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Channel Simulation via Interactive Communications

Mohammad Hossein Yassaee, Amin Gohari, Mohammad Reza Aref ∗

Abstract

In this paper, we study the problem of channel simulation via interactive communication, known
as the coordination capacity, in a two-terminal network. We assume that two terminals observe i.i.d.
copies of two random variables and would like to generate i.i.d. copies of two other random variables
jointly distributed with the observed random variables. The terminals are provided with two-way
communication links, and shared common randomness, all at limited rates. Two special cases of
this problem are the interactive function computation studied by Ma and Ishwar, and the tradeoff
curve between one-way communication and shared randomness studied by Cuff. The latter work had
inspired Gohari and Anantharam to study the general problem of channel simulation via interactive
communication stated above. However only inner and outer bounds for the special case of no shared
randomness were obtained in their work. In this paper we settle this problem by providing an exact
computable characterization of the multi-round problem. To show this we employ the technique of
“output statistics of random binning” that has been recently developed by the authors.

Index terms— Channel simulation, interactive communications, coordination, approximation, ran-
dom binning.

1 Introduction

The minimum amount of interaction needed to create dependent random variables is an operational
way to quantify the correlation among random variables. Wyner considered the problem of remote
reconstruction of two dependent random variables by two terminals which are provided with shared
randomness at a limited rate [1]. He used this approach to measure the intrinsic common randomness
between two random variables. An alternative characterization of Wyner’s common information as an
extreme point of a channel simulation problem was provided in [2, 3]. In this setup, a terminal observing
i.i.d. copies of X, sends a message at rate R1 to a remote random number generator (decoder) that
produces i.i.d. copies of another random variable Y which is jointly distributed with X. The total
variation distance between the achieved joint distribution and the i.i.d. distribution induced by passing
X through a discrete memoryless channel (DMC) channel p(y|x) should be negligible. In other words,
the generated distribution and the i.i.d. distribution should statistically be indistinguishable. Shared
common randomness exists between the two parties at a limited rate R0. Cuff found the tradeoff
between R0 and R1 showing that when R0 = 0 the minimum admissible rate for R1 is the Wyner’s
common information; and when R0 = ∞, the minimum admissible rate for R1 is the mutual information
between X and Y (this special case was already shown in [4]).

This setup was generalized in [5] by assuming that two terminals have access to i.i.d. copies of
X1 and X2 respectively and would like to generate i.i.d. copies of Y1 and Y2. Instead of a one-way
communication, now the terminals are provided with a two-way communication at rates R12 and R21

(see Fig. 1). They can use up these two resources in r rounds of interactive communications as they
wish (i.e. we only impose the constraint that

∑
i odd H(Ci) is less than or equal to nR12 where H(Ci)

is the entropy of the message sent from terminal 1 to terminal 2 at round i; a similar statement
holds for R21). Inner and outer bounds on R12 and R21 were derived in the special case of no shared
common randomness [5]. In this paper we completely solve this problem under both the strong and
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Figure 1: Channel simulator model: collective forward and backward rates satisfy nR12 ≥
∑

i:oddH(Ci)
and nR21 ≥

∑
i:evenH(Ci) respectively.

empirical coordination models. Strong coordination demands a total variation converging to zero. On
the other hand, empirical coordination only demands closeness of the empirical distribution of the
generated random variables and the i.i.d. ones [6] (See Section 2 for a detailed description of these two
models). Our result relates to the literature of coordinating distributed controllers to carry out some
joint action (see e.g. [6, 7]) since the generated random variables can be thought of as coordinated
actions. Also, our result has implications in quantum information theory. Finding the communication
cost of simulating non-local correlations has been subject to many studies where the goal is to simulate
an arbitrary bipartite box p(y1, y2|x1, x2). Our result in this paper implies an asymptotic information
theoretic characterization of the communication cost (that serves as a lower bound to the one-shot
communication complexity formulation whose characterization remains an open problem; e.g. see [8]).
As a future work along these lines, it would be interesting to find the entanglement assisted version of
our results, similar to the extensions of [2] in [9].

Lastly we would like to point out that our work falls into the category of strong coordination prob-
lems, which has been popularized by Cuff. See [16]-[20] for some recent works on strong coordination.

This paper is organized as follows: in the next subsection we describe the main proof technique
at an intuitive level. In Section 2 we define the problem and in Section 3 we state the main results
followed by proofs in Sections 4 and 5.

Notation: In this paper, we use XS to denote (Xj : j ∈ S). we use pUA to denote the uniform
distribution over the set A and p(xn) to denote the i.i.d. pmf

∏n
i=1 p(xi), unless otherwise stated. The

total variation between two pmf’s p and q on the same alphabet X , is denoted by ‖p(x)− q(x)‖1.

Remark 1. Similar to [3] in this work we frequently use the concept of random pmfs, which we denote
by capital letters (e.g. PX). For any countable set X let ∆X be the probability simplex for distributions
on X . A random pmf PX is a probability distribution over ∆X . In other words, if we use Ω to denote
the sample space, the mapping ω ∈ Ω 7→ PX(x;ω) is a random variable for all x ∈ X such that
PX(x;ω) ≥ 0 and

∑
x PX(x;ω) = 1 for all ω. Thus, ω 7→ PX(·;ω) is a vector of random variables,

which we denote by PX . We define PX,Y on product set X × Y in a similar way. We note that we
can continue to use the law of total probability with random pmfs (e.g. to write PX(x) =

∑
y PXY (x, y)

meaning that PX(x;ω) =
∑

y PXY (x, y;ω) for all ω) and the conditional probability pmfs (e.g. to write

PY |X(y|x) = PXY (x,y)
PX(x) meaning that PY |X(y|x;ω) = PXY (x,y;ω)

PX(x;ω) for all ω).

2 Problem Statement

Two terminals observe i.i.d. copies of sources X1,X2 (taking values in finite sets X1 and X2 and having
a joint pmf q(x1, x2)) respectively. A random variable ω which is independent of Xn

[1:2] = Xn
1 X

n
2 and

is uniformly distributed over [1 : 2nR0 ] represents the common randomness provided to the terminals.
Given an arbitrary r ∈ N, an (n,R0, R12, R21) channel simulation code for simulating a channel with r

interactive rounds of communications, consists of
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• a set of r randomized encodings specified with the conditional pmf’s p̃enc1(ci|c[1:i−1]x
n
1ω) for odd

numbers i ∈ [1 : r] and p̃enc2(ci|c[1:i−1]x
n
2ω) for even numbers i ∈ [1 : r], where Ci denotes the

communication of the i-th round,

• two randomized decoders p̃dec1(yn1 |c[1:r]x
n
1ω) and p̃dec2(yn2 |c[1:r]x

n
2ω),

such that

1

n

∑

i:odd

H(Ci) ≤ R12,
1

n

∑

i:even

H(Ci) ≤ R21.

Definition 1. Given a channel with transition probability q(y[1:2]|x[1:2]), a rate tuple (R0, R12, R21) is
said to be achievable if there exists a sequence of (n,R0, R12, R21) channel simulation codes, such that
the total variation between the probability p̃(yn[1:2], x

n
[1:2]) induced by the code and the i.i.d. repetitions of

the desired pmf q(y[1:2]|x[1:2])q(x[1:2]) vanishes as n goes to infinity, that is

lim
n→∞

∥∥∥∥∥p̃(y
n
[1:2]x

n
[1:2])−

n∏

i=1

q(y[1:2],ix[1:2],i)

∥∥∥∥∥
1

= 0. (1)

Definition 2. The simulation rate region is the closure of all the achievable rate tuples (R0, R12, R21).

Remark 2. In the special case r = 1, Y1 = X2 = ∅, our problem reduces to the one considered by Cuff
in [3].

Remark 3. Observe that if Y1 = f1(X[1:2]) and Y2 = f2(X[1:2]) are deterministic functions, the total
variation constraint of eq. (1) reduces to

lim
n→∞

p̃
(
Y n
1 = f1(X

n
[1:2]), Y

n
2 = f2(X

n
[1:2])

)
= 1.

Thus our problem reduces to the problem of interactive function computation considered in [11].

Definition 3 (Empirical coordination [6]). Assume that instead of simulating the channel q(y[1:2]|x[1:2]),
the demand is to find encoders and decoders such that the output sequences Y n

[1:2] are jointly typical with

the inputs Xn
[1:2], with high probability. In this case, condition (1) should be replaced by the following

condition:
lim
n→∞

p̃
(∥∥∥p̃Xn

[1:2]
Y n
[1:2]

− qX[1:2]Y[1:2]

∥∥∥
1
> ǫ
)
= 0, (2)

where p̃Xn
[1:2]

Y n
[1:2]

is the empirical distribution of the pair (Xn
[1:2], Y

n
[1:2]) induced by the chosen code.

Remark 4. It can be shown that if a sequence of codes satisfies the channel simulation condition (1),
then it also satisfies the empirical coordination constraint (2). On the other hand it was shown in [6,
Theorem 2] that the empirical rate region does not depend on the amount of common randomness,
that is, if (R0, R12, R21) is achievable for empirical coordination, then (0, R12, R21) is also achievable.
These two facts imply that the achievability of a pair of (R12, R21) for empirical coordination can be
proved indirectly through the achievability proof for channel simulation in the presence of an unlimited
common randomness. In [6], it was conjectured that this relation is two-sided, i.e. the rate regions for
empirical coordination and channel simulation with unlimited common randomness are equal.

3 Main Results

Theorem 1 (Channel Simulation). The simulation rate region is the set S(r) of all non-negative rate
tuples (R0, R12, R21), for which there exists p(f1, · · · , fr, x[1:2], y[1:2]) ∈ T (r) such that

R12 ≥ I(X1;F[1:r]|X2),

R21 ≥ I(X2;F[1:r]|X1),

3



R0 +R12 ≥ I(X1;F[1:r]|X2) + I(F1;Y[1:2]|X[1:2]),

R0 +R12 +R21 ≥ I(X1;F[1:r]|X2) + I(X2;F[1:r]|X1) + I(F[1:r];Y[1:2]|X[1:2]), (3)

where T (r) is the set of p(f1, · · · , fr, x[1:2], y[1:2]) satisfying

X[1:2], Y[1:2] ∼ q(x[1:2])q(y[1:2]|x[1:2]),

Fi−F[1:i−1]X1 −X2, if i is odd,

Fi−F[1:i−1]X2 −X1, if i is even,

Y1 − F[1:r]X1 −X2Y2,

Y2 − F[1:r]X2 −X1Y1,

|F1| ≤ |X1||X2||Y1||Y2|+ 3,

∀i > 1 : |Fi| ≤ |X1||X2||Y1||Y2|
i−1∏

j=1

|Fj |+ 2. (4)

Corollary 1 (Interactive function computation [11]). Assume that the desired channel is deterministic,
that is, Y1 = f1(X[1:2]) and Y2 = f2(X[1:2]). Setting R0 = 0 in Theorem 1 gives the following full
characterization of the rate region of reliable interactive computation,

R(r) = {∃F[1:r] :R12 ≥ I(X1;F[1:r]|X2)

R21 ≥ I(X2;F[1:r]|X1)

Fi − F[1:i−1]X1 −X2, if i is odd,

Fi − F[1:i−1]X2 −X1, if i is even,

H(Y2|F[1:r]X2) = H(Y1|F[1:r]X1) = 0}.

Theorem 2 (Empirical coordination). The empirical coordination rate region is the set of all non-
negative rate pairs (R12, R21), for which there exists p(f1, · · · , fr, x[1:2], y[1:2]) ∈ T (r) (defined in Theorem
1) such that

R12 ≥ I(X1;F[1:r]|X2),

R21 ≥ I(X2;F[1:r]|X1). (5)

The achievability part of this theorem comes from setting R0 = ∞ in Theorem 1. The converse is
relegated to Appendix G.

Remark 5. Interactive empirical coordination is related to the problem of interactive lossy source coding
solved by Kaspi in [12]. The above theorem in conjunction with [10, Theorem 9] provides an alternative
proof for that result.

