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A Construction of Quantum Codes via A Class of
Classical Polynomial Codes

Lingfei Jin and Chaoping Xing

Abstract—There have been various constructions of classical
codes from polynomial valuations in literature [2], [7], [8], [10],
[11]. In this paper, we present a construction of classical codes
based on polynomial construction again. One of the features
of this construction is that not only the classical codes arisen
from the construction have good parameters, but also quantum
codes with reasonably good parameters can be produced from
these classical codes. In particular, some new quantum codes are
constructed (see Examples V.5 and V.6).

Index Terms—Cyclotomic cosets, Polynomials, Hermitian self-
orthogonal, Quantum distance.

I. I NTRODUCTION

One way to produce good quantum codes is to make use
of Hermitian self-orthogonal classical codes [1]. To getℓ-ary
quantum codes, one needs Hermitian self-orthogonal classical
codes overFℓ2 with good minimum distance of dual codes.
Due to the fact that the Hermitian inner product involves
powerℓ (see (IV.2)), the parameters of quantum codes derived
from Hermitian self-orthogonal classical codes are usually
constrained. For instance, in [6] (also see [5]), quantum MDS
codes produced by using Hermitian self-orthogonal classical
codes have relatively small dimension.

In this paper, we first go to a field of larger size to obtain
classical codes overFℓ2 and then we select Hermitian self-
orthogonal codes from these classical codes overFℓ2 . In this
way, we can produce good quantum codes. Our idea to produce
classical codes overFℓ2 from a field of large size has already
been studied in the previous papers [2], [7], [8], [10], [11]
where polynomial codes were considered. The main idea of
this paper is to convert some of these codes into Hermitian
self-orthogonal in order to construct quantum codes. It turns
out that some new quantum codes can be produced (see
Examples V.5 and V.6).

The paper is organized as follows. In Section II, we in-
troduce some basic notations and results about cyclotomic
cosets and corresponding polynomials. In Section III, we show
how classical codes can be constructed from these cosets and
polynomials. To construct quantum codes, we study dual codes
of these classical codes in Section IV. In the last section, we
apply the results in the previous sections to construction of
quantum codes.

II. CYCLOTOMIC COSETS AND CORRESPONDING

POLYNOMIALS

Let q be a prime power and letn > 1 be a positive integer
with gcd(q, n) = 1. Let m be the order ofq modulon, i.e,m
is the smallest positive integer such thatn dividesqm − 1.

For anya ∈ Zn, we define aq-cylotomic coset modulon

Sa := {a · qi mod n : i = 0, 1, 2, . . .}.

It is a well-know fact that allq-cyclotomic cosets partition
the setZn. Let Sa1

, Sa2
, . . . , Sat

stand for all distinctq-
cyclotomic cosets modulon. Then, we have thatZn =
∪t
i=1Sai

and n =
∑t

i=1
|Sai

|. We denote bysa the size of
the q-cyclotomic cosetSa.

The following fact can be easily derived.

Lemma II.1. For everya ∈ Zn, the sizesa of Sa dividesm
which is the order ofq modulon.

Proof: It is clear thatsa is the smallest positive integer
such thata ≡ aqsa mod n, i.e,sa is the smallest positive inte-
ger such thatn/ gcd(n, a) dividesqsa −1. Sincen/ gcd(n, a)
also dividesqm − 1, we havem ≡ 0 mod sa by applying the
long division.

Now for eachSa, we formsa polynomials in the following
way. Letα1, . . . , αsa be anFq-basis ofFqsa (note thatFqsa

is a subfield ofFqm ). Consider the polynomialsfa,j(x) :=
∑sa−1

i=0
(αjx

a)
qi for j = 1, 2, . . . , sa.

Lemma II.2. For everya ∈ Zn, we have the following facts.

(i) The polynomialsfa,j(x) for j = 1, 2, . . . , sa are linearly
independent overFq.

(ii) fa,j(β) belongs toFq for all β ∈ Un ∪ {0}, whereUn

is the subgroup ofn-th roots of unity inF∗
qm , i.e.,Un :=

{β ∈ F
∗
qm : βn = 1}.

Proof: (i) is clear since the coefficients ofxa in fa,j(x)
areαj andα1, α2, . . . , αsa form anFq-basis ofFqsa .

To prove (ii), it is sufficient to prove that(fa,j(β))q =
fa,j(β) for everyβ ∈ Un ∪ {0}. Consider

(fa,j(β))
q =

(

sa−1
∑

i=0

(αjβ
a)

qi

)q

=

sa−1
∑

i=0

(αjβ
a)

qi+1

=

sa−1
∑

i=1

(αjβ
a)

qi

+ αqsa

j βaqsa

=

sa−1
∑

i=1

(αjβ
a)

qi

+ αjβ
a = fa,j(β).

