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Abstract—In this work we analyze achievable random coding
error exponents pertaining to erasure/list decoding for channels
with side information present at the transmitter. The analysis
is carried out using the optimal decoding rule proposed by
Forney. A key ingredient in the analysis is the evaluation
of moments of a certain distance enumerator. This approach
leads to a new exponentially tight bounds. These results are
obtained by exploring a random binning code with conditionally
constant composition codewords previously proposed by Moulin
and Wang. Later, these results are used to obtain an achievable
random coding error exponent for ordinary decoding.

I. INTRODUCTION

Decoding with an erasure option and variable list size
decoding are generalizations of the ordinary decoding rule
in which the decoder gives one estimate for the transmitted
message. A decoder with an erasure option is a decoder which
has the option of not deciding, i.e., to declare an “erasure”. On
the other hand, a variable size list decoder is a decoder which
produces a list of estimates for the correct message rather than
a single estimate, where a list error occurs when the correct
message is not on the list. In [1], Forney analyzed random
coding error exponents of erasure/list decoding for discrete
memoryless channels (DMC’s). These bounds were obtained
by exploring the optimal decoding rule [1, eq. (11)]

y ∈ Rm iff Pr(y,xm) ≥ eNT
∑
m′ 6=m

Pr(y,xm′) (1)

where Pr(y,xm) is the joint probability of the channel output
y and the codeword xm,Rm is the decision region of message
m, and T is an arbitrary parameter. The bounds were obtained
using Gallager’s bounding techniques. It was shown that the
erasure option and the list option are “two sides of the same
coin”, namely, by changing the value of T one can switch
from list decoding (T < 0) to decoding with an erasure option
(T > 0).

Later, Csiszár and Körner [2, p.175, Th. 5.11] derived for
DMCs universally achievable error exponents for a decoder
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with an erasure option. These bounds were obtained by
exploring a generalized maximum mutual information (MMI)
decoder [2, p. 164] which has an erasure option.

Recently, upper bounds on the error probabilities under
generalized decoding rules were provided for linear block
codes over memoryless symmetric channels in [3].

In a recent paper [4], a decoder with an erasure option and
a variable size list decoder for channels with non-casual side
information at the transmitter were considered. A universally
achievable region of error exponents was presented for de-
coding with an erasure option using a parameterized decoder
in the spirit of Csiszár and Körner’s decoder. Moreover, the
proposed decoding rule was generalized by extending the
range of its parameters to allow variable size list decoding.
This extension gives a unified treatment for erasure/list de-
coding. An achievable region of exponential bounds on the
probability of list error and the average number of incorrect
messages on the list were given. The results were obtained
using a random binning code with conditionally constant
composition codewords proposed by Moulin and Wang [5]
with the proposed parameterized decoder.

While these results extended the work of Csiszár and Körner
to channels with side information present at the transmitter
non-causally and generalized it to the case of variable list size
decoding, the results in [4] were based on heuristic decoding
rule with no proven relation to the optimal decoding rule.
Moreover, while in [1] both error exponents were achieved by
the same codebook distribution, in [4] the two error exponents
might be achieved by different codebook distributions. This
fact may indicate that the results of [4] are not tight. These
two weak spots of [4] were the main motivation for the current
work.

When reviewing Forney’s proof [1, p.218] it is evident
that the proof can be applied to the case of channels with
side-information present at the transmitter if we could handle
the analysis of two expressions: (i) ECPλ(y|m), namely, the
moments of the probability of the channel output given that
the correct message was sent, and (ii) EC

(∑
m′ 6=m P (y|m′)

)λ
the moments of the sum of the probabilities of all competing



messages, where the expectation is taken with respect to the
code ensemble. Forney tackled these expressions using the
Hölder’s and Jensen’s inequalities and the fact that the code-
words were chosen in a symbol-by-symbol fashion. However,
when the binning technique is introduced to the encoding rule
x = f(m, s), which maps a channel state sequence s and a
message index m into a channel input sequence x using an
auxiliary sequence u, Forney’s analysis does not seem to be
applicable.

