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Abstract—Three-Receiver broadcast channels (BC) are of 

interest due to their information-theoretic differences with two-
receiver one. In this paper, we derive achievable rate regions for 
two classes of 3-receiver BC with side information (SI), i.e. 
Multilevel BC (MBC) and 3-receiver less noisy BC, using a 
combination of superposition coding, Gelf’and-Pinsker binning 
scheme and Nair-El Gamal indirect decoding. Our rate region for 
MBC subsumes Steinberg’s rate region for 2-receiver degraded 
BC with SI as its special case. We will also show that the obtained 
achievable rate regions in the first two cases are tight for several 
classes of non-deterministic, semi-deterministic, and 
deterministic 3-receiver BC when SI is available both at the 
transmitter and at the receivers. We also prove that as far as a 
receiver is deterministic in the three-receiver less noisy BC, the 
presence of side information at that receiver does not affect the 
capacity region. We have also provided the writing on dirty 
paper (WDP) property for 3-receiver BC is provided as an 
example. In the last section, we provide simple bounds on the 
capacity region of the Additive Exponential noise three-receiver 
broadcast channels with Additive Exponential interference 
(AEN-3BC-EI). 
 

Index Terms—Three-receiver broadcast channel, Less noisy, 
Multilevel broadcast channel, Deterministic broadcast channel, 
Semi-deterministic broadcast channel.  
 

I. INTRODUCTION 
Cs are one of the most important channels in multiuser 
information theory and have been broadly studied since 

being introduced by Cover [1] in 1972. Bergmans used 
superposition coding to find an achievable rate region for 
degraded two-receiver BC [2] which was proved to be optimal 
by Gallager [3] and Ahlswede and Körner [4]. The capacity 
region of special classes of BC has been obtained until now 
and can be found in [5], [6], Körner and Marton [7], and [8]. 
The best known inner and outer bound on the capacity region 
of general two-receiver BC, however, is given by Marton [9] 
and Nair-El Gamal [10], respectively. Unlike multiple access 
channels (MACs), extension of the results for two-receiver BC 
to BCs with more than two receivers is not in general optimal.  
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The k-receiver, 3k ≥ , BC was first studied by Borade et al. in 
[11] where they simply surmised that straightforward 
extension of Körner-Marton’s capacity region for two-receiver 
BCs with degraded message sets [7] to k-receiver multilevel 
broadcast networks is optimal. Nair-El Gamal [12] showed  
 
that the capacity region of a special class of 3-receiver BCs  
with two degraded message sets when one of the receivers is a 
degraded version of the other, is a superset of [11], thus 
proving that direct extension of [7] is not in general optimal. 
Nair and Wang later in [13] established the capacity region of 
the 3-receiver less noisy BC. 

Channels with SI, were first studied by Shannon [14], where 
he found the capacity region of the Single-Input-Single-Output 
channel when SI is causally available at the encoder. Gelf’and 
and Pinsker [15] found the capacity of a single-user channel 
when SI is non-causally available at the transmitter while the 
receiver is kept ignorant of it. Cover and Chiang [16] extended 
the results of [15] to the case where SI is available at both the 
encoder and the decoder. Multiple user channels with SI were 
studied in [17] where inner and outer bounds on the capacity 
region of degraded BC with non-causal SI and capacity region 
of degraded BC with causal SI were found. Moreover, [18], 
added SI to [9]. Khosravi and Marvasti [19] added SI, both to 
[9] and [10] and their result contains that of [18]. Lapidoth and 
Wang [20] found the capacity of semi-deterministic two 
receiver broadcast channel with SI. 

Gaussian channels with SI were studied by Max H. Costa 
[21]. He proved that a Gaussian single-user channel capacity 
is not afflicted by an extra additive Gaussian i.i.d interference 
as long as we have full knowledge of the extra interference at 
the encoder so that we can optimize our transmitter to achieve 
the Gaussian channel capacity with no interference. Young-
Han Kim et al. extended [21] to degraded BC, MAC, and 
Relay Channel (RC) [22]. Reza Khosravi-Farsani [23] also 
extended [21] to the two-way channel, which was first studied 
by Shannon [24]. 

Exponential noise was first studied by Anantharam and 
Verdú [31] where they characterized the capacity of the 
Additive Exponential Noise (AEN) point-to-point channel. 
Verdú [32] also characterized the capacity region of the AEN 
multiple access channel with independent sources. Hajizadeh 
and Hodtani [33] studied AEN-BC. Monemizadeh, Hajizadeh 
and Hodtani [34] found capacity bounds for the exponentially 
dirty paper. 
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In this paper, we first find the achievable rate region of 
MBC and 3-receiver less noisy BC both with SI non-causally 
available at the encoder. Our achievable rate regions reduce to 
that of [12] and [13] when there is no SI. Our achievable rate 
region for MBC also subsumes Steinberg’s achievable rate 
region for 2-receiver degraded BC with SI as its special case. 
The achievable rate regions are tight for several classes of 
non-deterministic, semi-deterministic and deterministic MBC 
and 3-receiver less noisy BC when SI is available both at the 
transmitter and at all the receivers. WDP property for three-
receiver BCs is provided as an example. We then find an 
upper bound on the capacity region of AEN-3BC-EI. 

The rest of the paper is organized as follows. In section II, 
basic definitions and preliminaries are presented. In section 
III, MBC with SI is studied while section IV is devoted to 3-
receiver less noisy BCs with SI. In section V, examples are 
given. The AEN-3BC-EI is studied in section VI where in 
section VII, conclusion is given. 
 