3.1 Non-Symmetry of the Simulation Region

One may expect that the simulation region should be symmetric. However the region S(r) is not
symmetric; in particular there is an interesting inequality on R0 +R12 which is not symmetric. In this
regard, the following observations are useful:

1. We are finding the region for a finite r rounds of communication. Since r is fixed and the first party
starts the communication, there will be a non-symmetry.

2. The region would have been symmetric if the region was for infinite rounds of communication
(i.e. r → ∞). We prove this by showing that the constraint on R0 + R12 can be relaxed from
the definition of S(r), when we want to compute S(∞) =

⋃
r≥1 S(r). Let S

′(r) be the rate region
obtained from S(r) by relaxing the constraint on R0 + R12. We show that S ′(r) ⊆ S(r + 2).
Take a point (R0, R12, R21) ∈ S ′(r). Let F[1:r] be the corresponding random variables for this
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point. We find F ′
[1:r+2] to reach (R0, R12, R21) as a point in S(r + 2). Define F ′

1 = ∅, F ′
2 = ∅

and F ′
i = Fi−2 for i > 2. Then writing the constraint corresponding to F ′

[1:r+2] and removing a

redundant equation (the one on R0 +R12) gives us what we need.

3. Communication can itself be used to establish common randomness. For instance the first party
can allocate parts of its first message to create common randomness. This implies that if the
point (R0, R1, R2) is in S(r), so is (R0 − α,R1 + α,R2) in S(r) for positive α ≤ R0. The given
region has this property.

On the other hand, if the second party wants to use its communication to generate common ran-
domness, the first party who is initiating the communication cannot use this common randomness
in the first round, which becomes a different setup from the one we are considering here. However,
a special use of the communication by the second party to generate common randomness is to
have the first party not sending anything in the first round. The second party sends a message
of size α to be used as common randomness in the next rounds. This implies that if the point
(R0, R1, R2) is in S(r), so is (R0 − α,R1, R2 + α) in S(r + 2) for positive α ≤ R0. To show that
our region has this property assume that we use F[1:r] to reach the point (R0, R1, R2) in S(r). We
define F ′

[1:r+2] to reach (R0 − α,R1, R2 + α) as follows: F ′
1 = ∅, F ′

2 = ∅ and F ′
i = Fi−2 for i > 2.

Substituting this and removing a redundant equation (the one on R0 + R12) gives us what we
need.

We can also consider the case where the first party does not send anything, and the second party
allocates parts of its message in the second round to generating common randomness. When the
first party does not talk in the first round, it is as if the role of the second party and the first are
S-Witched, but the number of rounds is increased by one. One can verify that the region given
in the statement of the theorem still has the expected properties.

4 Achievability

4.1 Review of the output statistics of random binning

4.1.1 Description of the proof technique

In this paper, the achievability part of the proof is based on the technique of “output statistics of
random binning” (OSRB) that has been recently developed in [15]. To explain the technique we begin
with describing the resolvability lemma used by Cuff [2, Lemma 6.1], and originally proved by Wyner.
We report this lemma in a slightly different form that suits our purpose. Although we do not use this
lemma in this work, since it is very central to the achievability proof of [3], we illustrate how this lemma
can be proved using the OSRB approach.

To discuss the resolvability lemma [2, Lemma 6.1], let us fix some p(x, y). Roughly speaking the
lemma states that one can find 2nR sequences in X n, namely xn(1), xn(2), · · · , xn(2nR), such that if
we choose one of these sequences at random and pass it through the DMC channel p(y|x) we get an
output sequence that is almost i.i.d. according to p(y), as long as R > I(X;Y ). We can restate this
lemma by letting M to be a random variable whose alphabet is M = [1 : 2nI(X;Y )], and assuming that
Xn(M) is transmitted over the DMC channel q(y|x). To prove this lemma in the traditional way one
would construct a random codebook parametrized by a random variable B. Every choice of B = b

corresponds to a particular codebook (particular set of sequences in the X n space). The probability
distribution imposed on the Yn space depends on the value of B, which is itself random. Therefore we
use the capital letter PY n to denote the random p.m.f. induced on Yn, by the random codebook. To
show the above lemma one would need to show that the expected value of the total variation distance
between the probability measure yn 7→ P (yn) and the i.i.d. distribution is small. Therefore there exists
B = b where the total variation distance is small. Indeed this is the way that Cuff proves this lemma
in [3, Lemma IV. 1], [10, Lemma 19].

To illustrate the proof of this lemma using the OSRB approach, one would need to start from n

i.i.d. copies of Xn and Y n from the given p(x, y). Random variables B and M are identified as random
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binnings of Xn at rates 2nR̃ and 2nR respectively. Note the conceptual change is in starting from the
i.i.d. distribution and then defining B as a function of Xn. It is proved that if R̃ < H(X|Y ), B is almost
independent of Y n. Therefore, for almost any choice of B = b, the distribution of Y n conditioned on
B = b is almost i.i.d. On the other hand, if R̃ + R > H(X), Xn will be a function of (M,B) with
high probability by the Slepian-Wolf. We are interpreting B and M as two messages coming from
two encoders both observing Xn. These imply that one can find B = b such that the conditional law
yn 7→ p(yn|B = b) is close to the i.i.d. distribution, and at the same time Xn is almost a function of M
conditioned on B = b. All the approximations in this intuitive argument can be made accurate.

The crucial departure from the traditional argument was our treatment of random variable B. As
discussed in [15], the randomness in generating a random codebook is generally conceived of a common
randomness shared among the terminals in a problem. However, we are changing the order by first
generating i.i.d. distributions and then treating B as a random binning on this product i.i.d. space.

4.1.2 Main tools

Let (X[1:T ], Y ) be a discrete memoryless correlated sources (DMCS) distributed according to a joint
pmf pX[1:T ],Y on finite sets. A distributed random binning consists of a set of random mappings Bi :

X n
i → [1 : 2nRi ], i ∈ [1 : T ], in which Bi maps each sequence of X n

i uniformly and independently to
[1 : 2nRi ]. We denote the random variable Bt(X

n
t ) by Bt. A random distributed binning induces the

following random pmf on the set X n
[1:T ] × Yn ×

∏T
t=1[1 : 2nRt ],

P (xn[1:T ], y
n, b[1:T ]) = p(xn[1:T ], y

n)

T∏

t=1

1{Bt(x
n
t ) = bt}.

Theorem 3 ([15]). If for each S ⊆ [1 : T ], the following constraint holds

∑

t∈S

Rt < H(XS |Y ), (6)

then as n goes to infinity, we have

E

∥∥∥∥∥P (yn, b[1:T ])− p(yn)

T∏

t=1

pU[1:2nRt ](bt)

∥∥∥∥∥
1

→ 0. (7)

We now consider another region for which we can approximate a specified pmf. This region is the
Slepian-Wolf (S-W) region for reconstructing Xn

[1:T ] in the presence of (B[1:T ], Y
n) at the decoder. As

in the achievability proof of the [13, Theorem 15.4.1], we can define a decoder with respect to any fixed
distributed binning. We denote the decoder by the random conditional pmf PS−W (x̂n[1:T ]|y

n, b[1:T ])

(note that since the decoder is a function, this pmf takes only two values, 0 and 1). Now we write the
Slepian-Wolf theorem in the following equivalent form. See [15] for details.

Lemma 1 ([15]). If for each S ⊆ [1 : T ], the following constraint holds

∑

t∈S

Rt > H(XS |XSc , Y ), (8)

then as n goes to infinity, we have

E

∥∥∥P (xn[1:T ], y
n, x̂n[1:T ])− p(xn[1:T ], y

n)1{x̂n[1:T ] = xn[1:T ]}
∥∥∥
1
→ 0.

Definition 4. For any random pmfs PX and QX on X , we say PX
ǫ
≈ QX if E ‖PX −QX‖1 < ǫ. Simi-

larly we use pX
ǫ
≈ qx for two (non-random) pmfs to denote the total variation constraint ‖pX − qX‖1 <

ǫ.

Lemma 2 ([15]). We have

6



1.
∥∥pXpY |X − qXpY |X

∥∥
1
= ‖pX − qX‖1

‖pX − qX‖1 ≤
∥∥pXpY |X − qXqY |X

∥∥
1

2. If pXpY |X
ǫ
≈ qXqY |X , then there exists x ∈ X such that pY |X=x

2ǫ
≈ qY |X=x.

3. If PX
ǫ
≈ QX and PXPY |X

δ
≈ PXQY |X , then PXPY |X

ǫ+δ
≈ QXQY |X .

4.2 Achievability proof of Theorem 1

We use a combination of the Slepian-Wolf theorem and Theorem 3 to prove Theorem 1.
The proof is divided into three parts. In the first part we introduce two protocols each of which

induces a pmf on a certain set of r.v.’s. The first protocol has the desired i.i.d. property on (Xn
[1:2], Y

n
[1:2])

but leads to no concrete coding algorithm. However the second protocol is suitable for construction
of a code, with one exception: the second protocol is assisted with an extra common randomness that
does not really exist in the model. In the second part we find constraints on R0, R12, R21 implying that
these two induced distributions are almost identical. In the third part of the proof, we eliminate the
extra common randomness given to the second protocol without disturbing the pmf induced on the
desired random variables (Xn

[1:2], Y
n
[1:2]) significantly. This makes the second protocol useful for code

construction.
Part (1) of the proof: Take an arbitrary p(f[1:r], x[1:2], y[1:2]) ∈ T (r). Let Ri be the rate of the

communication at round i. Thus we have

R12 =
∑

i:odd

Ri, R21 =
∑

i:even

Ri. (9)

We define two protocols each of which induces a joint distribution on random variables that are defined
during the protocol.

Protocol A. We begin by describing a random binning strategy that we will use when defining
Protocol A.

Random Binning: Let (Fn
[1:r],X

n
[1:2], Y

n
[1:2]) be i.i.d. and distributed according to p(f[1:r], x[1:2], y[1:2]).

Since p(f[1:r], x[1:2], y[1:2]) ∈ T (r), it factors as

p(xn[1:2])

[
r∏

i=1

p(fn
i |f

n
[1:i−1]x

n
(i)2

)

]
p(yn1 |f

n
[1:r]x

n
1 )p(y

n
2 |f

n
[1:r]x

n
2 ).

Consider the following random binning:

• To each sequence fn
1 , assign uniformly and independently three bin indices b1 ∈ [1 : 2nR̃1 ],

k1 ∈ [1 : 2nR1 ] and ω ∈ [1 : 2nR0 ].

• For i ∈ [2 : r], to each sequence (fn
1 , · · · , f

n
i ), assign uniformly and independently two bin indices

bi ∈ [1 : 2nR̃i ] and ki ∈ [1 : 2nRi ].

Furthermore, for i ∈ [1 : r], we consider the Slepian-Wolf decoder for recovering f̂n
i from (fn

[1:i−1], bi, ki, ω, x
n
(i+1)2

)

and denote it by PS−W (f̂n
i |bi, ki, ω, f

n
[1:i−1], x

n
(i+1)2

). Note that we denote the estimates of fn
i by f̂n

i .
The rate constraints for the success of these decoders will be imposed later, although these decoders
can be conceived even when there is no guarantee of success.

We define f̂n
i,T1

for terminal 1, i.e. T1, and f̂n
i,T2

for terminal 2, i.e. T2 as follows:

f̂n
i,T1

=

{
fn
i for odd i

f̂n
i for even i,

and

f̂n
i,T2

=

{
fn
i for even i

f̂n
i for odd i.