To overcome these difficulties a different approach was
taken. In this work we apply the distance enumerator approach
(see [6] for detailed tutorial on the subject). This approach
was applied in recent years to other problems in Information
Theory with considerable success (see [7], [8], [9], [10]). In
[11], the analysis of random coding error exponents for er-
ausre/list decoding for DMCs was revisited, where the distance
enumerator approach was used instead of the use of Hölder’s
and Jensen’s inequalities as done by Forney. The resulting
bounds, which are at least as tight as Forney’s bounds, are
simpler in the sense that it involves an optimization over one
parameter only as opposed to Forney’s bounds which involves
two parameters. Moreover, when applying this technique to a
certain universal decoder with erasures the tightness of these
bounds is exemplified.

In this work we use the distance enumerator approach to
analyze the optimal decoding rule proposed by Forney while
adopting a random binning code with conditionally constant
composition codewords (CCC) proposed by Moulin and Wang
[5]. Later, these results are applied on Gallager’s well-known
upper bound presnted in [12] to get an achievable error
exponent for the above channel model and code construction.

The outline of this work is the following: In Section II we
present some notation which will be used throughout the paper,
present the channel model, describe the codebook construction
and the decoding rule which will be used during this paper. In
Section III we present the main result of the paper. Section IV
describes the case of ordinary decoding rule and presents
the corresponding achievable error exponent. In Section V
we discuss the result and present some directions for future
research.

II. NOTATION AND PRELIMINARIES

We begin with some notation and definitions. Throughout
this work, capital letters represent scalar random variables
(RVs), and specific realizations of them are denoted by the
corresponding lowercase letters. Random vectors of dimension
N will be denoted by bold-face letters. The notation 1{A},
where A is an event, will designate the indicator function of
A (i.e.,1{A} = 1 if A occurs and 1{A} = 0 otherwise).

lim
n→∞

1

n
ln

(
an
bn

)
= 0.

Let the vector P̂x =
{
P̂x(a), a ∈ X

}
denote the empirical

distribution induced by a vector x ∈ Xn, where P̂x(a) =
1
n

∑n
i=1 1{xi = a}. The type class Tx is the set of vectors x̃ ∈

Xn such that P̂x̃ = P̂x. A type class induced by the empirical

distribution P̂x will be denoted by T (P̂x). Similarly, the joint
empirical distribution induced by (x,y) ∈ Xn × Yn is the
vector P̂xy =

{
P̂xy(a, b), a ∈ X , b ∈ Y

}
where

P̂xy(a, b) =
1

n

n∑
i=1

1
{
xi = a, yi = b

}
, x ∈ X , y ∈ Y ,

i.e., P̂xy(a, b) is the relative frequency of the pair (a, b) along
the pair sequence (x,y). Likewise, the type class Txy is the
set of all pairs (x̃, ỹ) ∈ Xn×Yn such that P̂x̃ỹ = P̂xy . The
conditional type class Ty|x, for given vectors x ∈ Xn, and
y ∈ Yn is the set of all vectors ỹ ∈ Yn such that Txỹ = Txy .
The Kullback-Leibler divergence between two distributions P
and Q on B, where |B| <∞ is defined as

D(P‖Q) =
∑
b∈B

P (b) ln
P (b)

Q(b)
,

with the conventions that 0 ln 0 = 0, and p ln p
0 =∞ if p > 0.

We denote the empirical entropy of a vector x ∈ Xn by Ĥ(x),
where Ĥ(x) = −

∑
a∈X P̂x(a) ln P̂x(a). Other information

theoretic quantities governed by empirical distributions (e.g.,
conditional empirical entropy, empirical mutual information)
will be denoted similarly.

A. Channel Model and Code Construction

In this section, we describe the channel model and the code
construction. Note that the channel model is the same channel
model described in [4], and the code construction is almost
identical. However, the decoding rule used in this work is
based on the optimal decoding rule, while in [4] a sub-optimal
decoding rule was used.

We consider a discrete memoryless state-dependent chan-
nel with a finite input set X , a finite state alphabet S, a
finite output alphabet Y , and a transition probability distri-
bution W (y|x, s). Given an input sequence x and a state
sequence s, emitted from a discrete memoryless source
PS(s) =

∏N
i=1 PS(si), the channel output sequence y is gen-

erated according to the conditional distribution W (y|x, s) =∏N
i=1W (yi|xi, si). A message m ∈ {1, . . . ,M}, where

M = bexp{NR}c and R is the code rate, is to be transmitted
to the receiver. We assume that the state sequence s is available
at the transmitter non-causally, but not at the receiver. We also
assume that all messages are a-priori equiprobable. Given s
and m, the transmitter produces a sequence x = fN (s,m)
which is used to convey message m to the decoder. We note
that the channel is fixed and known to all parties, as presented
in the work of Gel’fand and Pinsker [13].