This completes the proof.

III. C ONSTRUCTION OF CLASSICAL CODES

In this section, we give a construction of classical codes
basing on the facts from Section 2. For a positive integerr
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with 1 ≤ r ≤ n− 1, consider the set of polynomials

Pr := {fa,j(x) : 0 ≤ a ≤ r, j = 1, 2, . . . , sa}.

Denote the size ofPK by kr. From Lemma II.2, it is clear that
the polynomial spaceVr spanned byPr overFq has dimension
kr.

The codeCr is defined by

{(f(β))β∈Un∪{0} : f ∈ Vr}. (III.1)

Proposition III.1. The codeCr defined in(III.1) is a q-ary
linear code with parameters[n+ 1, kr,≥ n+ 1− r].

Proof: As the degree of every polynomialf(x) in Vr is at
mostr ≤ n− 1, it has at mostr roots. Thus,(f(β))β∈Un∪{0}

has the Hamming weight at leastn+ 1− r as long asf is a
nonzero polynomial. Hence, the dimension ofCr is the same
as the one ofVr, i.e.,dim(Cr) = kr. Moreover, the minimum
distance ofCr is at leastn+ 1− r.

Example III.2. Let q = 4 andn = 51. Then the order of4
modulo51 is m = 4. All 4-cyclotomic cosets modulo51 are

{0} {1, 4, 13, 16} {2, 8, 26, 32}
{3, 12, 39, 48} {5, 14, 20, 29} {6, 24, 27, 45}
{7, 10, 28, 40} {9, 15, 36, 42} {11, 23, 41, 44}

{17} {18, 21, 30, 33} {19, 25, 43, 49}
{22, 31, 37, 46} {34} {35, 38, 47, 50}

For instance, forr = 16, we obtain a4-ary [52, 5,≥ 36]-linear
code. This is an optimal code in the sense that for given length
and dimension, the minimum distance can not be improved.
For r = 17, we obtain a4-ary [52, 6,≥ 35]-linear code which
is best known based on the online table [4].

Example III.3. Let q = 4 andn = 63. Then the order of4
modulo63 is m = 3. All 4-cyclotomic cosets modulo63 are

{0} {1, 4, 16} {2, 8, 32}
{3, 12, 48} {5, 17, 20} {6, 24, 33}
{7, 28, 49} {9, 18, 36} {10, 34, 40}
{11, 44, 50} {13, 19, 52} {14, 35, 56}
{15, 51, 60} {21} {22, 25, 37}
{23, 29, 53} {26, 38, 41} {27, 45, 54}
{30, 39, 57} {31, 55, 61} {47, 59, 62}
{43, 46, 58} {42}

For instance, forr = 16, we get a4-ary [64, 4,≥ 48]-linear
code. This is an optimal code in the sense that for given length
and dimension, the minimum distance can not be improved.
For r = 20, again we get an optimal4-ary [64, 7,≥ 44]-linear
code. Forr = 21, an optimal4-ary [64, 8,≥ 43]-linear code
can be derived as well.

IV. D UAL CODES

In this section, we study dual codes for those codes arisen
from cyclotomic cosets. From now on, we assume thatq is
even. Thenn is always odd (asgcd(n, q) = 1) and hence
n+ 1 is even.

Two q-cyclotomic cosetsSa andSb are calleddual if there
existsc ∈ Sb such thata + c is divisible byn. For instance,

in Example III.2,{1, 4, 13, 16} and {35, 38, 47, 50} are dual
to each other. It is clear that the dual of a given cyclotomic
coset is unique. Moreover, we have the following facts.

Lemma IV.1. Let Sa be the dual of a cyclotomic cosetSb.
Then we have

(i) |Sa| = |Sb|
(ii) For everyx ∈ Sa, there existsy ∈ Sb such thatx+ y is

divisible byn.

Proof: We may assume thata + b is divisible byn. By
definition,sb is the smallest positive integer such thatn divides
b(qsb − 1). Thus,sb is the smallest positive integer such that
n divides−b(qsb − 1). As −b(qsb − 1) ≡ a(qsb − 1) mod n,
the desired result of part (i) follows.

Let x ≡ aqi mod n for some integeri. By definition, there
exists c ∈ Sb such thata ≡ −c mod n. Thus,x ≡ aqi ≡
−cqi mod n. Puty = cqi mod n ∈ Sb. We obtain the desired
result of part (ii).