7



The random pmf induced by the random binning, denoted by P , can be expressed as follows:

P (xn[1:2],f
n
[1:r], b[1:r], k[1:r], ω, y

n
[1:2], f̂

n
[1:r],T1

, f̂n
[1:r],T2

)

= p(xn[1:2])

[
r∏

i=1

p(fn
i |f

n
[1:i−1], x

n
(i)2

)P (bi, ki, ωi|f
n
i , f

n
[1:i−1])

PS−W (f̂n
i,T(i+1)2

|bi, ki, ωi, f
n
[1:i−1], x

n
(i+1)2

)1{f̂n
i,T(i)2

= fn
i }
]
p(yn1 |f

n
[1:r]x

n
1 )p(y

n
2 |f

n
[1:r]x

n
2 )

= p(xn[1:2])

[
r∏

i=1

P (bi, ωi|f
n
[1:i−1], x

n
(i)2

)P (fn
i , ki|bi, ωi, f

n
[1:i−1], x

n
(i)2

)

PS−W (f̂n
i,T(i+1)2

|bi, ki, ωi, f
n
[1:i−1], x

n
(i+1)2

)1{f̂n
i,T(i)2

= fn
i }
]
p(yn1 |f

n
[1:r]x

n
1 )p(y

n
2 |f

n
[1:r]x

n
2 ),

(10)

where (i)2 := i mod 2 and ω1 = ω, and ωi is a constant variable for i ≥ 2.
Protocol B. Given some p(f[1:r], x[1:2], y[1:2]) ∈ T (r), we define Protocol B as follows: In this protocol

we assume that the terminals have access to the shared randomness B[1:r] where B[1:r] are mutually

independent r.v.’s and uniformly distributed on
∏r

t=1[1 : 2nR̃t ]. R.v. ω is also used for the common
randomness (it is independent of B[1:r]). The shared randomness B[1:r] does not really exist in the real
model, and we will get rid of it later. However ω is the actual common randomness shared between the
two terminals in the model. Random variable Ki is used for the communication at round i. Then, the
protocol proceeds as follows,

• In the first round, knowing (b1, ω, x
n
1 ), terminal 1 generates a sequence fn

1 according to P (fn
1 |b1, ω, x

n
1 )

of protocol A, and sends the bin index k1(f
n
1 ) of protocol A to the terminal 2. At the end of the

first round, terminal 2 having (b1, ω, k1, x
n
2 ), uses the Slepian-Wolf decoder PS−W (f̂n

1 |b1, k1, ω, x
n
2 )

of protocol A to obtain an estimate of fn
1 . We use f̂n

1,T2
to denote this estimate of fn

1 by the

second terminal T2. Since the first terminal knows fn
1 we set f̂n

1,T1
= fn

1 to be the estimate of fn
1

by the first terminal T1.

• In the second round, knowing (b2, x
n
2 , f̂

n
1,T2

), terminal 2 generates a sequence fn
2 according to

PFn
2 |B2X

n
2 Fn

1
(fn

2 |b2, x
n
2 , f̂

n
1,T2

) of protocol A and sends the bin index k2(f̂
n
1,T2

, f̂n
2,T2

) of Protocol A

to the terminal 1. At the end of the second round, terminal 1 having (b2, k2, x
n
1 , f̂

n
1,T1

), uses the

PS−W

F̂n
2 |B2,K2,ω,F

n
1 ,Xn

1

(f̂n
2 |b2, k2, ω, f̂

n
1,T1

, xn1 ) defined above to recover f̂n
2 . We omit subscripts from the

pmfs when they are clear from the context.

• This procedure is repeated interactively for i ∈ [3 : r]. Thus, at the end of the round r, the first
terminal has f̂n

[1:r],T1
and the second terminal has f̂n

[1:r],T2
.

• The first terminal uses the conditional distribution p(y1|x1, f[1:r]) that we started with at the

beginning to create yn1 from the conditional distribution p(yn1 |x
n
1 , f̂

n
[1:r],T1

) and the second terminal

uses the conditional distribution p(y2|x2, f[1:r]) to create yn2 from p(yn2 |x
n
2 , f̂

n
[1:r],T2

).

The random pmf induced by the protocol, denoted by P̂ , factors as

P̂ (xn[1:2],f
n
[1:r], b[1:r], k[1:r], ω, y

n
[1:2], f̂

n
[1:r],T1

, f̂n
[1:r],T2

)

= p(xn[1:2])p
U (ω)pU (b[1:r])

[
r∏

i=1

P (fn
i , ki|bi, ωi, f̂

n
[1:i−1],T(i)2

, xn(i)2)

PS−W (f̂n
i,T(i+1)2

|bi, ki, ωi, f̂
n
[1:i−1],T(i+1)2

, xn(i+1)2
)1{f̂n

i,T(i)2
= fn

i }
]
p(yn1 |f̂

n
[1:r],T1

xn1 )p(y
n
2 |f̂

n
[1:r],T2

xn2 )

= p(xn[1:2])

[
r∏

i=1

pU (ωi)p
U (bi)P (fn

i , ki|bi, ωi, f̂
n
[1:i−1],T(i)2

, xn(i)2)

8



PS−W (f̂n
i,T(i+1)2

|bi, ki, ωi, f̂
n
[1:i−1],T(i+1)2

, xn(i+1)2
)1{f̂n

i,T(i)2
= fn

i }
]

p(yn1 |f̂
n
[1:r],T1

xn1 )p(y
n
2 |f̂

n
[1:r],T2

xn2 ). (11)

where ω1 = ω, and ωi is a constant variable for i ≥ 2.
Part (2) of the proof: Sufficient conditions that make the induced pmfs approximately the same: We

need to find conditions that imply

P (xn[1:2], f
n
[1:r], b[1:r], k[1:r], ω, y

n
[1:2], f̂

n
[1:r],T1

, f̂n
[1:r],T2

)
ǫn
≈ P̂ (xn[1:2], f

n
[1:r], b[1:r], k[1:r], ω, y

n
[1:2], f̂

n
[1:r],T1

, f̂n
[1:r],T2

)

for some ǫn converging to zero as n → ∞. We begin by proving that

P (xn[1:2], f
n
[1:r], b[1:r], k[1:r], ω, f̂

n
[1:r],T1

, f̂n
[1:r],T2

)
ǫn
≈ P̂ (xn[1:2], f

n
[1:r], b[1:r], k[1:r], ω, f̂

n
[1:r],T1

, f̂n
[1:r],T2

),

where we have dropped yn[1:2] from both sides. We will add yn[1:2] to the equation later.

To find the constraints that imply that the pmf P̂ is close to the pmf P in total variation distance,
we start with P and make it close to P̂ in a few steps. For any j ∈ [0 : r] we inductively find constraints
that imply

P (xn[1:2], f
n
[1:j], b[1:j], k[1:j], ωj, f̂

n
[1:j],T1

, f̂n
[1:j],T2

)
ǫn
≈ P̂ (xn[1:2], f

n
[1:j], b[1:j], k[1:j], ωj, f̂

n
[1:j],T1

, f̂n
[1:j],T2

). (12)

for some ǫn converging to zero as n → ∞, where ω1 = ω, and ωj is a constant variable for j ≥ 2. For

j = 0 this is trivial since it reduces to P (xn[1:2]) = p(xn[1:2]) = P̂ (xn[1:2]). We show in Appendix A that
the constraints sufficient to guarantee the statement for j given that it holds for j − 1 are as follows:

1. Reliability of S-W decoders: For j = 1 the S-W decoding is reliable if,

R1 +R0 + R̃1 ≥ H(F1|X2). (13)

For j ≥ 2 the S-W decoding is reliable if,

∀i ∈ [2 : r] : Ri + R̃i ≥ H(Fi|X(i+1)2F[1:i−1]). (14)

2. Other constraints: For j = 1 we have the constraint

R0 + R̃1 < H(F1|X1). (15)

For j ≥ 2 we have the constraints

R̃i < H(Fi|X(i)2F[1:i−1]), for i = 2, · · · , r. (16)

The details can be found in Appendix A, but a brief description is in order. Comparing equations
(10) and (11) we see that most of the terms are the same if we assume that the Slepian-Wolf decoders
succeed with probability one. Constraints (13) and (14) guarantee the success of the Slepian-Wolf
decoders with high probability. Now we assume that the Slepian-Wolf decoders succeed with prob-
ability one, that is F̂i,T(i)2

= Fi for each i. To make the two pmfs close we need to guarantee that

P (bi, ωi|f
n
[1:i−1], x

n
(i)2

) ≈ pU (ωi)p
U (bi). In other words we need constraints ensuring the uniformity of

(bi, ωi) and its independence of (fn
[1:i−1], x

n
(i)2

). These constraints are given in equations (15) and (16),
and are obtained using Theorem 3.

Therefore equations (10), (11), (15) and (16) imply that

P (xn[1:2], f
n
[1:r], b[1:r], k[1:r], ω, f̂

n
[1:r],T1

, f̂n
[1:r],T2

)
ǫn
≈ P̂ (xn[1:2], f

n
[1:r], b[1:r], k[1:r], ω, f̂

n
[1:r],T1

, f̂n
[1:r],T2

).

In Appendix B we show that the equations (10), (11) imply that

P (xn[1:2], f
n
[1:r], b[1:r], k[1:r], ω, y

n
[1:2], f̂

n
[1:r],T1

, f̂n
[1:r],T2

)
ǫn
≈ P̂ (xn[1:2], f

n
[1:r], b[1:r], k[1:r], ω, y

n
[1:2], f̂n

[1:r],T1
, f̂n

[1:r],T2
).

(17)

9



Using part one of Lemma 2 we can deduce the same approximation over the marginals

P̂ (b[1:r], x
n
[1:2], y

n
[1:2])

ǫn
≈ P (b[1:r], x

n
[1:2], y

n
[1:2]) (18)

for some ǫn converging to zero as n → ∞. In particular, the marginal pmf of (Xn
[1:2], Y

n
[1:2]) of the RHS

of this expression is equal to p(xn[1:2], y
n
[1:2]) which is the desired pmf.

Part (3) of the proof: Eliminating the shared randomness:
In the protocol we assumed that the terminals have access to shared randomness B[1:r] which

is not present in the model (note that ω is the real common randomness shared between the two
terminals in the model). To get rid of the shared randomness B[1:r], we would like to condition on a
particular instance of B[1:r] = b[1:r]. However, conditioning on b[1:r] may change the marginal pmf of
Xn

[1:2], Y
n
[1:2] on the LHS of (18). Thus, we want to impose certain constraints on the size of the bins

to guarantee that the marginal pmfs do not change. In other words the induced pmf P̂ (xn[1:2], y
n
[1:2])

changes to the conditional pmf P̂ (xn[1:2], y
n
[1:2]|b[1:r]). But if B[1:r] is independent of (X

n
[1:2], Y

n
[1:2]), then the

conditional pmf P̂ (xn[1:2], y
n
[1:2]|b[1:r]) is also close to the desired distribution. Therefore we can assume

that the terminals agree on an instance b[1:r] of B[1:r] and run protocol B. More precisely, to obtain the
independence, we use Theorem 3 where we substitute T = r, Xi = F[1:i] and Y = X[1:2]Y[1:2] to get the
following sufficient condition for the pmf of protocol A:1

∀i ∈ [1 : r],

i∑

t=1

R̃t < H(F[1:i]|X[1:2]Y[1:2]). (19)

This implies that

P (b[1:r], x
n
[1:2], y

n
[1:2])

δn
≈ pU (b[1:r])p(x

n
[1:2], y

n
[1:2]). (20)

Equations (18) and (20) in conjunction with the third part of Lemma 2 imply that

P̂ (b[1:r], x
n
[1:2], y

n
[1:2])

ǫn+δn
≈ pU (b[1:r])p(x

n
[1:2], y

n
[1:2]). (21)

Using Definition 4, equation (21) guarantees existence of a fixed binning with the corresponding pmf p
such that if we replace P with p in (10) and denote the resulting pmf with p̂. This would then imply
that

p̂(b[1:r], x
n
[1:2], y

n
[1:2])

ǫn+δn
≈ pU(b[1:r])p(x

n
[1:2], y

n
[1:2]).

Now, the second part of Lemma 2 shows that there exists an instance b[1:r] such that

p̂(xn[1:2], y
n
[1:2]|b[1:r])

2ǫn+2δn
≈ p(xn[1:2], y

n
[1:2]).

