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Abstract—Recent interest on permutation rank modulation theory of coherent configurations (CC), which instead @eliv
shows the Kendall tau metric as an important distance metric gemidefinite programming (SDP) formulations. The matrices

This note documents our first efforts to obtain upper bounds @, 1hese SDP’s turn out to be of unwieldy size, but recent
optimal code sizes (for said metric) ala Delsarte’s approdt For

the Hamming metric, Delsarte’s seminal work on powerful liear WOrK [12], [13], [14] suggest possible approaches. One may
programming (LP) bounds have been extended to permutation €xploit the algebraic structure of the CC’s, to only worklwit
codes, via association scheme theory. For the Kendall tau rie,  block-diagonalized (and possibly much smaller) versiofis o
the same extension needs the more general theory of coherentthese matrices. To our knowledge, such recent techniqees ar
configurations, whereby the optimal code size problem can be o\ iy the area of permutation codes. However, the solution
formulated as an extremely huge semidefinite programming . . . )
(SDP) problem. Inspired by recent algebraic techniques for 1S not straight-forward. As code lengths increase, the CC's
solving SDP’s, we consider the dual problem, and propose an (related to the Kendall tau metric) become huge quickly,
LP to search over a subset of dual feasible solutions. We olite motivating the techniques presented in this preliminapore
moddﬁﬂsgziumrﬁ&ge\’}“\/‘znrteo‘é% ?hir:‘;\i;‘rtksaigﬁgitgtizoungn‘iufo\tlea‘?dzfg While we believe to be presently unable to fully exploit
an A P
fully exploiting the povger of Delsarte’'s method, v%hFi)ch a’re known the power of SDP bounds, we show some initial success. We
to give some of the best bounds in the context of binary codes. consider the dual problem (also a SDP), and use an LP to
search over a subset of feasible solutions. We obtained mod-
est improvement over a recently published Singleton bound
in [6]. The reduced complexity allows us to compute up to
. INTRODUCTION permutation codes of lengthl (where the matrices were

A permutation code is designed to only allow certaiHreViOUS|y of ordeﬂlfactorial). Certain bottIenecI_<s, if solved,
pairwise distances between any two codewords. These cofi@y!d allow computation for longer codes. As it stands, our
have been studied in various contextsy, group codes 1], Proposed LP bounds perform poorer than known Hamming
signal modulation[[2], ]3], vector quantization [4], rankodh bounds|[6], and it remams.to see ho_vv far soph|st|cated_SDP-
ulation [E], [6], cost-constrained transpositions [7]¢.eThis basgd approaches can ultimately bflng us. This note aims to
work is motivated by a recent study on a fundamental codifgPtivate new research to resolve this open question.
problem. In [6] they looked at optimal code sizes with respec [I. BACKGROUND
to the Kendall tau distance metric. This metric is important
rank modulation and its applications.,g, flash memories.

For binary codes, Delsarte’s optimization-based metH8Hs [ Let S,, denote thesymmetric groupn a set{1,2,...,n}
give some of the best known bounds [9]. For permutaticanddist(,) be a distance metric of,. A subsetV of S, is
codes, we observe during initial experiments (for very $man (n, dmin) permutation code (with respect to dist(,)), if for
lengths) that Delsarte-like methods outperform Hammirgny g, h € V such thatg # h, we havedist(g, h) > omin.

(sphere packing) bounds [6], [10]. Our interest is to inggde, pefinition 1 (Optimal code size problem)Let dist(,) be a

if this improvement carries over for larger codes. Tarnangfisiance metric on the symmetric groSp. Let dmin > 1. The
extended Delsarte’s work over to permutation codes [1]fl)llowing problem is theoptimal code size problem
however only for the Hamming metric (and other metrics oy

max

with similar symmetries). The novelty here is to consider th VS, 1)
Kendall tau metri_c, and as pointed out A [6], lacks re_quired s.t.dist(g, h) > Smin f(;r all g,h €V whereg # h,
symmetry to straight-forwardly apply Tarnanen’s techeisju L

Delsarte’s (and Tarnanen) techniques are based on assgdil# Y denotes the cardinality of the set Denotey(r, omin)
tion schemes, from which linear programming (LP) formuld® P€ the maximal cardinality achieved by, omin) codesi.e.,
tions (of the optimal code size problem) are obtained. Fer th (" min) €quals the optimal value of the above problem.
Kendall tau metric, one needs to consider the more generalfhe image of ¢ by g is denotedg(:). The inverse of g

F. Lim recieved support from NSF Grant ECCS-1128226. is denotedg~!. The product of permutationsg and h is

Index Terms—association schemes, coherent configurations,
permutations, linear programming, semidefinite programming

