
ar
X

iv
:1

20
7.

20
92

v1
  [

cs
.IT

]  
9 

Ju
l 2

01
2

Distributed Estimation in Multi-Agent Networks
Lalitha Sankar and H. Vincent Poor

Dept. of Electrical Engineering,
Princeton University, Princeton, NJ 08544.

{lalitha,poor}@princeton.edu

Abstract— A problem of distributed state estimation at mul-
tiple agents that are physically connected and have competitive
interests is mapped to a distributed source coding problem with
additional privacy constraints. The agents interact to estimate
their own states to a desired fidelity from their (sensor) measure-
ments which are functions of both the local state and the states at
the other agents. For a Gaussian state and measurement model,
it is shown that the sum-rate achieved by a distributed protocol
in which the agents broadcast to one another is a lower bound on
that of a centralized protocol in which the agents broadcastas if
to a virtual CEO converging only in the limit of a large number
of agents. The sufficiency of encoding using local measurements
is also proved for both protocols.

I. I NTRODUCTION

We consider a network ofK distributed agents in which
each agent observes sensor measurements from a distinct
part of a large interconnected physical network. Examples of
such networks include cyber-physical systems, specifically the
smart grid, in which an agent can be viewed as a regional
operator whose power measurements are affected by those at
other agents due to the physical grid connectivity. Agentk is
interested in estimating the state (defined as a set of system
parameters; for e.g., voltages and phases in the electric grid)
of its local network from its measurements,Yk, which are a
function of both the local stateXk and the statesXl, l 6= k,
l, k ∈ {1, 2, . . . ,K} of other agents in the network where the
statesXk are assumed to be independent of each other.

EstimatingXk at agentk with high fidelity requires the
agents to interact and share data amongst themselves. While
the estimate fidelity is crucial to the control decisions made
by the agents, in many distributed systems, for competitive
reasons, the agents wish to keep their state information private.
This leads to a problem ofcompetitive privacywhich captures
the tradeoff between the utility to the agent (estimate fidelity)
that can be achieved via cooperation and the resulting privacy
leakage (quantified via mutual information).

Mapping utility to distortion and privacy to leakage quanti-
fied via mutual information, one can abstract the competitive
privacy problem as a distributed source coding problem with
additional leakage constraints. The set of all achievable rate-
fidelity-leakage tuples determines the utility-privacy tradeoff
region. In [1], we introduced and studied this problem for a
two-agent interactive system with Gaussian states and noisy
Gaussian measurements. We proved that side-information
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(measurements at the other agent) aware Wyner-Ziv encoding
[2] at each agent achieves both the minimal rate and the
minimal leakage for every choice of fidelity (quantified via
mean-squared distortion).

Even without additional privacy constraints, the problem of
determining the set of all rate-distortion tuples in a multiagent
network is related to the distributed source coding problem
[3], [4] which remains open. Furthermore, for a relatively
simpler setting obtained by assuming that a central entity,
often referred to as a chief executive officer (CEO), wishes
to estimate the statesXk, for all k, from the transmissions of
all agents, we obtain a multi-variate (vector) Gaussian CEO
problem which also remains open except for specific cases [5].

Circumventing these challenges, we focus on the rate-
distortion-leakage behavior in the limit of largeK for a
distributed protocolin which each agent encodes its measure-
ments taking into account the prior broadcasts of the other
agents (henceforth referred to asprogressive encoding) as well
as the side-information at the other agents. We compare the
performance of this protocol with acentralized protocolin
which the agents broadcast their encoded messages as if to
a virtual CEO. We consider a noisy Gaussian measurement
model at each agent with the same level of interference from
the states of the other agents. For this symmetric model, our
results demonstrate that the sum-rate achieved by distributed
protocol outperforms that for the centralized schemes with
asymptotic convergence withK. We also prove the sufficiency
of encoding local measurements for both protocols and present
outer bounds for the per user rate and leakage.

The paper is organized as follows. We introduce the model
and communication protocols in Section II. In Section III we
develop the achievable rate-distortion-leakage tuples for both
protocols as well as outer bounds. We conclude in Section IV.

