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Abstract—The problem of communication and state estimation
is considered in the context of channels with action-dependent
states. Given the message to be communicated, the transmitter
chooses an action sequence that affects the formation of the
channel states, and then creates the channel input sequence based
on the state sequence. The decoder estimates the channel to
some distortion as well as decodes the message. The capacity–
distortion tradeoff of such a channel is characterized for the
case when the state information is available strictly causally
at the channel encoder. The problem setting extends the action
dependent framework of [1] and as a special case recovers the
results of few previously considered joint communication and
estimation scenarios in [2], [3], [4]. The scenario when the action
is also allowed to depend on the past observed states (adaptive
action) is also considered. It is shown that such adaptive action
yields an improved capacity–distortion function.

I. INTRODUCTION

Consider the example scenario of an autonomous under-
water vehicle engaged in a classification task communicating
with a surface station; in particular the vehicle employs active
classification wherein it controls the views it has of the target
(or state, S). The vehicle can modify its position, sensor
parameters, etc. One can envision that the vehicle would
modify its plan as it collects new information about the target
state [5]. This scenario motivates our examination of both
adaptive and non-adaptive active communication over channels
with state. In particular, we are interested in scenarios where
the encoder can select actions (dependent on the message to
be sent) that are potentially dependent on the past channel
states in order to communicate the state as well as additional
information to the destination.

In this framework, encoding is in two parts: given the
message, an action sequence is created. The actions affect
the formation of the channel states, which are accessible to
the transmitter in a strictly causal manner when producing
the channel input sequence. A channel with action-dependent
states then is characterized by two ingredients: the distribution
of state given an action p(s|a) and, the distribution of the
channel output given the input and state p(y|x, s). We are
interested in the scenario when in addition to communicating
pure information across the channel, the transmitter also
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wishes to help reveal the channel state to the receiver. We
characterize the tradeoff between the independent information
rate and the accuracy of estimation of the channel state via the
capacity-distortion function (first introduced in [2]). The wide
applicability of our framework can be seen in the following
problems which can be expressed as a problem of conveying
action dependent state to the destination: active classification
[6], underwater path planning [7], [5], data storage over mem-
ory with defects [8], [9], dynamic spectrum access systems
[10], etc..

Pure communication over channels with action-dependent
states was introduced in [1] wherein the capacity of such a
channel with both non-causal and causal state information at
the encoder were characterized. Due to our goal of acquiring
the channel at the destination as well as information transmis-
sion, a distinctly different approach is taken herein relative
to the Gelfand-Pinsker methodology adopted in [1]. However,
we are able to recover the results of [1] for the causal case
(extending the same proof strategy as in strictly causal case),
revealing an alternative proof strategy. We observe that the
codes which are optimal for achieving capacity may not be
good codes for state estimation.

Alternatively, our work extends that of joint communication
and state estimation in [11], [2], [3], [4]; conditioned on the
action sequence, we have such a problem. The role of the
action sequence is to not only communicate the message, but
to also determine a good communication channel for both the
message as well as the state estimation. The contributions of
our work is as follows: we characterize the capacity distortion
function for this problem via a two stage encoding scheme. In
stage one, information is encoded in the action sequence; in
stage two, conditioned on the action sequence, a block Markov
strategy akin to that in [3] is shown to be capacity–distortion
optimal. We show that strictly causal CSI improves the channel
estimate, while the capacity is unchanged. Our results are
generalized to the case where the action sequence is a function
of both the message and the past channel states (feedback), we
denote this as adaptive action; the benefits of such an encoding
are quantified. In addition to the generalizations previously
mentioned (i.e. [2], [3], [4], [1]), we show that our adaptive
action framework recovers prior results on multiple access
channels with states [12], [13].

The rest of this paper is organized as follows. Section II
describes the basic channel model with discrete alphabets,
characterizes the capacity–distortion function, establishes its
achievability and proves the converse part of the theorem.
Section III extends the results to the adaptive action setting,
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Fig. 1. Strictly causal action dependent state communication.

wherein we allow the feedback from the past states to the
action encoder. Section IV illustrates our results with few
examples. Finally, Section V concludes the paper.

II. PROBLEM SETUP AND MAIN RESULT

We assume a discrete memoryless channel (DMC)
with discrete memoryless state (DMS) model (X × S ×
A, p(y|x, s)p(s|a),Y) that consists of a finite input alphabet
X , a finite output alphabet Y , a finite state alphabet S, a
finite action alphabet A and a collection of conditional pmfs
p(y|x, s) on Y . The channel is memoryless in the sense that,
without feedback, p(yn|xn, sn) =

∏n
i=1 pY |X,S(yi|xi, si), and

given the action sequence, the state is memoryless in the sense
that (S1, S2, . . .) are independent and identically distributed
(i.i.d.) with Si ∼ pS(si|ai).

