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of Hermitian self-orthogonal classical codes [1]. To getry
guantum codes, one needs Hermitian self-orthogonal ckssi
codes overF,2 with good minimum distance of dual codes;
Due to the fact that the Hermitian inner product invoIveFO
power/ (seel(IV.2)), the parameters of quantum codes derived,
from Hermitian self-orthogonal classical codes are usguall
constrained. For instance, inl [6] (also sek [5]), quantumSviD
codes produced by using Hermitian self-orthogonal classic 1 g ,
codes have relatively small dimension. imo (ajz®)” forj=1,2,... 54,

classical codes oveF,: and then we select Hermitian self-
orthogonal codes from these classical codes @yer In this
way, we can produce good quantum codes. Our idea to prodyg _

classical codes ové?,. from a field of large size has alreadyu(ﬁ? Jas(5) belongs to, for all § € U7, U {0}, where U,
been studied in the previous papers [2], [7], [8].1[10],1[11]
where polynomial codes were considered. The main idea of
this paper is to convert some of these codes into Hermitian Proof: (i) is clear since the coefficients of* in f, ;(z)
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Abstract—There have been various constructions of classical For anya € Z,,, we define ag-cylotomic coset modula

codes from polynomial valuations in literature [2], [7], [8], [10], )
[11]. In this paper, we present a construction of classical ades Se:={a-¢" modn: i=0,1,2,...}.

based on polynomial construction again. One of the features ) »
of this construction is that not only the classical codes asen It is a well-know fact that allg-cyclotomic cosets partition
from the construction have good parameters, but also quantmn  the setZ,. Let S,,,S.,,...,S,, stand for all distinctg-
codes with reasonably good parameters can be produced from cyclotomic cosets modulo:. Then, we have thafZ, =
these classical codes. In particular, some new quantum cosl@re
constructed (see ExampleE_VI5 and "\ 6).

U'_,Sa., andn = 3'_, |S,,|. We denote bys, the size of

Index Terms—Cyclotomic cosets, Polynomials, Hermitian self- the g-cyclotomic cosetS,.

orthogonal, Quantum distance. The following fact can be easily derived.

Lemma Il.1. For everya € Z,, the sizes, of S, dividesm
which is the order of; modulon.
One way to produce good quantum codes is to make use

I. INTRODUCTION

Proof: It is clear thats, is the smallest positive integer
such thaw = aq® mod n, i.e, s, is the smallest positive inte-
ger such that/ ged(n, a) dividesg®* — 1. Sincen/ ged(n, a)
also dividesg™ — 1, we havem = 0 mod s, by applying the
g division. [ ]
Now for eachS,, we forms, polynomials in the following
way. Letay,...,as, be anF,-basis ofF:. (note thatF ;..
-1s a subfield ofF,~). Consider the polynomialg, ;(z) :=

In this paper, we first go to a field of larger size to obtainemma I11.2. For everya € Z,,, we have the following facts.

(i) The polynomialsf, ;(z) for j =1,2,...,s, are linearly
independent ovelF,.

is the subgroup ofi-th roots of unity inF;.., i.e., U, :=
{BEeF,m: " =1},

self-orthogonal in order to construct quantum codes. lidurarea; andas, as, ..., a,, form anF -basis ofF ..
out that some new quantum codes can be produced (se&o prove (i), it is sufficient to prove thatf. ;(3))? =
Examples Vb and VI6). fa,;(B) for every s € U, U {0}. Consider
The paper is organized as follows. In Section Il, we in- su—1 q
troduce some basic n.otat|0ns anq results at_Jout cyclotor@ﬁ_’j(ﬂ))q _ (Z (0 B)" )
cosets and corresponding polynomials. In Section I, wash Pt
how classical codes can be constructed from these cosets and sa—1 , sa—1 ,
polynomials. To construct quantum codes, we study dualsode = Z (o[jﬁa)‘f+1 = Z (ajga)ql + O/Jf“ gt
of these classical codes in Section IV. In the last section, w i=0 i=1
apply the results in the previous sections to constructibn o sa—1 ;
quantum codes. = (a;B8)" + ;B = fa;(B).