II. BASIC DEFINITIONS AND PRELIMINARIES 

A. Basic definitions 
Random variables and their realizations are denoted by 

uppercase and lowercase letters, respectively, e.g. 𝑥𝑥 is a 
realization of 𝑋𝑋. Let 𝒳𝒳,𝒴𝒴1,𝒴𝒴2,𝒴𝒴3 and 𝒮𝒮 be finite sets showing 
alphabets of random variables. The n-sequence of a random 
variable is given by 𝑋𝑋𝑛𝑛  where the superscript is omitted when 
the choice of 𝑛𝑛 is clear, thus we only use boldface letters for 
the random variable itself, i.e. 𝒙𝒙 = 𝑥𝑥𝑛𝑛 .  Throughout, we 
assume that 𝑋𝑋𝑖𝑖𝑛𝑛  is the sequence (𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑖𝑖+1, … ,𝑋𝑋𝑛𝑛).  
Definition 1: A channel 𝑋𝑋 → 𝑍𝑍 is said to be a degraded 
version of the channel 𝑋𝑋 → 𝑌𝑌 with SI if 𝑋𝑋 → 𝑌𝑌 → 𝑍𝑍 is a 
Markov chain conditioned on every 𝑠𝑠 ∈ 𝒮𝒮 
with 𝑝𝑝(𝑦𝑦, 𝑧𝑧|𝑥𝑥, 𝑠𝑠) having the same marginal distributions. 
 MBC with SI, denoted by 
�𝒳𝒳,𝒮𝒮, 𝒴𝒴1,𝒴𝒴2,𝒴𝒴3, 𝑝𝑝(𝑦𝑦1,𝑦𝑦3|𝑥𝑥, 𝑠𝑠), 𝑝𝑝(𝑦𝑦2|𝑦𝑦1)�, is a 3-receiver BC 
with 2-degraded message sets with input alphabet 𝒳𝒳 and 
output alphabets 𝒴𝒴1,𝒴𝒴2, and 𝒴𝒴3. The SI is the random 
variable 𝑆𝑆 distributed over the set 𝒮𝒮 according to 𝑝𝑝(𝑠𝑠). The 
transition probability function 𝑝𝑝(𝑦𝑦1,𝑦𝑦3|𝑥𝑥, 𝑠𝑠) describes the 
relationship between channel input 𝑋𝑋, side information  𝑆𝑆, and 
channel outputs 𝑌𝑌1 and 𝑌𝑌3 while the probability 
function  𝑝𝑝(𝑦𝑦2|𝑦𝑦1) shows the virtual channel modeling the 
output 𝑌𝑌2 as the degraded version of 𝑌𝑌1.  Independent message 
sets 𝑚𝑚0 ∈ ℳ0 and 𝑚𝑚1 ∈ ℳ1 are to be reliably sent,  m0 being 
the common message for all the receivers and m1 the private 
message only for Y1. Channel model is depicted in Fig. 1. 

 Definition 2: A (𝑛𝑛, 2𝑛𝑛𝑅𝑅0 , 2𝑛𝑛𝑅𝑅1 , 𝜖𝜖) two-degraded message set 
code for MBC with SI �𝑝𝑝(𝑦𝑦1,𝑦𝑦3|𝑥𝑥, 𝑠𝑠), 𝑝𝑝(𝑦𝑦2|𝑦𝑦1)� consists of an 
encoder map 

 
Figure 1. Multilevel broadcast channel with side information. 

 
 

𝑓𝑓 ∶ {1,2, … ,𝑀𝑀0} × {1,2, … ,𝑀𝑀1} × 𝒮𝒮𝑛𝑛 ⟶ 𝒳𝒳𝑛𝑛  

and a tuple of decoding maps 

𝑔𝑔𝑦𝑦1 ∶  𝒴𝒴1
𝑛𝑛 ⟶ {1,2, … ,𝑀𝑀0} × {1,2, … ,𝑀𝑀1} 
𝑔𝑔𝑦𝑦2 ∶  𝒴𝒴2

𝑛𝑛 ⟶ {1,2, … ,𝑀𝑀0} 
𝑔𝑔𝑦𝑦3 ∶  𝒴𝒴3

𝑛𝑛 ⟶ {1,2, … ,𝑀𝑀0} 

such that 𝑃𝑃𝑒𝑒
(𝑛𝑛) ≤ 𝜖𝜖, i.e. 

1
𝑀𝑀0𝑀𝑀1

� � � 𝑝𝑝(𝒔𝒔)𝑝𝑝{𝑔𝑔𝑦𝑦1(𝒚𝒚1) ≠ (𝑚𝑚0,𝑚𝑚1)
𝑠𝑠𝑛𝑛∈𝒮𝒮𝑛𝑛

𝑀𝑀1

𝑚𝑚1=1

𝑀𝑀0

𝑚𝑚0=1

 𝑜𝑜𝑜𝑜 

𝑔𝑔𝑦𝑦2 (𝒚𝒚2) ≠ 𝑚𝑚0 𝑜𝑜𝑜𝑜 𝑔𝑔𝑦𝑦3(𝒚𝒚3) ≠ 𝑚𝑚0|𝒔𝒔,𝒙𝒙(𝑚𝑚0,𝑚𝑚1, 𝒔𝒔)} ≤ 𝝐𝝐 

 The rate pair of the code is defined as 

(𝑅𝑅0,𝑅𝑅1) =
1
𝑛𝑛

(log𝑀𝑀0 , 𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀1) 

 A rate pair (𝑅𝑅0,𝑅𝑅1) is said to be 𝜖𝜖-achievable if for any 
𝜂𝜂 > 0 there is an integer 𝑛𝑛0 such that for all 𝑛𝑛 ≥ 𝑛𝑛0 we have 
a �𝑛𝑛, 2𝑛𝑛(𝑅𝑅0−𝜂𝜂), 2𝑛𝑛(𝑅𝑅1−𝜂𝜂), 𝜖𝜖� code for �𝑝𝑝(𝑦𝑦1,𝑦𝑦3|𝑥𝑥, 𝑠𝑠), 𝑝𝑝(𝑦𝑦2|𝑦𝑦1)�. 

 The union of the closure of all 𝜖𝜖-achievable rate pairs is 
called the capacity region 𝒞𝒞𝑀𝑀𝑀𝑀𝑀𝑀 . 

 Definition 3: A channel 𝑋𝑋 → 𝑌𝑌 is said to be less noisy than 
the channel 𝑋𝑋 → 𝑍𝑍 in the presence of SI if 

𝐼𝐼(𝑈𝑈;𝑌𝑌|𝑆𝑆 = 𝑠𝑠) ≥ 𝐼𝐼(𝑈𝑈;𝑍𝑍|𝑆𝑆 = 𝑠𝑠) 
∀𝑝𝑝(𝑢𝑢, 𝑥𝑥,𝑦𝑦, 𝑧𝑧|𝑠𝑠) = 𝑝𝑝(𝑢𝑢|𝑠𝑠)𝑝𝑝(𝑥𝑥|𝑢𝑢, 𝑠𝑠)𝑝𝑝(𝑦𝑦, 𝑧𝑧|𝑥𝑥, 𝑠𝑠) 𝑎𝑎𝑎𝑎𝑎𝑎 ∀𝑠𝑠 ∈ 𝒮𝒮. 

 The 3-receiver less noisy BC with SI is depicted in Fig. 2, 
where 𝑌𝑌1 is less noisy than 𝑌𝑌2 and 𝑌𝑌2 is less noisy than 𝑌𝑌3, i.e. 
according to [13], 𝑌𝑌1 ≽ 𝑌𝑌2 ≽ 𝑌𝑌3. 