In [5, p. 1337], Moulin and Wang used in their derivation
a binning codebook with conditionally constant composition
(CCC) codewords. A similar codebook will be used in our
proofs. For the sake of completeness, we briefly describe
the codebook construction and the encoding process. The
decoding part will be described in detail later. The codebook
construction requires the use of an auxiliary random variable
U ∈ U which takes on values in a finite set of size |X ||S| as
will be shown later.



For a given empirical conditional distribution P̂ ∗u|s, a sub-
codebook C(P̂s) is constructed for each state sequence type
class Ts = T (P̂s). Given a state type class T (P̂s), compute
the marginal distribution

P̂ ∗u(u) =
∑
s

P̂ ∗u|s(u|s)P̂s(s) ,

where P̂s is the empirical distribution induced by Ts. Note
that P̂ ∗u(u) is a function of P̂s and it might be different for
other state type classes. Draw exp{N [R + ρ(P̂s)]} random
vectors independently from the type class T ∗U (P̂s) induced
by P̂ ∗u, according to uniform distribution where ρ(P̂s) =
I∗US(P̂s) + ε , and

I∗US(P̂s) =
∑
u,s

P̂s(s)P ∗u|s(u|s) log
P ∗u|s(u|s)

P̂ ∗u(u)
.

This choice ensures that the probability of encoding error
vanishes at a double-exponentially rate [5, p. 1338]. Arrange
the vectors in an array with M = bexp{NR}c columns and
bexp{Nρ(P̂s)}c rows. The codebook C is the union of all
sub-codebooks, i.e., C =

⋃
P̂s
C(P̂s). Note that the number of

these sub-codebooks is polynomial in N (at most (N+1)|S|).
To encode message m given a state sequence s, the fol-

lowing two steps are done: (i) Find an index l such that
ul,m ∈ C(P̂s) is a member of the conditional type class
T ∗ul,m|s = {u′ : P̂u′s = P̂ ∗ul,m|sP̂s}. If more than one such
l exists, pick one at random under the uniform distribution. If
no such l can be found, pick u at random from T ∗u|s under
the uniform distribution. (ii) The channel input sequence is
given by x =

(
x(s1, u1), x(s2, u2), . . . , x(sN , uN )

)
where

x : S × U → X is some fixed function. Since there is a
deterministic mapping from S × U we can define a direct
channel W̃ : S × U → Y as

W̃ (y|s, u)
4
= W

(
y|s, x(s, u)

)
.

B. Optimal Decoding Rule

Given a codebook C, a decoder with an erasure option is
a partition of YN into (M + 1) regions R0,R1, . . . ,RM .
The decoder decides in favor of message m if y ∈ Rm,
m = 1, . . . ,M , or it declares “erasure” if y ∈ R0. Following
Forney [1], let us define two error events. The event E1 is
the event in which y does not fall in the decision region of
the correct message, namely, the event in which the decoder
decides wrongly. The event E2 is the event of undetected error,
namely, the event in which y falls in Rm′ , m′ 6= 0, while
m 6= m′ was transmitted. The average probabilities of these
error events are given by

Pr{E1} =
1

M

M∑
m=1

∑
y∈Rcm

P (y|m) (2)

Pr{E2} =
1

M

M∑
m=1

∑
y∈Rm

∑
m′ 6=m

P (y|m) (3)

where P (y|m) =
∑

s∈SN PS(s)W
(
y|xm(s), s

)
, and the

average probability of erasure is given by:

Pr{R0} = Pr{E1} − Pr{E2} . (4)

In [1], Forney showed that the optimal tradeoff between the
two error events is attained by the following decoding rule [1,
p.208]:

y ∈ R∗m iff
P (y|m)∑

m′ 6=m P (y|m′)
≥ exp{NT} , (5)

otherwise, declare “erasure” ( i.e., y ∈ R∗0), where T ≥ 0 is
a parameter which controls the trade-off between E1 and E2.
When taking a closer look on the decoding rule derived by
Forney [1, p.208], it is clear that these results can be applied
to the channels with side-information available at the encoder
non-causally as describe above where the only difference is
that the probability of received channel output y given a
message index m, denoted by P (y|m), is more involved.