Consider a setS of cyclotomic cosets such that{0} ∈ S.
Let S∗ denote the collection of duals of cyclotomic cosets in
S. We denote byPS the polynomial set

{fa,j(x) : Sa ∈ S; j = 1, 2, . . . , sa}.

Let VS be theFq-space spanned by all polynomials inPS .
Define theFq-linear code by

CS := {(f(β))β∈Un∪{0} : f ∈ VS} (IV.1)

Then we have the following result.

Proposition IV.2. Let A = ∪t
i=1Sai

be the set of allq-
cyclotomic cosets modulon. Then the Euclidean dual ofCS

is CR, whereR = {{0}} ∪ (A− S∗).

Proof: First of all, the dimension of the codeCS is
∑

S∈S |S|. Thus, the dimension ofCR is 1 +
∑

S∈A |S| −
∑

T∈S |T | = n+1−dim(CS) (note the fact that
∑

S∈A |S| =
|Zn| = n). To prove our lemma, it is sufficient to show that
every codeword inCS is orthogonal to all codewords ofCR

under the dot product.
For a polynomialu(x) in PA, we denote bycu the codeword

(u(β))β∈Un∪{0}. Let f(x), g(x) be polynomials inPS and
PR, respectively. If bothf(x) andg(x) are equal to1. Then
cf = cg is the all-one vector1. It is clear that in this casecf
andcg are orthogonal under the dot product. Now assume that
at least one off(x), g(x) is not equal to1. Then for any terms
xi in f(x) and termsxj in g(x), we havei + j 6≡ 0 mod n.
Thus, the productf(x)g(x) contains only termsxk with k 6≡
0 mod n. For suchk we have

∑

β∈Un∪{0}

βk =
αkn − 1

αk − 1
= 0,

whereα is ann-th primitive root of unity inUn. This implies
that cf and cg are orthogonal under the dot product. The
desired result follows.



Example IV.3. Let q = 4 and n = 51. Let S =
{{0}, {1, 4, 13, 16}}. By Example III.2, we know thatR =
A− {{35, 38, 47, 50}}.

In order to apply our results to quantum codes, we want to
discuss the Hermitian dual ofCS as well. Let us assume thatq
is equal toℓ2. The Hermitian inner product of the two vectors
(u1, u2, . . . , un+1) and(v1, v2, . . . , vn+1) in F

n
ℓ2

is defined by

n+1
∑

i=1

uℓ
ivi. (IV.2)

By abuse of notations, for a setS = {Sa}a∈I of cyclotomic
cosets, we denote byℓS the set{Saℓ}a∈I of the cyclotomic
cosets .

Proposition IV.4. Under the inner product(IV.2), the Hermi-
tian dual ofCS is CT , whereT = {{0}} ∪ (A− (ℓS)∗).

Proof: It is clear that the Hermitian dual ofCS is the
Euclidean dual ofCℓS . Now the desired result follows from
Proposition IV.2.

Example IV.5. Let q = 4 and n = 51. Let S =
{{0}, {1, 4, 13, 16}}. By Example III.2, we know thatT =
A− {{19, 25, 43, 49}}.

V. A PPLICATION TO QUANTUM CODES

In this section, we show how to apply the results from the
previous sections to obtain quantum codes.

Instead of giving several complicated results with detailed
formula, we give a general result in this section. Then we use
examples to illustrate our result.

Theorem V.1. Let S be a set ofq-cyclotomic cosets modulo
n and letT = {{0}}∪ (A− (ℓS)∗) such that(ℓS)∗ contains
all cyclotomic cosets{Sa : n + 2 − d ≤ a ≤ n − 1}. If
S is a subset ofT , then there exists anℓ-ary quantum code
[[n+1, n+1− 2k,≥ d]], wherek is theFq-dimension ofCS .

Proof: By Proposition IV.4, the Hermtian dual ofCS is
CT . Under our assumption,CS is Hermitian self-orthogonal
under the inner product (IV.2). Thus, we obtain anℓ-ary
quantum code[[n+1, n+1− 2k]] with minimum distance at
least the Hamming distance ofCT (see [1]). AsPT contains
polynomials of degree at mostn+1−d, the Hamming distance
of CT is at leastd. This completes the proof.

Example V.2. Let q = 4 andn = 21. Then the order of4
modulo21 is m = 3. All 4-cycloyomic cosets modulo21 are

{0} {1, 4, 16}} {2, 8, 11}
{3, 6, 12} {5, 17, 20} {7}
{9, 15, 18} {10, 13, 19} {14}

Let S = {{0}, {1, 4, 16}, {2, 8, 11}, {3, 6, 12}}. Then 2S =
S and (2S)∗ = {{0}, {5, 17, 20}, {10, 13, 19}, {9, 15, 18}}.
Moreover,S is contained inT = {{0}} ∪ (A− (2S)∗). As
S17, S18, S19 and S20 belong to (2S)∗, we obtain a binary
quantum[[22, 2, 6]] code which achieves the best-known pa-
rameters [4].