 The messages 𝑚𝑚1 ∈ ℳ1, 𝑚𝑚2 ∈ ℳ2, 𝑚𝑚3 ∈ ℳ3 are to be 
reliably sent to receivers 𝑌𝑌1,𝑌𝑌2, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌3, respectively. The code 
and rate tuple definitions are as follows 

(𝑛𝑛, 2𝑛𝑛𝑅𝑅1 , 2𝑛𝑛𝑅𝑅2 , 2𝑛𝑛𝑅𝑅3 , 𝜖𝜖) 

(𝑅𝑅1,𝑅𝑅2,𝑅𝑅3) =
1
𝑛𝑛

(𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀1, 𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀2, 𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀3) 

Achievable rate tuples and the achievable rate region and 
the capacity region 𝒞𝒞𝐿𝐿  are defined in just the same way as 
MBC with SI. 
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Figure 2. Three-receiver less noisy broadcast channel with side 

information. 
 
 

B. Preliminaries 
Consider a sequence of independent and identically 

distributed random variables 𝑿𝑿 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) each 
distributed according to 𝑝𝑝(𝑥𝑥).  A sequence 
 𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) is said to be 𝜖𝜖-typical if 

�−
1
𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝒙𝒙) −𝐻𝐻(𝑋𝑋)� ≤ 𝜖𝜖 

Now let us define the typical set to be the set of all 𝜖𝜖-typical n-
sequences  𝒙𝒙. 

By the law of large numbers (LLN), [25], we have 

−
1
𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝒙𝒙) = −

1
𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝(𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

→ 𝐻𝐻(𝑋𝑋), 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

Therefore we have 

1) 𝑝𝑝�𝒙𝒙 ∈ 𝐴𝐴𝜖𝜖
(𝑛𝑛)� → 1as n tends to infinity 

2) 2−𝑛𝑛(𝐻𝐻(𝑋𝑋)+𝜖𝜖) ≤ 𝑝𝑝�𝒙𝒙 ∈ 𝐴𝐴𝜖𝜖
(𝑛𝑛)� ≤ 2−𝑛𝑛(𝐻𝐻(𝑋𝑋)−𝜖𝜖) 

3) (1 − 𝜖𝜖)2𝑛𝑛(𝐻𝐻(𝑋𝑋)−𝜖𝜖) ≤∥ 𝐴𝐴𝜖𝜖
(𝑛𝑛) ∥≤ 2𝑛𝑛(𝐻𝐻(𝑋𝑋)+𝜖𝜖) 

Proof: A proof can be found in [26]. 

Now consider a random variable 𝑌𝑌 that is jointly typical 
with 𝑋𝑋 according to some 𝑝𝑝(𝑥𝑥,𝑦𝑦). We say that (𝒙𝒙,𝒚𝒚) ∈
𝐴𝐴𝜖𝜖

(𝑛𝑛)(𝑋𝑋,𝑌𝑌), i.e. (𝒙𝒙,𝒚𝒚) are jointly 𝜖𝜖-typical if 

�−
1
𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝒙𝒙) −𝐻𝐻(𝑋𝑋)� ≤ 𝜖𝜖 

�−
1
𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝒚𝒚) − 𝐻𝐻(𝑌𝑌)� ≤ 𝜖𝜖 

�−
1
𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝒙𝒙,𝒚𝒚) − 𝐻𝐻(𝑋𝑋,𝑌𝑌)� ≤ 𝜖𝜖 

and by the LLN we have 

1) p�(𝒙𝒙,𝒚𝒚) ∈ 𝐴𝐴𝜖𝜖
(𝑛𝑛)� → 1 as n tends to infinity 

2) 2−𝑛𝑛(𝐻𝐻(𝑋𝑋 ,𝑌𝑌)+𝜖𝜖) ≤ 𝑝𝑝�(𝒙𝒙,𝒚𝒚) ∈ 𝐴𝐴𝜖𝜖
(𝑛𝑛)� ≤ 2−𝑛𝑛(𝐻𝐻(𝑋𝑋 ,𝑌𝑌)−𝜖𝜖) 

3) (1 − 𝜖𝜖)2𝑛𝑛(𝐻𝐻(𝑋𝑋 ,𝑌𝑌)−𝜖𝜖) ≤∥ 𝐴𝐴𝜖𝜖
(𝑛𝑛) ∥≤ 2𝑛𝑛(𝐻𝐻(𝑋𝑋 ,𝑌𝑌)+𝜖𝜖) 

4) 2−𝑛𝑛(𝐻𝐻(𝑌𝑌|𝑋𝑋)+2𝜖𝜖) ≤ 𝑝𝑝 �(𝒚𝒚|𝒙𝒙) ∈ 𝐴𝐴𝜖𝜖
(𝑛𝑛)� ≤ 2−𝑛𝑛(𝐻𝐻(𝑌𝑌|𝑋𝑋)−2𝜖𝜖) 

Proof: A proof can be found in [26]. 

The concept of typicality can be extended to arbitrary 
number of random variables and an extension is provided in 
[27]. 

III. MULTILEVEL BROADCAST CHANNEL WITH SIDE 
INFORMATION 

Define  𝒫𝒫 as the collection of all random 
variables (𝑈𝑈,𝑉𝑉,𝑆𝑆,𝑋𝑋,𝑌𝑌1,𝑌𝑌2,𝑌𝑌3) with finite alphabets such that 

𝑝𝑝(𝑢𝑢, 𝑣𝑣, 𝑠𝑠, 𝑥𝑥,𝑦𝑦1,𝑦𝑦2,𝑦𝑦3) = 
𝑝𝑝(𝑠𝑠)𝑝𝑝(𝑢𝑢|𝑠𝑠)𝑝𝑝(𝑣𝑣|𝑢𝑢, 𝑠𝑠)𝑝𝑝(𝑥𝑥|𝑣𝑣, 𝑠𝑠)𝑝𝑝(𝑦𝑦1,𝑦𝑦3|𝑥𝑥, 𝑠𝑠)𝑝𝑝(𝑦𝑦2|𝑦𝑦1)           (1) 

By (1), the following Markov chains hold 

(𝑈𝑈,𝑉𝑉) → (𝑋𝑋, 𝑆𝑆) → (𝑌𝑌1,𝑌𝑌3)                                                     (2) 
(𝑆𝑆,𝑋𝑋,𝑌𝑌3) → 𝑌𝑌1 → 𝑌𝑌2                                                               (3) 
𝑈𝑈 → (𝑉𝑉,𝑆𝑆) → 𝑋𝑋                                                                     (4) 