i=1

II. CYCLOTOMIC COSETS AND CORRESPONDING This completes the proof. -
POLYNOMIALS

Let ¢ be a prime power and let > 1 be a positive integer I1l. CONSTRUCTION OF CLASSICAL CODES

with ged(g,n) = 1. Let m be the order off modulon, i.e, m In this section, we give a construction of classical codes
is the smallest positive integer such thatlivides¢™ — 1. basing on the facts from Section 2. For a positive integer
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with 1 < r <n — 1, consider the set of polynomials

P, ::{fa,j(x): 0<a<m, j:1,2,...,8a}.

in ExampledIl.2,{1,4,13,16} and {35, 38,47,50} are dual

to each other. It is clear that the dual of a given cyclotomic
coset is unique. Moreover, we have the following facts.
Denote the size aPx by k.. From Lemmall.2, it is clear that

the polynomial spac®, spanned byP, overlF, has dimension Lemma IV.1. Let S, be the dual of a cyclotomic coséy.

Then we have

The codeC, is defined by (i) [Sal =[Sy
(i) For everyx € S,, there existgy € S, such thatr + y is
{(F(B))sev,ugoy = [ €V} (I1.1) divisible byn.

Proposition Ill.1. The codeC,. defined in(lI) is a g-ary

] ' Proof: We may assume that+ b is divisible byn. By
linear code with parameterg: + 1,k.,>n+1 —7].

definition, s;, is the smallest positive integer such thadivides
b(g** — 1). Thus,s, is the smallest positive integer such that

Proof: As the degree of every polynomié(z) in V,. is at
n divides —b(¢®* — 1). As —b(¢** — 1) = a(¢®® — 1) mod n,

mostr < n— 1, it has at most roots. Thus(f(3))scv,u{o} _ _
has the Hamming weight at least+ 1 — r as long asf is a the desired result of part (i) follows.

nonzero polynomial. Hence, the dimension(@f is the same  Letz = ag’ mod n for some integet. By definition, there

as the one of/,., i.e.,dim(C,) = k.. Moreover, the minimum existsc € S, such thate = —cmod n. Thus,z = aq' =

distance ofC, is at leastn + 1 — r. m —c¢¢' modn. Puty = ¢¢* mod n € S,. We obtain the desired

result of part (ii). [ ]

Consider a sef of cyclotomic cosets such thgb} € S.

et S* denote the collection of duals of cyclotomic cosets in

Example IlIl.2. Let ¢ = 4 andn = 51. Then the order oft
modulo51 is m = 4. All 4-cyclotomic cosets moduldl are L

{0} {1,4,13,16} {2,8, 26,32} S. We denote byPs the polynomial set
{3,12,39,48} | {5,14,20,29} | {6,24,27,45} ,
{7,10,28,40} | {9,15,36,42} | {11,23,41,44} {faj(@): Sa €85 j=1,2,...,8.}.
17 18,21, 30, 33 19,25,43,49 .
(22 3{1 3}7 16} {18, {3’4}’ } }35’38’47’ 50{ Let Vs be theF,-space spanned by all polynomials i.

Define thelF,-linear code by

For instance, for = 16, we obtain al-ary [52,5, > 36]-linear
code. This is an optimal code in the sense that for given kengt
and dimension, the minimum distance can not be improved.
Forr = 17, we obtain ad-ary [52, 6, > 35]-linear code which
is best known based on the online takle [4].

Cs = {(f(B))sev,uoy : [ € Vs}

Then we have the following result.

(IV.1)

Proposition IV.2. Let A = U!_,S,, be the set of allg-
cyclotomic cosets modute. Then the Euclidean dual af's

Example Ill.3. Let ¢ = 4 andn = 63. Then the order ofl
is Cr, whereR = {{0}} U (A — &*).

modulo63 is m = 3. All 4-cyclotomic cosets modul63 are

{0} {1,4,16} {2,8,32} Proof: First of all, the dimension of the cod€s is
{3,12,48} | {5,17,20} | {6,24,33} Y ses|S|. Thus, the dimension o’z is 1+ > g 4 |S| —
{7,28,49} | {9,18,36} | {10,34,40} Y ores IT| =n+1-dim(Cs) (note the fact thap ;. , [S]| =
{11,44,50} | {13,19,52} | {14, 35,56} |Z,| = n). To prove our lemma, it is sufficient to show that
{15,51,60} {21} {22,25,37} every codeword irCs is orthogonal to all codewords @'z
{23,29,53} | {26,38,41} | {27,45,54} under the dot product.