A (2nR, n) code for strictly causal action dependent state
communication consists of
• a message set [1 : 2nR],
• an action encoder that assigns an action sequence
an(m) ∈ An to each message m ∈ [1 : 2nR]

• a channel encoder that assigns a symbol xi(m, si−1) ∈
X to each message m ∈ [1 : 2nR] and past state sequence
si−1 ∈ Si−1 for i ∈ [1 : n], and

• a decoder that assigns a message estimate m̂ ∈ [1 : 2nR]
(or an error message e) and a state sequence estimate
ŝn ∈ Ŝn to each received sequence yn ∈ Yn.

We assume that M is uniformly distributed over the message
set. The average probability of error is defined as P (n)

e =
P{M̂ 6= M}. The fidelity of the state estimate is measured by
the expected distortion

E(d(Sn, Ŝn)) =
1

n

n∑
i=1

E(d(Si, Ŝi)),

where d : S × Ŝ → [0,∞) is a distortion measure between
a state symbol s ∈ S and a reconstruction symbol ŝ ∈ Ŝ.
Without loss of generality, we assume that for every symbol
s ∈ S there exists a reconstruction symbol ŝ ∈ Ŝ such
that d(s, ŝ) = 0. A rate–distortion pair is said to be achiev-
able if there exists a sequence of (2nR, n) codes such that
limn→∞ P

(n)
e = 0 and lim supn→∞ E d(Sn, Ŝn) ≤ D. The

capacity–distortion function CASC(D) is defined as in [2] and
is the supremum of the rates R such that (R,D) is achievable.

We characterize this optimal tradeoff between information
transmission rate (capacity C) and state estimation (distortion
D) as follows.

Theorem 1: The capacity–distortion function for strictly
causal action dependent state communication is

CASC(D) = max
(
I(U,A,X;Y )− I(U,X;S |A)

)
,

where the maximum is over all conditional pmfs
p(a)p(x|a)p(u|x, s, a) and function ŝ(u, x, a, y) such
that E(d(S, Ŝ)) ≤ D and I(U,X;Y |A)− I(U,X;S|A) ≥ 0.

Remark 1: We observe that CASC(D) remains unchanged for
seemingly for general channels of the form p(y|s, x, a). This
fact can be shown directly by defining a new state S′ = (S,A)
and applying the above characterization.

Remark 2: When both the sender and the receiver is obliv-
ious of the channel state, the capacity–distortion function for
action dependent state communication can be obtained by
choosing U = ∅ and is given by,

CA(D) = max I(X,A;Y ),

where the maximum is over all conditional pmfs p(a)p(x) and
function ŝ(x, a, y) such that E(d(S, Ŝ)) ≤ D.

Before proving the Theorem 1, we recall a lemma from [3]
and summarize a few useful properties of CASC(D) (similar to
the [3, Corollary 1],[2]), which will be useful in proving the
converse.

Lemma 1: Suppose Z → V → W form a Markov chain
and d(z, ẑ) is a distortion measure. Then for every reconstruc-
tion function ẑ(v, w), there exists a reconstruction function
ẑ∗(v) such that

E
[
d(Z, ẑ∗(V ))

]
≤ E

[
d(Z, ẑ(V,W ))

]
.

This lemma traces back to Blackwell’s notion of channel
ordering [14], [15] and can be interpreted as a data processing
inequality for estimation.

Corollary 1: The capacity-distortion function CASC(D) in
Theorem 1 has the following properties:
(1) CASC(D) is a non-decreasing concave function of D for all
D ≥ D∗,
(2) CASC(D) is a continuous function of D for all D > D∗,
(3) CASC(D∗) = 0 if D∗ 6= 0 and CSC(D∗) ≥ 0 if D∗ = 0,
where D∗ is the minimum distortion with strictly causal
channel state at the sender akin to the zero rate case in [3].

A. Sketch of Achievability:

We use b transmission blocks, each consisting of n symbols.
The channel encoder uses a rate-splitting technique, whereby
in block j, it appropriately allocates it’s rate between cooper-
ative transmission of common message mj and a description
of the state sequence Sn(j − 1) in block j − 1. Typical sets
are defined as in [16].