Example V.3. Let q = 4 and n = 51. Then
the order of 4 modulo 51 is m = 4. Let
S = {{0}, {1, 4, 13, 16}, {2, 8, 26, 32}, {6, 24, 27, 45}}. Then
2S = {{0}, {1, 4, 13, 16}, {2, 8, 26, 32}, {3, 12, 39, 48}} and
(2S)∗ = {{0}, {35, 38, 47, 50}, {19, 25, 43, 49}, {3, 12, 39, 48}}.
Moreover,S is contained inT = {{0}} ∪ (A− (2S)∗). As
S47, S48, S49 and S50 belong to (2S)∗, we obtain a binary
quantum[[52, 26, 6]] code which meets the best-known one
in the online table [4].

In the similar way, we obtain binary quantum codes with
parameters[[52, 24, 7]] and [[52, 8, 10]]. Both codes meet the
parameters of the best-known ones in [4].

Example V.4. Let q = 4 andn = 63. Then the order of4
modulo63 is m = 3.

(i) S = {{0}, {1, 4, 16}, {2, 8, 32}}. Then 2S = S and
(2S)∗ = {{0}, {31, 55, 61}, {47, 59, 62}}. Moreover,S
is contained inT = {{0}}∪(A− (2S)∗). AsS61 andS50

belong to(2S)∗, we obtain a binary quantum[[64, 50, 4]]
code which is optimal [4].

(ii) S = {{0}}, {1, 4, 16}, {2, 8, 32}, {6, 24, 33}}. Then
2S = {{0}}, {1, 4, 16}, {2, 8, 32}, {3, 12, 48}} and
(2S)∗ = {{0}, {15, 51, 60}{31, 55, 61}, {47, 59, 62}}.
Moreover,S is contained inT = {{0} ∪ (A− (2S)∗).
As S59, S60, S61 andS62 belong to(2S)∗, we obtain a
binary quantum[[64, 44, 6]] code which is optimal again
[4].

Analogously, binary quantum codes with parameters
[[64, 38, 7]] and [[64, 32, 8]] can be derived. Both codes meet
the parameters of the best-known ones in [4].

Example V.5. Let q = 16 and n = 51.
Then the order of 16 modulo 51 is m = 2.
Let S = {{0}, {12, 39}, {8, 26}, {4, 13}}. Then
4S = {{0}, {1, 16}, {2, 32}, {3, 48}} and (4S)∗ =
{{0}, {3, 48}, {19, 49}, {35, 50}}. Moreover,S is contained
in T = {{0}}∪ (A− (2S)∗). As S50, S49 andS48 belong to
(4S)∗, we obtain a4-ary quantum[[52, 38, 5]]-code.

Likewise, we obtain4-ary quantum codes with parameters
[[52, 34, 6]], [[52, 30, 7]], [[52, 26, 8]], [[52, 22, 9]], [[52, 18, 10]]
and [[52, 14, 12]]. The last one meets the parameters of the
best-known ones in [3] and the rest are new to the online
table [3].

Example V.6. Let q = 64 andn = 585. Then the order of64
modulo 585 is m = 2. Let S = {{0}, {8, 512}, {16, 439}}.
Then 8S = {{0}, {1, 64}, {2, 128}} and (8S)∗ =
{{0}, {457, 583}, {521, 584}}. Moreover,S is contained in
T = {{0}}∪(A− (2S)∗). AsS584 andS583 belong to(8S)∗,
we obtain a8-ary quantum[[586, 576, 4]]-code.

In the similar way, we draw8-ary quantum codes with
parameters [[586, 572, 5]], [[586, 568, 6]], [[586, 564, 7]],
[[586, 560, 8]], [[586, 556, 9]], [[586, 552, 10]], [[586, 548, 11]],
[[586, 544, 12]], [[586, 540, 13]], [[586, 536, 14]],
[[586, 532, 15]] and so on. Now, compared with the online
table [3], these codes have better parameters. For instance,
8-quantum codes with the parameters[[589, 553, 4]],



[[589, 513, 6]], [[627, 561, 5]], [[627, 531, 6]], [[627, 501, 7]],
[[629, 557, 6]], [[629, 533, 7]], [[629, 521, 8]] are given in [3].
We can see that with the same distances our codes have
bigger dimensions, but smaller lengths.
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