A. Optimal Code Size Problem and Two Metrics
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denotedgh, whereby(gh)(i) = g(h(i)). Most literature €.g,
Tarnanen[[11]) consider thdamming metric

dist(g.h) 2 #{1<z<n:(g7'h)@) #i}, (@)

i.e, the Hamming distancéist(g, h) equals the number of

movedpoints of g~ k. For thedirect productgroupsS,, x S,
define its action oib,,, as(«a, 3)-g 2 agB~1, where(a, B) €
S, xS, andg € S,,. For any subgroug of S,, x S,,, a metric
dist(,) on S, is G-invariant if for any g,h € S,,, we have
dist(g, h) = dist((«, B) - g, (o, B) - h) for all (o, 8) € G. The
Hamming metric[(R) can be verified to §8,, x S, )-invariant.

The length of a permutation, denotedlength(g), equals
the minimum integer satisfyingg = ajas ... «a, whereby
«; areadjacent transpositionis S,,. For rank modulation [5],
[6] we consider thekendall tau metric, given as

dist(g, h) 2 length(g~'h). 3)

There exists a unique elemang, termed thdongest element
that satisfieslength(wy) n(n — 1)/2. Then wy is an
involution, i.e., wo_1 = wp, anddist(g, h) = dist(gwg, hwy),
see [15], p. 119. Denote a subgrofip, wy} of S, by ¥,
wheree is the identity element of,,. In general, the Kendal
tau metric is(S,, x ¥,,)-invariant.

A permutationg written asg = (123) meansg(1l) = 2,
g(2) = 3 andg(3) = 1. Note (12),(23), (13) are transposi-
tions, in particular the first two are adjacent transposgio

Example 1. ConsiderS; with elements, (12), (23), (123),

(132), (13), and the Hamming metric. The minimum distance

between any two non-equal permutation2isFor dmin = 1
and 2 we haveu(n, dmin) = #Ss. For dmin = 3 the codeV
with the optimal size satisfied = {e, (123),(132)}. Check
dist (e, (123)) = dist(e, (132)) = 3, and dist((123), (132)) =
dist(e, (123)~1(132)) = dist(e, (123)) = 3.

ii) the sumel:1 A; equals the all ones matrix.
iii) for any A;, there exists som4; that satisﬁesAiT = Ay
iv) foranyi,j e {1,2,---,d}, there exists numbe;zz{“j that
: d
satisfy 4;A; = Y"1, pfjAk.

A coherent configuration (CC) denoted(G,S,,), refers
to the set{A;, Ay, --- , A4} of corresponding adjacency ma-
trices. A CC with the additional property; = p¥ is an
association schemén this special case, Delsarte showed how
combinatorial properties can deliver linear programminB)(
bounds|([8]. Construct two CC’s related to tfidnvariances of
the Hamming and Kendall tau metrics. For the former metric,
setg = S, xS, and call(S,, xS, S,,) theconjugacy CC- the
name comes from [11]. For the latter metric, §et S,, x ¥,,
and term(S,, x ¥,,,S,,) thelength CC. Let RS»*S» denote
the set of real matrices and index s&t. Write As, ;, and
Ay, ; for adjacency matrices of conjugacy, and length CC.

Example 2. The matrices inRS3*S3 corresponding to the
conjugacy and length CC (the indexing 69 is done in the
same order that appears in Hg. 1), are written as followsstir

|A5n71:A\pml:I, where[ is the identity matrix. Next
011001 011000
100110 100100
A32=100110 A\I’Q:lOOOlO
™ 011001/’ ™ 010001
011001 001001
100110 000110

By TheorenillAs, 5 = J — I — Ags, 2, hereJ has all ones.
Finally, it so happens that we gélty, 3 = As, 3 andAy,, 4 =

As, 2 — Ag, 2. Matrices As, 1 to As, 3 corresponding to
Hamming distance$,2,3, and Ag, 1 t0 Ay, 4 to Kendall
tau distance®), 1,2, 3.

The minimum possible non-zero Kendall tau pairwise dis- The focus here is on the length CC, related to the Kendall

tance is 1. For dmn = 1, we haveu(n,dmn) = #Ss
as before. Forémn = 2 the optimal code satisfiey =
{e,(123), (132)}. Checkdist(e, (123)) = length((123)) = 2,
where (123) (12)(23). For omin = 3 the optimal code
satisfiesV = {e, (13)}, where(13) is the longest elemenit,
in S3 and length((13)) = 3 (here (13) = (12)(23)(12)).

B. Coherent Configurations (CC)

We now describe objects used to formulate relaxations g, jii), Theorem[1, a se{A;, Ao, - -

(@). For a subgrou of S,, x S,,, define aninduced action
of G 0N S, x S, asg - (x.y) = (g(x),g(y)) whereg € G

tau metric. The conjugacy CC (related to the Hamming metric)
is actually an association scheme, and is treated ih [1&]; th
recollection is because of connections exploited later.