We have found all the necessary constraints on the size of the bins for protocol to work. Finally,
eliminating (R̃1, · · · , R̃r) and (R1, · · · , Rr) from the inequalities (9),(13)-(16) and (19) gives rise to the
constraints given in the statement of the problem. This is done in Appendix E. This completes the
proof of the achievability of Theorem 1.

5 Converse

We follow the steps used in [3] to prove the converse of Theorem 1. First for any ǫ > 0, we find a set
Sǫ(r) to be constituted as an outer region for channel simulation region. Then we discuss the continuity
of Sǫ(r) at ǫ = 0. In particular we show that S(r) =

⋂
ǫ>0 Sǫ(r).

Let (R0, R12, R21) be an achievable rate tuple for r rounds of communications. Then, for any
ǫ < 1

2 , there exists a simulation code of length n such that the total variation between the induced pmf
p̃(yn[1:2], x

n
[1:2]) and the n i.i.d. repetitions of the desired pmf q(x, y) is less than ǫ.

1Here we only write the constraints corresponding to the subsets of [1 : r] of the form [1 : i], 1 ≤ i ≤ r and omit the
others, because the unwritten constraints are redundant. This is because the random variables Xi = F[1:i] are nested

r.v.’s. Each subset of [1 : r] can be written as S = {m1,m2, · · · ,mk} where {mj}
k
j=1 is an increasing sequence. In this

case XS = F[1:mk ] = X[1:mk] and the corresponding constraint is implied by the constraint corresponded to [1 : mk].
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5.1 Mutual information bounds

The following lemmas which are consequences of a generalized version of Lemma 2.7 of [14], will be
useful throughout the proof of the converse. The proofs are provided in the Appendix C.

Lemma 3. For any discrete random variables W n and Z whose joint pmf satisfies
∥∥∥∥∥∥
p(wn, z)− p(z)

n∏

q=1

p̂q(wq|z)

∥∥∥∥∥∥
1

< ǫ <
1

2
,

for some p̂q(w|z), we have

n∑

q=1

I(Wq;W
q−1|Z) ≤ 2n (ǫ log |W|+ hb(ǫ)) ,

where hb(.) is the binary entropy function.

Lemma 4. Take an arbitrary i.i.d. sequence Xn distributed according to p(x) and a conditional pmf
p(yn|xn) which is not necessarily i.i.d. If there exists a conditional pmf p̂(y|x) such that

∥∥∥∥∥∥
p(yn|xn)

n∏

q=1

p(xq)−
n∏

q=1

p(xq)p̂(yq|xq)

∥∥∥∥∥∥
1

< ǫ <
1

2
,

then
∀q ∈ [1 : n] : I(X[∼q];Yq|Xq) ≤ 2 (ǫ log |Y|+ hb(ǫ)) , (22)

where [∼ q] := [1 : n]\{q}.
Also, for any random variable Q ∈ [1 : n] independent of (Xn, Y n) we have

I(YQ;Q|XQ) ≤ 2(ǫ log |Y|+ hb(ǫ)). (23)

5.2 Epsilon rate region

Lemma 5. For all ǫ > 0, the simulation rate region is a subset of the set Sǫ(r) which is as the set of
all non-negative rate tuples (R0, R12, R21) for which there exists p(f1, · · · , fr, x[1:2], y[1:2]) ∈ Tǫ(r) such
that:

R12 ≥ I(X1;F[1:r]|X2),

R21 ≥ I(X2;F[1:r]|X1),

R0 +R12 ≥ I(X1;F[1:r]|X2) + I(F1;Y[1:2]|X[1:2])− 3g(ǫ),

R0 +R12 +R21 ≥ I(X1;F[1:r]|X2) + I(X2;F[1:r]|X1) + I(F[1:r];Y[1:2]|X[1:2])− 3g(ǫ), (24)

where g(ǫ) := 2
(
ǫ log |Y[1:2]|+ hb(ǫ)

)
and Tǫ(r) is the set of p(f1, · · · , fr, x[1:2], y[1:2]) satisfying

∥∥p(x[1:2], y[1:2])− q(x[1:2])q(y[1:2]|x[1:2])
∥∥ < ǫ,

Fi − F[1:i−1]X1 −X2, if i is odd,

Fi − F[1:i−1]X2 −X1, if i is even,

Y1 − F[1:r]X1 −X2Y2,

Y2 − F[1:r]X2 −X1Y1

∀i : |Fi| ≤ |X1||X2||Y1||Y2|
i−1∏

j=1

|Fj |+ 1. (25)
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Proof. Without loss of generality, we can relax the cardinality bound from the definition of Tǫ(r); an
application of Fenchel-Caratheòdory theorem implies that the region Sǫ(r) does not enlarge with this
relaxation. See Appendix D for the proof of cardinality bounds.

Take a random variable Q uniform on [1 : n] and independent of all other random variables. Define
Fi = ωCiX

Q+1:n
1 X

1:Q−1
2 Q for 1 ≤ i ≤ r and Xi = XiQ, Yi = YiQ for i = 1, 2. In the first step of the

proof, we show the Markov chain conditions given in the definition of Tǫ(r) are satisfied by this choice
of auxiliary r.v.’s. These conditions are equivalent with the following

Ci−ωC[1:i−1]X
q:n
1 X

1:q−1
2 −X2,q if i is odd,

Ci−ωC[1:i−1]X
q+1:n
1 X

1:q
2 −X1,q if i is even,

Y1,q−ωC[1:r]X
q:n
1 X

1:q−1
2 −X2,qY2,q,

Y2,q−ωC[1:r]X
q+1:n
1 X

1:q
2 −X1,qY1,q. (26)

The proof is provided in Appendix F.
We know that ∥∥∥p̃(xn[1:2], yn[1:2])− q(xn[1:2], y

n
[1:2])

∥∥∥
1
< ǫ,

where p̃(xn[1:2], y
n
[1:2]) is the induced pmf of the code. This implies that for any value of Q = q,

∥∥p̃(x[1:2],q, y[1:2],q)− q(x[1:2], y[1:2])
∥∥
1
< ǫ,

therefore the total variation distance between the average of p̃(x[1:2],q, y[1:2],q) over Q = q (i.e. p̃(x[1:2],Q, y[1:2],Q))
and q(x[1:2], y[1:2]) is small, that is

∥∥p̃(x[1:2],Q, y[1:2],Q)− q(x[1:2], y[1:2])
∥∥
1
< ǫ.

Next we have

nR12 ≥
∑

i:odd

H(Ci)

≥
∑

i:odd

I(Ci;X
n
1 |C[1:i−1]X

n
2 ω)

=

r∑

i=1

I(Ci;X
n
1 |C[1:i−1]X

n
2 ω) (27)

= I(C[1:r];X
n
1 |X

n
2 ω)

= I(ωC[1:r];X
n
1 |X

n
2 ) (28)

=

n∑

q=1

I(ωC[1:r];X1,q|X
q+1:n
1 Xn

2 )

=
n∑

q=1

I(ωC[1:r]X
q+1:n
1 X2,∼q;X1,q|X2,q) (29)

≥
n∑

q=1

I(ωC[1:r]X
q+1:n
1 X

1:q−1
2 ;X1,q|X2,q)

= nI(ωC[1:r]X
Q+1:n
1 X

1:Q−1
2 ;X1,Q|X2,Q, Q) (30)

= nI(ωC[1:r]X
Q+1:n
1 X

1:Q−1
2 Q;X1,Q|X2,Q) (31)

= nI(F[1:r];X1|X2) (32)

where (27) follows from the Markov chain Ci − C[1:i−1]X
n
2 ω −Xn

1 for even i, (28) is due to the inde-
pendence of common randomness ω from Xn

1X
n
2 and the rest of the equations follow from the fact that

X1q,X2q are i.i.d. repetitions.
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A similar statement can be proved for R21:

R21 ≥ I(F[1:r];X2|X1). (33)

Next consider,

n(R12 +R0) ≥ H(ωC1) +
∑

i:odd, i>1

H(Ci)

≥ H(ωC1|X
n
2 ) +

∑

i:odd, i>1

H(Ci|C[1:i−1]X
n
2 ω)

≥ I(ωC1;Y
n
[1:2]X

n
1 |X

n
2 ) +

∑

i:odd, i>1

I(Ci;X
n
1 |C[1:i−1]X

n
2 ω)

= I(ωC1;Y
n
[1:2]|X

n
[1:2]) + I(ωC1;X

n
1 |X

n
2 ) +

∑

i>1

I(Ci;X
n
1 |C[1:i−1]X

n
2 ω) (34)

= I(ωC1;Y
n
[1:2]|X

n
[1:2]) + I(ωC1;X

n
1 |X

n
2 ) + I(C[2:r];X

n
1 |X

n
2 C1ω)

=I(ωC1;Y
n
[1:2]|X

n
[1:2]) + I(C[1:r]ω;X

n
1 |X

n
2 )

≥ I(ωC1;Y
n
[1:2]|X

n
[1:2]) + nI(F[1:r];X1|X2), (35)

where (34) follows from the Markov chain Ci − C[1:i−1]X
n
2 ω − Xn

1 for even i. Equation (35) follows
equality of equations (28) and (32). Now, we work out the first term of equation (35).

I(ωC1;Y
n
[1:2]|X

n
[1:2]) =

n∑

q=1

I(ωC1;Y[1,2],q|X
n
[1:2], Y

1:q−1
[1:2] )

=

n∑

q=1

I(ωC1Y
1:q−1
[1:2] ;Y[1,2],q|X

n
[1:2])−

n∑

q=1

I(Y 1:q−1
[1:2] ;Y[1:2],q|X

n
[1:2])

(a)

≥
n∑

q=1

I(ωC1;Y[1,2],q|X
n
[1:2])− ng(ǫ)

=

n∑

q=1

I(ωC1X[1:2],∼q;Y[1:2],q|X[1:2],q)−
n∑

q=1

I(X[1:2],∼q;Y[1:2],q|X[1:2],q)− ng(ǫ)

(b)

≥
n∑

q=1

I(ωC1X
q+1:n
1 X

1:q−1
2 ;Y[1:2],q|X[1:2],q)− 2ng(ǫ)

= nI(ωC1X
Q+1:n
1 X

1:Q−1
2 ;Y[1:2],Q|X[1:2],Q, Q)− 2ng(ǫ)

= nI(QωC1X
Q+1:n
1 X

1:Q−1
2 ;Y[1:2],Q|X[1:2],Q)− nI(Q;Y[1:2],Q|X[1:2],Q)− 2ng(ǫ)

(c)

≥ nI(F1;Y[1:2]|X[1:2])− 3ng(ǫ), (36)

where (a) is a result of Lemma 3, and (b) and (c) follow from the Lemma 4.
Equations (35) and (36) imply that

R12 +R0 ≥ I(F1;Y[1:2]|X[1:2]) + I(F[1:r];X1|X2)− 3g(ǫ). (37)

Following the same lines as in the previous cases, we can show that

n(R0 +R12 +R21) ≥ H(ωC1|X
n
[1:2]) +

∑

i>1, i:odd

H(Ci|ωC[1:i−1]X
n
2 ) +

∑

i:even

H(Ci|ωC[1:i−1]X
n
1 )

≥ I(ωC1;Y
n
[1:2]X

n
1 |X

n
2 ) +

∑

i:odd
i>1

I(Ci;Y
n
[1:2]X

n
1 |ωC[1:i−1]X

n
2 ) +

∑

i:even

I(Ci;Y
n
[1:2]X

n
2 |ωC[1:i−1]X

n
1 )

= I(ωC1;X
n
1 |X

n
2 ) + I(ωC1;Y

n
[1:2]|X

n
[1:2])
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+
∑

i:odd
i>1

[
I(Ci;X

n
1 |ωC[1:i−1]X

n
2 ) + I(Ci;Y

n
[1:2]|ωC[1:i−1]X

n
[1:2])

]

