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Abstract—Recent interest on permutation rank modulation
shows the Kendall tau metric as an important distance metric.
This note documents our first efforts to obtain upper bounds on
optimal code sizes (for said metric) ala Delsarte’s approach. For
the Hamming metric, Delsarte’s seminal work on powerful linear
programming (LP) bounds have been extended to permutation
codes, via association scheme theory. For the Kendall tau metric,
the same extension needs the more general theory of coherent
configurations, whereby the optimal code size problem can be
formulated as an extremely huge semidefinite programming
(SDP) problem. Inspired by recent algebraic techniques for
solving SDP’s, we consider the dual problem, and propose an
LP to search over a subset of dual feasible solutions. We obtain
modest improvement over a recent Singleton bound due to Barg
and Mazumdar. We regard this work as a starting point, towards
fully exploiting the power of Delsarte’s method, which are known
to give some of the best bounds in the context of binary codes.

Index Terms—association schemes, coherent configurations,
permutations, linear programming, semidefinite programming

I. I NTRODUCTION

A permutation code is designed to only allow certain
pairwise distances between any two codewords. These codes
have been studied in various contexts,e.g., group codes [1],
signal modulation [2], [3], vector quantization [4], rank mod-
ulation [5], [6], cost-constrained transpositions [7], etc. This
work is motivated by a recent study on a fundamental coding
problem. In [6] they looked at optimal code sizes with respect
to the Kendall tau distance metric. This metric is importantto
rank modulation and its applications,e.g., flash memories.

For binary codes, Delsarte’s optimization-based methods [8]
give some of the best known bounds [9]. For permutation
codes, we observe during initial experiments (for very small
lengths) that Delsarte-like methods outperform Hamming
(sphere packing) bounds [6], [10]. Our interest is to investigate,
if this improvement carries over for larger codes. Tarnanen
extended Delsarte’s work over to permutation codes [11],
however only for the Hamming metric (and other metrics
with similar symmetries). The novelty here is to consider the
Kendall tau metric, and as pointed out in [6], lacks required
symmetry to straight-forwardly apply Tarnanen’s techniques.

Delsarte’s (and Tarnanen) techniques are based on associa-
tion schemes, from which linear programming (LP) formula-
tions (of the optimal code size problem) are obtained. For the
Kendall tau metric, one needs to consider the more general
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theory of coherent configurations (CC), which instead deliver
semidefinite programming (SDP) formulations. The matrices
in these SDP’s turn out to be of unwieldy size, but recent
work [12], [13], [14] suggest possible approaches. One may
exploit the algebraic structure of the CC’s, to only work with
block-diagonalized (and possibly much smaller) versions of
these matrices. To our knowledge, such recent techniques are
new in the area of permutation codes. However, the solution
is not straight-forward. As code lengths increase, the CC’s
(related to the Kendall tau metric) become huge quickly,
motivating the techniques presented in this preliminary report.

While we believe to be presently unable to fully exploit
the power of SDP bounds, we show some initial success. We
consider the dual problem (also a SDP), and use an LP to
search over a subset of feasible solutions. We obtained mod-
est improvement over a recently published Singleton bound
in [6]. The reduced complexity allows us to compute up to
permutation codes of length11 (where the matrices were
previously of order11 factorial). Certain bottlenecks, if solved,
could allow computation for longer codes. As it stands, our
proposed LP bounds perform poorer than known Hamming
bounds [6], and it remains to see how far sophisticated SDP-
based approaches can ultimately bring us. This note aims to
motivate new research to resolve this open question.

II. BACKGROUND

A. Optimal Code Size Problem and Two Metrics

Let Sn denote thesymmetric groupon a set{1, 2, . . . , n}
anddist(, ) be a distance metric onSn. A subsetV of Sn is
an (n, δmin) permutation code (with respect to dist(,)), if for
any g, h ∈ V such thatg 6= h, we havedist(g, h) ≥ δmin.

Definition 1 (Optimal code size problem). Let dist(, ) be a
distance metric on the symmetric groupSn. Let δmin ≥ 1. The
following problem is theoptimal code size problem.

max
V⊆Sn

#V (1)

s.t.dist(g, h) ≥ δmin for all g, h ∈ V whereg 6= h,

and#V denotes the cardinality of the setV . Denoteµ(n, δmin)
to be the maximal cardinality achieved by(n, δmin) codes,i.e.,
µ(n, δmin) equals the optimal value of the above problem.

The image of i by g is denotedg(i). The inverse of g
is denotedg−1. The product of permutationsg and h is
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denotedgh, whereby(gh)(i) = g(h(i)). Most literature (e.g.,
Tarnanen [11]) consider theHamming metric

dist(g, h)
∆
= #{1 ≤ x ≤ n : (g−1h)(i) 6= i}, (2)

i.e., the Hamming distancedist(g, h) equals the number of
movedpoints ofg−1h. For thedirect productgroupSn ×Sn,
define its action onSn, as(α, β) ·g

∆
= αgβ−1, where(α, β) ∈

Sn×Sn andg ∈ Sn. For any subgroupG of Sn×Sn, a metric
dist(, ) on Sn is G-invariant if for any g, h ∈ Sn, we have
dist(g, h) = dist((α, β) · g, (α, β) · h) for all (α, β) ∈ G. The
Hamming metric (2) can be verified to be(Sn×Sn)-invariant.