I1l. SEMIDEFINITE PROGRAMMING (SDP) BOUNDS

A symmetric matrix)/ in RS»*S» is positive semidefinite
if all its eigenvalues are@on-negative\We now use CC’s to
formulate the relaxation of the optimal code size problem.
-, Az} of symmetrized
adjacency matricesare obtained, whereby < d. If A; is
not symmetric, then find4;, such thatA? A, and set

andz,y € S,. An orbit of this induced action is termed and; = A; 4+ A;. Similarly the symmetrized orbitals A; are

orbital . These orbitals\;, A,, --- , A4 of the induced action
partition {(z,y) : z,y € S,} = UL, A;. If the action ofG on
S, Is transitive we use the conventioh; = {(z,z) : © €
S, }. For each orbital\;, we correspond aadjacency matrix

obtained by setting\; = A; UA; if A; = A; + Ay. Note
both(g, h) and(h, g) belong to the sama ;, anddist(g, h)
dist(h, g). Thus byG-invariance ofdist(, ) setd; = dist(g, h)
for any (g, h) € A;, sincedist(g, h) = dist(g’, h') for any

A; as follows. Here4; is a 0-1 matrix, whose rows/columnS(gJL), (g', 1) € Aj_ The valuesy; are calledorbit-distances

are indexed byS,, and we havg4;),, = 1 if and only if
(z,y) € A;. Let AZ—T denote the transposed matrix df.

(with respect to ag-invariant metric dist(,)). If G acts
transitively onS,,, then by conventiol\; = {(g,9) : g € Sx.},

Theorem 1 (c.f. [16], p. 52) Let G be a group which acts thusd; > 1 for all j > 2. The properties of the CC's can

on S, transitively. For the induced action @ on S, x S,,,
the adjacency matriced; corresponding to thé orbitals A;,
satisfy

i) A; equals the identity matrix.

simplify the following optimizations.

Definition 2 (Primal SDP,(G,S,,) and dmin). Let G be a
group which acts orf,, transitively anddist(, ) a G-invariant
distance metric onS,. Let §; be the orbit-distances w.r.t.



TABLE | TABLE Il
[INITIAL EXPERIMENTS] SDP BOUNDS FOR3 < n < 5 NUMBER d OF ADJACENCY MATRICES

n=3 n=>5
omin b SB HB Search dmn b7 SB HB Search n_len Coni. de, | m  Len.  Conj. do,
1" 6 6 6 6 1" 130 120 120 120 4 13 5 8 | 8 10558 22 171
2 3 6 6 3 2 60 120 120 - 5 45 7 21 | 9 92126 30 860
3 2 2 2 2 3 22 120 24 6 230 11 34 | 10 912908 42 1052
n=4 4 14 120 24 7 1388 15 122| 11 9998008 56 7578
Smin bf SB HB Search 5 7 24 8
1 24 24 24 24 6 5 24 8 3 * * i
3 95 51 54 3 S 3 %4 3 3 whereM andb_ are optimal soln_s. oC[{l) andl(5), resp.
3 5 24 6 5 8 2 6 4 2 Our interest in SDP bounds is motivated by initial ex-
4 3 6 6 3 9 2 6 2 2 . . . N
5 2 6 2 2 0 2 2 2 2 perimentation. Tablgl | shows optimal objective values[df (5
6 2 2 2 2

- obtained using SeDuMi, for (small) = 3 to 5. We compare
, Singleton bound (SB), published inl[6], equation (5). with two other bounds, i) &8ingleton boundSB) recently
Hamming bound é'jfgaftf;;“bgﬂg;ﬁg estimates, Sed (4. (8] published in [[6], and ii) aHamming bound(HB) obtained

) , o . by sphere packing, segl[6]. Ball-sizes for HB were obtained
(G,5,) and dist(,). Define thesemidefinite programming {4 exactnumbers of permutations with inversions [10].

(SDP) problem correp. to(g, S,) and somejmin > 1, as For cases shown, SDP bounds always perform the best, with

ycbax Tr(JM) (4) some tightness verified by limiteekhaustive searche&iven
: . e that optimization-based bounds are (some of) the best-know

s.t. M is positive semidefinite, antr(M) = 1, for binary codes, e.g. see discussion_in [9], it is not unlikua

Tr(A;M) >0, for2<j<d, ask:for permutation codes, are SDP bounds always better

Tr(A;M) =0, for2<j<dwith §; < dmin, for all n?
where 4; is a corresponding symmetrized adjacency matrix, 10 S€ek an answer we should compute for largethus
J is the all-one matrix, andT is the trace function. motivating the proposed method in the next section. Wéien

gets large, problemgl(4) and (5) become increasingly difficu
Proposition 1. LetG be a group which acts of,, transitively to solve, as the matriced; have order#S,,. Our method is

and dist(, ) a G-invariant distance metric oib,. Let dmin >  inspired by recent work[12]/ [13].[14], which show thatAf;
1. Then, the optimal objective value & (4) upper bounds theme from a CC, then thd; can be replaced (ihi4) and (5))
optimal objective value of11) fadist(,) and dmin. by block-diagonalizedversions - exact details omitted here.

