemma 39, iff = 1 (mod 4) and p is not Proposition 4.2:Letp =1 mod 8 be an odd prime num-

a quadratic residue modulg then ord,(p) = 0 (mod 4). ber, andm be an odd number. Then we have the following

Hence from Lemm&31@yd,(p?) is even. Then the proof of implication

Lemma[ 3.6 implies thatrd,. (p?) is even. Hence from Theo- ! _

rem[3.7 there are no self—gugl n)egacyclic codes of legthp ordy(2) = 2% = V0 U<k, ordy(2%) = 2" e

overF, or F.. U Proof. Sincep = 1 mod 8, from [9, Lemma 6.2.5]2

is a quadratic residue module. Henceord,(2)|25%, i.e.,

Example 3.12:For p = 5, ¢ = 13 and ¢ = 17 satisfy ord,(2) = 2*e for somek > 0. Then from Lemma_3.10 (i)

the hypothesis of Corollafy 311. Hence there are no sef-dwe have thabrd,(22) = 2*~1e. Using the same argumeht

negacyclic codes ovefs and Fo5 with lengths 130, 170 or times, the result follows. O

1690.



Corollary 4.3: Let n = 2"p®. Then there is a unique
cyclic self-dual code of lengtm over Fo: generated by
g(z) = (z*" +1)¥" " in the following cases
(i) p=3 mod 8, s odd,

(i) p=5 mod 8,s odd ors =2 mod 4,
(i) p=1 mod 8 andord,(2) = 2ke, ands = 2,

0<i<k.
Proof. Parts (i) and (i) follow from [[11, Proposition 2].
Whenp = 1 mod 8 and ord,(2) = 2%, for s = 2! with
0 < I < k, from Proposition 42 we have thatd,(2°) [
is an even integer. Hence from_[11, Theorem 4] 1there iﬁ]
a unique self-dual code generateddty) = (z*" +1)" .0

(1]
(2]

(3]
(4]

[7]
Example 4.4:Let r anda be positive integers.

(i) Forp = 3ands = 5, the polynomial(z) = (23" +1)2""
generates the unique self-dual cyclic code of lergjtB
over Fys.

(i) Forp =5 ands = 6, the polynomialy(z) = (2°" +1)%"
generates the unique self-dual cyclic code of lerjth*
overFoys.

(i) For p = 17, ordy7(2) = 23, sol = 2. Theng(z) [12]
(z17" +1)2" generates the unique self-dual cyclic code
of length2"17“ overFy:.

(8]
El
[10]

[11]
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