The length of a permutationg, denotedlength(g), equals
the minimum integerr satisfying g = α1α2 . . . αr whereby
αi areadjacent transpositionsin Sn. For rank modulation [5],
[6] we consider theKendall tau metric , given as

dist(g, h)
∆
= length(g−1h). (3)

There exists a unique elementw0, termed thelongest element,
that satisfieslength(w0) = n(n − 1)/2. Then w0 is an
involution, i.e., w−1

0 = w0, anddist(g, h) = dist(gw0, hw0),
see [15], p. 119. Denote a subgroup{e, w0} of Sn by Ψn,
wheree is the identity element ofSn. In general, the Kendall
tau metric is(Sn ×Ψn)-invariant.

A permutationg written asg = (123) meansg(1) = 2,
g(2) = 3 and g(3) = 1. Note (12), (23), (13) are transposi-
tions, in particular the first two are adjacent transpositions.

Example 1. ConsiderS3 with elementse, (12), (23), (123),
(132), (13), and the Hamming metric. The minimum distance
between any two non-equal permutations is2. For δmin = 1
and 2 we haveµ(n, δmin) = #S3. For δmin = 3 the codeV
with the optimal size satisfiesV = {e, (123), (132)}. Check
dist(e, (123)) = dist(e, (132)) = 3, anddist((123), (132)) =
dist(e, (123)−1(132)) = dist(e, (123)) = 3.

The minimum possible non-zero Kendall tau pairwise dis-
tance is 1. For δmin = 1, we haveµ(n, δmin) = #S3

as before. Forδmin = 2 the optimal code satisfiesV =
{e, (123), (132)}. Checkdist(e, (123)) = length((123)) = 2,
where (123) = (12)(23). For δmin = 3 the optimal code
satisfiesV = {e, (13)}, where(13) is the longest elementw0

in S3 and length((13)) = 3 (here (13) = (12)(23)(12)).

B. Coherent Configurations (CC)

We now describe objects used to formulate relaxations of
(1). For a subgroupG of Sn × Sn, define aninduced action
of G on Sn × Sn, as g · (x, y)

∆
= (g(x), g(y)) whereg ∈ G

and x, y ∈ Sn. An orbit of this induced action is termed an
orbital . These orbitals∆1,∆2, · · · ,∆d of the induced action
partition{(x, y) : x, y ∈ Sn} = ∪d

i=1∆i. If the action ofG on
Sn is transitive, we use the convention∆1 = {(x, x) : x ∈
Sn}. For each orbital∆i, we correspond anadjacency matrix
Ai as follows. HereAi is a 0-1 matrix, whose rows/columns
are indexed bySn, and we have(Ai)x,y = 1 if and only if
(x, y) ∈ ∆i. Let AT

i denote the transposed matrix ofAi.

Theorem 1 (c.f. [16], p. 52). Let G be a group which acts
on Sn transitively. For the induced action ofG on Sn × Sn,
the adjacency matricesAi corresponding to thed orbitals∆i,
satisfy

i) A1 equals the identity matrix.

ii) the sum
∑d

i=1 Ai equals the all ones matrix.
iii) for anyAi, there exists someAi′ that satisfiesAT

i = Ai′ .
iv) for any i, j ∈ {1, 2, · · · , d}, there exists numberspkij that

satisfyAiAj =
∑d

k=1 p
k
ijAk.

A coherent configuration (CC) denoted(G,Sn), refers
to the set{A1, A2, · · · , Ad} of corresponding adjacency ma-
trices. A CC with the additional propertypkij = pkji is an
association scheme; in this special case, Delsarte showed how
combinatorial properties can deliver linear programming (LP)
bounds [8]. Construct two CC’s related to theG-invariances of
the Hamming and Kendall tau metrics. For the former metric,
setG = Sn×Sn and call(Sn×Sn,Sn) theconjugacy CC- the
name comes from [11]. For the latter metric, setG = Sn×Ψn

and term(Sn × Ψn,Sn) the length CC. Let RSn×Sn denote
the set of real matrices and index setSn. Write ASn,i and
AΨn,i for adjacency matrices of conjugacy, and length CC.

Example 2. The matrices inRS3×S3 corresponding to the
conjugacy and length CC (the indexing onS3 is done in the
same order that appears in Eg. 1), are written as follows. First
ASn,1 = AΨn,1 = I, whereI is the identity matrix. Next

ASn,2 =

















0 1 1 0 0 1
1 0 0 1 1 0
1 0 0 1 1 0
0 1 1 0 0 1
0 1 1 0 0 1
1 0 0 1 1 0

















, AΨn,2 =

















0 1 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 1 0

















.

By Theorem 1,ASn,3 = J − I − ASn,2, hereJ has all ones.
Finally, it so happens that we getAΨn,3 = ASn,3 andAΨn,4 =
ASn,2 − AΨn,2. Matrices ASn,1 to ASn,3 corresponding to
Hamming distances0, 2, 3, and AΨn,1 to AΨn,4 to Kendall
tau distances0, 1, 2, 3.

The focus here is on the length CC, related to the Kendall
tau metric. The conjugacy CC (related to the Hamming metric)
is actually an association scheme, and is treated in [11]; the
recollection is because of connections exploited later.