The SDPI[(#) is a relaxation of the optimal code size problef{iS may’result in huge complexity reductiang, [14] shows
(@), see appendix for proof. The optimal value of the SDP (j{rpw SDP’s related to the conjugacy CC reduces to simpler LP
is at most#S,, as for any feasiblél/, we have TfJM) < problems. The caveat is that number of matrix blocks (olkethin
Tr(J) = #8,. Software like SeDUMI[[17] can solve SDP’s. from diagonalization) is at least, the number of adjacency

) . matrices A;, see [12]. Unfortunately for the length CC, this

Example 3. Considerg = S; x W3, whereby the Kendall ), \per quickly becomes large for increasingsee Tabl&ll.
tau metric isG-invariant. LetA; to A4 correspond toAyg,, 1

. . X Thus in our case it becomes difficult to directly apply the
t0 Ag,, 4 (all symmetric). l_Jsmg SeD_uM| we solve fiin = 1, techniques in[[12], and modifications of the ideas are needed
2 and 3, and get the optimal solutions

1 1 1
il 5 (Ap, 1+ Aw, 3), 6 (Av, 1+ Ag, 4).

which correspond to optimal objective valugs3 and 2.

IV. LENGTHCC: LINEAR PROGRAMMING (LP) BOUNDS

Using “duality” we consider the feasible solutiohgo (B)
(for somegG-invariantdist(, ) anddmin > 1) that furnish upper
We need to work with the dual problem {d (4). estimatesh; to u(n, dmin), see [(6) and Propositidd 1. While
Definition 3 (Dual problem,(G,S,) and dmin). Let G be a “duality” ideas ”are not new, the_novel_ty here is to “guess
group which acts of$,, transitively anddist(,) a G-invariant & 900d subset” of feasible solutions (in the dual program)
distance metric onS,. Let §; be the orbit-distances w.rt. described by a manageable number of linear equations, and
(G, S,) and dist(, ). Let A, be a corresponding symmetrized'S€ an LP to optimize over them. For a QG, S,,), a feasible
adjacency matrix tdg, S,.). Letdmin > 1. Define the following solutionb corresponds to a positive semidefinite matrix in the

min by 5) following seff )
(b1,ba,...,b;) ERY A d ~ . 3
s.t.b; <0for 2 <j<dwith & > min, Agis, 28D bjA;:b; R, forall 1<j<d;. (7)
. i=1
ibjflj — J is positive semidefinite Recall that the_all—p_nes matrix is also inAg s, . . .
= To build an intuition on how such a strategy is possible,
to be thedual problemof the SDP in Definition 4. we first connect with the LP bound of the conjugacy CC

(Sn x Sn, Sn) described in[[11]. To clarify between conjugacy
and length CC’s, we respectively denotg, ; and Ay, ; for
{jacency matrices, antk, anddy, for their numbers.

1The setds,, xW.,S, 1S usually known as the adjacency algebra (dRgr
of the CC(G, S»), which has the properties of a matrixalgebra [[15].

Any feasible solutiond in R? to the dual program[{5),
provides an upper bound to the optimal objective value of t
SDP [4), se€ [14]; we have the following chain of inequaitie

TH(TM*) < b} < by, ®)



We claim that the sefls, xs,.s, is a subset ofds, xv, s, computed using the action 6, xS,, onS,. Let Ag, , denote
seen by showing each; to lie in As, xv, s,. Observe that the symmetrized adjacency matrices belonging to the CC

Sp x Uy, is a subgroup ofS,, x S, hence the orbitals of (5, x0,,S,), where there arde . of them. Notede . < dy ..

the length CC, lie within those of the conjugacy CC. In other < . :
words, there exists index subsefs, ., whereugéffIs _ q_emma 1. LetAgs, ; and Ag,, ¢ be the symmetrized adjacency

L . it matrices belonging to the conjugacy CC afs}, x ©,,S,),
(1,2, ,dy, }, such thatds, ; =3 ez, , Aw,; hold (for respectively. LetV be defined as before. Far < ¢ < de,,

all i). The claimA4s, i € As,xw,.s, follows if As,ilsa 41 < i< 2ds, there exists 0-1 coefficients; that satisfy
symmetric matrix, see property i) of the following theorem en '

from [11]. de,, do,

Theorem 2(c.f. [11]). Let(S,, xSy, S, ) denote the conjugacy As,i = Y teide, o As, W =) tras,+ide, . (9)

