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Abstract— This paper develops the sufficiency principle suit-
able for data reduction in decentralized inference systems. Both
parallel and tandem networks are studied and we focus on the
cases where observations at decentralized nodes are conditionally
dependent. For a parallel network, through the introduction of a
hidden variable that induces conditional independence among the
observations, the locally sufficient statistics, defined with respect
to the hidden variable, are shown to be globally sufficient for
the parameter of inference interest. For a tandem network, the
notion of conditional sufficiency is introduced and the related
theories and tools are developed. Finally, connections between the
sufficiency principle and some distributed source coding problems
are explored.

I. I NTRODUCTION

The sufficiency principle has played a prominent role in
designing data processing methods for statistical inference. A
sufficient statistic is a function of the data that contains all the
information in the data about the parameter of interest. The
primary goal of sufficiency-based data reduction is dimension-
ality reduction to facilitate subsequent inferences basedon the
reduced data [1]–[3].

Supposeθ is the parameter of inference interest andX ,

{X1, · · · , Xn} is a vector of random variables, whose distri-
bution is given byp(x|θ)1. If T (X) is a sufficient statistic
for θ, then any inference aboutθ should depend onX only
throughT (X) [2]. A useful tool to identify sufficient statistics
is the Neyman-Fisher factorization theorem [2, Theorem 6.2.6]
which states that a statisticT (X) is sufficient forθ if and only
if there exist functionsg(t|θ) andh(x) such that

p(x|θ) = g(T (x)|θ)h(x).

If the parameterθ is itself random, the sufficiency principle
can also be reframed using the data processing inequality [4,
Section 2.9]. That is, a functionT (X) is a sufficient statistic
if and only if the following Markov chain holds:

θ − T (X)−X.

For decentralized inference, data reduction is done locally
without access to the global data. Therefore, the contrasting
notions of local sufficiency and global sufficiency [5] need
to be treated with care. A sufficient statistic that is defined
with respect to local data is referred to as locally sufficient
statistic while a sufficient statistic defined with respect to
the global data in the network is referred to as a globally

1We do not distinguish between probability density and probability mass
function. Its meaning will become clear in the context of specific problems.
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sufficient statistic [5]. As such, whether a statistic at a local
node is globally sufficient is not determined solely by the
statistical characterization of local data but also depends on
the joint distribution of the whole data and how data/statistics
are passed along within the network.

For conditionally independent observations (e.g.,X andY
are independent givenθ in Figs. 1 and 2), local sufficiency
implies global sufficiency. This result was established in [5]–
[7] for parallel networks (Fig. 1) and it is straightforward
to show that the same result holds for tandem networks
(Fig. 2). An interesting manifestation of the above result is
in decentralized detection. It is well known that for a binary
hypothesis testing problem, the likelihood ratio (LR) is a
sufficient statistic for the underlying hypothesis. Therefore, it
is not surprising that likelihood ratio quantizers are globally
optimal for decentralized detection with conditionally indepen-
dent observations [8], even with non-ideal, possibly coupling
channels between the sensors and the fusion center [9], [10].

Without the conditional independence assumption, decen-
tralized inference becomes considerably more complex. For
the decentralized detection, the optimal solution becomesNP
complete when the observations are conditionally dependent
[11]. The primary focus of this paper is to develop theories
and tools for decentralized data deduction with conditionally
dependent observations for both parallel and tandem networks.

For parallel networks, we investigate the sufficiency prin-
ciple under a hierarchical conditional independence (HCI)
model, which is a new framework recently proposed to deal
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with distributed detection with conditionally dependent obser-
vations [12]. The main idea is to inject a hidden variableW

such that the sensor observations are conditionally independent
with respect to this new variable regardless of the dependence
structure of the original model. Suitable conditions are identi-
fied under this HCI model such that local sufficiency implies
global sufficiency.

For tandem networks such as that described in Fig. 2,Y is
fully available at the decision node. As such, the novel notion
of conditional sufficiency is defined to capture the difference in
network structure with that of the parallel network. A new set
of theories and tools corresponding to conditional sufficiency
are then developed.

Finally, the developed notion of sufficiency is applied to
some classical distributed source coding problems. There,
sufficiency-based data reduction prior to a source encoder is
shown to incur no penalty on the corresponding rate region or
the rate distortion function.

The rest of the paper is organized as follows. Section II
develops the sufficiency principle in parallel networks with
conditionally dependent observations. Section III deals with
tandem networks where the notion of conditional sufficiency
is introduced and associated theories are developed. In section
IV, the connection between the developed sufficiency princi-
ple and two distributed source coding problems is explored.
Section V concludes the paper.