+
∑

i:even

[
I(Ci;X

n
2 |ωC[1:i−1]X

n
1 ) + I(Ci;Y

n
[1:2]|ωC[1:i−1]X

n
[1:2])

]

= I(ωC1;X
n
1 |X

n
2 ) +

∑

i:odd
i>1

I(Ci;X
n
1 |ωC[1:i−1]X

n
2 ) +

∑

i:even

I(Ci;X
n
2 |ωC[1:i−1]X

n
1 )

+ I(ωC1;Y
n
[1:2]|X

n
[1:2]) +

∑

i:odd
i>1

I(Ci;Y
n
[1:2]|ωC[1:i−1]X

n
[1:2]) +

∑

i:even

I(Ci;Y
n
[1:2]|ωC[1:i−1]X

n
[1:2])

= I(ωC1;X
n
1 |X

n
2 ) +

∑

i:odd
i>1

I(Ci;X
n
1 |ωC[1:i−1]X

n
2 ) +

∑

i:even

I(Ci;X
n
2 |ωC[1:i−1]X

n
1 )

+ I(ωC1;Y
n
[1:2]|X

n
[1:2]) +

∑

i>1

I(Ci;Y
n
[1:2]|ωC[1:i−1]X

n
[1:2])

= I(ωC1;X
n
1 |X

n
2 ) +

∑

i>1

I(Ci;X
n
1 |ωC[1:i−1]X

n
2 ) +

∑

i

I(Ci;X
n
2 |ωC[1:i−1]X

n
1 )

+ I(ωC[1:r];Y
n
[1:2]|X

n
[1:2])

= I(ωC[1:r];X
n
1 |X

n
2 ) + I(ωC[1:r];X

n
2 |X

n
1 ) + I(ωC[1:r];Y

n
[1:2]|X

n
[1:2])

≥ n(I(F[1:r];X1,Q|X2,Q) + I(F[1:r];X2,Q|X1,Q) + I(F[1:r];Y[1:2],Q|X[1:2],Q)− 3g(ǫ))

(38)

where the first term of (38) follows from equality of equations (28) and (32), second term follows
similarly and the last term follows from an argument similar to the one given in deriving equation
(36).

5.3 Continuity of Sǫ(r) at ǫ = 0

Lemma 6.

S(r) =
⋂

ǫ>0

Sǫ(r).

Proof. It is clear that S(r) ⊆
⋂

ǫ>0 Sǫ(r). We now prove the reverse direction, i.e.,
⋂

ǫ>0 Sǫ(r) ⊆ S(r).
To show this, we take a vanishing sequence {ǫk}k≥1. Take a point R∗ = (R∗

0, R
∗
12, R

∗
21) in ∩k≥1Sǫk(r).

Corresponding to this point is a sequence of pmfs pk(f1:r, x[1:2], y[1:2]) ∈ Tǫk(r). Since these pmfs

belong to the probability simplex ∆|F[1:r]||X[1:2]||Y[1:2]| and the probability simplex is compact (due to
the cardinality bounds on Fi, 1 ≤ i ≤ r, there exists a sequence {ik}k≥1 such that the sequence
pik(f1:r, x[1:2], y[1:2]) converges to some p∗(f1:r, x[1:2], y[1:2]) in the probability simplex. p∗(f1:r, x[1:2], y[1:2])
must belong to T (r), because total variation distance and mutual information function are continuous
in the probability simplex. In particular, we have
∥∥p∗(x[1:2], y[1:2])− q(x[1:2], y[1:2])

∥∥
1
= lim

k→∞

∥∥pik(x[1:2], y[1:2])− q(x[1:2], y[1:2])
∥∥
1
= 0 ⇒ p∗(x[1:2], y[1:2]) = q(x[1:2], y[1:2]),

i is odd: Ip∗(Fi;X2|F[1:i−1X1) = lim
k→∞

Ipi
k
(Fi;X2|F[1:i−1X1) = 0 ⇒ Fi − F[1:i−1]X1 −X2,

i is even: Ip∗(Fi;X1|F[1:i−1X2) = lim
k→∞

Ipi
k
(Fi;X1|F[1:i−1X2) = 0 ⇒ Fi − F[1:i−1]X2 −X1,

Ip∗(Y1;X2Y2|F[1:r]X1) = lim
k→∞

Ipi
k
(Y1;X2Y2|F[1:r]X1) = 0 ⇒ Y1 − F[1:r]X1 −X2Y2,

Ip∗(Y2;X1Y1|F[1:r]X2) = lim
k→∞

Ipi
k
(Y2;X1Y1|F[1:r]X2) = 0 ⇒ Y2 − F[1:r]X2 −X1Y1.

Further one can show that R∗ is a point of S(r) corresponded to the pmf p∗(f[1:r], x[1:2], y[1:2]). This
is because limǫ→0 g(ǫ) = 0 and the mutual information terms defining the set Sǫik

(r) tends to the ones
corresponded to p∗(f[1:r], x[1:2], y[1:2]). This concludes the proof.
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A Inductive proof of the approximation (12)

In this appendix we find the constraints that imply

P (xn[1:2], f
n
[1:r], b[1:r], k[1:r], ω[1:r], f̂

n
[1:r],T1

, f̂n
[1:r],T2

)
ǫn
≈ P̂ (xn[1:2], f

n
[1:r], b[1:r], k[1:r], ω[1:r], f̂

n
[1:r],T1

, f̂n
[1:r],T2

).

Let Z0 = Xn
[1:2] and Zj = (Fn

j , Bj ,Kj , ωj, F̂
n
j,T1

, F̂n
j,T2

) for j ∈ [1 : r]. For any j ∈ [0 : r] we inductively
find constraints that imply

P (Z[1:j])
ǫ
(j)
n
≈ P̂ (Z[1:j]), (39)

for some ǫ
(j)
n converging to zero as n → ∞.

Let us define a new random pmf P̃ by changing one of the terms in the expansion of the pmf P of
the protocol A given in (10). We replace the Slepian-Wolf terms with one that corresponds to an ideal
zero probability of error.

P̃ (xn[1:2],f
n
[1:r], b[1:r], k[1:r], ω, y

n
[1:2], f̂

n
[1:r],T1

, f̂n
[1:r],T2

)

= p(xn[1:2])

[
r∏

i=1

P (bi, ωi|f
n
[1:i−1], x

n
(i)2

)P (fn
i , ki|bi, ωi, f

n
[1:i−1], x

n
(i)2

)

1{f̂n
i,T(i+1)2

= fn
i }1{f̂

n
i,T(i)2

= fn
i }
]
p(yn1 |f

n
[1:r]x

n
1 )p(y

n
2 |f

n
[1:r]x

n
2 ). (40)

In order to show that the pmfs P and P̂ in (39) are close, we show that both are close to P̃ . Therefore
they have to be also close to each other because of the triangle inequality. In other words we will
inductively find constraints that imply

P (Z[1:k])
ǫ
(k)
n
≈ P̃ (Z[1:k]), for k ∈ [0 : r],

P̂ (Z[1:k])
ǫ
(k)
n
≈ P̃ (Z[1:k]), for k ∈ [0 : r], (41)

for some ǫ
(k)
n converging to zero as n → ∞. For j = 0 this is trivial since it reduces to P (xn[1:2]) =

p(xn[1:2]) = P̂ (xn[1:2]) = P̃ (xn[1:2]). Suppose that (41) holds for k = j − 1. To show it for k = j we proceed
as follows. First observe that it suffices to prove the existence of a sequence δn → 0 such that

P̃ (Z[0:j]) = P̃ (Z[0:j−1])P̃ (Zj |Z[0:j−1])
δn
≈ P̃ (Z[1:j−1])P (Zj |Z[0:j−1]), (42a)

P̃ (Z[0:j]) = P̃ (Z[0:j−1])P̃ (Zj |Z[0:j−1])
δn
≈ P̃ (Z[0:j−1])P̂ (Zj |Z[0:j−1]), (42b)

because the third part of Lemma 2 then yields that

P (Z[0:j])
ǫ
(j)
n
≈ P̃ (Z[0:j]),

P̂ (Z[0:j])
ǫ
(j)
n
≈ P̃ (Z[0:j]),
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where ǫ
(j)
n = ǫ

(j−1)
n + δn. Next, note that the triangle inequality implies that instead of showing (42b)

one can show (42a) and (42c) given below

P̃ (Z[1:j−1])P (Zj |Z[0:j−1])
δn
≈ P̃ (Z[0:j−1])P̂ (Zj |Z[0:j−1]). (42c)

Therefore it suffices to show (42a) and (42c).
We begin by finding the expressions for the terms appearing in (42). The marginal pmf P̃ (Z[0:j−1])

(computed from equation (40)) is as follows:

P̃ (Z[0:j−1]) = p(xn[1:2])

[
j−1∏

i=1

P (bi, ωi|f
n
[1:i−1], x

n
(i)2

)P (fn
i , ki|bi, ωi, f

n
[1:i−1], x

n
(i)2

)

×1{f̂n
i,T(i+1)2

= fn
i }1{f̂

n
i,T(i)2

= fn
i }
]

(43)

= p(xn[1:2])

[
j−1∏

i=1

P (fn
i |f

n
[1:i−1], x

n
(i)2

)P (bi, ωi, ki|f
n
[1:i], x

n
(i)2

)

×1{f̂n
i,T(i+1)2

= fn
i }1{f̂

n
i,T(i)2

= fn
i }
]

= p(xn[1:2])

[
j−1∏

i=1

p(fn
i |f

n
[1:i−1], x

n
(i)2

)P (bi, ωi, ki|f
n
[1:i])

×1{f̂n
i,T(i+1)2

= fn
i }1{f̂

n
i,T(i)2

= fn
i }
]

(44)

= p(xn[1:2], f
n
[1:j−1])

[
j−1∏

i=1

P (bi, ωi, ki|f
n
[1:i])

×1{f̂n
i,T(i+1)2

= fn
i }1{f̂

n
i,T(i)2

= fn
i }
]
, (45)

where equation (44) follows from the fact that (bi, ωi, ki) are (random) bin indices of fn
[1:i] in Protocol

A, and that (Fn
i , F

n
[1:i−1],X

n
(i)2

) have an i.i.d. pmf in the same protocol. Equation (45) follows from the

Markov conditions on Xn
[1:2], F

n
[1:j−1] in T (r).

There are three conditional pmfs in (42) that can be computed from equations (40), (31), (32)
respectively as follows:

P̃ (Zj |Z[0:j−1]) = P (bj , ωj |f
n
[1:j−1], x

n
(j)2

)P (fn
j , kj |bj , ωj, f

n
[1:j−1], x

n
(j)2

)

× 1{f̂n
j,T(j+1)2

= fn
j }1{f̂

n
j,T(j)2

= fn
j }, (46)

P (Zj |Z[0:j−1]) = P (bj , ωj |f
n
[1:j−1], x

n
(j)2

)P (fn
j , kj |bj , ωj, f

n
[1:j−1], x

n
(j)2

)

× PS−W (f̂n
j,T(j+1)2

|bj , kj , ωj, f
n
[1:j−1], x

n
(j+1)2

)1{f̂n
j,T(j)2

= fn
j }, (47)

P̂ (Zj |Z[0:j−1]) = pU (ωj)p
U (bj)P (fn

j , kj |bj , ωj, f̂
n
[1:j−1],T(j)2

, xn(j)2)

× PS−W (f̂n
j,T(j+1)2

|bj , kj , ωj, f̂
n
[1:j−1],T(j+1)2

, xn(j+1)2
)1{f̂n

j,T(j)2
= fn

j }.