III. SEMIDEFINITE PROGRAMMING (SDP) BOUNDS

A symmetric matrixM in RSn×Sn is positive semidefinite,
if all its eigenvalues arenon-negative. We now use CC’s to
formulate the relaxation of the optimal code size problem.
By iii), Theorem 1, a set{Ã1, Ã2, · · · , Ãd̃} of symmetrized
adjacency matricesare obtained, wherebỹd ≤ d. If Ai is
not symmetric, then findAi′ such thatAT

i = Ai′ , and set
Ãj = Ai + Ai′ . Similarly the symmetrized orbitals ∆̃i are
obtained by setting̃∆j = ∆i ∪ ∆i′ if Ãj = Ai + Ai′ . Note
both(g, h) and(h, g) belong to the samẽ∆j , anddist(g, h) =
dist(h, g). Thus byG-invariance ofdist(, ) setδj = dist(g, h)
for any (g, h) ∈ ∆̃j , sincedist(g, h) = dist(g′, h′) for any
(g, h), (g′, h′) ∈ ∆̃j . The valuesδj are calledorbit-distances
(with respect to aG-invariant metric dist(, )). If G acts
transitively onSn, then by conventioñ∆1 = {(g, g) : g ∈ Sn},
thus δj ≥ 1 for all j ≥ 2. The properties of the CC’s can
simplify the following optimizations.

Definition 2 (Primal SDP, (G,Sn) and δmin). Let G be a
group which acts onSn transitively anddist(, ) a G-invariant
distance metric onSn. Let δj be the orbit-distances w.r.t.



TABLE I
[I NITIAL EXPERIMENTS] SDP BOUNDS FOR3 ≤ n ≤ 5

n = 3 n = 5

δmin b∗
1

SB HB Search δmin b∗
1

SB HB Search
1 6 6 6 6 1 120 120 120 120
2 3 6 6 3 2 60 120 120 -
3 2 2 2 2 3 22 120 24 -

n = 4 4 14 120 24 -
δmin b∗

1
SB HB Search 5 7 24 8 -

1 24 24 24 24 6 5 24 8 3
2 12 24 24 12 7 3 24 4 2
3 5 24 6 5 8 2 6 4 2
4 3 6 6 3 9 2 6 2 2
5 2 6 2 2 10 2 2 2 2
6 2 2 2 2

†
Singleton bound (SB), published in [6], equation (5).

‡
Hamming bound (HB) from ball-size estimates, see [10], [6].
Note: Above table created by taking numerical floor.

(G,Sn) and dist(, ). Define thesemidefinite programming
(SDP) problem correp. to(G,Sn) and someδmin ≥ 1, as

max
M∈RSn×Sn

Tr(JM) (4)

s.t.M is positive semidefinite, andTr(M) = 1,

Tr(ÃjM) ≥ 0, for 2 ≤ j ≤ d̃,

Tr(ÃjM) = 0, for 2 ≤ j ≤ d̃ with δj < δmin,

where Ãj is a corresponding symmetrized adjacency matrix,
J is the all-one matrix, andTr is the trace function.

Proposition 1. LetG be a group which acts onSn transitively
and dist(, ) a G-invariant distance metric onSn. Let δmin ≥
1. Then, the optimal objective value of (4) upper bounds the
optimal objective value of (1) fordist(, ) and δmin.

The SDP (4) is a relaxation of the optimal code size problem
(1), see appendix for proof. The optimal value of the SDP (4)
is at most#Sn, as for any feasibleM , we have Tr(JM) ≤
Tr(J) = #Sn. Software like SeDuMi [17] can solve SDP’s.

Example 3. ConsiderG = S3 × Ψ3, whereby the Kendall
tau metric isG-invariant. Let∆̃1 to ∆̃4 correspond toAΨn,1

toAΨn,4 (all symmetric). Using SeDuMi we solve forδmin = 1,
2 and 3, and get the optimal solutions

1

6
· J,

1

6
· (AΨn,1 + AΨn,3),

1

6
· (AΨn,1 +AΨn,4).

which correspond to optimal objective values6, 3 and 2.

We need to work with the dual problem to (4).

Definition 3 (Dual problem,(G,Sn) and δmin). Let G be a
group which acts onSn transitively anddist(, ) a G-invariant
distance metric onSn. Let δj be the orbit-distances w.r.t.
(G,Sn) and dist(, ). Let Ãj be a corresponding symmetrized
adjacency matrix to(G,Sn). Letδmin ≥ 1. Define the following

min
(b1,b2,...,bd̃)∈Rd̃

b1 (5)

s.t. bj ≤ 0 for 2 ≤ j ≤ d̃ with δj ≥ δmin,

d̃
∑

j=1

bjÃj − J is positive semidefinite,

to be thedual problemof the SDP in Definition 4.