 Theorem 1: A pair of nonnegative numbers (𝑅𝑅0,𝑅𝑅1) is 
achievable for MBC with SI non-causally available at the 
transmitter provided that 

          𝑅𝑅0  ≤  min{𝐼𝐼(𝑈𝑈;𝑌𝑌2) − 𝐼𝐼(𝑈𝑈; 𝑆𝑆), 𝐼𝐼(𝑉𝑉;𝑌𝑌3) − 𝐼𝐼(𝑈𝑈𝑈𝑈; 𝑆𝑆)} 
          𝑅𝑅1  ≤  𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑈𝑈) − 𝐼𝐼(𝑉𝑉; 𝑆𝑆|𝑈𝑈) − 𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑉𝑉)                  (5) 
𝑅𝑅0 + 𝑅𝑅1  ≤  𝐼𝐼(𝑉𝑉;𝑌𝑌3) + 𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑉𝑉) − 𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑉𝑉) − 𝐼𝐼(𝑈𝑈𝑈𝑈; 𝑆𝑆) 
for some (𝑈𝑈,𝑉𝑉, 𝑆𝑆,𝑋𝑋,𝑌𝑌1,𝑌𝑌2,𝑌𝑌3) ∈ 𝒫𝒫. 

 Corollary 1.1: By setting  𝑆𝑆 ≡ ∅ in (5), the achievable rate 
region in Theorem 1 is reduced to the achievable rate region of 
MBC given in [12]. 

 Corollary 1.2: By setting 𝑌𝑌3 = 𝑌𝑌1 and  𝑉𝑉 = 𝑈𝑈 in (5), our 
achievable rate region reduces to that of [17] for the two-user 
degraded BC with SI. 

 Proof: Fix n and a joint distribution on 𝒫𝒫. Note that side 
information is distributed i.i.d according to 

𝑝𝑝(𝒔𝒔) = �𝑝𝑝(𝑠𝑠𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

 Split the ℳ1 message into two independent sub-message 
sets ℳ11 and ℳ12 so that 𝑅𝑅1 = 𝑅𝑅11 + 𝑅𝑅12. 

 Codebook generation: First randomly and independently 
generate 2𝑛𝑛�𝑅𝑅0

′ +𝑅𝑅0� sequences 𝒖𝒖(𝑚𝑚0
′ ,𝑚𝑚0),𝑚𝑚0

′ ∈ �1,2, … , 2𝑛𝑛𝑅𝑅0
′ �, 

𝑚𝑚0 ∈ {1,2, … , 2𝑛𝑛𝑅𝑅0 }, each one i.i.d according 
to ∏ 𝑝𝑝(𝑢𝑢𝑖𝑖)𝑛𝑛

𝑖𝑖=1  and then randomly throw them into 2𝑛𝑛𝑅𝑅0  bins. It 
is clear that we have 2𝑛𝑛𝑅𝑅0

′  sequences in each bin. 

 Now for each 𝒖𝒖(𝑚𝑚0
′ ,𝑚𝑚0), randomly and independently 

generate 2𝑛𝑛(𝑅𝑅11
′ +𝑅𝑅11 ) sequences  𝒗𝒗(𝑚𝑚0

′ ,𝑚𝑚0,𝑚𝑚11
′ ,𝑚𝑚11),𝑚𝑚11

′ ∈
�1, … , 2𝑛𝑛𝑅𝑅11

′ �, 𝑚𝑚11 ∈ {1, … , 2𝑛𝑛𝑅𝑅11 } each one i.i.d according 
to ∏ 𝑝𝑝𝑉𝑉|𝑈𝑈�𝑣𝑣𝑖𝑖�𝑢𝑢𝑖𝑖(𝑚𝑚0

′ ,𝑚𝑚0)�𝑛𝑛
𝑖𝑖=1 , and randomly throw them 

into 2𝑛𝑛𝑅𝑅11  bins. 

 Now for each sequence 𝒗𝒗(𝑚𝑚0
′ ,𝑚𝑚0,𝑚𝑚11

′ ,𝑚𝑚11), randomly and 
independently generate        2𝑛𝑛(𝑅𝑅12

′ +𝑅𝑅12 )        sequences 
𝒙𝒙(𝑚𝑚0

′ ,𝑚𝑚0,𝑚𝑚11
′ ,𝑚𝑚11,𝑚𝑚12

′ ,𝑚𝑚12) each one i.i.d according 
to ∏ 𝑝𝑝𝑋𝑋|𝑈𝑈 ,𝑉𝑉(𝑥𝑥𝑖𝑖|𝑣𝑣𝑖𝑖 ,𝑢𝑢𝑖𝑖)𝑛𝑛

𝑖𝑖=1 = ∏ 𝑝𝑝𝑋𝑋|𝑉𝑉(𝑥𝑥𝑖𝑖 |𝑣𝑣𝑖𝑖)𝑛𝑛
𝑖𝑖=1 . Then randomly 
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throw them into 2𝑛𝑛𝑅𝑅12  bins. Then provide the transmitter and 
all the receivers with bins and their codewords. 

 Encoding: We are given the side information 𝒔𝒔 and the 
message pair (𝑚𝑚0,𝑚𝑚1). Indeed, our messages are bin indices. 
We find 𝑚𝑚11, and 𝑚𝑚12. Now in the bin 𝑚𝑚0 of 𝒖𝒖 sequences look 
for a 𝑚𝑚0

′  such that (𝒖𝒖(𝑚𝑚0
′ ,𝑚𝑚0), 𝒔𝒔) ∈ 𝐴𝐴𝝐𝝐

(𝒏𝒏), i.e. the sequence 𝒖𝒖  
that is jointly typical with the 𝒔𝒔 given where definitions of 
typical sequences are given in section II-B. Then in the 
bin 𝑚𝑚11 of 𝒗𝒗  sequences look for some 𝑚𝑚11

′  such that 

(𝒖𝒖(𝑚𝑚0
′ ,𝑚𝑚0),𝒗𝒗(𝑚𝑚0

′ ,𝑚𝑚0,𝑚𝑚11
′ ,𝑚𝑚11), 𝒔𝒔) ∈ 𝑨𝑨𝝐𝝐

(𝒏𝒏) 

 Now in the bin 𝑚𝑚12 of 𝒙𝒙  sequences look for some 𝑚𝑚12
′  such 

that 

(𝒖𝒖(𝑚𝑚0
′ ,𝑚𝑚0),𝒗𝒗(𝑚𝑚0

′ ,𝑚𝑚0,𝑚𝑚11
′ ,𝑚𝑚11), 

𝒙𝒙(𝑚𝑚0
′ ,𝑚𝑚0,𝑚𝑚11

′ ,𝑚𝑚11,𝑚𝑚12
′ ,𝑚𝑚12), 𝒔𝒔) ∈ 𝑨𝑨𝝐𝝐

(𝒏𝒏) 

 We send the found 𝒙𝒙  sequence. Before bumping into 
decoding, assume that the correct indices are found through 
the encoding procedure, i.e. 𝑚𝑚0

′ = 𝑀𝑀0
′ ,𝑚𝑚11

′ = 𝑀𝑀11
′ , and 𝑚𝑚12

′ =
𝑀𝑀12

′ . 