(48)

Finding sufficient conditions for equation (42a) to hold:
We begin by showing equation (42a). Note that the only difference in the two pmf expressions is

that the Slepian-Wolf term in (47) is replaced with an indicator function in (46). To use Slepian-Wolf
theorem we need to show that we are dealing with an i.i.d. scenario where random bin indices are
transmitted from one party to another party. Let us rewrite equations (47) and (46) as follows:

P̃ (Zj |Z[0:j−1]) = P (fn
j |f

n
[1:j−1], x

n
(j)2

)P (bj , ωj , kj |f
n
[1:j], x

n
(j)2

)

× 1{f̂n
j,T(j+1)2

= fn
j }1{f̂

n
j,T(j)2

= fn
j }
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= p(fn
j |f

n
[1:j−1], x

n
(j)2

)P (bj , ωj, kj |f
n
[1:j])

× 1{f̂n
j,T(j+1)2

= fn
j }1{f̂

n
j,T(j)2

= fn
j }, (49)

P (Zj |Z[0:j−1]) = P (fn
j |f

n
[1:j−1], x

n
(j)2

)P (bj , ωj , kj |f
n
[1:j], x

n
(j)2

)

× PS−W (f̂n
j,T(j+1)2

|bj , kj , ωj, f
n
[1:j−1], x

n
(j+1)2

)1{f̂n
j,T(j)2

= fn
j }

= p(fn
j |f

n
[1:j−1], x

n
(j)2

)P (bj , ωj, kj |f
n
[1:j])

× PS−W (f̂n
j,T(j+1)2

|bj , kj , ωj, f
n
[1:j−1], x

n
(j+1)2

)1{f̂n
j,T(j)2

= fn
j }. (50)

We now compute P̃ (Z[0:j−1])P̃ (Zj |Z[0:j−1]) and P̃ (Z[0:j−1])P (Zj |Z[0:j−1]) using equation (45) as follows:

P̃ (Z[0:j−1])P̃ (Zj |Z[0:j−1]) = p(xn[1:2], f
n
[1:j])

[
j−1∏

i=1

P (bi, ωi, ki|f
n
[1:i])1{f̂

n
i,T(i+1)2

= fn
i }1{f̂

n
i,T(i)2

= fn
i }

]

(51)

× P (bj , ωj, kj |f
n
[1:j])1{f̂

n
j,T(j)2

= fn
j }

× 1{f̂n
i,T(i+1)2

= fn
i }, (52)

P̃ (Z[0:j−1])P (Zj |Z[0:j−1]) = p(xn[1:2], f
n
[1:j])

[
j−1∏

i=1

P (bi, ωi, ki|f
n
[1:i])1{f̂

n
i,T(i+1)2

= fn
i }1{f̂

n
i,T(i)2

= fn
i }

]

× P (bj , ωj, kj |f
n
[1:j])1{f̂

n
j,T(j)2

= fn
j }

× PS−W (f̂n
j,T(j+1)2

|bj , kj , ωj , f
n
[1:j−1], x

n
(j+1)2

). (53)

Using the first part of Lemma 2 it suffices to show that

p(xn[1:2], f
n
[1:j])P (bj , kj , ωj |f

n
[1:j])1{f̂

n
i,T(i+1)2

= fn
i }

δn
≈

p(xn[1:2], f
n
[1:j])P (bj , kj , ωj |f

n
[1:j])P

S−W (f̂n
j,T(j+1)2

|bj , kj , ωj , f
n
[1:j−1], x

n
(j+1)2

).

The above pmf corresponds to an Slepian-Wolf problem where the first party has i.i.d. repetitions
(fn

[1:j−1], x
n
(j)2

) and the second party has i.i.d. repetitions (fn
[1:j−1], x

n
(j+1)2

). The first party creates
i.i.d. repetitions fn

j and communicates random bin indices bj , kj , ωj of f
n
[1:j] to the second party. Using

Lemma 1 the above total variation is small as long as the following constraints hold:

• For j = 1, ωj is non-empty and the S-W decoding is reliable if,

R1 +R0 + R̃1 ≥ H(F1|X2). (54)

• For j ≥ 2 the S-W decoding is reliable if,

Rj + R̃j ≥ H(F[1:j]|X(j+1)2F[1:j−1]) = H(Fj |X(j+1)2F[1:j−1]). (55)

Finding sufficient conditions for equation (42c) to hold:
The pmf P̃ (Z[0:j−1])P (Zj |Z[0:j−1]) was computed in equation (53). We now compute P̃ (Z[0:j−1])P̂ (Zj |Z[0:j−1])

using equations (45) and (48) as follows:

P̃ (Z[0:j−1])P (Zj |Z[0:j−1]) = p(xn[1:2], f
n
[1:j−1])

[
j−1∏

i=1

P (bi, ωi, ki|f
n
[1:i])1{f̂

n
i,T(i+1)2

= fn
i }1{f̂

n
i,T(i)2

= fn
i }

]

× pU(ωj)p
U (bj)P (fn

j , kj |bj , ωj, f̂
n
[1:j−1],T(j)2

, xn(j)2)1{f̂
n
j,T(j)2

= fn
j }

× PS−W (f̂n
j,T(j+1)2

|bj , kj , ωj , f̂
n
[1:j−1],T(j+1)2

, xn(j+1)2
)
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= p(xn[1:2], f
n
[1:j−1])

[
j−1∏

i=1

P (bi, ωi, ki|f
n
[1:i])1{f̂

n
i,T(i+1)2

= fn
i }1{f̂

n
i,T(i)2

= fn
i }

]

× pU(ωj)p
U (bj)P (fn

j , kj |bj , ωj, f
n
[1:j−1], x

n
(j)2

)1{f̂n
j,T(j)2

= fn
j }

× PS−W (f̂n
j,T(j+1)2

|bj , kj , ωj , f
n
[1:j−1], x

n
(j+1)2

) (56)

= p(xn[1:2], f
n
[1:j−1])

[
j−1∏

i=1

P (bi, ωi, ki|f
n
[1:i])1{f̂

n
i,T(i+1)2

= fn
i }1{f̂

n
i,T(i)2

= fn
i }

]

× pU(ωj)p
U (bj)P (fn

j |bj , ωj, f
n
[1:j−1], x

n
(j)2

)P (kj |f
n
[1:j])1{f̂

n
j,T(j)2

= fn
j }

× PS−W (f̂n
j,T(j+1)2

|bj , kj , ωj , f
n
[1:j−1], x

n
(j+1)2

), (57)

where (56) holds since F̂n
[1:j−1] = Fn

[1:j−1] holds because of the indicator functions in P̃ (Z[0:j−1]);

equation (57) holds since kj is a (random) bin index of fn
[1:j].

Let us compare (57) and (53). We see that most of the terms are the same. Using the first part of
Lemma 2 it suffices to show that

p(xn[1:2], f
n
[1:j−1])p(f

n
j |x

n
[1:2], f

n
[1:j−1])P (bj , ωj|f

n
[1:j])

δn
≈

p(xn[1:2], f
n
[1:j−1])p

U (ωj)p
U (bj)P (fn

j |bj, ωj , f
n
[1:j−1], x

n
(j)2

). (58)

Note that

p(xn[1:2], f
n
[1:j−1])p(f

n
j |x

n
[1:2], f

n
[1:j−1])P (bj , ωj|f

n
[1:j]) =

p(xn[1:2], f
n
[1:j−1])P (bj , ωj|f

n
[1:j−1], x

n
[1:2])P (fn

j |bj , ωj , f
n
[1:j−1], x

n
(j)2

). (59)

We note that P (fn
j |bj , ωj, f

n
[1:j−1], x

n
(j)2

) of the above equation is the one of Protocol A and used in

Protocol B. Now, to show that (58) holds it suffices to show the following equation because the first
part of Lemma 2:

p(xn[1:2], f
n
[1:j−1])P (bj , ωj|f

n
[1:j−1], x

n
[1:2])

δn
≈ p(xn[1:2], f

n
[1:j−1])p

U (ωj)p
U (bj). (60)

In other words we need to impose constraints that imply (Bj , ωj) are mutually nearly independent
of (Fn

[1:j−1],X
n
[1:2]). Substituting T = 1, X1 = F[1:i] and Y = X[1:2]F[1:i−1] in Theorem 3 yields that

equation (60) holds if

• For j = 1 we have the constraint

R0 + R̃1 < H(F1|X1X2) = H(F1|X1), (61)

• for j ≥ 2 we have the constraints

R̃i < H(Fj |X[1:2]F[1:j−1]) = H(Fj |X(j)2F[1:j−1]), (62)

where in (61) and (62) we use the Markov chain Fj −X(j)2F[1:j−1] −X(j+1)2 for any j.

This completes the induction proof.

B Proof of the approximation (17)

In this appendix we show that the approximation

P̂ (xn[1:2], f
n
[1:r], b[1:r], k[1:r], ω[1:r], f̂

n
[1:r],T1

, f̂n
[1:r],T2

)
ǫn
≈ P (xn[1:2], f

n
[1:r], b[1:r], k[1:r], ω[1:r], f̂

n
[1:r],T1

, f̂n
[1:r],T2

),

(63)
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implies

P̂ (xn[1:2], f
n
[1:r], b[1:r], k[1:r], ω, y

n
[1:2], f̂

n
[1:r],T1

, f̂n
[1:r],T2

)
ǫ̃n
≈ P (xn[1:2], f

n
[1:r], b[1:r], k[1:r], ω, y

n
[1:2], f̂n

[1:r],T1
, f̂n

[1:r],T2
),

(64)

for some sequence ǫ̃n → 0.
We prove it indirectly through the random pmf P̃ introduced in (40). It has been shown in Appendix

A that in addition to the approximation (63) the following approximation holds

P (xn[1:2], f
n
[1:r], b[1:r], k[1:r], ω[1:r], f̂

n
[1:r],T1

, f̂n
[1:r],T2

)
ǫn
≈ P̃ (xn[1:2], f

n
[1:r], b[1:r], k[1:r], ω[1:r], f̂

n
[1:r],T1

, f̂n
[1:r],T2

).

(65)

Note that the triangle inequality implies that instead of showing the approximation (64) one can show
the following approximations

P (xn[1:2], f
n
[1:r], b[1:r], k[1:r], ω, y

n
[1:2], f̂

n
[1:r],T1

, f̂n
[1:r],T2

)
ǫ̃n
≈ P̃ (xn[1:2], f

n
[1:r], b[1:r], k[1:r], ω, y

n
[1:2], f̂

n
[1:r],T1

, f̂n
[1:r],T2

),

P̂ (xn[1:2], f
n
[1:r], b[1:r], k[1:r], ω, y

n
[1:2], f̂

n
[1:r],T1

, f̂n
[1:r],T2

)
ǫ̃n
≈ P̃ (xn[1:2], f

n
[1:r], b[1:r], k[1:r], ω, y

n
[1:2], f̂

n
[1:r],T1

, f̂n
[1:r],T2

).

(66)

Using the third part of Lemma 2, it suffices to prove the following approximations

P̃ (xn[1:2], f
n
[1:r], b[1:r], k[1:r], ω, f̂

n
[1:r],T1

, f̂n
[1:r],T2

)P (yn[1:2]|x
n
[1:2], f

n
[1:r], b[1:r], k[1:r], ω, f̂

n
[1:r],T1

, f̂n
[1:r],T2

)

ǫ̃n
≈ P̃ (xn[1:2], f

n
[1:r], b[1:r], k[1:r], ω, y

n
[1:2], f̂n

[1:r],T1
, f̂n

[1:r],T2
),

P̃ (xn[1:2], f
n
[1:r], b[1:r], k[1:r], ω, f̂

n
[1:r],T1

, f̂n
[1:r],T2

)P̂ (yn[1:2]|x
n
[1:2], f

n
[1:r], b[1:r], k[1:r], ω, f̂

n
[1:r],T1

, f̂n
[1:r],T2

)

ǫ̃n
≈ P̃ (xn[1:2], f

n
[1:r], b[1:r], k[1:r], ω, y

n
[1:2], f̂n

[1:r],T1
, f̂n

[1:r],T2
). (67)

First observe that

P (yn[1:2]|x
n
[1:2], f

n
[1:r], b[1:r], k[1:r], ω, f̂

n
[1:r],T1

, f̂n
[1:r],T2

) = P̃ (yn[1:2]|x
n
[1:2], f

n
[1:r], b[1:r], k[1:r], ω, f̂

n
[1:r],T1

, f̂n
[1:r],T2

)

= p(yn1 |f
n
[1:r]x

n
1 )p(y

n
2 |f

n
[1:r]x

n
2 ).