II. PRELIMINARIES

A. Model and Metrics

We consider a network ofK agents such that, at any time
instanti, i = 1, 2, . . . , n, the measurementYk,i at agentk, k =
1, 2, . . . ,K, is related to the statesXm,i, m = 1, 2, . . . ,K, at
the agents as follows:

Yk,i = Xk,i +

K
∑

l=1,l 6=k

√
hXl,i + Zk,i, k = 1, 2, . . . ,K, (1)

where the state variablesXm,i ∼ N (0, σ2), for all m and
i are assumed to be independent and identically distributed
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(i.i.d.) and are also independent of the i.i.d. noise variables
Zk,i ∼ N (0, 1). The coefficienth > 0 is assumed to be fixed
for all time and known at all agents. We assume that thekth

agent observes a sequence ofn measurementsY n
k = [Yk,1

Yk,2 . . . Yk,n], for all k, prior to communications.
Utility : For the continuous Gaussian distributed state and

measurements, a reasonable metric for utility at thekth agent
is the mean square errorDk between the original and the
estimated state sequencesXn

k andX̂n
k , respectively.

Privacy: The measurements at each agent in conjunction
with the quantized data shared by the other agents while
enabling accurate estimation also leaks information aboutthe
other agents’ states. We capture this leakage using mutual
information.

B. Communication Protocol

We assume that each agent broadcasts a function of its
measurements (distributed procotol) to all agents and they do
so in a round-robin fashion. We assume that all agents encode
in one of the following two ways: i)local encodingin which
each agent quantizes only its measurements; or ii)progressive
encodingin which each agent encodes and transmits taking
into account both its measurements and prior communications
from other agents. In both cases, the agents transmit at a rate
that takes into account the correlated measurements and prior
communications of other agents.

To better understand the advantage of the above distributed
procotol, we also consider the case where the agents broadcast
as if communicating with a virtual central operator, say CEO,
henceforth referred to as thecentralized protocol. This may
be viewed as the case in which the computing power at the
agents is limited and the CEO shares with each agent its
received messages (which are then decoded at each agent). For
either protocol, the encoding can be either local or progressive.
Let Ip ∈ {0, 1} and Ienc ∈ {0, 1} be random variables
that denote the choice of protocols and encodings such that
Ip = 1 andIp = 0 for the distributed and centralized protocol,
respectively, andIenc = 1 and Ienc = 0 for the progressive
and local encoding, respectively.

Formally, the encoder at agentk maps its measurements to
an index setJk where

Jk ≡ {1, 2, . . . , Jk} , k = 1, 2, . . . ,K, (2)

is the index set at thekth agent for mapping the measurement
sequence, and the prior communications (progressive encod-
ing), via the encoderfk, k = 1, 2, . . .K, defined as

fk : Yn
k × Ienc ·

∏k−1
l=1 Jl → Jk, (3)

such that at the end of theK broadcasts, one from each agent,
the decoding functionFk at the kth agent (or the CEO) is
a mapping from the received message sets (both protocols)
and the measurements (the distributed procotol) to that of the
reconstructed sequence denoted as

Fk : J1× . . .×JK×(Yn
k · Ip) → X̂n

k , k = 1, 2, . . . ,K. (4)

Let Mk denotes the size ofJk. The expected distortionDk at
the kth agent is given by

Dk =
1

n
E

[

n
∑

i=1

(

Xk,i − X̂k,i

)2
]

, k = 1, 2, . . .K, (5)

The privacy leakage, L(l)
k , about statek at agentl, l 6= k, is

given by

L
(l)
k =

1

n
I (Xn

k ; J1, J2, . . . , JK , Y n
l ) , for all k 6= l. (6)

The communication rate of thekth agent is denoted by

Rk = n−1 log2 Mk, k = 1, 2, . . . ,K. (7)

Definition 1: The utility-privacy tradeoff region is the set
of all (D1, . . . , Dk, L

(2)
1 , . . . , L

(K)
1 , . . . , L

(1)
K , . . . , L

(K−1)
K ) for

which there exists a coding scheme given by (2)-(4) with pa-
rameters(n,K,M1,M2, D1+ǫ, . . . , DK+ǫ, L1+ǫ, . . . , LK+
ǫ) for n sufficiently large such thatǫ → 0 asn → ∞.

III. M AIN RESULTS

We use the following proposition, lemma, and function
definition in the sequel to compute the achievable distortions
and rates.