Any feasible solutionb in Rd̃ to the dual program (5),
provides an upper bound to the optimal objective value of the
SDP (4), see [14]; we have the following chain of inequalities

Tr(JM∗) ≤ b∗1 ≤ b1, (6)

TABLE II
NUMBER d OF ADJACENCY MATRICES

n Len. Conj. d̃Θn
n Len. Conj. d̃Θn

4 13 5 8 8 10558 22 171
5 45 7 21 9 92126 30 860
6 230 11 34 10 912908 42 1052
7 1388 15 122 11 9998008 56 7578

whereM∗ andb∗ are optimal solns. of (4) and (5), resp.
Our interest in SDP bounds is motivated by initial ex-

perimentation. Table I shows optimal objective values of (5)
obtained using SeDuMi, for (small)n = 3 to 5. We compare
with two other bounds, i) aSingleton bound(SB) recently
published in [6], and ii) aHamming bound(HB) obtained
by sphere packing, see [6]. Ball-sizes for HB were obtained
from exact numbers of permutations withk inversions [10].
For cases shown, SDP bounds always perform the best, with
some tightness verified by limitedexhaustive searches. Given
that optimization-based bounds are (some of) the best-known
for binary codes, e.g. see discussion in [9], it is not unusual to
ask: for permutation codes, are SDP bounds always better
for all n?

To seek an answer we should compute for largern, thus
motivating the proposed method in the next section. WhenSn

gets large, problems (4) and (5) become increasingly difficult
to solve, as the matrices̃Aj have order#Sn. Our method is
inspired by recent work [12], [13], [14], which show that if̃Aj

come from a CC, then thẽAj can be replaced (in (4) and (5))
by block-diagonalizedversions - exact details omitted here.
This may result in huge complexity reduction,e.g., [14] shows
how SDP’s related to the conjugacy CC reduces to simpler LP
problems. The caveat is that number of matrix blocks (obtained
from diagonalization) is at leastd, the number of adjacency
matricesAi, see [12]. Unfortunately for the length CC, this
number quickly becomes large for increasingn, see Table II.
Thus in our case it becomes difficult to directly apply the
techniques in [12], and modifications of the ideas are needed.

IV. L ENGTH CC: LINEAR PROGRAMMING (LP) BOUNDS

Using “duality” we consider the feasible solutionsb to (5)
(for someG-invariantdist(, ) andδmin ≥ 1) that furnish upper
estimatesb1 to µ(n, δmin), see (6) and Proposition 1. While
“duality” ideas are not new, the novelty here is to “guess
a good subset” of feasible solutions (in the dual program)
described by a manageable number of linear equations, and
use an LP to optimize over them. For a CC(G,Sn), a feasible
solutionb corresponds to a positive semidefinite matrix in the
following set1

AG,Sn

∆
=







d̃
∑

i=1

bjÃj : bj ∈ R, for all 1 ≤ j ≤ d̃







. (7)

Recall that the all-ones matrixJ is also inAG,Sn
.

To build an intuition on how such a strategy is possible,
we first connect with the LP bound of the conjugacy CC
(Sn×Sn,Sn) described in [11]. To clarify between conjugacy
and length CC’s, we respectively denoteASn,i andAΨn,i for
adjacency matrices, anddSn

anddΨn
for their numbers.

1The setASn×Ψn,Sn
is usually known as the adjacency algebra (overR)

of the CC(G,Sn), which has the properties of a matrix-∗ algebra [16].



We claim that the setASn×Sn,Sn
is a subset ofASn×Ψn,Sn

,
seen by showing eachAi to lie in ASn×Ψn,Sn

. Observe that
Sn × Ψn is a subgroup ofSn × Sn, hence the orbitals of
the length CC, lie within those of the conjugacy CC. In other
words, there exists index subsetsISn,i, where∪dSn

i=1ISn,i =
{1, 2, · · · , dΨn

}, such thatASn,i =
∑

j∈ISn,i
AΨn,j hold (for

all i). The claimASn,i ∈ ASn×Ψn,Sn
follows if ASn,i is a

symmetric matrix, see property i) of the following theorem
from [11].

Theorem 2(c.f. [11]). Let (Sn×Sn,Sn) denote the conjugacy
CC, where(Sn × Sn,Sn) = {ASn,i : 1 ≤ i ≤ dSn

}, and
ASn,1 = I. Then all of the following hold forASn,i:

i) symmetry, i.e.,AT
Sn,i

= ASn,i (or ÃSn,i = ASn,i).
ii) commutativity, i.e.,ASn,iASn,j = ASn,jASn,i for all i, j.
iii) diagonalization by an orthonormal matrixU in RSn×Sn ,

i.e., UTASn,iU =
∑dSn

j=1 pi,j · Ij for somepi,j ∈ R and
0-1 diagonal matrixIj .

• I = ASn,1 =
∑dSn

j=1 UIjU
T , therefore

∑dSn

j=1 Ij = I.

•
∑dSn

i=1 ASn,i = J , so UTJU =
∑d

j=1 cj · Ij where

cj =
∑d

i=1 pi,j . By conventionc1 = #Sn (the only
non-zero eigenvalue ofJ) and cj = 0 for j ≥ 2.