 Decoding: Since the messages are uniformly distributed 
over their respective ranges, we can assume, without loss of 
generality, that the tuple (𝑚𝑚0,𝑚𝑚11,𝑚𝑚12) = (1,1,1) is sent. 

The second receiver 𝑌𝑌2 receives 𝒚𝒚2 thus having the 
following error events 

𝐸𝐸21 = �(𝒖𝒖(𝑀𝑀0
′ , 1),𝒚𝒚2) ∉ 𝐴𝐴𝜖𝜖

(𝑛𝑛)� 

𝐸𝐸22 = {(𝒖𝒖(𝑚𝑚0
′ ,𝑚𝑚0),𝒚𝒚2) ∈ 𝐴𝐴𝜖𝜖

(𝑛𝑛) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚0 ≠ 1 
               𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚0

′ ≠ 𝑀𝑀0
′ } 

Remark 2.1: the following error event 

𝐸𝐸23 = �(𝒖𝒖(𝑀𝑀0
′ ,𝑚𝑚0),𝒚𝒚1) ∈ 𝐴𝐴𝜖𝜖

(𝑛𝑛) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚0 ≠ 1� 

leads us to a redundant inequality. 

 Now by the weak law of large numbers (WLLN) [25], 
𝑝𝑝(𝐸𝐸21 ) ≤ 𝜖𝜖,∀𝜖𝜖 > 0 as 𝑛𝑛 → ∞. For the second error event we 
have 

𝑝𝑝(𝐸𝐸22 ) = � �𝑝𝑝(𝒖𝒖)𝑝𝑝(𝒚𝒚2) ≤
𝐴𝐴𝜖𝜖

(𝑛𝑛 )𝑚𝑚0,𝑚𝑚0
′

2𝑛𝑛�𝑅𝑅0+𝑅𝑅0
′ �2𝑛𝑛(𝐻𝐻(𝑈𝑈 ,𝑌𝑌2)+𝜖𝜖) 

2−𝑛𝑛(𝐻𝐻(𝑈𝑈)−𝜖𝜖)2−𝑛𝑛(𝐻𝐻(𝑌𝑌2)−𝜖𝜖) = 2−𝑛𝑛�𝐼𝐼(𝑈𝑈;𝑌𝑌2)−3𝜖𝜖−𝑅𝑅0−𝑅𝑅0
′ � 

We see that ∀𝜖𝜖 > 0, 𝑝𝑝(𝐸𝐸22) ≤ 𝜖𝜖 as 𝑛𝑛 → ∞ provided that 

𝑅𝑅0 + 𝑅𝑅0
′ ≤  𝐼𝐼(𝑈𝑈;𝑌𝑌2) − 3𝜖𝜖                                                      (6) 

 The first receiver 𝑌𝑌1 receives 𝒚𝒚1 and needs to decode 
both 𝑚𝑚0 and 𝑚𝑚1. Therefore, the error events are 

𝐸𝐸11 = {( 𝒖𝒖(𝑀𝑀0
′ , 1),𝒗𝒗(𝑀𝑀0

′ , 1,𝑀𝑀11
′ , 1), 

               𝒙𝒙(𝑀𝑀0
′ , 1,𝑀𝑀11

′ , 1,𝑀𝑀12
′ , 1),𝒚𝒚1) ∉ 𝐴𝐴∈

(𝑛𝑛)} 

𝐸𝐸12 = {( 𝒖𝒖(𝑀𝑀0
′ , 1),𝒗𝒗(𝑀𝑀0

′ , 1,𝑀𝑀11
′ , 1), 

              𝒙𝒙(𝑀𝑀0
′ , 1,𝑀𝑀11

′ , 1,𝑚𝑚12
′ ,𝑚𝑚12),𝒚𝒚1) ∈ 𝐴𝐴∈

(𝑛𝑛) 
              𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚12 ≠ 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚12

′ ≠ 𝑀𝑀12
′ } 

𝐸𝐸13 = {( 𝒖𝒖(𝑀𝑀0
′ , 1),𝒗𝒗(𝑀𝑀0

′ , 1,𝑚𝑚11
′ ,𝑚𝑚11), 

              𝒙𝒙(𝑀𝑀0
′ , 1,𝑚𝑚11

′ ,𝑚𝑚11,𝑚𝑚12
′ ,𝑚𝑚12),𝒚𝒚1) ∈ 𝐴𝐴∈

(𝑛𝑛) 
              𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚1𝑖𝑖 ≠ 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚1𝑖𝑖

′ ≠ 𝑀𝑀1𝑖𝑖
′ , 𝑖𝑖 = 1,2} 

𝐸𝐸14 = {( 𝒖𝒖(𝑚𝑚0
′ ,𝑚𝑚0),𝒗𝒗(𝑚𝑚0

′ ,𝑚𝑚0,𝑚𝑚11
′ ,𝑚𝑚11), 

              𝒙𝒙(𝑚𝑚0
′ ,𝑚𝑚0,𝑚𝑚11

′ ,𝑚𝑚11,𝑚𝑚12
′ ,𝑚𝑚12),𝒚𝒚1) ∈ 𝐴𝐴∈

(𝑛𝑛) 
              𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚0 ≠ 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚0

′ ≠ 𝑀𝑀0
′  𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

              𝑚𝑚1𝑖𝑖 ≠ 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚1𝑖𝑖
′ ≠ 𝑀𝑀1𝑖𝑖

′ , 𝑖𝑖 = 1,2} 

 The first receiver’s probability of error can be arbitrarily 
made small provided that 

                                            𝑅𝑅12 + 𝑅𝑅12
′  ≤   𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑉𝑉) − 6𝜖𝜖      (7) 

                    𝑅𝑅11 + 𝑅𝑅11
′ + 𝑅𝑅12 + 𝑅𝑅12

′  ≤   𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑈𝑈) − 6𝜖𝜖      (8) 
𝑅𝑅0 + 𝑅𝑅0