Codebook generation. Fix a conditional pmf
p(a)p(x|a)p(u|x, s, a) and function ŝ(u, x, y, a) that attain
CASC(D/(1 + ε)), where D is the desired distortion, and
let p(u|x, a) =

∑
s p(s|a)p(u|x, s, a). For each j ∈ [1 : b],

randomly and independently generate 2nR sequences an(mj),
mj ∈ [1 : 2nR], each according to

∏n
i=1 pA(ai) and for

each an(mj), generate 2nRS sequences xn(mj , lj−1),



mj ∈ [1 : 2nR], lj−1 ∈ [1 : 2nRS ], each according to∏n
i=1 pX(xi|ai). For each mj ∈ [1 : 2nR], lj−1 ∈ [1 : 2nRS ],

randomly and conditionally independently generate 2nR̃S

sequences un(kj |mj , lj−1), kj ∈ [1 : 2nR̃S ], each according
to

∏n
i=1 pU |X,A(ui|xi(mj , lj−1), ai(mj)). Partition the

set of indices kj ∈ [1 : 2nR̃S ] into equal-size bins
B(lj) = [(lj−1)2n(R̃S−RS)+1 : lj2

n(R̃S−RS)], lj ∈ [1 : 2nRS ].
The codebook is revealed to the both encoder and the decoder.

Encoding. By convention, let l0 = 1. At the end of block j,
the sender finds an index kj such that

(sn(j), un(kj |mj , lj−1), xn(mj , lj−1), an(mj)) ∈ T (n)
ε′ .

If there is more than one such index, it selects one of them
uniformly at random. If there is no such index, it selects an
index from [1 : 2nR̃S ] uniformly at random. In block j+1, the
action encoder chooses the action sequence an(mj+1), where
mj+1 is the new message index to be sent in block j+ 1. Let
sn(j+ 1) be the channel state sequence generated in response
to the action sequence. The channel encoder then transmits
xn(mj+1, lj) over the state dependent channel in block j+ 1,
where lj is the bin index of kj .

Decoding. Let ε > ε′. At the end of block j + 1,
the receiver finds the unique index m̂j+1, l̂j such that
(xn(m̂j+1, l̂j), y

n(j + 1), an(m̂j+1)) ∈ T (n)
ε . It then looks

for the unique compression index k̂j ∈ B(l̂j) such that
(un(k̂j |m̂j , l̂j−1), xn(m̂j , l̂j−1), an(m̂j), y

n(j)) ∈ T (n)
ε and

k̂j ∈ B(l̂j). Finally it computes the reconstruction sequence
as ŝi(j) = ŝ(ui(k̂j |m̂j , l̂j−1), xi(m̂j , l̂j−1), ai(m̂j), yi(j)) for
i ∈ [1 : n].

Note that the achievablity scheme resembles the one in [3],
as in conditioned on the action sequence an(m), we use
a similar block Markov strategy to convey the state to the
decoder. So essentially the action sequence adds one more
degrees of freedom to the framework of [3].

B. Proof of the Converse
We need to show that given any sequence of (2nR, n)-codes

with limn→∞ P
(n)
e = 0 and E(d(Sn, Ŝn)) ≤ D, we must

have R ≤ CASC(D). We identify the auxiliary random variables
Ui := (M,Si−1, Y ni+1, A

n\i), i ∈ [1 : n] with n\i = [1 :
n]− i and (S0, Yn+1) = (∅, ∅, ∅). Note that, as desired, Ui →
(Xi, Si)→ Yi form a Markov chain. Consider

nR = H(M)

(a)

≤ I(M ;Y n) + nεn

=

n∑
i=1

I(M ;Yi |Y ni+1) + nεn

≤
n∑
i=1

I(M,Y ni+1;Yi) + nεn

=

n∑
i=1

(I(M,Y ni+1, S
i−1;Yi)− I(Si−1;Yi |M,Y ni+1))

+ nεn

(b)
=

n∑
i=1

I(M,Y ni+1, S
i−1, An;Yi)

−
n∑
i=1

I(Y ni+1;Si |M,Si−1, An) + nεn

(c)
=

n∑
i=1

I(M,Y ni+1, S
i−1, An;Yi)

−
n∑
i=1

I(M,Si−1, Y ni+1, A
n\i;Si |Ai) + nεn

(d)
=

n∑
i=1

(I(Ui, Xi, Ai;Yi)− I(Ui, Xi;Si |Ai)) + nεn,

where (a) can be shown by Fano’s inequality (see [17, The-
orem 7.7.1]), (b) follows from the Csisźar sum identity [18,
Sec. 2.3] and since An is a function of M , (c) follows from
the fact that given Ai, (M,Si−1, An\i) is independent of Si,
and (d) is true as Xi is a function of (M,Si−1). Similarly, for
this choice of Ui,
n∑
i=1

I(Ui, Xi;Si |Ai) =

n∑
i=1

I(M,Si−1, Y ni+1, A
n\i, Xi;Si |Ai)

=

n∑
i=1

I(Y ni+1;Si |M,Si−1, An)

(b)
=

n∑
i=1

I(Si−1;Yi |M,Y ni+1, A
n)

≤
n∑
i=1

I(M,Si−1, Y ni+1, A
n\i;Yi |Ai)

(d)
=

n∑
i=1

I(Ui, Xi;Yi |Ai).