{30,39,57} | {31,55,61} | {47,59,62} For a polynomiak:(z) in P4, we denote by, the codeword
{43, 46, 58} {42} (u(B))sev, ufoy- Let f(x),g(x) be polynomials inPs and

For instance, for — 16, we get ad-ary [64, 4, > 48]-linear Pr, respectively. If bothf(z) andg(x) are equal tol. Then

code. This is an optimal code in the sense that for given tendt/ ~ C¢ IS the all-one vectoll. Itis clear that in this case,
and dimension, the minimum distance can not be improve dc, are orthogonal under the dot product. Now assume that

For  — 20, again we get an optimakary [64, 7, > 44]-linear at'least one of (), g(x) is not equal tal. Then for any terms

code. Forr = 21, an optimal4-ary [64,8, > 43]-linear code vt in f(z) and terms:” in g(z), we havei + j ”j‘z 0 ].mOd n
can be derived as well. Thus, the producf(x)g(z) contains only terms* with k #

0 mod n. For suchk we have
IV. DUAL CODES

In this section, we study dual codes for those codes arisen
from cyclotomic cosets. From now on, we assume tha
even. Thenn is always odd (agcd(n,q) = 1) and hence
n+ 1 is even.

Two g-cyclotomic cosetsS, andS;, are calleddual if there
existsc € S, such thata + ¢ is divisible byn. For instance,

kn_l

> A==

pBeU,U{0}

wherea is ann-th primitive root of unity inU,,. This implies
that c; and c, are orthogonal under the dot product. The
desired result follows. ]



Example IV.3. Let ¢ = 4 andn = 51. Let S = Example V3. Let ¢ = 4 and n = 51. Then
{{0},{1,4,13,16}}. By Example[1ll.2, we know thaR = the order of 4 modulo 51 is m = 4. Let
A —{{35,38,47,50}}. S = {{0},{1,4,13,16},{2,8, 26, 32}, {6, 24, 27,45} }. Then
?S = {{0},{1,4,13,16},{2,8,26,32}, {3,12,39,48}} and

In order to apply our results to quantum codes, we want g
. e S)* = {{0}, {35, 38,47,50}, {19, 25,43,49}, {3,12, 39,48} }.
discuss the Hermitian dual 6fs as well. Let us assume that Moreover,s is contained inT — {{0}} U (A — (25)). As

) 5 o
is equal tof*. The Hermitian inner product of the two vectors&m5,487549 and Ss, belong to (25)*, we obtain a binary

(ur,uz, s tng) @Nd (v, v, ., v ) I, i defined by quantum|[52, 26, 6]] code which meets the best-known one
ntl in the online tablel]4].
Zufvz (IV.2) In the similar way, we obtain binary quantum codes with
=1 parameterg[52, 24, 7]] and [[52, 8, 10]]. Both codes meet the

By abuse of notations, for a s6t= {S, }.c; of cyclotomic parameters of the best-known oneslinh [4].
cosets, we denote bS5 the set{Sac}qer Of the cyclotomic Example V.4. Let ¢ = 4 andn = 63. Then the order ofl
cosets . modulo63 is m = 3.
Proposition IV.4. Under the inner producfl\V.2), the Hermi- (i) & = {{0},{1,4,16},{2,8,32}}. Then2S = S and
tian dual of Cs is C7, whereT = {{0}} U (A — (£S)*). (28)* = {{0},{31,55,61},{47,59,62}}. Moreover,S
is contained irl” = {{0} }U(A — (25)*). As Sg1 andSsg

Proof: It is clear that the Hermitian dual of's is the
o belong to(2S8)*, we obtain a binary quantuff64, 50, 4]]

Euclidean dual ofC,s. Now the desired result follows from

itior TV code which is optimal [4].
Propositio ' " (i) S = {{0}},{1,4,16},{2,8,32},{6,24,33}}. Then
Example IV5. Let ¢ = 4 andn = 51. Let § = 2S5 = {{0}},{1,4,16},{2,8,32},{3,12,48}} and
{{0},{1,4,13,16}}. By Example[IlL.2, we know thaf = (28)* = {{0},{15,51,60}{31,55,61},{47,59,62}}.
A —{{19,25,43,49}}. Moreover,S is contained in7 = {{0} U (A — (25)*).