′ + 𝑅𝑅11 + 𝑅𝑅11
′ + 𝑅𝑅12 + 𝑅𝑅12

′  ≤   𝐼𝐼(𝑋𝑋;𝑌𝑌1) − 5𝜖𝜖          (9) 

The third receiver 𝑌𝑌3 receives 𝒚𝒚3 and needs to decode only 
the common message indirectly by decoding the 
message 𝑚𝑚11. The error events are 

𝐸𝐸31 = �( 𝒖𝒖(𝑀𝑀0
′ , 1),𝒗𝒗(𝑀𝑀0

′ , 1,𝑀𝑀11
′ , 1),𝒚𝒚3) ∉ 𝐴𝐴∈

(𝑛𝑛)� 

𝐸𝐸32 = {( 𝒖𝒖(𝑀𝑀0
′ , 1),𝒗𝒗(𝑀𝑀0

′ , 1,𝑚𝑚11
′ ,𝑚𝑚11),𝒚𝒚3) ∈ 𝐴𝐴∈

(𝑛𝑛) 𝑓𝑓𝑓𝑓𝑓𝑓 
               𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚11 ≠ 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚11

′ ≠ 𝑀𝑀11
′ } 

𝐸𝐸33 = {( 𝒖𝒖(𝑚𝑚0
′ ,𝑚𝑚0),𝒗𝒗(𝑚𝑚0

′ ,𝑚𝑚0,𝑚𝑚11
′ ,𝑚𝑚11),𝒚𝒚3) ∈ 𝐴𝐴∈

(𝑛𝑛) 𝑓𝑓𝑓𝑓𝑓𝑓 
               𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚0 ≠ 1,𝑚𝑚11 ≠ 1,𝑚𝑚0

′ ≠ 𝑀𝑀0
′ , 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚11

′ ≠ 𝑀𝑀11
′ } 

Again by using WLLN and AEP, we see that the third 
receiver’s error probabilities can be arbitrarily made small 
as 𝑛𝑛 → ∞ provided that 

𝑅𝑅0 + 𝑅𝑅0
′ + 𝑅𝑅11 + 𝑅𝑅11

′ ≤  𝐼𝐼(𝑉𝑉;𝑌𝑌3) − 3𝜖𝜖                               (10) 

Using Gel’fand-Pinsker coding we see that the encoders can 
choose the proper 𝑚𝑚0

′ ,𝑚𝑚11
′ , and 𝑚𝑚12

′  indices with vanishing 
probability of error provided that for every 𝜖𝜖 > 0 and 
sufficiently large n 

  𝑅𝑅0
′  ≥  𝐼𝐼(𝑈𝑈; 𝑆𝑆) + 2𝜖𝜖                                                            (11) 

𝑅𝑅11
′  ≥  𝐼𝐼(𝑉𝑉; 𝑆𝑆|𝑈𝑈) + 2𝜖𝜖                                                        (12) 

𝑅𝑅12
′  ≥  𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑉𝑉) + 2𝜖𝜖                                                        (13) 

Now combining (6) – (10) and (11) – (13) and noting that 

𝐼𝐼(𝑉𝑉;𝑆𝑆|𝑈𝑈) + 𝐼𝐼(𝑈𝑈; 𝑆𝑆) = 𝐼𝐼(𝑉𝑉𝑉𝑉; 𝑆𝑆)                                          (14) 

and using Fourier-Motzkin procedure afterwards to 
eliminate 𝑅𝑅11 and 𝑅𝑅12, we obtain (5) as an achievable rate 
region for MBC with SI.                                                                  ∎ 

 Remark 2.2: After Fourier-Motzkin elimination, we get the 
following inequality that seems to have to be added to (5) 

𝑅𝑅0 + 𝑅𝑅1 ≤ 𝐼𝐼(𝑋𝑋;𝑌𝑌1) − 𝐼𝐼(𝑈𝑈𝑈𝑈; 𝑆𝑆) − 𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑉𝑉). 

But this is actually a redundant inequality since 

1. If 𝐼𝐼(𝑈𝑈;𝑌𝑌2) − 𝐼𝐼(𝑈𝑈; 𝑆𝑆) ≤ 𝐼𝐼(𝑉𝑉;𝑌𝑌3) − 𝐼𝐼(𝑈𝑈𝑈𝑈; 𝑆𝑆), 



Draft 
 

5 

then we have 

𝑅𝑅0 + 𝑅𝑅1 ≤ 𝐼𝐼(𝑈𝑈;𝑌𝑌2) − 𝐼𝐼(𝑈𝑈; 𝑆𝑆) + 𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑈𝑈) 
−𝐼𝐼(𝑉𝑉; 𝑆𝑆|𝑈𝑈) − 𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑉𝑉) ≤ 𝐼𝐼(𝑈𝑈;𝑌𝑌1) + 𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑈𝑈) 
−𝐼𝐼(𝑈𝑈𝑈𝑈; 𝑆𝑆) − 𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑉𝑉). 

2. If 𝐼𝐼(𝑉𝑉;𝑌𝑌3) − 𝐼𝐼(𝑈𝑈𝑈𝑈; 𝑆𝑆) ≤ 𝐼𝐼(𝑈𝑈;𝑌𝑌2) − 𝐼𝐼(𝑈𝑈; 𝑆𝑆), 

then we have 

𝑅𝑅0 + 𝑅𝑅1 ≤ 𝐼𝐼(𝑉𝑉;𝑌𝑌3) − 𝐼𝐼(𝑈𝑈𝑈𝑈; 𝑆𝑆) + 𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑈𝑈) 
−𝐼𝐼(𝑉𝑉; 𝑆𝑆|𝑈𝑈) − 𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑉𝑉) ≤ 𝐼𝐼(𝑈𝑈;𝑌𝑌2) − 𝐼𝐼(𝑈𝑈;𝑆𝑆) 
+𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑈𝑈) − 𝐼𝐼(𝑉𝑉; 𝑆𝑆|𝑈𝑈) − 𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑉𝑉) ≤ 𝐼𝐼(𝑋𝑋;𝑌𝑌1) 
−𝐼𝐼(𝑈𝑈𝑈𝑈; 𝑆𝑆) − 𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑉𝑉). 