II. SUFFICIENCY FORPARALLEL NETWORK

This section considers only a parallel network of two
sensors as illustrated in Fig. 1. The result extends naturally to
the case with arbitrary numbers of sensors. Let data available
at nodeX beX while data available at nodeY beY.

Assume the parameterθ is random. (Tx(X), Ty(Y))
are globally sufficient for θ if the Markov chain θ −
(Tx(X), Ty(Y)) − (X,Y) holds.

Identifying local statistics that are globally sufficient can
be accomplished in theory via the factorization theorem.
The process of using the factorization theorem may become
cumbersome in a decentralized system or not applicable when
the precise joint distribution of the data in the network is not
available at local nodes. The following theorem provides cer-
tain relation between local sufficiency and global sufficiency
for a class of distributed inference problem.

Lemma 1:Let X,Y ∼ p(x,y|θ) and suppose there exists
a random variableW such that

θ −W − (X,Y). (1)

A statisticT (X,Y) that is sufficient forW is also sufficient
for θ.

Proof: The Markov chain (1) implies thatθ − W −
(X,Y, T (X,Y)) forms a Markov chain for any statistics
T (X,Y). That T (X,Y) is sufficient for W implies the
Markov chainW−T (X,Y)−(X,Y). It is straightforward to
show that these two Markov chains give rise to a long Markov
chain

θ −W − T (X,Y)− (X,Y).

Therefore,T (X,Y) is sufficient forθ.
Lemma 1 is not useful in itself asT (X,Y) is a function of

the global data which is not available in either of the nodes.
Its use is main for establishing the following result.

Theorem 1:Let X,Y ∼ p(x,y|θ) and suppose there exists
a random variableW such thatθ−W− (X,Y). Let T (W)
be a sufficient statistic forθ, i.e., θ − T (W)−W.

1) If a pair of statistics(Tx(X), Ty(Y)) are globally suf-
ficient for T (W), they are globally sufficient forθ.

2) If T (W) induces conditional independence betweenX

and Y, and (Tx(X), Ty(Y)) are locally sufficient for
T (W), then(Tx(X), Ty(Y)) are globally sufficient for
θ.

Proof: To prove 1), from Lemma 1, we only need to show
that the Markov chainθ−T (W)−(X,Y) holds. However, the
Markov chainT (W)−(θ,W)−(X,Y) together withθ−W−
(X,Y) results in the Markov chain(θ, T (W))−W−(X,Y).
Combined with the Markov chainθ − T (W) − W, we get
θ−T (W)−W− (X,Y) which impliesθ−T (W)− (X,Y).

For the second one, since conditional independence en-
sures that locally sufficient statistics are globally sufficient,
(Tx(X), Ty(Y)) are thus sufficient forT (W). The first result
then establishes that they are also sufficient forθ.

Remark 1:It is given in [12] that any general distributed
inference model can be represented as a HCI model and vice
versa, where the HCI model is constructed by introducing a
hidden variableW such that the following Markov chains
hold: θ−W− (X,Y) andX−W−Y. Therefore, Theorem
1 indicates that under the HCI model, local sufficiency with
respect to the hidden variable implies global sufficiency.

From the above result, it is clear that whetherTx(X) is
globally sufficient depends also onTy(Y) and vice versa. This
coupling effect makes it rather difficult in studying the global
sufficiency property. In the following, we consider a somewhat
simplified situation where one is interested in data reduction
at one node provided that a locally sufficient statistic fromthe
other node is available at the fusion center. That is, ifTy(Y)
is known to be a locally sufficient statistic, what should node
X transmit such thatTx(X) may form a globally sufficient
statistic together withTy(Y).

Theorem 2:Let X,Y be distributed according top(x,y|θ).
AssumeTy(Y) is a locally sufficient statistic forθ, then
(Tx(X), Ty(Y)) are globally sufficient forθ if and only if
there exist functionsg(t1|t2, θ) and h(x,y) such that, for
all sample points(x,y) and all parameter valuesθ, the
conditional probabilityp(x|y, θ) satisfies

p(x|y, θ) = g(Tx(x)|Ty(y), θ)h(x,y). (2)

Proof: Directly from the factorization theorem for
(X,Y) and by rewritingp(x,y|θ) = p(y|θ)p(x|y, θ).

Remark 2:Given a locally sufficient statisticTy(Y), it is
possible that there does not exist aTx(X) forming a globally
sufficient statistic together withTy(Y).