As Ssg, Se0, S61 and Sg2 belong to(2S)*, we obtain a

_ ] binary quantuni[64, 44, 6]] code which is optimal again
In this section, we show how to apply the results from the ).

previous sections to obtain quantum codes.

Instead of giving several complicated results with dethil
formula, we give a general result in this section. Then we u
examples to illustrate our result.

V. APPLICATION TO QUANTUM CODES

Analogously, binary quantum codes with parameters
64, 38,7]] and [[64, 32, 8]] can be derived. Both codes meet
e parameters of the best-known ones_in [4].

Theorem V.1. Let S be a set ofg-cyclotomic cosets modulo Example V5. Let ¢ = 16 anq " :_ bl
) Then the order of 16 modulo 51 is m = 2.

n and let7T = {{0}} U (A — (£S)*) such that(¢S)* contains
all cyclotomic cosetd S, : 2—d<a< 1} If Let S - {10}, {12,39}, {8, 26}, {4,13}}.  Then
Y o nt2 dsasn o1 ous  — 0 (0),(1,16), {2,32),{3.48)) and (45)° =

S is a subset off, then there exists afary quantum code

[n+1,n+1— 2k > d]), wherek is the F,-dimension ofs {{0}, {3, 48}, {19, 49}, {35,50}}. Moreover,S is contained
) y — 1 q .

in 7 ={{0}}U(A—(25)*). As S50, S19 and Sss belong to
Proof: By Propositio{ V.4, the Hermtian dual @fs is (4S)*, we obtain ad-ary quantum{[52, 38, 5]]-code.

C7. Under our assumptiorys is Hermitian self-orthogonal Likewise, we obtaim-ary quantum codes with parameters

under the inner produc{(IM2). Thus, we obtain &ary [[52,34,6]], [[52,30,7]], [[52,26,8]], [[52, 22, 9]], [[52, 18, 10]]

quantum codé[n + 1,n + 1 — 2k]] with minimum distance at and [[52, 14, 12]]. The last one meets the parameters of the

least the Hamming distance 6f (see [1]). AsP7 contains best-known ones in_[3] and the rest are new to the online

polynomials of degree at mostt+1—d, the Hamming distance table [3].

of C'7is at leastd. This completes the proof. Example V.6. Let ¢ = 64 andn = 585. Then the order 064

Example V.2. Let ¢ = 4 andn = 21. Then the order oft modulo585 is m = 2. Let § = {{0}, {8,512}, {16,439} }.
modulo21 is m = 3. All 4-cycloyomic cosets modul®dl are Then 8§ = {{0},{1,64},{2,128}} and (8S)* =

{{0}, {457,583}, {521,584}}. Moreover, S is contained in

e e we obtain a8-ary quantum{[586, 576, 4]]-code.
{9,15,18} | {10,13,19} | {14} oo .
In the similar way, we draws-ary quantum codes with

Let S = {{0},{1,4,16},{2,8,11},{3,6,12}}. Then2S = parameters [[586,572,5]], [[586,568,6]], [[586,564,7]],
S and (25)* = {{0},{5,17,20},{10,13,19},{9,15,18}}.  [[586, 560, 8]], [[586, 556, 9]], [[586, 552, 10]], [[586, 548, 11]],
Moreover,S is contained in7 = {{0}} U (A — (25)*). As  [[586, 544, 12]], [[586, 540, 13]], [[586, 536, 14]],
Si7, 518,519 and Sy belong to (25)*, we obtain a binary [[586,532,15]] and so on. Now, compared with the online
quantum([22, 2, 6]] code which achieves the best-known paable [3], these codes have better parameters. For instance
rameters|[[4]. 8-quantum codes with the parameterg589,553,4]],




[[589,513,6]], [[627,561,5]], [[627,531,6]], [[627,501,7]],
1629, 557, 6]], [[629, 533, 7]], [[629, 521, 8]] are given in [[3].

We can see that with the same distances our codes have
bigger dimensions, but smaller lengths.
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