Theorem 2: The capacity region of MBC with SI non-
causally available at the transmitter and at all the receivers 
with one deterministic component, i.e. when there exists a 
deterministic function 𝑓𝑓 such that 𝑌𝑌3 = 𝑓𝑓(𝑋𝑋, 𝑆𝑆), is the set of all 
rate pairs (𝑅𝑅0,𝑅𝑅1) such that 

          𝑅𝑅0  ≤  min{𝐼𝐼(𝑈𝑈;𝑌𝑌2|𝑆𝑆),𝐻𝐻(𝑌𝑌3|𝑆𝑆)} 
          𝑅𝑅1  ≤  𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑈𝑈, 𝑆𝑆)                                                     (15) 
𝑅𝑅0 + 𝑅𝑅1  ≤  𝐻𝐻(𝑌𝑌3|𝑆𝑆) + 𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑌𝑌3, 𝑆𝑆) 
for some 
 𝑝𝑝(𝑢𝑢, 𝑣𝑣, 𝑠𝑠, 𝑥𝑥,𝑦𝑦1,𝑦𝑦2,𝑦𝑦3) = 𝑝𝑝(𝑠𝑠)𝑝𝑝(𝑢𝑢|𝑠𝑠)𝑝𝑝(𝑣𝑣|𝑢𝑢, 𝑠𝑠) 

𝑝𝑝(𝑥𝑥|𝑣𝑣, 𝑠𝑠)𝑝𝑝(𝑦𝑦1|𝑥𝑥, 𝑠𝑠)𝐼𝐼�𝑦𝑦3 = 𝑓𝑓(𝑥𝑥, 𝑠𝑠)�𝑝𝑝(𝑦𝑦2|𝑦𝑦1) 
where I(.) is the identity function. 

Proof: 

Achievability: Setting 𝑌𝑌𝑘𝑘 = (𝑌𝑌𝑘𝑘 , 𝑆𝑆), 𝑘𝑘 = 1,2,3, in (5) we see 
that 

𝑅𝑅0 ≤ 𝐼𝐼(𝑈𝑈;𝑌𝑌2, 𝑆𝑆) − 𝐼𝐼(𝑈𝑈;𝑆𝑆) = 𝐼𝐼(𝑈𝑈;𝑌𝑌2|𝑆𝑆) 

𝑅𝑅0 ≤ 𝐼𝐼(𝑉𝑉;𝑌𝑌3, 𝑆𝑆) − 𝐼𝐼(𝑈𝑈𝑈𝑈; 𝑆𝑆) = 𝐼𝐼(𝑈𝑈𝑈𝑈;𝑌𝑌3, 𝑆𝑆) − 𝐼𝐼(𝑈𝑈𝑈𝑈; 𝑆𝑆) 
      = 𝐼𝐼(𝑈𝑈𝑈𝑈;𝑌𝑌3|𝑆𝑆) = 𝐼𝐼(𝑉𝑉;𝑌𝑌3|𝑆𝑆) 

𝑅𝑅1 ≤ 𝐼𝐼(𝑋𝑋;𝑌𝑌1, 𝑆𝑆|𝑈𝑈) − 𝐼𝐼(𝑉𝑉; 𝑆𝑆|𝑈𝑈) − 𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑉𝑉) 
      = 𝐼𝐼(𝑉𝑉,𝑋𝑋;𝑌𝑌1, 𝑆𝑆|𝑈𝑈) − 𝐼𝐼(𝑉𝑉; 𝑆𝑆|𝑈𝑈) − 𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑉𝑉) 
      = 𝐼𝐼(𝑉𝑉,𝑋𝑋; 𝑆𝑆|𝑈𝑈) + 𝐼𝐼(𝑉𝑉,𝑋𝑋;𝑌𝑌1|𝑈𝑈, 𝑆𝑆) − 𝐼𝐼(𝑉𝑉; 𝑆𝑆|𝑈𝑈) − 𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑉𝑉) 
      = 𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑈𝑈, 𝑆𝑆) + 𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑈𝑈,𝑉𝑉) − 𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑉𝑉) = 𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑈𝑈, 𝑆𝑆) 

Notice that the last equality follows from the fact that 

𝐼𝐼(𝑋𝑋;𝑆𝑆|𝑈𝑈,𝑉𝑉) = 𝐻𝐻(𝑋𝑋|𝑈𝑈,𝑉𝑉) − 𝐻𝐻(𝑋𝑋|𝑈𝑈,𝑉𝑉, 𝑆𝑆) 
                       = 𝐻𝐻(𝑋𝑋|𝑉𝑉) − 𝐻𝐻(𝑋𝑋|𝑉𝑉, 𝑆𝑆) = 𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑉𝑉) 

𝑅𝑅0 + 𝑅𝑅1 ≤ 𝐼𝐼(𝑈𝑈,𝑉𝑉;𝑌𝑌3, 𝑆𝑆) + 𝐼𝐼(𝑋𝑋;𝑌𝑌1, 𝑆𝑆|𝑉𝑉) − 𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑉𝑉) 
                −𝐼𝐼(𝑈𝑈,𝑉𝑉; 𝑆𝑆) = 𝐼𝐼(𝑈𝑈,𝑉𝑉;𝑌𝑌3|𝑆𝑆) + 𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑉𝑉, 𝑆𝑆) 
                = 𝐼𝐼(𝑉𝑉;𝑌𝑌3|𝑆𝑆) + 𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑉𝑉, 𝑆𝑆) 

Therefore (5) is reduced to 

          𝑅𝑅0  ≤  min{𝐼𝐼(𝑈𝑈;𝑌𝑌2|𝑆𝑆), 𝐼𝐼(𝑉𝑉;𝑌𝑌3|𝑆𝑆)} 
          𝑅𝑅1  ≤  𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑈𝑈, 𝑆𝑆) 
𝑅𝑅0 + 𝑅𝑅1  ≤  𝐼𝐼(𝑉𝑉;𝑌𝑌3|𝑆𝑆) + 𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑉𝑉, 𝑆𝑆) 

 
(16) 

Notice that we always have the following Markov chain 
from (2) 

𝑉𝑉 → (𝑋𝑋, 𝑆𝑆) → 𝑌𝑌3 

and since 𝑌𝑌3 = 𝑓𝑓(𝑋𝑋, 𝑆𝑆), we can set 𝑉𝑉 = 𝑌𝑌3 in (16) to obtain 
(15). 

Converse: By the memorylessness of the channel we have 

�𝑀𝑀0,𝑀𝑀1,𝑌𝑌1
𝑖𝑖−1,𝑌𝑌2

𝑖𝑖−1,𝑌𝑌3
𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1

(𝑛𝑛) , 𝑆𝑆𝑖𝑖−1� → (𝑋𝑋𝑖𝑖 , 𝑆𝑆𝑖𝑖) → 
(𝑌𝑌1𝑖𝑖 ,𝑌𝑌2𝑖𝑖 ,𝑌𝑌3𝑖𝑖). 