Remark 3:The above result is shown under the assumption
that θ is a random variable, similar result can be obtained for



θ is not random by resorting to factorization theorem instead
of data processing inequality.

Example 1:For i = 1, · · · , n, let

Xi = Z + Ui

Yi = Z + Vi,

where Z,U1, · · · , Un, V1, · · ·Vn are mutually independent
Gaussian random variables such thatZ ∼ N(θ, ρ), Ui ∼
N(0, 1−ρ), Vi ∼ N(0, 1−ρ). Thus,Xi, Yi ∼ N(θ, θ, 1, 1, ρ).
The parameter of inference interest isθ. X and Y are not
conditionally independent givenθ.

Let T (W ) = W = Z. Thus,Z depends onθ through its
mean value. Clearly,Z satisfies the Markov chainsθ − Z −
(X,Y) andX−Z −Y as required by the HCI model. Thus,
from Theorem 1, the locally sufficient statistic pair forZ,
(
∑

iXi,
∑

i Yi), is globally sufficient forθ.

Example 2:Consider the hypotheses test where the obser-
vationsXi, i = 1, · · · , k, satisfy the following model

H0 : Xi = Ni,

H1 : Xi = hiS +Ni,

where hi’s are complex Gaussian and independent of each
other and of other variables,S is a QAM signal taking values
in the setsm = rmejθm with probabilityπm whereθm = m 2π

M

for m = 1, · · · ,M , and Ni is the independent observation
noise at theith sensor withNi ∼ N(0, σ2). The above model
describes the problem of detecting the presence of a QAM
signal in independent Rayleigh fading usingk sensors, e.g.,
as in cooperative spectrum sensing. Each sensor makes a local
decisionUi = γ(Xi) and sends it to a fusion center which
makes a final decision regarding the hypothesis under test.

The observations are not conditionally independent given
H1. Let W = S which induces conditional independence
among observations under both hypotheses. It is easy to see
thatT (W ) = |S| is sufficient forH givenS. Thus, the Markov
chainH − |S| − S − (X1, · · · , Xk) holds.

On the other hand, given|S|, the observations are con-
ditionally independent of each other under the QAM and
Rayleigh fading assumptions. For anyi, |Xi| is a minimal
sufficient statistics for|S|. This can be easily verified by the
ratio p(xi||s|)

p(x′

i
||s|) for two sample pointsxi andx′

i. Therefore, by
Theorem 1,{|Xi|} is globally sufficient forH .

The above observation can be used to establish that the
optimal detector at each local sensor is an energy detector for
the model described in Example 2 [13].

III. SUFFICIENCY FORTANDEM NETWORK

A tandem network, as illustrated in Fig. 2, is one such that
compressed data are transmitted to a node which also has
its own observation. The second node will then make a final
decision using its own data and the input from the first node.
Knowing thatY is available at the fusion center even without
directly observingY should have an impact on how nodeX
summarizes its own dataX. A natural way of extending the

sufficiency principle to this network is as follows: the inference
performance should remain the same whether the inference
is based on(X,Y) or (T (X),Y). From the data processing
inequality, the sufficiency ofT (X) can thus be characterized
using the Markov chainθ− (T (X),Y)− (X,Y). Given that
T (X) is a functionX, it is straightforward to show that that
the Markov chainθ − (T (X),Y) − (X,Y) is equivalent to
θ − (T (X),Y) − X. This motivates the following definition
of conditional sufficiency.

Definition 1: A statistic T (X) is a conditional sufficient
statisticfor θ, conditioned onY, if the conditional distribution
of the sampleX given the value ofT (X) and Y does not
depend onθ.

The definition allows us to generalize a number of classical
results related to sufficient statistics.

Theorem 3:Let X,Y be distributed according top(x,y|θ).
Let q(T (x),y|θ) be the joint distribution ofT (X) andY, then
T (X) is a conditional sufficient statistic forθ, conditioned on
Y, if for every (x,y) pair, the ratio p(x,y|θ)

q(T (x),y|θ) is constant as
a function ofθ.

Similarly, the Neyman-Fisher factorization theorem can also
be generalized to the conditional case.

Theorem 4:Let X,Y be distributed according top(x,y|θ).
A statisticT (X) is conditionally sufficient forθ, conditioned
onY, if and only if there exist functionsg(t,y|θ) andh(x,y)
such that,

p(x,y|θ) = g(T (x),y|θ)h(x,y),

for all sample points(x,y) and all parameter valuesθ.
The proof can be constructed similarly to that of the

factorization theorem in [2, Theorem 6.2.6]. In fact, this result
can be viewed as a special case of Theorem 2 using the fact
thatY is naturally a locally sufficient statistic forY.