For a given channel output sequence y and a message index
m define

P (y|m) =
∑
s∈SN

PS(s)W̃
(
y|s,U(s,m)

)
, m ∈ {1, . . . ,M}

(6)

where U(s,m) is the encoding rule. Following the first steps
of the derivation of [1, p.218], for a given codebook we get:

Pr{E1} =
1

M

M∑
m=1

∑
y∈Rcm

P (y|m) (7)

=
1

M

M∑
m=1

∑
y∈YN

P (y|m)1

{
eNT

∑
m′ 6=m P (y|m′)
P (y|m)

≥ 1

}

≤ 1

M

M∑
m=1

∑
y∈YN

P (y|m)

(
eNT

∑
m′ 6=m P (y|m′)
P (y|m)

)λ
(8)

≤ eNλT

M

M∑
m=1

∑
y∈YN

P λ̄(y|m)

( ∑
m′ 6=m

P (y|m′)
)λ

= eNλT
∑
y∈YN

P λ̄(y|m)

( ∑
m′ 6=m

P (y|m′)
)λ

(9)

where 0 ≤ λ ≤ 1 is an arbitrary parameter, and λ̄ , 1 − λ.
Similarly, for E2 we get that

Pr{E2} ≤ e−Nλ̄T
∑

y ∈YN
P λ̄(y|m)

( ∑
m′ 6=m

P (y|m′)
)λ

. (10)

Notice that the difference between these two expressions is
given by a constant factor e−NT , therefore, we will concen-
trate on achieving an upper bound on Pr{E1}. It is important to
note that starting this point on, our derivation is exponentially
tight. Now, taking the expectation with respect to the code
ensemble and using the fact that the encoding rule U(s,m)



(i.e., the process of choosing u given m and s) is independent
of all other encoding rules U(s,m′), we get that

Pr{E1} ≤ eNλT
∑
y∈YN

ECP λ̄(y|m) · EC
( ∑
m′ 6=m

P (y|m′)
)λ

,

(11)

where EC{·} designates the expectation operator with respect
to the code ensemble.

III. MAIN RESULTS

For a given joint distribution QSUY on S × U × Y , a
conditional distribution WY |SU : S × U → Y and a non-
negative constant γ define

J
(
QSUY ,WY |SU , γ

) 4
= IQSUY (U, S;Y )− γEQ lnWY |SU ,

where EQ is the expectation operator associated with Q. For
a given constant K ≥ 0, a conditional distribution PU |S on
S ×U and a distribution PY on Y , define the following set of
distributions

G(PY ,K)
4
=
{
QSU |Y

∣∣
QU |S = PU |S , IQ(U ;S)− IQ×PY (U ;Y ) +K ≥ 0

}
, (12)

and define the complement of G(PY ,K), denoted by
Gc(PY ,K), as

Gc(PY ,K)
4
=
{
QSU |Y

∣∣
QU |S = PU |S , IQ(U ;S)− IQ×PY (U ;Y ) +K < 0

}
. (13)

where it will be made clear from the text that G(PY ,K)
(and Gc(PY ,K)) is also a function of P (U |S). The following
theorem gives the main result of this work. The proof of the
Theorem can be found in [14], [15].

Theorem 1:

Pr{E1} ≤ exp

{
−N max

0≤λ≤1

[
− λT+

max
x:S×U→X
P∗(U |S)

min
PY ∈PN (Y)

(
Eab(λ, PS , PY , W̃Y |SU )+

Ecd(λ,R, PS , PY , W̃Y |SU )−H(PY )
)]}

. (14)

where

Eab(λ, PS , PY , W̃Y |SU ) = min

[
min

QSU|Y ∈G(PY ,0)
λ̄
(
D(QS‖PS)