=1 =1
CC, where(S,, x 8, S,) = {4s,,: : 1 < i < ds,}, and . -
As, 1 = I. Then all of the following hold forl, . See appendix for the proof of Lemrha 1. The coefficients

. . T - te,; satisfying [9) are used to state the following main theorem.
1) symmetry, i.e.Ag ;= As, ; (OF As, i = As,i)- .. Foro, C &, let index subsetsg, , satisfy g, , =
li) commutativity, i.e.As, ids, ; = As, jAs, i forall i, j. s~ _ 4. Using orbit-distances; w.r.t. (S, x Uy, S,,)
iii) diagonalization by an orthonormal matrix in RS»*Sn» = . A no
diag 7 Y ds ' and the Kendall tau metridist(, ), define constants, that
e, U As, ;U =372 pi; - I; for somep; ; € R and satisfy v, = max{; : j € o, ¢}.

0-1 dia or?él matrixZ;.

7 _gA _ d;n ULUT. theref ds, 1 _ 7 Theorem 3 (LP Bound on(S,, x ¥,,,S,,) and min). Let W
* _ds Snol = Zi:l -7T » there grezjzl J 77" be the 0-1 orthornormal matrix defined as before.
o > Z1As, i =J,s0UTJU =355 ¢ Iy where  por 1 < j < dg,, let constantsp; ;,c; and matrices

¢ = Z?:lpi,j- By conventiorr; = #S,, (the only U, I, be obtained from Theoref 2. Let matricé$, ; and

non-zero eigenvalue of) and¢; =0 for j > 2. M, ; satisfy M;; = %(UIJ-UT)(I + W) and M, ; =
The numbersis, , tabulated in TablEll, equal theartition 3 (ULU")(I = W). _
number of n, see [I1]. Consider a matri{:?ig‘ b;Ay, For1 </ <de,, let the constants, be defined as above.

For 1 <i < 2ds,, let the coefficients, ; satisfy [9). Leta*

in As, xwv,.s,, that for somea € R9s», can be ex- ! :
in R?s» solve the following LP problem

pressed astZl a;As, ;- Theorem[2 allows us to further

bt d
expressz’fi’; bjAw, ; = Z’fiq zj - (UL;UT) where z; = , th (10)
: = . . o min - a
ijg Dij Qi Theanig bjAw, ;—J is positive semidefinite (a1,02,.- 0245, )ERPISn 1 G4
(see((b)) if the linear constraingfﬁ pi,ja; > c; hold for all 2dsn, . .
4, for constants:; in iii). Intuitively, Theorem2 is an explicit S-t. » tri-a; <0 for 2 <0< de, with v > dmin,
“diagonalization” of all matrices in the subséfs, xs,,s, of ;. =}

n

As, xw, s, and facilitates checking of positive semidef. _ N _ . : _
A simple extension of the “diagonaﬁ)ization” idea to theZ(aZ as, +i) - Piyg = ¢ fOr 1 < j < ds,, with My 5 70

following larger subset of matrices, works reasonably wellds,

Property ii) of Theoreni]2 implies iii), as symmetric matri-Z(ai —ads, +i) " Pij > ¢j for 1 < j <ds, with My ; # 0

ces that commute shammmon eigenspacess such, we =1

desir@ a subset3 of As, xw, s, with the property that any Letb; and u(n, dmin) respectively denote the optimal objective

M € B, commutes with any/’ € As, v, s,. Thus any two values of the dual probleni](5), and the optimal code size

matrices inB commute. Such a subsBtmay be obtained  problem [1), forG = S,, x ¥,, and the Kendall tau metric

ds,, ds, dist(, ) and émin. Then we have the following inequalities
B=1> (aids, i)+ > (aas, +iAs, W) : a € R*n } (8) 2ds,,
i—1 i=1 (1, Omin) < by < Z t1-a;.
whereW is an orthonormal, 0-1 matrix ilRS»*S» that sat- i=1
isfies (W),., = 1 if and only if ywy ! = x for anyz,y € S,,. As promised our main result Theordm 3 furnishes an LP