Remark 4:For tandem networks, the definition of condi-
tional sufficiency is more general than global sufficiency. This
is because if there exist a pair of statistics(Tx(X), Ty(Y))
that are globally sufficient forθ, thenTx(X) must be condi-
tionally sufficient forθ, conditioned onY. Therefore, for the
inference problem under the HCI model, one can also obtain
a conditional sufficient statistic using Theorem 1.

Similar to the definition of minimal sufficient statistic [2],
we can define the notion of minimal conditional sufficient
statistic as follows.

Definition 2: A conditional sufficient statisticT (X) is a
minimal conditional sufficient statisticif it is a function of
any other conditional sufficient statisticU(X).

The following theorem provides a meaningful way to find
minimal conditional sufficient statistics.

Theorem 5:Let X,Y be distributed according top(x,y|θ).
Suppose there exists a functionT (x) such that for every two
sample pointsx, x̂, andy, the ratio f(x,y|θ)

f(x̂,y|θ) is constant as a
function of θ if and only if T (x) = T (x̂). ThenT (X) is a
minimal conditional sufficient statistic forθ givenY.

The proof follows the same line of proof for Theorem 6.2.13
in [2].
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Example 3:Let {Xi, Yi}, i = 1, · · · , n be independent and
identically distributed (i.i.d) according top(x, y|θ), where

p(x, y|θ) =

{

2 θ < x < θ + 1, θ < y < x,

0 otherwise.

The marginal distribution ofX andY are therefore,

p(x|θ) = 2(x− θ), θ < x < θ + 1,

p(y|θ) = 2(θ + 1− y), θ < y < θ + 1.

It can be easily shown that no data reduction is possible
using the marginal distribution, i.e., no meaningful locally suf-
ficient statistics can be found other than the data themselves.
Note thatX is uniformly distributed on the interval(y, θ+1),
therefore, we have

p(x|y, θ) =
1

∏n

i=1(θ + 1− yi)
, yi < xi, (max

i
{xi} − 1) < θ.

Thus, maxi{Xi} is a conditional sufficient statistic forθ,
conditioned onY. Similarly, we can obtain thatmini{Yi}
is a conditional sufficient statistic ofY, conditioned on
the X sequence. This is consistent with the fact that
(maxi{Xi},mini{Yi}) is globally sufficient given bothX and
Y.

IV. SUFFICIENCY AND DISTRIBUTED SOURCE CODING

For the point to point remote rate distortion problem, it was
shown that sufficient statistic based data reduction achieves
the same rate distortion function as the original data [14].
This section studies the connection between the sufficiency
principle and distributed source coding problems.

A. Source coding with side information

Consider the lossless source coding problem in Fig. 3.
An i.i.d. sequence of source pairs(Xn, Y n) are encoded
separately with rates(R1, R2) and the descriptions are sent
to a decoder where onlyXn is to be recovered with asymp-
totically vanishing probability of error. A rate pair(R1, R2)
is achievable if there exists a lossless source code with rates
(R1, R2). The rate regionR is defined as the closure of the
set of all achievable rate pairs and was shown to be [15], [16],

R = {(R1, R2) : R1 ≥ H(X |U), R2 ≥ I(Y ;U), X − Y − U}.

AssumeT (Y ) is a sufficient statistic forX , i.e.,X−T (Y )−
Y . Define

R′ = {(R1, R2) : R1 ≥ H(X |U), R2 ≥ I(T (Y );U),

X − T (Y )− U},

which is the rate region for encoding(Xn, T n(Y n)) where
T n(Y n) is the i.i.d sequenceT (Yi), i = 1, · · · , n. The
following theorem shows that encoding reduced dataT n(Y n)
achieves the same rate region as encoding the original data.

Theorem 6:

R = R′

Proof: It is straightforward to showR ⊇ R′. To show
R ⊆ R′, let (R1, R2) ∈ R, then there exists aU such
that X − Y − U , R1 ≥ H(X |U), R2 ≥ I(Y ;U). Since
(X,T (Y )) − Y − U andX − T (Y ) − Y , the Markov chain
X − T (Y )− Y − U holds. Therefore,R1 ≥ H(X |U), R2 ≥
I(Y ;U) ≥ I(T (Y );U) by the data processing inequality.
Thus,(R1, R2) ∈ R′.