Proposition 1: For (column) vectorsA andB, let KAA =
var (A) = E

[

(A− E [A])
(

AT − E
[

AT
])]

and KAB =

E
[

(A− E [A])
(

BT − E
[

BT
])]

denote the covariance and
cross-correlation matrices, respectively. The conditional vari-
anceE[var(A|B)] is then given asE[var(A|B)] = KAA −
KABK

−1
BBK

T
AB .

Lemma 1:For aK ×K symmetric Toeplitz matrix whose
diagonal entries are alla, and off-diagonal entries are allb the
determinant is(a+ (K − 1) b) (a− b)

(K−1)
.

Proof: The determinant is obtained by the following two
operations: i) add columns 2-K to column 1, and ii) subtract
row 1 from each of the remaining rows.

Definition 2: For someα, β ∈ R+, the functionf1 (k, c) ≡
α+(k − 2)β− (k − 1) c varies overk ∈ [1,K] andc ∈ R+.

A. Distortion

We assume that each agent has the same distortion con-
straintD. The distortionD at each agent ranges from a mini-
mum achieved when it has perfect access to the measurements
at all agents to a maximum achieved when it estimates using
only its own measurements. From the symmetry of the model
in (1), the minimal (resp. maximal) distortion achieved at each
agent is the same. LetDmin andDmax denote the minimal
and maximal distortions, respectively, at each agent. For the
Gaussian model considered here with minimum mean square
error (MSE) constraints, we have

Dmin = E [var(X1|Y1Y2 . . . YK)] , and (8)

Dmax = E [var(X1|Y1)] . (9)



We now determineDmin andDmax. Let

α ≡ E(Y 2
l ) = σ2

X (1 + h (K − 1)) + 1, for all l (10a)

β ≡ E(YlYk) = σ2
X

(

2
√
h+ h (K − 2)

)

, l 6= k. (10b)

Note that for largeK, α → h (K − 1)σ2
X , and β →

h (K − 2)σ2
X .

Computation ofDmax: Expanding (9), we obtain

Dmax = E [var(X1|Y1)] = σ2
X

(

1− σ2
X

α

)

. (11)

For largeK, Dmax → σ2
X .

Computation ofDmin: Expanding (8), we have

Dmin = E [var(X1|Y1Y2 . . . YK)] (12)

=
|E [var(X1Y2 . . . YK |Y1)]|
|E [var(Y2 . . . YK |Y1)]|

(13)

where the simplification in (13) results from the assumption
of jointly Gaussian random variables. Applying Lemma 1, for

c1 = σ2
X − σ4

X/α, c2 = σ2
X

(√
h− β/α

)

, (14)

c3 = α− β2/α, andc4 = β − β2/α, (15)

we obtain the minimum distortionDmin as

Dmin = Dmax









1−
(K − 1)

σ2

X(
√
h−β/α)2

(1−σ2

X
/α)

f1 (K,β2/α)









. (16)

Remark 1:ForK → ∞, Dmin → Dmax(1−(1−
√
h)2/h).

B. Distributed Protocol

A general coding strategy for this distributed source coding
problem needs to take into account: a) the order of agent
broadcasts; b) multiple encoding possibilities at each agent
depending on whether the received data is used alongwith
local measurements in encoding; c) exploiting the correlated
measurements at other agents in broadcasting just sufficient
data for other agents to achieve their distortions; and d) mul-
tiple rounds of interactions. We present a distributed encoding
scheme with a single round of communication (for simplicity
of analysis) in which the agents broadcast in order (the source
permutation choice is irrelevant due to the symmetry of the
model). The local and progressive coding schemes differ in
including the received data in encoding at each agent, while
the centralized and distributed protocols differ in whether they
exploit the correlated measurements at the other agents.

The achievable distortionD in general depends on the
encoding scheme chosen. LetRk and R̃k denote the rates
for the local and progessive encoding schemes, respectively.
We first consider the progressive encoding scheme in which
each agent broadcasts (to all other agents) a noisy func-
tion of both its measurements and prior communications.
More precisely, agentk maps its measurement and prior
communication sequences to one among a set of2nR̃k Ũn

k

sequences chosen to satisfy the distortion constraints. The

Ũn
k sequences are generated via an i.i.d distribution ofŨk,i

for all i such thatŨ1,i = Y1,i + Q1,i and for all k > 1,

Ũk,i = Yk,i+
∑k−1

l=1 ak,lŨl,i+Qk,i whereak,l ∈ R, andQk,i ∼
N
(

0, σ2
Q

)

is independent ofYk,i for all k = 1, 2, . . . ,K, and
i = 1, 2, . . . , n.