So now we have

R ≤ 1

n

n∑
i=1

I(Ui, Xi, Ai;Yi)−
n∑
i=1

I(Ui, Xi;Si |Ai) + nεn

(a)

≤ 1

n

n∑
i=1

CASC(E(d(Si, ŝi(Ui, Xi, Ai, Yi)))) + nεn

(b)

≤ CASC
( 1

n

n∑
i=1

E(d(Si, ŝi(Ui, Xi, Ai, Yi)))
)

+ nεn

(c)

≤ CASC(D),

where (a) follows from the definition of capacity-distortion
function, (b) follows by the concavity of CASC(D) (see Property
1 of Corollary 1), and (c) can be shown using Lemma 1 and
Corollary 1. This completes the proof of Theorem 1. Note that
main difficulty of the converse is to identify Ui, which not only
has to satisfy the rate and distortion condition (as in [4]), but
also need to satisfy the additional information inequality.

III. ADAPTIVE ACTION

It is natural to wonder whether “feedback” from the past
states at the action stage (ai(m, si−1)) increases the capacity-
distortion function or not. For an extreme example, consider



a channel for which p(y|s, x, a) = p(y|s, a). Clearly, the
capacity–distortion function for any such channel with only
message dependent non-adaptive action (an(m)) is same as
that of no CSI, since the action encoder is oblivious of the
channel state. But with adaptive action, the action encoder
can perform a block Markov strategy to yield a potentially
larger capacity–distortion function, which is summarized be-
low without proof.

Theorem 2: The capacity–distortion function for strictly
causal adaptive action dependent state communication is

CAASC (D) = max
(
I(U,A,X;Y )− I(U,X,A;S)

)
,

where the maximum is over all conditional pmfs
p(a)p(x|a)p(u|x, s, a) and function ŝ(u, x, a, y) such
that E(d(S, Ŝ)) ≤ D.

Note that the unconstrained capacity remains unchanged
even if we allow the actions to depend on the past states. In
general, CAASC (D) ≥ CASC(D) as the adaptive action helps the
receiver to get a better estimate of the state. Finally, by setting
A = ∅ in Theorem 2, we recover the result by [3] on the
capacity–distortion function when the i.i.d. state information
is available strictly causally at the encoder.

Remark 3: When the past states are available at both the
encoders, the encoders cooperate to send information consist-
ing of the common message and a description of the state
in previous block (similar to sending a common message
over multiple access channel (MAC)), whereas in the non-
adaptive action scenario, while the common message is sent
cooperatively, description of the state is a private message of
the channel encoder.

IV. ILLUSTRATIVE EXAMPLES

In the following subsections, we illustrate Theorem 1 and
Theorem 2 through examples.

A. Actions Seen by Decoder:
Consider the case where the decoder also has access to the

actions taken. Noting that this is a special case of our setting by
taking the pair (Y,A) as the new channel output, that U →
(X,S,A) → Y if and only if U → (X,S,A) → (Y,A).
We obtain that the capacity–distortion function for the case of
message depepdent action is given by

CASC(D) = max
(
H(A) + I(U,X;Y |A)− I(U,X;S |A)

)
,

where the maximization is over the same set of distributions
and same feasible set as in Theorem 1. Similarly we can eval-
uate the capacity–distortion function for the case of adaptive
actions. This expression is quite intuitive: The amount of infor-
mation per symbol that can be conveyed through the actions in
the first stage is represented by the term H(A). In the second
stage, both encoder and decoder know the action sequence,
so they can condition on it and can perform the usual block
Markov strategy on each subsequence associated with each ac-
tion symbol, achieving a rate of I(U,X;Y |A)−I(U,X;S|A).
The maximization is a search for the optimal tradeoff between
the amount of information that can be conveyed by the actions,
and the quality of the second stage channel that they induce.