A direct consequence of Theorem 6 is that the corner point
of the rate region(R1 = H(X |Y ), R2 = H(T (Y )) may
be strictly smaller than(R1 = H(X |Y ), R2 = H(Y ). This
observation was first reported in [17]. Specifically, the corner
point can be obtained by finding the smallest admissibleR2

whenR1 = H(X |Y ) and it was shown that [17]

inf{R2 : (H(X |Y ), R2) ∈ R} = inf
X−Y−U,X−U−Y

I(Y ;U),

= H(ΦX
Y ).

As it turns out, the quantityΦX
Y is precisely the minimal

sufficient statistic ofX givenY .

B. Remote source coding with side information

Consider a model in Fig 4, which is the remote source
coding with side information available at both the encoder and
decoder. We will show that in this problem, the rate distortion
function will not change by encoding a conditional sufficient
statisticT (X).

Let (X,Y, Z) ∼ p(x, y, z) and d(z, ẑ) be a given dis-
tortion function. Let(Xn, Y n, Zn) be i.i.d sequences drawn
from (X,Y, Z). Upon receiving the sequences(Xn, Y n), the
encoder generates a description of the sources with rateR

and sends it to the decoder who has the side information
Y n and wishes to reproduceZn with distortionD. The rate
distortion functionR(D) is the infimum of rateR such that
there exist mapsfn : Xn × Yn → {1, · · · , 2nR}, gn :
Yn × {1, · · · , 2nR} → Ẑn such that

lim sup
n→∞

Ed(Zn, gn(Y
n, fn(X

n, Y n))) ≤ D.

It is easy to show that the rate distortion functionR(D) is:

R(D) = min
p(u|x,y)

min
f

I(X ;U |Y ),

where the minimum is taken over allp(u|x, y) and functions
ẑ = f(u, y) such that

E1[d(Z, Ẑ)] =
∑

x,y,z,u

p(x, y, z)p(u|x, y)d(z, f(u, y)) ≤ D. (3)

Let T (X) be a conditional sufficient statistic for the remote
sourceZ, conditioned onY (i.e., Z − (T (X), Y )− (X,Y )).
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Define

R′(D) = min
p(u|t,y)

min
f

I(T (X);U |Y ),

where the minimum is taken over allp(u|t, y) and functions
ẑ = f(u, y) such that

E2[d(Z, Ẑ)] =
∑

t,y,z,u

p(t, y, z)p(u|t, y)d(z, f(u, y)) ≤ D. (4)

R′(D) is the rate distortion function when we have
(T n(Xn), Y n) instead of (Xn, Y n) at the encoder, where
T n(Xn) is the i.i.d sequenceT (Xi), i = 1, · · · , n.

Theorem 7:

R(D) = R′(D).

Proof: It is obvious thatR(D) ≤ R′(D).
We now showR(D) ≥ R′(D). For anyU that achieves

R(D), sinceT (X) is a function ofX , we have the Markov
chain (T (X), Y )− (X,Y )− U , hence

I(X ;U |Y ) ≥ I(T (X);U |Y ).

Given thatT (X) is a conditional sufficient statistic forZ,
we have the following

D ≥ E1[d(Z, Ẑ)]

=
∑

y,z,u

d(z, f(u, y))

(

∑

x

p(z|x, y)p(x, y, u)

)

=
∑

y,z,u

d(z, f(u, y))





∑

t

p(z|t, y)
∑

x:T (x)=t

p(x, y, u)



(5)

=
∑

y,z,u

d(z, f(u, y))

(

∑

t

p(z|t, y)p(t, y, u)

)

(6)

where (5) comes from the definition of conditional sufficiency
and (6) is true by definingp(t, y, u) =

∑

x:T (x)=t p(x, y, u).
This shows that for anyp(u|x, y) and f(u, y) satisfying (3)
there existp(u|t, y) andf(u, y) such that (4) is satisfied. Thus,
R(D) ≥ R′(D).

V. CONCLUSION

This paper developed the sufficiency principle that guides
local data reduction in networked inference with dependent
observations for two classes of inference networks: parallel
network and tandem network.

For the parallel network, a previously proposed hierarchical
conditional independence model is used to obtain conditions

such that local sufficiency implies global sufficiency. A co-
operative spectrum sensing example is given to illustrate the
usefulness of such an approach. For the tandem network, we
introduced the notion of conditional sufficiency and developed
related theories and tools.

The sufficiency principle for networked inference has appli-
cations beyond that of decentralized inference. In particular,
data reduction using suitable notions of sufficiency appears
to incur no penalty on the rate region for various distributed
source coding problem. There are potentially other distributed
source coding problems where sufficiency based data reduction
may also prove to be optimal.
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