From [8) we seeB contains the se#ls, «s,,s, considered in bound on the optimal code sizgn, dmin). See appendix for
TheoreniR2. Also by the previous correspondence betuigen proof. The numbers, of matricesAe, , is given in the
and the orbitalA ;, one can check (see appendikX)commutes previous Tablé]l, where obserd®, > ds,, butde, is much
with all of As, «v, s, (and eachds, ;). Because the longestreduced fromdy,, . Table[Ill shows our computed LP bounds
element satisfiegﬂal = wp, thusW?T = W~-! = W. So Wherebyn is betweer8 and11. Our proposed LP bound fails
As, ;W are symmetric, and® is a set of symmetric matrices.to completely answer the question posed (at the end) ofecti
One technical lemma, that connecfd (8) with the dulll but some initial success is obtained. Observe that dar L
problem [5), stands in way of finally describing our |_|:pound is at least as tight as the SB in the .places highllighted
bound. This lemma involves a special subgradp of S,, in bold font. Improvements are mainly obtained whigs, is
where ©,, is also involved in a few final definitions. Letclose ton(n—1)/2. Interestingly, these two bounds are useful
0, ={a €S, : (a,a) wy = wy}, where(a,a) - wy is for similar ranges obmin (the SB is known to be non-trivial
2Try to show, se€ [16], pp. 50-51., thalts, ; and As, ;W areconjugacy- only whendémin > n, seel[[6]). For the case = 3 the LP and
sumsandB in (@) is thecenterof the adjacency algebral(7) f6r= S, x¥,,. SDP bounds are equal, though unfortunately-far 4, our LP



TABLE IlI

BOUNDS COMPUTED FOR VARIOUS3 < n < 11.

=3 n=717 n=9 n =10
Smin  LP  SBl HB! & LP SB  HB & LP SB  dmin LP sB
i 6 6 6 10 5040 720 28 ™4 362880 40320 42 6 24
2 3 6 6 11 630 720 14 15 45360 40320 43 3 6
3 2 2 2 12 543 120 14 16 32989 5040 44 3 6
15 140 120 5 23 7560 720 45 2 2
n= 16 75 54 5 25 2016 720
6mn LP SB HB 17 14 24 3 27 1008 120 n=11
W24 24 6 18 7 24 3 29 186 120 5 LP SB
4 12 6 6 19 3 6 2 30 93 120 T8 39916800 3628800
5 4 6 2 20 2 6 2 31 15 24 19 3326400 3628800
6 2 2 2 21 2 2 2 32 9 24 31 359611 40320
33 4 24 33 193458 40320
n = n=8 34 3 6 34 177678 40320
Smin LP SB HB 4 LP SB HB 35 2 6 35 94924 5040
B 120 24 8 M3 40320 5040 64 36 2 2 37 66176 5040
7 10 24 4 13 5040 5040 32 41 33662 720
8 5 6 4 14 4135 720 32 n=10 47 26050 720
9 2 6 2 19 86 120 7 O LP sB 43 11152 720
0 2 2 2 21 38 120 5 ™b 3628800 1362880 44 8700 720
22 192 120 5 17 329891 362880 45 6349 720
n = 23 41 54 3 18 302400 40320 46 3541 120
Smn LP SB HB 24 21 24 3 27 49371 5040 47 222 120
B 720 120 14 25 8 24 2 29 21008 5040 48 111 120
9 120 120 7 26 5 6 2 31 9735 720 49 17 120
11 27 24 4 21 2 6 2 35 4995 720 50 11 24
12 13 24 4 28 2 2 2 36 3900 120 51 5 24
3 & 6 2 37 446 120 52 4 24
4 4 6 2 38 230 120 53 3 6
5 2 2 2 39 55 120 54 2 6
40 30 24 55 2 2
41 11 24

"% See footnotes on previous Table I.

bound does worse than the HB, and the performance gap gé&ts V. K. Goyal, S. A. Savari, and W. Wang, “On optimal permitda
bigger for smallebmin. Inspired by[[6] (which points out three

regions with different asymptotics), it is tempting to cecture
that different strategies work for cas&sn < n andomin > n.

The subset searched here works reasonably well for the Iattl%]

(5]

case, for the former what are the “good” dual-feasible stsf¥se
One issue: no known efficient method to compute “max.

distances”y,, where~, = max{d; : j € i@mg}. If one
replaceso,, by S,, in the expression foty,, (whereAs, ; =
Zjeis A, ;), then [18] has closed-forms foy,. Also its

i

is unclear how large the numbg{1 < §, < J@n : 00 > Omin}

of non-positive constraints could be. No rigorous analysis

done here, but see [19] for a characterizatiorogf
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APPENDIX

1) SDP relaxation of optimal code size problem

By this claim the number of conjugacy classeSz ;, equals
the numberd of adjacency matricesiz ;. To show [(IL),
consider the following.