The achievable distortionD at agentk as a result of
estimating its state using both its measurementsY n

k and the
received sequences̃Un

l , for all l 6= k, is such thatD ∈
[Dmin, Dmax] whereDmax is achieved whenUn

l = 0 for all
l and D = Dmin for σ2

Q = 0. On the other hand, for the
local encoding scheme, letUk,i = Yk,i + Qk,i, for all k and
i, such that agentk mapsonly its measurement sequences to
one among a set of2nRk Un

k sequences chosen to satisfy the
distortion constraints.

Theorem 1:The setsD of all achievable distortionsD for
the local and progressive encoding schemes for the distributed
protocol are the same.

Proof: For Gaussian codebooks and Gaussian measure-
ments and from symmetry of the model, the distortionD at
each agent is given by

D = E

[

var
(

X1|Y1Ũ1Ũ2Ũ3 . . . ŨK

)]

(17)

= E [var (X1|Y1U1U2U3 . . . UK)] ∈ [Dmin, Dmax] (18)

where in (17) we have used that fact thatŨ1 = U1, and
conditioned onU1,it suffices to condition onU2, and similarly
for the remainingUk, k > 2.

Computation ofD: Using the independence of the quanti-
zation noiseQk for all k, as well as the independence ofQk

andXk, we haveE [UkUl] = E [YkYl] = β for all l 6= k and
E
[

U2
k

]

= E
[

Y 2
k

]

+ E
[

Q2
k

]

= α + σ2
Q. Thus,D is obtained

in a manner analogous to the calculation ofDmin with the
replacement ofc3 by c3 + σ2

Q. Thus, we have

D = Dmax









1−
(K − 1)

σ2

X(
√
h−β/α)

2

(1−σ2

X
/α)

f1

(

K, β
2

α

)

+ σ2
Q









. (19)

Rate Computation: We consider a round-robin protocol in
which agent 1 broadcasts a quantized function of its measure-
ments and prior communications at a rate which takes into
account all the side information at all other agents. Thus, the
rate R̃1 required is the maximal of the rates required to each
agent and is given by

R̃1 ≥ I(Ũ1;Y1)−min
(

I(Ũ1;Y2), . . . , I(Ũ1;YK)
)

(20a)

= I(U1;Y1)− I(U1;Y2) = R1 (20b)

where (20b) follows from the symmetry of the measurement
model, the fact that̃U1 = U1, and R1 is the minimal rate
required at agent 1 for the local scheme. Next, agent 2
analogously broadcasts a function of its measurements at a



rateR2 given by

R̃2 ≥ I(Ũ2;Y2Ũ1)− min
l∈{1,...,K},l 6=2

I(Ũ2;YlŨ1) (21a)

= I(Ũ2;Y2|Ũ1)− min
l∈{1,...,K},l 6=2

I(Ũ2;Y1|Ũ1) (21b)

= I(U2;Y2)− I(U2;Y1) = R2 (21c)

where (21c) follows fromh(Ũ2|Y1Ũ1) − h(Ũ2|Y2Ũ1) =
h(U2|Y1) − h(U2|Y2) since U2 − Y2 − U1 form a Markov
chain and due to the symmetry of the model. It can be verified
easily that the bound in (21c) is the minimal rateR2 for the
local encoding scheme. One can similarly show that the rate
at which agent 3 broadcasts is

R̃3 ≥ I(Ũ3;Y3Ũ1Ũ2)− min
l∈{1,...,K},l 6=3

I(Ũ3;Y1Ũ1Ũ2) (22a)

= I(U3;Y3)− I(U3;Y1U2) = R3 (22b)

where we have used the fact thatU3 − Y3 − U1U2 andU1 −
Y1 − U3 form Markov chains. Generalizing we have, for all
k > 1,

R̃k = Rk ≥ I(Uk;Yk)− I(Uk;Y1U1 . . . Uk−1), (23a)

where the bound in (23a) is the minimal rate at which agent
k is required to broadcast when it only encodesY n

k .
Calculation of Leakage: For the proposed progressive en-

coding, the leakage of the state of agentk at any other agent
j 6= k, for all suchk, j, is bounded as

L
(j)
k =

1

n
I(Xn

k ;Y
n
j J1J2 . . . JK), j 6= k (24a)

≥ I(X1;Y2Ũ1 . . . ŨK) = I(X1;Y2U1 . . . UK) (24b)

=
1

2
log

(

αf1
(

K,β2/α
)

(α− σ2
X) f1 (K, c5)

)

(24c)

where (24b) is a result of the model symmetry, the code
construction and typicality arguments and is omitted for
brevity. The bound in (24c) follows from the relation of
the code constructions for the two encoding schemes and
c5 = (β −

√
hσ2

x)
2
/

(

α− σ2
x

)

+ hσ2
X .