+ J
(
QSU |Y × PY , W̃Y |SU , 1

))
,

min
QSU|Y ∈G(PY ,0)c

(
λ̄D(QS‖PS)− λIQ×PY (S;U, Y )+

J
(
QSU |Y × PY , W̃Y |SU , λ̄

))]
, (15)

and

Ecd(λ,R, PS , PY , W̃ ) = min

[
min

QSU|Y ∈G(PY ,R)
λ
(
D(QS‖PS)

−R+ J
(
QSU |Y × PY , W̃Y |SU , 1

))
,

min
QSU|Y ∈G(PY ,R)c

(
λD(QS‖PS)− λ̄IQ×PY (S;U, Y )−R+

J
(
QSU |Y × PY , W̃Y |SU , λ

))]
. (16)

IV. ORDINARY DECODING RULE

The technique used in the proof of Theorem 1 can also
be used to derive an achievable error exponent for ordinary
decoding, i.e., a decoder which gives a single estimate for
the transmitted message without the ability to declare “erase”,
when the same channel model and code-construction presented
in Section II-A are used.

Again, by re-examining the derivation of Gallager’s upper
bound on the error probability presented in [16, Sec.2.4], it
can be seen that the same results apply to channels with side-
information available at the encoder non-causally where the
only difference is that the probability of a received channel
output y given a channel input xm (denoted by P (y|xm))
should be replaced by the probability of a received channel
output y given a message index m (denoted by P (y|m)).
Hence, we get that

Pr{E} ≤ 1

M

M∑
m=1

∑
y∈YN

P
1

1+ρ (y|m)

[ ∑
m′ 6=m

P
1

1+ρ (y|m′)

]ρ
(17)

for ρ > 0. Taking the expectation with respect to the code
ensemble, and using the fact that U(s,m) is independent of
all other encoding rules U(s,m′), we get

Pr{E} ≤
∑
y∈YN

ECP
1

1+ρ (y|m)EC

[ ∑
m′ 6=m

P
1

1+ρ (y|m′)

]ρ
.

(18)

The following theorem provides an upper bound for the
average decoding error.

Theorem 2:

Pr{E} ≤ exp

{
−N max

ρ>0

[
max

x:S×U→X
P∗(U |S)

min
PY ∈PN (Y)

(
Eab(

1

1 + ρ
, PS , PY , W̃Y |SU )+

Ẽcd(λ,R, PS , PY , W̃Y |SU )−H(PY )
)]}

. (19)



where Eab( 1
1+ρ , PS , PY , W̃Y |SU ) is defined in eq.(15) and

Ẽcd(ρ,R, PS , PY , W̃ ) = min

[
min

QSU|Y ∈G(PY ,R)
ρ
(
D(QS‖PS)

−R+ J
(
QSU |Y × PY , W̃Y |SU ,

1

1 + ρ

))
,

min
QSU|Y ∈G(PY ,R)c

(
ρD(QS‖PS)− ρ̄IQ×PY (S;U, Y )−R+

J
(
QSU |Y × PY , W̃Y |SU ,

1

1 + ρ

))]
. (20)

Note that these two expressions ECP
1

1+ρ (y|m) and
EC
[∑

m′ 6=m P
1

1+ρ (y|m′)
]ρ

are already analyzed in the previ-
ous section.

V. DISCUSSION AND FUTURE WORK

Theorem 1 gives achievable error exponents of decoding
with erasure/list decoding using the optimal decoding rule,
originally proposed by Forney for DMCs, for channels with
non-causal side information present at the transmitter. The
main approach used during the analysis is the distance enu-
merator approach which was applied in [11] to obtain new
error exponents of erasure/list decoding for DMCs. Theorem 2
is achieved using the same machinery used to devised Theo-
rem 1. Both results originated from an optimal decoding rule
(in the first results, the use of Forney’s approach while in the
second result Gallager’s approach is used).

One more step needs to be done in order to generalize
the above results. A generalization needs to be made to
the way the channel input sequence x is chosen. While
in [4], x was chosen randomly form the conditional type
class T ∗x|su induced by a conditional distribution P ∗(X|U, S)
which can be optimized, in this work the encoder computes
the channel input sequence x using a deterministic symbol-
by-symbol function given the channel state sequence s and the
auxiliary sequence u (see Section II-A). While in [13] such a
deterministic mapping was sufficient to achieve the capacity
of the channel it is not clear whether a deterministic mapping
is optimal also in the error exponent regime.
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