First we provel[(#) is a relaxation dfI(1). In the following First, we establish the one-to-one correspondence. By the

for a subseV of S,,, let V2 denote the product st x V. Let

definition of the orbitalA;, for any (z,y), (Z,9) € A, there

RS~ denote the set of vectors with real number entries witéikists somev € S,, and3 € Z such thatt = az3~! andg =

index setsS,,.
Proof of Proposition[Il: Let V denote a solution of

@, i.e, let #V = p(n,dmin). Identify the subsed’ of S,
with an 0-1 vectorb in RS, where b, 1 if and only
if ¢ € V. We construct a matrix{/ whose objective value
in @) equals#V, i.e, Tr(JM) = #V. Let M = z;bb7,
ie, M #bbT, and let1 denote the all-ones vector.
Observe that T/ M) Tr(11" M) = TrATmM1) =
%Tr((lfp_b)(bﬁ)) = #%VTr(#V#V) = #V. Next we show
that matrix M is a feasible solution td_{4).

Becausel = y;bb", therefore)M is positive semidefinite

and T(M) = 1 is satisfied. Next observe [th; M) = #(A;N
V2)/#V, so T(A;M) > 0 is satisfied. Now consider any
z,y € S, wherex # y. If z,y € V thendist(x,y) > Omin-
By contraposition, ifdist(z,y) < dmin then (z,y) ¢ V2. Let
(z,y) € Aj for somej > 2, thend; < dmin also implies
(z,y) ¢ V2, which in turn implies T¢A; M) = 0. |

2) Matrix W and setAs, xwv,,,s,

Next we prove the orthonormal, 0-1 matriX commutes
with all matrices in the se#ds, «wv, . s,. Recall W is related
to the longest element,, where for anyx,y € S,,, we have
(W), = 1if and only if yw, ' = =.

Proof: It suffices to show that¥ commutes with any
adjacency matrixAdy, ; of the length CC. For any,, ;,
observe that Wl Ay, ;W),, = (A, ) st yust - Recall
(Ag, ;)zy = 1 if and only if (z,y) € A;, wherebyA; is
an orbital of the induced action a$, x ¥,, on S, x S,.
Hence (Av,, ;)01 yust = (Aw, i)z, because(z,y) and
(zwy ', ywy ) both belong to same orbital. Hence for apy
we haveAy, ;W = WAy, ;, which impliesW commutes
with all of As, xwv.,, s, - [ |

3) Technical Lemmhl 1

To show Lemmall we need to first establish a relationship

between the adjacency matricds ; of the CC(S,, x Z,S,,),
whereZ is a subgroup of,,, with orbits onS,,, of a subgroup
of S, x S,, that is related toZ. Recall our definition of
the action of any(a, 8) in S, x S, on anyz € S, given
as (o, f)x arB~L. For any subgroupZ of S,, denote
the subgroup{(8,8) : 8 € Z} of S, x S, by Hz. Let
Cz1,Cz1,---,Cz, denote ther orbits, obtained from the
action of Hz on S,. Each orbitCz ; is called aconjugacy
class (of the action ofH{z on S,,). Let p(8) denote the 0-1
matrix where(p(3)).,, = 1 if and only if y3~! = z (i.e, by
our previous definitionV = p(wo)). We claim a one-to-one
correspondence between some conjugacy dassand some
adjacency matrixdz ; of the CC(S,, x Z,S,,), given as

Az = Z p(B). (11)

BeCz,i

TW) = xWo

ayB~t. Equivalently for any(z,y), (Z,7) € A;, there exists
somej € Z that satisfiest— 'y = Bz~ 'yB~!, which means
thatz~'y andz~'y are both inCz ;. Note thaty -, . p(6)
is a 0-1 matrix, and by the definition @f3) we conclude

> p(B)

BECz,i

1, ifandonlyif 27'yeCz,,

x,Yy
if and only if (z,y) € A;. This establishe§ (11) by by referring
to the original definition ofdz ; from A,.

Proof of Lemmé]l: Denote a se{Swy : 8 € Cs,, ;} Of
elements inS,, by Ps, ;. HencePs, ; is obtained using the
conjugacy clas€s, ; and the longest elemeny. Let As, ; be
an adjacency matrix of the conjugacy CC, aid = p(wy).

It follows As, ;W = > scc. , p(Bwo) = > geps, , P(B).
BecauseV¥,, is a subgroup of®,, so for each conjugacy
classCg, ¢ there exists index setég, , satisfyingCe, =
Ujezo, (Cu,,j- The setsle, , partition {1,2,---,dy, }. For
1 <1 <ds,, we claim there existaewindex setsl; andJ;
that satisfy

Cs,i =

n,

Ps,..i

n

(12)
(13)

If the claim holds, Lemma@&l1 is easily proved as follows.
By the previously establishe@ (11), we can write,, , =
ZBEC(—)n,e p(B), where Ag, ¢ is an adjacency matrix of the

CC (S, x 0,,8,,). By (11) again, an adjacency matris, ;

of the conjugacy CC satisfieds, ; = Zﬂecsn,ip(ﬂ)- S0
(I2) implies As, i = >",cq, Ao, - Also becauseds, ;W =
Zﬁecsn,ip(ﬁwﬁ))' by definition of Ps, ; then [I38) implies
As, W = Zle}h Ae,, . Butbecause boti s, ; andAs, ;W
are symmetric 0-1 matrices, there must exist &etndJ; to
expressAs, ; andAg, ;W in terms of symmetrized adjacency
matricesAe, 4, i.e.