Theorem 2:It is sufficient to encode the local measure-
ments at each agent in the distributed protocol.

Theorem 2 follows directly from the fact that for Gaussian
encoding, from (18), (23a), and (24c), we have that the set
of all rate-distortion-leakage tuples achieved by the local and
progressive encoding schemes is the same.

The sum-rate of the distributed schemeRDist
sum =

∑K
k=1 Rk

can be simplified as

RDist
sum = h (U2U3 . . . UK |Y1) + h(U1|Y2)−

K

2
log
(

2πeσ2
Q

)

(25a)

=
K

2
log

(

α+ σ2
Q − β

σ2
Q

)

+
1

2
log





(

α+ σ2
Q − β2

α

)

(

α+ σ2
Q − β

)





(25b)

+
1

2
log
(

(f1
(

K,β2/α
)

+ σ2
Q)
/ (

α+ σ2
Q − β

))

where (25b) is obtained from (25a) by determining
|E [var (UK |Y1)]| where UK−1 = [U2 U3 . . . UK ]T de-
notes a column vector of length(K − 1). By expanding
E
[

var
(

UK−1|Y1

)]

using Proposition 1, one can verify that
|E [var (UK |Y1)]| simplifies to finding the determinant of the
(K − 1) × (K − 1) Toeplitz matrix with diagonal and off
diagonal entriesα+σ2

Q− β2

α andβ− β2

α , respectively, which
from Lemma 1 is given byf1

(

K,β2/α
)

(α+ σ2
Q −β)(K−2).

One can similarly show thatE [var (U1|Y2)] = α+σ2
Q−β2/α.

In the limit of K → ∞, (K − 2)β − (K − 1) β2

α → 0,
α − β2/α → h, α − β → h, and therefore, the second and
third log terms in (25b) scale aslog (K) . Thus, in the limit,
the per agent rateR = RDist

sum/K is given by

lim
K→∞

R =
1

2
log

(

α+ σ2
Q − β

σ2
Q

)

. (26)

C. Distributed vs. Centralized

We now compare the distributed protocol to a centralized
protocol in which each agent broadcasts at a rate intended
for a (virtual) CEO, and thus, is oblivious of the correlated
measurements at the other agents. Here again, the agents
can use a progressive encoding scheme analogously to the
distributed protocol. As in the distributed protocol, heretoo
one can show that a local encoding scheme suffices, in which
agent k generates a codebookUn

k whose entriesUk,i are
generated in an i.i.d fashion such thatUk,i = Yk,i + Qk,i,
Qk,i is independent ofYk,i andQl,i, for all l 6= k, for all k,
and for all i. The compression rates are bounded as follows.
First, agent1 transmits its quantized measurements at a rate
R1 such that for error-free decoding ofUn

1 at the decoder, we
require

R1 ≥ I (U1;Y1) . (27)

Agent 2 takes into account the knowledge ofUn
1 at all agents

and broadcasts at a rate

R2 ≥ I (U2;Y2)− I (U2;U1) . (28)

Note that the agents broadcast taking into account the prior
transmissions (as if to a CEO) but not the side information at
the other agents. Continuing similarly, we have for allk ≥ 2,

Rk ≥ I (U2;Yk)− I (Uk;U1U2 . . . Uk−1) . (29)

The resulting sum rateRCEO
sum =

∑K
k=1 Rk can be simplified

as

RCEO
sum =

∑K

k=1
I(Uk;Yk)−

∑K

k=2
I(Uk;U1 . . . Uk−1)

(30)

= h (UK , UK−1 . . . U1)−
K

2
log
(

2πeσ2
Q

)

(31)

=
K

2
log

(
(

α+ σ2
Q − β

)

σ2
Q

)

(32)

+
1

2
log





(

α+ σ2
Q + (K − 1)β

)

(

α+ σ2
Q − β

)



 .