The numbersdSn
, tabulated in Table II, equal thepartition

number of n, see [11]. Consider a matrix
∑dΨn

j=1 bjÃΨn,j

in ASn×Ψn,Sn
, that for some a ∈ RdSn , can be ex-

pressed as
∑d

i=1 aiASn,i. Theorem 2 allows us to further
express

∑dΨn

j=1 bjÃΨn,j =
∑dSn

j=1 zj · (UIjU
T ) where zj =

∑dSn

i=1 pi,jai. Then
∑dΨn

j=1 bjÃΨn,j−J is positive semidefinite

(see (5)) if the linear constraints
∑dSn

i=1 pi,jai ≥ cj hold for all
j, for constantscj in iii). Intuitively, Theorem 2 is an explicit
“diagonalization” of all matrices in the subsetASn×Sn,Sn

of
ASn×Ψn,Sn

, and facilitates checking of positive semidef.
A simple extension of the “diagonalization” idea to the

following larger subset of matrices, works reasonably well.
Property ii) of Theorem 2 implies iii), as symmetric matri-
ces that commute sharecommon eigenspaces. As such, we
desire2 a subsetB of ASn×Ψn,Sn

, with the property that any
M ∈ B, commutes with anyM ′ ∈ ASn×Ψn,Sn

. Thus any two
matrices inB commute. Such a subsetB may be obtained

B =







dSn
∑

i=1

(aiASn,i) +

dSn
∑

i=1

(adSn+iASn,iW ) : a ∈ R
2dSn







,(8)

whereW is an orthonormal, 0-1 matrix inRSn×Sn , that sat-
isfies(W )x,y = 1 if and only if yw−1

0 = x for anyx, y ∈ Sn.
From (8) we seeB contains the setASn×Sn,Sn

considered in
Theorem 2. Also by the previous correspondence betweenBj

and the orbital∆j , one can check (see appendix)W commutes
with all of ASn×Ψn,Sn

(and eachASn,i). Because the longest
element satisfiesw−1

0 = w0, thus WT = W−1 = W . So
ASn,iW are symmetric, andB is a set of symmetric matrices.

One technical lemma, that connects (8) with the dual
problem (5), stands in way of finally describing our LP
bound. This lemma involves a special subgroupΘn of Sn,
where Θn is also involved in a few final definitions. Let
Θn = {α ∈ Sn : (α, α) · w0 = w0}, where (α, α) · w0 is

2Try to show, see [16], pp. 50-51., thatASn,i andASn,iW areconjugacy-
sums, andB in (8) is thecenterof the adjacency algebra (7) forG = Sn×Ψn.

computed using the action ofSn×Sn onSn. Let ÃΘn,ℓ denote
the symmetrized adjacency matrices belonging to the CC
(Sn×Θn,Sn), where there arẽdΘn

of them. Noted̃Θn
≤ dΨn

.

Lemma 1. LetASn,i andÃΘn,ℓ be the symmetrized adjacency
matrices belonging to the conjugacy CC and(Sn × Θn,Sn),
respectively. LetW be defined as before. For1 ≤ ℓ ≤ d̃Θn

and 1 ≤ i ≤ 2dSn
there exists 0-1 coefficientstℓ,i that satisfy

ASn,i =

d̃Θn
∑

ℓ=1

tℓ,iÃΘn,ℓ, ASn,iW =

d̃Θn
∑

ℓ=1

tℓ,dSn+iÃΘn,ℓ. (9)

See appendix for the proof of Lemma 1. The coefficients
tℓ,i satisfying (9) are used to state the following main theorem.
For Θn ⊆ Sn, let index subsets̃IΘn,ℓ satisfy ÃΘn,ℓ =
∑

j∈ĨΘn,ℓ
ÃΨn,i. Using orbit-distancesδj w.r.t. (Sn×Ψn,Sn)

and the Kendall tau metricdist(, ), define constantsγℓ that
satisfyγℓ = max{δj : j ∈ ĨΘn,ℓ}.

Theorem 3 (LP Bound on(Sn × Ψn,Sn) and δmin). Let W
be the 0-1 orthornormal matrix defined as before.

For 1 ≤ i, j ≤ dSn
, let constantspi,j , cj and matrices

U, Ij be obtained from Theorem 2. Let matricesM1,j and
M2,j satisfy M1,j = 1

2 (UIjU
T )(I + W ) and M2,j =

1
2 (UIjU

T )(I −W ).
For 1 ≤ ℓ ≤ d̃Θn

, let the constantsγℓ be defined as above.
For 1 ≤ i ≤ 2dSn

, let the coefficientstℓ,i satisfy (9). Leta∗

in R2dSn solve the following LP problem

min
(a1,a2,...,a2dSn

)∈R
2dSn

2dSn
∑

i=1

t1,i · ai (10)

s.t.
2dSn
∑

i=1

tℓ,i · ai ≤ 0 for 2 ≤ ℓ ≤ d̃Θn
with γℓ ≥ δmin,

dSn
∑

i=1

(ai + adSn+i) · pi,j ≥ cj for 1 ≤ j ≤ dSn
with M1,j 6= 0

dSn
∑

i=1

(ai − adSn+i) · pi,j ≥ cj for 1 ≤ j ≤ dSn
with M2,j 6= 0

Let b∗1 andµ(n, δmin) respectively denote the optimal objective
values of the dual problem (5), and the optimal code size
problem (1), forG = Sn × Ψn and the Kendall tau metric
dist(, ) and δmin. Then we have the following inequalities

µ(n, δmin) ≤ b∗1 ≤

2dSn
∑

i=1

t1,i · a
∗
i .