This equation gives the first approximation of (67) with equality.
Next using equation (11) we get

P̂ (yn[1:2]|x
n
[1:2], f

n
[1:r], b[1:r], k[1:r], ω, f̂

n
[1:r],T1

, f̂n
[1:r],T2

) = p(yn1 |f̂
n
[1:r],T1

xn1 )p(y
n
2 |f̂

n
[1:r],T2

xn2 ). (68)

Substituting this in the second equation of (67) gives the second approximation of (67) with equality
as follows

P̃ (xn[1:2], f
n
[1:r], b[1:r], k[1:r], ω, f̂

n
[1:r],T1

, f̂n
[1:r],T2

)P̂ (yn[1:2]|x
n
[1:2], f

n
[1:r], b[1:r], k[1:r], ω, f̂

n
[1:r],T1

, f̂n
[1:r],T2

)

= P̃ (xn[1:2], f
n
[1:r], b[1:r], k[1:r], ω, f̂

n
[1:r],T1

, f̂n
[1:r],T2

)p(yn1 |f̂
n
[1:r],T1

xn1 )p(y
n
2 |f̂

n
[1:r],T2

xn2 )

= P̃ (xn[1:2], f
n
[1:r], b[1:r], k[1:r], ω, f̂

n
[1:r],T1

, f̂n
[1:r],T2

)p(yn1 |f
n
[1:r]x

n
1 )p(y

n
2 |f

n
[1:r]x

n
2 ) (69)

= P̃ (xn[1:2], f
n
[1:r], b[1:r], k[1:r], ω, y

n
[1:2], f̂n

[1:r],T1
, f̂n

[1:r],T2
). (70)

where the equation (69) is due to the equality f̂n
[1:r],T1

= f̂n
[1:r],T2

= fn
[1:r] which is a result of indicator

functions in the definition of P̃ in (40). This completes the proof of the approximation (64).
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C Proofs of mutual information bounds

C.1 Generalized version of [14, Lemma 2.7]

Lemma 7 (Modified version of [14, Lemma 2.7], c.f. [21],[14, Problem 3.10]). For any two pmfs pX
and p

X̂
on the same alphabet X , we have

∣∣∣H(X)−H(X̂)
∣∣∣ ≤

∥∥pX − p
X̂

∥∥
1
log(|X | − 1) + hb

(∥∥pX − p
X̂

∥∥
1

)
. (71)

We now state a conditional extension of this lemma.

Lemma 8. For any pmf pY on Y and any two conditional pmfs pX|Y and p
X̂|Y on the same alphabet

X
∣∣∣H(X|Y )−H(X̂ |Y )

∣∣∣ ≤
∥∥∥pY pX|Y − pY pX̂|Y

∥∥∥
1
log(|X | − 1) + hb

(∥∥∥pY pX|Y − pY pX̂|Y

∥∥∥
1

)
. (72)

Proof.

∣∣∣H(X|Y )−H(X̂ |Y )
∣∣∣ =

∣∣∣∣∣
∑

y

pY (y)
(
H(X|Y = y)−H(X̂ |Y = y)

)∣∣∣∣∣

≤
∑

y

pY (y)
∣∣∣H(X|Y = y)−H(X̂ |Y = y)

∣∣∣

≤
∑

y

pY (y)
[∥∥∥pX|Y=y − p

X̂|Y=y

∥∥∥
1
log(|X | − 1) + h

(∥∥∥pX|Y=y − p
X̂|Y=y

∥∥∥
1

)]

(73)

=
∥∥∥pY pX|Y − pY pX̂|Y

∥∥∥
1
log(|X | − 1) +

∑

y

pY (y)h
(∥∥∥pX|Y=y − p

X̂|Y=y

∥∥∥
1

)

≤
∥∥∥pY pX|Y − pY pX̂|Y

∥∥∥
1
log(|X | − 1) + hb

(
∑

y

pY (y)
∥∥∥pX|Y=y − p

X̂|Y=y

∥∥∥
1

)

(74)

=
∥∥∥pY pX|Y − pY pX̂|Y

∥∥∥
1
log(|X | − 1) + hb

(∥∥∥pY pX|Y − pY pX̂|Y

∥∥∥
1

)
, (75)

where (73) follows from Lemma 7 and (74) follows from Jensen inequality for the concave function
hb(.).

C.2 Proof of Lemma 3

The proof is similar to the one given in [3, Lemma VI. 3] for the unconditional case of the Lemma
3. First we use the first part of Lemma 2 to obtain the closeness of p(wq, z) and p̂q(wq|z)p(z) in total
variation. In other words we have

‖p(wq, z)− p̂q(wq|z)p(z)‖1 ≤ ǫ.

Let Ŵ n be a random variable such that p
Ŵn,Z

(wn, z) = p(z)
∏n

q=1 pq(wq|z). Then Lemma 8 implies
that

∣∣∣H(Wq|Z)−H(Ŵq|Z)
∣∣∣ ≤ ǫ log |W|+ hb(ǫ),

∣∣∣H(W n|Z)−H(Ŵ n|Z)
∣∣∣ ≤ ǫ log |W|n + hb(ǫ) = nǫ log |W|+ hb(ǫ). (76)

Now we have

n∑

q=1

I(Wq;W
q−1|Z) =

n∑

q=1

H(Wq|Z)−H(W n|Z)
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=
n∑

q=1

[
H(Wq|Z)−H(Ŵq|Z)

]
+H(Ŵ n|Z)−H(W n|Z) (77)

≤ 2nǫ log |W|+ (n+ 1)hb(ǫ) (78)

where (77) follows from the fact thatH(Ŵ n|Z) =
∑n

q=1H(Ŵq|Z), because of p
Ŵn,Z

(wn, z) = p(z)
∏n

q=1 pq(wq|z)
and (78) is a result of (76). This concludes the proof.

C.3 Proof of Lemma 4

The proof is similar to the proof of Lemma 3. First, using the first part of Lemma 2 we have

‖p(yq, xq)− p̂(y|x)p(x)‖1 = ‖p(yq, xq)− p̂(yq|xq)p(xq)‖1 ≤ ǫ.

Let Ŷ n be a random variable such that p
Xn,Ŷ n(xn, yn) =

∏n
q=1 p(xq)p̂(yq|xq). Observe that H(Ŷq|X

n) =

H(Ŷq|Xq) = H(Ŷ |X), where (X, Ŷ ) is distributed according to p(x)p̂(y|x). Then Lemma 8 implies that

∣∣∣H(Yq|Xq)−H(Ŷq|Xq)
∣∣∣ ≤ ǫ log |Y|+ hb(ǫ),

∣∣∣H(Ŷq|X
n)−H(Yq|X

n)
∣∣∣ ≤ ǫ log |Y|+ hb(ǫ).

(79)

We have

I(X[∼q];Yq|Xq) = H(Yq|Xq)−H(Yq|X
n)

≤
∣∣∣H(Yq|Xq)−H(Ŷq|Xq)

∣∣∣+
∣∣∣H(Ŷq|Xq)−H(Yq|X

n)
∣∣∣

=
∣∣∣H(Yq|Xq)−H(Ŷq|Xq)

∣∣∣+
∣∣∣H(Ŷq|X

n)−H(Yq|X
n)
∣∣∣

≤ 2 (ǫ log |Y|+ hb(ǫ)) , (80)

where (80) follows from (79). This completes the proof of (22).
Next we prove (23). First we note that (XQ, ŶQ) is distributed according to p(x)p̂(y|x), because

(Xn, Ŷ n) is jointly i.i.d. according to p(x)p̂(y|x). Also, by [?, Lemma VI.2] we have the closeness
between p(xQ, yQ) and p(x)p̂(y|x), that is,

‖p(xQ, yQ)− p(x)p̂(y|x)‖1 ≤ ǫ.

Then Lemma 8 implies that

∣∣∣H(YQ|XQ)−H(Ŷ |X)
∣∣∣ ≤ ǫ log |Y|+ hb(ǫ). (81)

Next consider
∣∣∣H(YQ|XQ, Q)−H(Ŷ |X)

∣∣∣ =
∑

q

pQ(q)
∣∣∣H(Yq|Xq)−H(Ŷ |X)

∣∣∣

≤
∑

q

pQ(q) (ǫ log |Y|+ hb(ǫ))

= ǫ log |Y|+ hb(ǫ),

(82)

where we used (79). Finally, combining (81) and (82) implies (23).
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D Cardinality Bounds

The cardinality bounds can be proved inductively using the support lemma [22, Appendix C]. Here
we provide the sketch of the proof. Assume that we have reduced the cardinalities of F1, F2, · · · , Fi−1.
We prove a cardinality bound on Fi. For simplicity we only write the case of i > 1; the case of i = 1
is similar. Take some arbitrary q(f[1:r], x[1:2], y[1:2]) with Fj , j ∈ [1 : r] taking values from finite (but
arbitrarily large) sets. In the statement of the support lemma, we consider P to be the set of all pmfs
π(f[1:i−1], f[i+1:r], x[1:2], y[1:2]) on F1 ×F2 × · · · ×Fi−1 ×Fi+1 ×· · · ×Fr ×X1 ×X2 ×Y1×Y2 that satisfy
the following

• π(x2|f[1:i−1]x1) = q(x2|f[1:i−1]x1) if i is odd; or π(x1|f[1:i−1]x2) = q(x1|f[1:i−1]x2) if i is even;

• For any j > i: Fj−F[1:i−1]F[i+1:j−1]X1−X2, if j is odd; Fj−F[1:i−1]F[i+1:j−1]X2−X1, if j is even; Y1−
F[1:i−1]F[i+1:r]X1 −X2Y2, and Y2 − F[1:i−1]F[i+1:r]X2 −X1Y1.

This set is compact and connected. To see its connectedness, for simplicity consider the special case
of r = 3, i = 2; the proof for general case is similar. P is the set of π(x[1:2]y[1:2]f1f3) that factorize as
follows:

π(x[1:2]y[1:2]f1f3) = π(x2f1)q(x1|f1x2)π(f3|x1f1)π(y1|x1f1f3)π(y2|x2f1f3).

Given π1(x[1:2]y[1:2]f1f3) and π2(x[1:2]y[1:2]f1f3) of the above form, we can continously move from π1 to
π2 in several steps, by first moving from π1(x[1:2]y[1:2]f1f3) to

π2(x2f1)q(x1|f1x2)π1(f3|x1f1)π1(y1|x1f1f3)π1(y2|x2f1f3).

where the first term π1(x2f1) is replaced with π2(x2f1) via continous moves. We can then replace the
term π1(f3|x1f1) with π2(f3|x1f1), etc.

Then we consider the following continuous functions on P. Given any (x[1:2], y[1:2], f1, · · · , fi−1)
and pmf π on P we define

gx[1:2],y[1:2],f[1:i−1]
(π) = Pπ[X[1:2] = x[1:2], Y[1:2] = y[1:2], F[1:i−1] = f[1:i−1]].

Further we define three more functions:

g1(π) = H(X1|F1:i−1Fi+1:rX2), (83)

g2(π) = H(X2|F1:i−1Fi+1:rX1), (84)

g3(π) = H(Y[1:2]|F1:i−1Fi+1:rX[1:2]). (85)

We consider gx[1:2],y[1:2],f[1:i−1]
for all values of x[1:2], y[1:2], f[1:i−1] except for one arbitrary tuple (x

∗
[1:2], y

∗
[1:2], f

∗
[1:i−1]),

giving us |X1||X2||Y1||Y2|
∏i−1

j=1 |Fj | − 1 functions. Thus in total we have |X1||X2||Y1||Y2|
∏i−1

j=1 |Fj |+ 2

functions. Applying the support lemma, we can reduce the cardinality of Fi to |X1||X2||Y1||Y2|
∏i−1

j=1 |Fj |+
2 by finding some p(x[1:2], y[1:2], f[1:r]) such that

p(x[1:2], y[1:2], f[1:i−1]) = q(x[1:2], y[1:2], f[1:i−1]),

Hp(X1|F1:i−1Fi+1:rX2Fi) = Hq(X1|F1:i−1Fi+1:rX2Fi)

Hp(X2|F1:i−1Fi+1:rX1Fi) = Hq(X2|F1:i−1Fi+1:rX1Fi)

and
Hp(Y[1:2]|F1:i−1Fi+1:rX[1:2]Fi) = Hq(Y[1:2]|F1:i−1Fi+1:rX[1:2]Fi).