Fig. 2. Capacity–distortion function: adaptive vs. non-adaptive

B. Gaussian Channel with Additive Action Dependent State

Consider the Gaussian channel with additive action depen-
dent state [1]

Y = X + S + Z = X +A+ S̃ + Z,

where S̃ ∼ N(0, Q) and the noise Z ∼ N(0, N) are indepen-
dent. Assume an expected average power constraint on both
the channel and action encoder

n∑
i=1

E(x2i (m,S
i−1)) ≤ nPX ,

n∑
i=1

E(a2i ) ≤ nPA.

We consider the squared error (quadratic) distortion measure
d(s, ŝ) = (s− ŝ)2. When the action sequnce is only a function
of the message, using Theorem 1 we have the following.

Proposition 1: The capacity–distortion function of the
Gaussian channel with message dependent action is

CASC(D) =


0, 0 ≤ D < DA

min,
1
2 log

(
PA

QN/D

)
, DA

min ≤ D < Dmax,

C
(

(
√
PX+

√
PA)2

Q+N

)
, D ≥ Dmax.

where C(x) = log(1 + x), DA
min = QN

PX+Q+N ,
Dmax = QN

Q+N and PA = PX + Q + N + PA +

2
√
PA(PX − (QND − (Q+N))).

When we allow the action encoder to observe the past
states (adaptive action), the capacity–distortion follows from
Theorem 2 and it has the similar form of Proposition 1, but PA

and DA
min are replaced by PAA and DAA

min, respectively, where
PAA = PX+Q+N+PA+2

√
PAPX and DAA

min = QN/PAA.
The proof of the proposition is omitted here for brevity.

Note that since PAA ≥ PA, the capacity–distortion function
is larger in the adaptive action scenario (see Figure IV-B). In
fact, the minimum distortion achievable with adaptive action is
smaller than that of non-adaptive action. But the unconstrained
capacity (capacity–distion function for D ≥ Dmax) is same
in both the cases, which implies that adaptive action in useful
in estimation rather than in information transmission. Finally
by substituting PA = 0, both the capacity–distortion functions
reduces to that in [3].



Fig. 3. State dependent MAC with strictly causal CSI at both encoders.

C. State dependent MAC

Consider communicating a common message over a mem-
oryless state-dependent MAC (see Figure IV-B) characterized
by p(y|s, x1, x2), where the state sequence is known strictly-
causally to both encoders. This problem can be seen as a
special case of our adaptive action setting via the following
associations:

A = X2, X = X1, p(s|a) = p(s), p(y |s, a, x) = p(s, x1, x2).

Applying Theorem 2 to this case, keeping in mind the Re-
mark 1 following the statement of the Theorem 1, regarding
channels of the form p(y|s, x, a), we get that the capacity–
distortion function is given by

CSSC(D) = max
(
I(U,X2, X1;Y )− I(U,X1;S |X2)

)
,

where the maximum is over p(x1, x2)p(u|x1, s, x2) and func-
tion ŝ(u, x1, x2, y) such that E(d(S, Ŝ)) ≤ D. This setting
was considered in [12], [13] and it recovers the common
message capacity results of [12], [13]. One can also consider
a scenario where the state sequence is known strictly-causally
to the first encoder, but unknown at the second encoder and
at the receiver. This problem, motivated by multiterminal
communication scenarios involving transmitters with different
degrees of channel state information, is a special case of
Theorem 1. We can show that the capacity–distortion func-
tion (CASSC (D)) is the same as CSSC(D) with the additonal
constraint of I(U,X1;Y |X2) − I(U,X1;S|X2) ≥ 0 on the
feasible distributions. Clearly CSSC(D) ≥ CASSC (D), since with
symmetric channel state information, the encoders can jointly
perform both message and state cooperation as opposed to only
message cooperation when the state information is available
at only one of the encoders.

V. CONCLUSIONS

Motivated by an active classification problem with au-
tonomous vehicles, we combine the frameworks of [1] and
[3], to examine the problem wherein the formation of channel
states is affected by actions taken at the encoder; further,
the decoder has the two simultaneous goals of estimating the
channel state up to some distortion and simultaneously de-
coding the transmitted message. We characterize the capacity-
distortion function for this problem where the channel states

are known strictly causally at (a) only the channel encoder, and
(b) both the action encoder and channel encoder. By realizing
that, conditioned on the action sequence, our framework is
similar to that in [3], we have shown that a two stage
encoding strategy is optimal. In the first stage, the action
is communicated and in the second stage, conditioned on
the action sequence, a block Markov strategy is performed
to utilize the strictly causal CSI at the encoder(s). We have
also shown that the state-dependent MAC with symmetric
and asymmetric state information is a special case of our
framework and thus are able to use our results to recover the
common message capacity results of the MAC with strictly
causal CSI (see [12], [13]).
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