Urer,Ce,, ¢,

Ueer,Ce, ¢

ny

de,,
As,i = Z Ao, 0= Z tei- Ao, .t
Lel; =1
do,,
As, W = Z Ao, 0= Ztl,danri - Ae, 1,
2€3; =1

wheret, ; are coefficients appearing in the lemma statement.

We end by showing the previous claims. The first identity
(12) follows easily from the fad®,, C S,,. The second identity
(13) follows by arguing ifCo, ¢ N Ps,; # 0 thenCq, ¢ C
Ps,, ;- Consider somewy € Co, ¢ N Ps, i, Wwherezx € Cs, ;.

By definition of the conjugacy classs, ¢ = {(a, @) - zwy :

a € ©,}. By definition of the group®,, we have(a,«) -
= (aza™Y) (awoa™t) = (aza=1)wy, and

it follows (azxa=')w, is also inPs, ; asaza™ € Cs
Hence [IB) is shown.

n,tr



4) Main theorem Claim ii) follows becausev, ' = wo, and it can be verified

T _ -1 — ich impli i
Finally, the following verifies that our proposed LP boun({lhat W | N I/If;/ N 1W (‘j’\’lh'_(f_rr]] |mtrrlllles tha_llglthe_ p035||ble
(10) indeed provides an upper bound to the optimal value %#genva_\ ues opy-are—1 andl. Thus the possibie eigenvajues
the dual problemi{s). of matricesM; ; and M, ; are0 or 1. ]
Proof of Theorenfi]3:For someb € R4¥x, z € Rden and
a € R??s»  we have the following chain of equalities

(i‘l’n ( ) dN@n
ij . Aq;n_’j i ZZg . A@nyg
j=1 =1
() =
= Z a; - As, i + Z aqs, +i - As, iW, (14)
i=1 =1

where (a) follows by settingb; = z if j € Ze, 4, and (b)
follows by settingz, = ijﬁ“ te; - a; for coefficientst, ;
that satisfy [[B). The theorem will be proved by showing for
any feasiblez in R??s» to (10), there corresponds some some
feasibleb in R4~ to (§) by the above relationship_(14).

Firstly the objectives of(5) and (ILO) are equal becduyse
z1 = Z?if" t1,-a;. Leta satisfy the second constraint 6f{10)
and letb satisfy [14). Byz, = Zfiﬁ" tei-a;, if yg > Smin We
havez, < 0. Becausey, = max{J; : j € i@mg}, then for any
j € Te, ¢ such that; > dmin, we must have); < 0. Finally
Up25{0; : j € To,u} = {02.05,- .65, }, implying that
b; < 0 for all j > 2 wherebyd; > omin, thereforeb satisfies
the non-positive constraint ofl(5).

Next consider the matrices/; ; and M, ; given in the
theorem statement. Note/; ; + M, ; = ULUT and M, ; —
M, ; = (ULUT)W. Using 4s, ; = Z?Zl pij - (ULUT) in
Theoren2 we express ‘

ds,, ds,,

As,i = Y pig M+ pij- Moy,
=1 j=1

ds,, ds,,

As, W = pij-Mij—> pij-Maj,
j=1 j=1

ds, ds,
J = ch.Ml’j—’—ch.MQ’j’ (15)
j=1 j=1

where we claim (shown below) that the matrickg ; and
M, ; are i) all symmetric, and ii) have eigenvalues only
0 or 1, and iii) My ;My; = 0 and i) S0 (M, +
Ms ;) = Z?Zl(UIjUT) = [I. For any a satisfying the
last two constraints of[{10), ther_{15) implieEf:1 a; -
As, i+ ij’{ ads, +i - As, W — J is positive semidefinite.
Then for b that corresponds by (114) to such anwe will

haveZ?iff b; - Ay, j — J satisfying the positive semidefinite
constraint in[(b).

To finish the proof we address the above claims i) and ii),
whereby iii) and iv) will then follow from similar arguments
Claim i) follows because all matricésl; U” commute with all
matricesAs, ;, see Theorefl2. Recdll’ commutes with all
matrices in3, thereforel¥’ commutes with all matriceds,, ;.
which implies W commute with allU;UT. This implies
M, ; and M, ; are symmetric, since botV andUL;U” are
symmetric.
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