Further the resulting p(x[1:2], y[1:2], f[1:i−1], f[i+1:r]|fi) is in P, implying the Markov chain equations for
j ≥ i: Fj − F[1:j−1]X1 − X2, if j is odd;Fj − F[1:j−1]X2 − X1, if j is even;Y1 − F[1:r]X1 − X2Y2, and
Y2 − F[1:r]X2 −X1Y1. The first condition imposed on P implies the Markov chains for j = i, whereas
the second condition implies it for j > i. Since we are preserving p(x[1:2], y[1:2], f[1:i−1]), the chains also
hold for j < i. Further we get that H(X1|X2),H(X2|X1), H(Y[1:2]|X[1:2]) and I(F1;Y[1:2]|X[1:2]) are
preserved.
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E Rate elimination

We eliminate the rates (R̃1, · · · , R̃r) and (R1, · · · , Rr) in few steps.
Step 1: Relaxing the implicit positivity constraints on R̃i, i ∈ [1 : r]. First we want to eliminate the

rates (R̃1, · · · , R̃r) from (13)-(16) and (19). However we also have the implicit constraints R̃i ≥ 0, i ∈
[1 : r]. Nevertheless, we show that these constraints are redundant. To do this, we show that if
(R0, R1, · · · , Rr, R̃1, · · · , R̃r) satisfies (13)-(16) and (19) for some r.v.s F[1:r] and the rates(R̃1, · · · , R̃r)
(which are not necessarily positive), then there exists a r.v.s F̄[1:r] and R̄i ≥ 0, , i ∈ [1 : r] such
that (R0, R1, · · · , Rr, R̄1, · · · , R̄r) satisfies (13)-(16) and (19) for F̄[1:r] instead of F[1:r] and R̄i instead

of R̃i.Let Wi, i ∈ [1 : r] be r.v.s with entropies H(Wi) > |R̃i|. Further assume that Wi, i ∈ [1 :
r] are independent of each other and also independent of all other r.v.’s, i.e. (F[1:r],X[1:2], Y[1:2]).

Let R̄i = R̃i + H(Wi) and F̄i = (Fi,Wi). It is clear that R̄i > 0,∀i. Now it can easily shown
that(R0, R1, · · · , Rr, R̄1, · · · , R̄r) satisfies (13)-(16) and (19) for F̄[1:r], using the independence of W[1:r]

from all other r.v.’s and the fact that (R0, R1, · · · , Rr, R̃1, · · · , R̃r) satisfies (13)-(16) and (19) for F[1:r].

Step 2: Eliminating the rates R̃i, i ∈ [1 : r]. Without loss of generality, we can assume that the

constraints (13) and (14) hold with equality, because we can decrease the rates R̃i, i ∈ [1 : r] to get
equality in the constraints (13) and (14) without disturbing the other constraints. In this case, we have

R̃1 = H(F1|X2)−R0 −R1,

R̃i = H(Fi|X(i+1)2F[1:i−1]), for i ∈ [2 : r].

Substituting these equalities in (15), (16) and (19) gives the following constraints for i ∈ [1 : r],

Ri ≥ I(X(i)2 ;Fi|F[1:i−1]X(i+1)2), (86)

R0 +
i∑

t=1

Rt ≥
i∑

t=1

I(Ft;X(t)2Y[1:2]|X(t+1)2F[1:t−1])

=
i∑

t=1

I(Ft;X(t)2 |X(t+1)2F[1:t−1]) +
i∑

t=1

I(Ft;Y[1:2]|X[1:2]F[1:t−1])

= I(F[1:i];Y[1:2]|X[1:2]) +

i∑

t=1

I(Ft;X(t)2 |X(t+1)2F[1:t−1]). (87)

Step 3: Eliminating the rates Ri, i ∈ [1 : r]. In this step we want to eliminate the rates (R1, · · · , Rr)
from (9), (86) and (87). This can be done using Fourier-Motzkin elimination (FME). Applying FME
gives the following constraints on (R0, R12, R21):

R12 ≥ I(X1;F[1:r]|X2),

R21 ≥ I(X2;F[1:r]|X1),

R0 +R12 ≥ I(X1;F[1:r]|X2) + I(F1;Y[1:2]|X[1:2]),

R0 +R12 +R21 ≥ I(X1;F[1:r]|X2) + I(X2;F[1:r]|X1) + I(F[1:i];Y[1:2]|X[1:2]), for i ∈ [2 : r]. (88)

Finally we note that the last constraints for i ∈ [2 : r − 1] are redundant due to the constraint
corresponding to i = r.

F Proof of Markov chains in (26)

We know that for any code the following Markov chain conditions hold

Ci−ωC[1:i−1]X
n
1 −Xn

2 , if i is odd,

Ci−ωC[1:i−1]X
n
2 −Xn

1 , if i is even,

Y n
1 − ωC[1:r]X

n
1 −Xn

2 Y
n
2 ,

Y n
2 − ωC[1:r]X

n
2 −Xn

1 Y
n
1 .

(89)
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The Markov chain Ci − ωC[1:i−1]X
q:n
1 X

1:q−1
2 −X2,q for odd i holds because

I(Ci;X2,q|ωC[1:i−1]X
q:n
1 X

1:q−1
2 ) ≤ I(CiX

1:q−1
1 ;X2,q|ωC[1:i−1]X

q:n
1 X

1:q−1
2 )

= I(X1:q−1
1 ;X2,q|ωC[1:i−1]X

q:n
1 X

1:q−1
2 ) (90)

≤ I(X1:q−1
1 ;Xq:n

2 |ωC[1:i−1]X
q:n
1 X

1:q−1
2 )

= 0, (91)

where (90) follows from the first Markov chain of (89), and the (91) follows from Lemma 9 provided at
the end of this appendix. Similarly the Markov chain Ci − ωC[1:i−1]X

q+1:n
1 X

1:q
2 −X1,q for even i holds.

Next, we show that the Markov chain Y1,q − ωC[1:r]X
q:n
1 X

1:q−1
2 −X2,qY2,q holds.

I(Y1,q;X2,qY2,q|ωC[1:r]X
q:n
1 X

1:q−1
2 ) ≤ I(Y1,qX

1:q−1
1 ;X2,qY2,q|ωC[1:r]X

q:n
1 X

1:q−1
2 )

= I(X1:q−1
1 ;X2,qY2,q|ωC[1:r]X

q:n
1 X

1:q−1
2 ) (92)

≤ I(X1:q−1
1 ;Xq:n

2 Y2,q|ωC[1:r]X
q:n
1 X

1:q−1
2 )

= I(X1:q−1
1 ;Xq:n

2 |ωC[1:r]X
q:n
1 X

1:q−1
2 ) (93)

= 0, (94)

where (92) follows from the third Markov chain of (89), (93) follows from the last Markov chain of (89)
and the (94) follows from Lemma 9. Similarly the Markov chain Y2,q − ωC[1:r]X

q+1:n
1 X

1:q
2 − X1,qY1,q

holds.

Lemma 9. For any set of random variables satisfying the Markov chain constraints of (89), the
following holds:

∀q, i : I(X1:q−1
1 ;Xq:n

2 |ωC[1:i]X
q:n
1 X

1:q−1
2 ) = 0. (95)

Proof. We prove the lemma by induction on i. For i = 0, we have I(X1:q−1
1 ;Xq:n

2 |ωXq:n
1 X

1:q−1
2 ) = 0

because Xn
[1:2] is i.i.d. and is independent of the common randomness ω. Suppose that the statement

of the lemma holds for i = j − 1. For i = j we proceed as follows:

• If j is odd, we have

I(X1:q−1
1 ;Xq:n

2 |ωC[1:j]X
q:n
1 X

1:q−1
2 ) ≤ I(CjX

1:q−1
1 ;Xq:n

2 |ωC[1:j−1]X
q:n
1 X

1:q−1
2 )

= I(X1:q−1
1 ;Xq:n

2 |ωC[1:j−1]X
q:n
1 X

1:q−1
2 ) = 0, (96)

where in the last step we use the first Markov chain of (89) and the induction assumption.

• If j is even, we have

I(X1:q−1
1 ;Xq:n

2 |ωC[1:j]X
q:n
1 X

1:q−1
2 ) ≤ I(X1:q−1

1 ;CjX
q:n
2 |ωC[1:j−1]X

q:n
1 X

1:q−1
2 )

= I(X1:q−1
1 ;Xq:n

2 |ωC[1:j−1]X
q:n
1 X

1:q−1
2 ) = 0, (97)

where in the last step we use the second Markov chain of (89) and the induction assumption.

This completes the induction proof.

G Converse Proof of Theorem 2

Assume (R12, R21) is a pair of achievable rate. Consider a sequence of coordination codes that achieves
(R12, R21). Take a random variable Q uniform on [1 : n] and independent of all other random variables.
Define Fi = CiX

Q+1:n
1 X

1:Q−1
2 Q for 1 ≤ i ≤ r and Xi = XiQ, Yi = YiQ for i = 1, 22. In the first step

2Following the standard definition of empirical coordination code we assume that there is not any common randomness,
that is ω is a constant random variable. See [10] and Remark 4.
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of the proof, we show the Markov chain conditions given in the definition of T (r) are satisfied by this
choice of auxiliary r.v.’s. The proof of this fact is similar to the one given in the Appendix F and hence
it is omitted here.

nR12 ≥
∑

i:odd

H(Ci)

≥
∑

i:odd

I(Ci;X
n
1 |C[1:i−1]X

n
2 )

=

r∑

i=1

I(Ci;X
n
1 |C[1:i−1]X

n
2 ) (98)

= I(C[1:r];X
n
1 |X

n
2 )

=
n∑

q=1

I(C[1:r];X1,q|X
q+1:n
1 Xn

2 )

=

n∑

q=1

I(C[1:r]X
q+1:n
1 X2,∼q;X1,q|X2,q) (99)

≥
n∑

q=1

I(C[1:r]X
q+1:n
1 X

1:q−1
2 ;X1,q|X2,q)

= nI(C[1:r]X
Q+1:n
1 X

1:Q−1
2 ;X1,Q|X2,Q, Q)

= nI(C[1:r]X
Q+1:n
1 X

1:Q−1
2 Q;X1,Q|X2,Q) (100)

= nI(F[1:r];X1|X2), (101)

where (98) follows from the Markov chain Ci −C[1:i−1]X
n
2X

n
1 for even i, (99) follows from the fact that

X1q,X2q are i.i.d. repetitions and (100) follows from the fact that Q is independent of (X1,Q,X2,Q)
(See [10]). The inequality R21 ≥ I(F[1:r];X2|X1) can be proved similarly.

The definition of coordination code implies that

E

∥∥∥p̃Xn
[1:2]

Y n
[1:2]

− qX[1:2]Y[1:2]

∥∥∥
1
→ 0. (102)

This yields that
p̃Xn

[1:2]
Y n
[1:2]

→ qX[1:2]Y[1:2]
. (103)

In the other side, it is shown in [10] that Ep̃Xn
[1:2]

Y n
[1:2]

= p̃X[1:2],Q,Y[1:2],Q
where p̃ is the induced pmf by the

code. Therefore p̃X[1:2],Q,Y[1:2],Q
tends to qX[1:2]Y[1:2]

. Now the closedness of the coordination rate region
completes the proof.
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