As promised our main result Theorem 3 furnishes an LP
bound on the optimal code sizeµ(n, δmin). See appendix for
proof. The numberd̃Θn

of matricesÃΘn,ℓ is given in the
previous Table II, where observẽdΘn

> dSn
, but d̃Θn

is much
reduced fromdΨn

. Table III shows our computed LP bounds
wherebyn is between3 and11. Our proposed LP bound fails
to completely answer the question posed (at the end) of Section
III, but some initial success is obtained. Observe that our LP
bound is at least as tight as the SB in the places highlighted
in bold font. Improvements are mainly obtained whenδmin is
close ton(n−1)/2. Interestingly, these two bounds are useful
for similar ranges ofδmin (the SB is known to be non-trivial
only whenδmin ≥ n, see [6]). For the casen = 3 the LP and
SDP bounds are equal, though unfortunately forn > 4, our LP



TABLE III
BOUNDS COMPUTED FOR VARIOUS3 ≤ n ≤ 11.

n = 3 n = 7 n = 9 n = 10

δmin LP SB† HB‡ δmin LP SB HB δmin LP SB δmin LP SB
1 6 6 6 10 5040 720 28 14 362880 40320 42 6 24
2 3 6 6 11 630 720 14 15 45360 40320 43 3 6
3 2 2 2 12 543 120 14 16 32989 5040 44 3 6

15 140 120 5 23 7560 720 45 2 2
n = 4 16 75 24 5 25 2016 720

δmin LP SB HB 17 14 24 3 27 1008 120 n = 11
3 24 24 6 18 7 24 3 29 186 120 δmin LP SB
4 12 6 6 19 3 6 2 30 93 120 18 39916800 3628800
5 4 6 2 20 2 6 2 31 15 24 19 3326400 3628800
6 2 2 2 21 2 2 2 32 9 24 31 359611 40320

33 4 24 33 193458 40320
n = 5 n = 8 34 3 6 34 177678 40320

δmin LP SB HB δmin LP SB HB 35 2 6 35 94924 5040
6 120 24 8 12 40320 5040 64 36 2 2 37 66176 5040
7 10 24 4 13 5040 5040 32 41 33662 720
8 5 6 4 14 4135 720 32 n = 10 42 26050 720
9 2 6 2 19 896 120 7 δmin LP SB 43 11152 720
10 2 2 2 21 384 120 5 16 3628800 362880 44 8700 720

22 192 120 5 17 329891 362880 45 6349 720
n = 6 23 41 24 3 18 302400 40320 46 3541 120

δmin LP SB HB 24 21 24 3 27 49371 5040 47 222 120
8 720 120 14 25 8 24 2 29 21098 5040 48 111 120
9 120 120 7 26 5 6 2 31 9735 720 49 17 120
11 27 24 4 27 2 6 2 35 4995 720 50 11 24
12 13 24 4 28 2 2 2 36 3900 120 51 5 24
13 6 6 2 37 446 120 52 4 24
14 4 6 2 38 230 120 53 3 6
15 2 2 2 39 55 120 54 2 6

40 30 24 55 2 2
41 11 24

†, ‡ See footnotes on previous Table I.

bound does worse than the HB, and the performance gap gets
bigger for smallerδmin. Inspired by [6] (which points out three
regions with different asymptotics), it is tempting to conjecture
that different strategies work for casesδmin < n andδmin ≥ n.
The subset searched here works reasonably well for the latter
case, for the former what are the “good” dual-feasible subsets?

One issue: no known efficient method to compute “max.
distances”γℓ, where γℓ = max{δj : j ∈ ĨΘn,ℓ}. If one
replacesΘn by Sn in the expression forγℓ, (whereASn,i =
∑

j∈ĨSn,i
AΨn,j), then [18] has closed-forms forγℓ. Also its

is unclear how large the number#{1 ≤ δℓ ≤ d̃Θn
: δℓ ≥ δmin}

of non-positive constraints could be. No rigorous analysisis
done here, but see [19] for a characterization ofΘn.

V. CONCLUSION & FUTURE DIRECTIONS

Motivated by recent work on solving SDP’s with algebraic
structure, we formulated the optimal code size problem w.r.t.
Kendall tau metric as a SDP, and propose using LP to search
for solutions. The problem seems difficult, but we report
modest improvement over a recent Singleton bound.

The interest is to progress toward (possibly) beating known
Hamming bounds, for the casesn ≥ 6 (other than those
shown here). We offer some future directions. As previously
mentioned, it would be nice to analyze the subsets that should
be searched (forδmin < n). Next, one might generalize to
larger subsets where a manageable SDP (not a LP as here) is
used for searching. Finally, one might seek a similar Fourier-
type analysis as [9], usingrepresentation-theoretictechniques.
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APPENDIX

1) SDP relaxation of optimal code size problem

First we prove (4) is a relaxation of (1). In the following
for a subsetV of Sn, let V2 denote the product setV ×V . Let
RSn denote the set of vectors with real number entries with
index setSn.

Proof of Proposition 1: Let V denote a solution of
(1), i.e., let #V = µ(n, δmin). Identify the subsetV of Sn

with an 0-1 vectorb in RSn , where bg = 1 if and only
if g ∈ V . We construct a matrixM whose objective value
in (4) equals#V , i.e., Tr(JM) = #V . Let M = 1

bT b
bbT ,

i.e., M = 1
#V

bbT , and let 1 denote the all-ones vector.
Observe that Tr(JM) = Tr(11TM) = Tr(1TM1) =
1

#V
Tr((1T b)(bT1)) = 1

#V
Tr(#V#V) = #V . Next we show

that matrixM is a feasible solution to (4).
BecauseM = 1

#V
bbT , thereforeM is positive semidefinite

and Tr(M) = 1 is satisfied. Next observe Tr(ÃjM) = #(∆̃j∩
V2)/#V , so Tr(ÃjM) ≥ 0 is satisfied. Now consider any
x, y ∈ Sn wherex 6= y. If x, y ∈ V then dist(x, y) ≥ δmin.
By contraposition, ifdist(x, y) < δmin then (x, y) /∈ V2. Let
(x, y) ∈ ∆̃j for some j ≥ 2, then δj < δmin also implies
(x, y) /∈ V2, which in turn implies Tr(ÃjM) = 0.