Thus, the rate on average per user isRCEO = RCEO
sum /K

which converges in the limit of a large number of agentsK
to

lim
K→∞

RCEO =
1

2
log

(
(

α+ σ2
Q − β

)

σ2
Q

)

. (33)

Comparing (25b) and (32), we can verify that for every
choice ofσ2

Q, and henceD, RCEO
sum > RDist

sum . Furthermore, one
can also show that the leakage at each agent for the centralized
protocol is the same as the distributed protocol in (24) and is
the same for both the local and progressive encoding schemes.
The following theorem summarizes our results.

Theorem 3:The average per user rate of the centralized
protocol is strictly lower bounded by that for the distributed
protocol and converges to this lower bound only in the limit
of largeK.

D. Outer Bounds

From the symmetry of the model, it suffices to bound the
rateR1 of agent1 as

R1 ≥ 1

n
H(J1) ≥

1

n
I(Y n

1 ; J1|Y n
2 Y n

3 . . . Y n
K) (34)

≥ h (Y1|Y2 . . . YK)− 1

n

n
∑

i=1

h(Y1,i|X̂2,iY2,i . . . YK,i) (35)

≥ h (Y1|Y2 . . . YK)− 1

2
log(2πeΣ) (36)

where (35) results from the fact that̂Xn
2 , . . . X̂

n
K can be esti-

mated fromJ1, Y
n
2 , . . . Y n

K , and that conditioning on only one
of the estimates is a lower bound onR1, and (36) results from
using the fact that a jointly Gaussian distribution maximizes
the differential entropy for a fixed variance, from the concavity
of the log function for Σ ≡ E

[

var
(

Y1|X̂1Y2Y3 . . . YK

)]

.

For jointly Gaussian
(

Y1, . . . , YK , X̂2

)

, we can write

X̂2 = Y2 +
∑K

l=1,l 6=2bYl + Z (37)

whereZ ∼ N
(

0, σ2
Z

)

is independent ofYk for all k, and
from symmetry, we choose the same scaling constantb in (37).

For g ≡ E[
(

X̂2 − Y2 − bY3 . . .− bYK

)2

] = b2/
(

b2α+ σ2
Z

)

,

c1 = β2g, andc2 = c1 +(β − βαg)
2
/
(

α− α2g
)

, we obtain

R1 ≥ 1

2
log

(

f1(K,β2/α) (α− β)

f1 (K − 1, β2/α)

)

(38)

− 1

2
log

(

f1 (K, c2)

f1 (K, c1)

(

α− α2g
)

)

(39)

where we have used the orthogonality of the minimum MSE
estimate and the measurements, i.e.,E

[(

X1 − X̂1

)

Yl

]

= 0,

for all l 6= 1, and the distortion constraint in (5).
With X̂2 in (37), one can similarly boundL(j)

1 = L
(2)
1 (from
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Fig. 1. Plot of per-user rateR and leakageLk of any agentk vs. K.

symmetry), for allj, as

R1 ≥ 1

n
I(Xn

1 ;Y
n
2 J1J2 . . . JK) (40)

≥ h (X1)−
1

2
log
(

2πeE
[

var
(

X1|Y2X̂2

)])

(41)

=
1

2
log

(

q1

/(

(

1− σ2
Xq22

)

q1 − σ2
X

(√
h− q2

)2
))

where g1 ≡ E

[

(

X̂2 − Y2

)2
]

= (b2 (K − 1)α +

(K − 1) (K − 2) bβ/2 + σ2−1
Z )−1,

q1 ≡ α− g1b
2β2 (K − 1)

2
, and (42)

q2 = g1b
2
(

1 + (K − 2)
√
h
)

β (K − 1) . (43)

Remark 2:Due to the lack of a pre-log factorK, the per-
user rateR for the outer bound rapidly approaches0 with K
(relative to the inner bounds).

The rateR and leakageLk (for any k) as a function ofK
are illustrated in Fig. 1 forh = 0.5 andσ2

Q = 6.

IV. CONCLUDING REMARKS

We have introduced a distributed state estimation problem
amongK agents with fidelity and privacy constraints. We have
shown that the sum-rate and per user rate achieved from a
distributed protocol in which the agents directly interacttaking
into account the prior knowledge at all agents lower bounds
those achieved by a centralized protocol with convergence
for very largeK. Tighter outer bounds that account for the
distributed coding are much needed.
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