2) Matrix W and setASn×Ψn,Sn

Next we prove the orthonormal, 0-1 matrixW commutes
with all matrices in the setASn×Ψn,Sn

. RecallW is related
to the longest elementw0, where for anyx, y ∈ Sn, we have
(W )x,y = 1 if and only if yw−1

0 = x.
Proof: It suffices to show thatW commutes with any

adjacency matrixAΨn,j of the length CC. For anyAΨn,j,
observe that(WTAΨn,jW )x,y = (AΨn,j)xw−1

0
,yw

−1

0

. Recall
(AΨn,j)x,y = 1 if and only if (x, y) ∈ ∆j , whereby∆j is
an orbital of the induced action ofSn × Ψn on Sn × Sn.
Hence (AΨn,j)xw−1

0
,yw−1

0

= (AΨn,j)x,y because(x, y) and

(xw−1
0 , yw−1

0 ) both belong to same orbital. Hence for anyj
we haveAΨn,jW = WAΨn,j, which impliesW commutes
with all of ASn×Ψn,Sn

.

3) Technical Lemma 1

To show Lemma 1 we need to first establish a relationship
between the adjacency matricesAZ,i of the CC(Sn×Z,Sn),
whereZ is a subgroup ofSn, with orbits onSn, of a subgroup
of Sn × Sn that is related toZ. Recall our definition of
the action of any(α, β) in Sn × Sn on anyx ∈ Sn, given
as (α, β)x = αxβ−1. For any subgroupZ of Sn, denote
the subgroup{(β, β) : β ∈ Z} of Sn × Sn by HZ . Let
CZ,1, CZ,1, · · · , CZ,r denote ther orbits, obtained from the
action ofHZ on Sn. Each orbitCZ,i is called aconjugacy
class (of the action ofHZ on Sn). Let ρ(β) denote the 0-1
matrix where(ρ(β))x,y = 1 if and only if yβ−1 = x (i.e., by
our previous definition,W = ρ(w0)). We claim a one-to-one
correspondence between some conjugacy classCZ,i and some
adjacency matrixAZ,i of the CC(Sn ×Z,Sn), given as

AZ,i =
∑

β∈CZ,i

ρ(β). (11)

By this claim the numberr of conjugacy classesCZ,i, equals
the numberd of adjacency matricesAZ,i. To show (11),
consider the following.

First, we establish the one-to-one correspondence. By the
definition of the orbital∆i, for any (x, y), (x̃, ỹ) ∈ ∆i there
exists someα ∈ Sn andβ ∈ Z such that̃x = αxβ−1 andỹ =
αyβ−1. Equivalently for any(x, y), (x̃, ỹ) ∈ ∆i, there exists
someβ ∈ Z that satisfies̃x−1ỹ = βx−1yβ−1, which means
that x̃−1ỹ andx−1y are both inCZ,i. Note that

∑

β∈CZ,i
ρ(β)

is a 0-1 matrix, and by the definition ofρ(β) we conclude




∑

β∈CZ,i

ρ(β)





x,y

= 1, if and only if x−1y ∈ CZ,i,

if and only if (x, y) ∈ ∆i. This establishes (11) by by referring
to the original definition ofAZ,i from ∆i.

Proof of Lemma 1: Denote a set{βw0 : β ∈ CSn,i} of
elements inSn by PSn,i. HencePSn,i is obtained using the
conjugacy classCSn,i and the longest elementw0. LetASn,i be
an adjacency matrix of the conjugacy CC, andW = ρ(w0).
It follows ASn,iW =

∑

β∈CSn,i
ρ(βw0) =

∑

β∈PSn,i
ρ(β).

BecauseΨn is a subgroup ofΘn, so for each conjugacy
classCΘn,ℓ there exists index setsIΘn,ℓ satisfyingCΘn,ℓ =
∪j∈IΘn,ℓ

CΨn,j . The setsIΘn,ℓ partition {1, 2, · · · , dΨn
}. For

1 ≤ i ≤ dSn
, we claim there existsnew index setsIi andJi

that satisfy

CSn,i = ∪ℓ∈IiCΘn,ℓ, (12)

PSn,i = ∪ℓ∈JiCΘn,ℓ. (13)

If the claim holds, Lemma 1 is easily proved as follows.
By the previously established (11), we can writeAΘn,ℓ =

∑

β∈CΘn,ℓ
ρ(β), whereAΘn,ℓ is an adjacency matrix of the

CC (Sn ×Θn,Sn). By (11) again, an adjacency matrixASn,i

of the conjugacy CC satisfiesASn,i =
∑

β∈CSn,i
ρ(β), so

(12) impliesASn,i =
∑

ℓ∈Ii
AΘn,ℓ. Also becauseASn,iW =

∑

β∈CSn,i
ρ(βw0), by definition of PSn,i then (13) implies

ASn,iW =
∑

ℓ∈Ji
AΘn,ℓ. But because bothASn,i andASn,iW

are symmetric 0-1 matrices, there must exist setsĨi and J̃i to
expressASn,i andASn,iW in terms of symmetrized adjacency
matricesÃΘn,ℓ, i.e.

ASn,i =
∑

ℓ∈Ĩi

ÃΘn,ℓ =

d̃Θn
∑

ℓ=1

tℓ,i · ÃΘn,ℓ,

ASn,iW =
∑

ℓ∈J̃i

ÃΘn,ℓ =

d̃Θn
∑

ℓ=1

tℓ,dSn+i · ÃΘn,ℓ,

wheretℓ,i are coefficients appearing in the lemma statement.
We end by showing the previous claims. The first identity

(12) follows easily from the factΘn ⊆ Sn. The second identity
(13) follows by arguing ifCΘn,ℓ ∩ PSn,i 6= ∅ then CΘn,ℓ ⊂
PSn,i. Consider somexw0 ∈ CΘn,ℓ ∩PSn,i, wherex ∈ CSn,i.
By definition of the conjugacy classCΘn,ℓ = {(α, α) · xw0 :
α ∈ Θn}. By definition of the groupΘn we have(α, α) ·
xw0 = αxw0α

−1 = (αxα−1)(αw0α
−1) = (αxα−1)w0, and

it follows (αxα−1)w0 is also in PSn,i as αxα−1 ∈ CSn,i.
Hence (13) is shown.



4) Main theorem

Finally, the following verifies that our proposed LP bound
(10) indeed provides an upper bound to the optimal value of
the dual problem (5).

Proof of Theorem 3:For someb ∈ Rd̃Ψn , z ∈ Rd̃Θn and
a ∈ R2dSn , we have the following chain of equalities

d̃Ψn
∑

j=1

bj · ÃΨn,j
(a)
=

d̃Θn
∑

ℓ=1

zℓ · ÃΘn,ℓ

(b)
=

d
∑

i=1

ai · ASn,i +

dSn
∑

i=1

adSn+i · ASn,iW, (14)

where (a) follows by settingbj = zℓ if j ∈ ĨΘn,ℓ, and (b)

follows by settingzℓ =
∑2dSn

i=1 tℓ,i · ai for coefficientstℓ,i
that satisfy (9). The theorem will be proved by showing for
any feasiblea in R2dSn to (10), there corresponds some some
feasibleb in Rd̃Ψn to (5) by the above relationship (14).

Firstly the objectives of (5) and (10) are equal becauseb1 =

z1 =
∑2dSn

i=1 t1,i ·ai. Let a satisfy the second constraint of (10)
and letb satisfy (14). Byzℓ =

∑2dSn

i=1 tℓ,i ·ai, if γℓ ≥ δmin we
havezℓ ≤ 0. Becauseγℓ = max{δj : j ∈ ĨΘn,ℓ}, then for any
j ∈ ĨΘn,ℓ such thatδj ≥ δmin, we must havebj ≤ 0. Finally

∪
d̃Θn

ℓ=2 {δj : j ∈ ĨΘn,ℓ} = {δ2, δ3, · · · , δd̃Ψn
}, implying that

bj ≤ 0 for all j ≥ 2 wherebyδj ≥ δmin, thereforeb satisfies
the non-positive constraint of (5).

Next consider the matricesM1,j and M2,j given in the
theorem statement. NoteM1,j +M2,j = UIjU

T andM1,j −
M2,j = (UIjU

T )W . UsingASn,i =
∑d

j=1 pi,j · (UIjU
T ) in

Theorem 2 we express

ASn,i =

dSn
∑

j=1

pi,j ·M1,j +

dSn
∑

j=1

pi,j ·M2,j,

ASn,iW =

dSn
∑

j=1

pi,j ·M1,j −

dSn
∑

j=1

pi,j ·M2,j,

J =

dSn
∑

j=1

cj ·M1,j +

dSn
∑

j=1

cj ·M2,j, (15)

where we claim (shown below) that the matricesM1,j and
M2,j are i) all symmetric, and ii) have eigenvalues only
0 or 1, and iii) M1,jM2,j = 0 and iv)

∑d

j=1(M1,j +

M2,j) =
∑d

j=1(UIjU
T ) = I. For any a satisfying the

last two constraints of (10), then (15) implies
∑d

i=1 ai ·

ASn,i +
∑dSn

i=1 adSn+i · ASn,iW − J is positive semidefinite.
Then for b that corresponds by (14) to such ana, we will

have
∑d̃Ψn

j=1 bj · ÃΨn,j − J satisfying the positive semidefinite
constraint in (5).

To finish the proof we address the above claims i) and ii),
whereby iii) and iv) will then follow from similar arguments.
Claim i) follows because all matricesUIjU

T commute with all
matricesASn,i, see Theorem 2. RecallW commutes with all
matrices inB, thereforeW commutes with all matricesASn,i,
which implies W commute with allUIjU

T . This implies
M1,j andM2,j are symmetric, since bothW andUIjU

T are
symmetric.

Claim ii) follows becausew−1
0 = w0, and it can be verified

that WT = W−1 = W , which implies that the possible
eigenvalues ofW are−1 and1. Thus the possible eigenvalues
of matricesM1,j andM2,j are0 or 1.
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