 
(17) 

From (17) we obtain 

�𝑀𝑀0,𝑀𝑀1,𝑌𝑌1
𝑖𝑖−1,𝑌𝑌3

𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
(𝑛𝑛), 𝑆𝑆𝑖𝑖−1� → �𝑋𝑋𝑖𝑖 ,𝑆𝑆𝑖𝑖 ,𝑌𝑌2

𝑖𝑖−1� → 
(𝑌𝑌1𝑖𝑖 ,𝑌𝑌2𝑖𝑖 ,𝑌𝑌3𝑖𝑖)   (18)  

due to the centripetal property of first order Markov chains 
which is itself established by the non-negativity of mutual 
information. 

Now assume that the code (𝑛𝑛, 2𝑛𝑛𝑅𝑅0 , 2𝑛𝑛𝑅𝑅1 , 𝜖𝜖) is 𝜖𝜖-achievable 
for the MBC with SI with one deterministic component, 
therefore using Fano’s inequality we have 

𝑛𝑛𝑅𝑅0 = 𝐻𝐻(𝑀𝑀0) = 𝐻𝐻(𝑀𝑀0|𝑆𝑆𝑛𝑛) = 𝐻𝐻(𝑀𝑀0|𝑆𝑆𝑛𝑛 ,𝑌𝑌2
𝑛𝑛) + 𝐼𝐼(𝑀𝑀0;𝑌𝑌2

𝑛𝑛 |𝑆𝑆𝑛𝑛) 

         ≤ 𝐻𝐻(𝑀𝑀0|𝑌𝑌2
𝑛𝑛) + �𝐼𝐼(

𝑛𝑛

𝑖𝑖=1

𝑀𝑀0;𝑌𝑌2𝑖𝑖 �𝑌𝑌2
𝑖𝑖−1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1

(𝑛𝑛), 𝑆𝑆𝑖𝑖� 

         ≤ 𝑛𝑛𝜖𝜖02𝑛𝑛 + �𝐼𝐼(
𝑛𝑛

𝑖𝑖=1

𝑀𝑀0,𝑌𝑌1
𝑖𝑖−1,𝑌𝑌2

𝑖𝑖−1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
(𝑛𝑛) ;𝑌𝑌2𝑖𝑖|𝑆𝑆𝑖𝑖) 

         = 𝑛𝑛𝜖𝜖02𝑛𝑛 + �𝐼𝐼(
𝑛𝑛

𝑖𝑖=1

𝑈𝑈𝑖𝑖 ;𝑌𝑌2𝑖𝑖|𝑆𝑆𝑖𝑖) 

where 𝑈𝑈𝑖𝑖 ≜ �𝑀𝑀0,𝑌𝑌1
𝑖𝑖−1,𝑌𝑌2

𝑖𝑖−1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
(𝑛𝑛)�. We also have 

𝑛𝑛𝑅𝑅0 = 𝐻𝐻(𝑀𝑀0) = 𝐻𝐻(𝑀𝑀0|𝑀𝑀1, 𝑆𝑆𝑛𝑛) 
        = 𝐻𝐻(𝑀𝑀0|𝑀𝑀1, 𝑆𝑆𝑛𝑛 ,𝑌𝑌3

𝑛𝑛) + 𝐼𝐼(𝑀𝑀0;𝑌𝑌3
𝑛𝑛 |𝑀𝑀1, 𝑆𝑆𝑛𝑛) 

        ≤ 𝐻𝐻(𝑀𝑀0|𝑌𝑌3
𝑛𝑛) + �𝐼𝐼(

𝑛𝑛

𝑖𝑖=1

𝑀𝑀0;𝑌𝑌3𝑖𝑖 �𝑀𝑀1,𝑌𝑌3
𝑖𝑖−1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1

(𝑛𝑛), 𝑆𝑆𝑖𝑖� 

        (𝑎𝑎)
=
𝑛𝑛𝜖𝜖03𝑛𝑛 + �𝐻𝐻(𝑌𝑌3𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

𝑀𝑀1,𝑌𝑌3
𝑖𝑖−1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1

(𝑛𝑛), 𝑆𝑆𝑖𝑖) 

        ≤ 𝑛𝑛𝜖𝜖03𝑛𝑛 + �𝐻𝐻(𝑌𝑌3𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

𝑆𝑆𝑖𝑖) 

where (a) follows from the fact that 𝑌𝑌3 is a function 
of (𝑀𝑀0,𝑀𝑀1, 𝑆𝑆𝑛𝑛). For the bound on 𝑅𝑅1we have 

𝑛𝑛𝑅𝑅1 = 𝐻𝐻(𝑀𝑀1) = 𝐻𝐻(𝑀𝑀1|𝑀𝑀0, 𝑆𝑆𝑛𝑛) 
         = 𝐻𝐻(𝑀𝑀1|𝑀𝑀0, 𝑆𝑆𝑛𝑛 ,𝑌𝑌1

𝑛𝑛) + 𝐼𝐼(𝑀𝑀1;𝑌𝑌1
𝑛𝑛 |𝑀𝑀0, 𝑆𝑆𝑛𝑛) 

         ≤�𝐼𝐼(
𝑛𝑛

𝑖𝑖=1

𝑀𝑀1;𝑌𝑌1𝑖𝑖 �𝑀𝑀0,𝑌𝑌1
𝑖𝑖−1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1

(𝑛𝑛) , 𝑆𝑆𝑖𝑖� + 𝐻𝐻(𝑀𝑀1|𝑌𝑌1
𝑛𝑛) 

        (𝑎𝑎)
≤ �𝐼𝐼(

𝑛𝑛

𝑖𝑖=1

𝑋𝑋𝑖𝑖 , 𝑆𝑆𝑖𝑖 ,𝑌𝑌2
𝑖𝑖−1;𝑌𝑌1𝑖𝑖 �𝑀𝑀0,𝑌𝑌1

𝑖𝑖−1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
(𝑛𝑛) , 𝑆𝑆𝑖𝑖� + 𝑛𝑛𝜖𝜖11𝑛𝑛  

         = �𝐼𝐼(
𝑛𝑛

𝑖𝑖=1

𝑌𝑌2
𝑖𝑖−1;𝑌𝑌1𝑖𝑖 �𝑀𝑀0,𝑌𝑌1

𝑖𝑖−1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
(𝑛𝑛) , 𝑆𝑆𝑖𝑖� + 𝑛𝑛𝜖𝜖11𝑛𝑛  
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         +�𝐼𝐼(
𝑛𝑛

𝑖𝑖=1

𝑋𝑋𝑖𝑖 ;𝑌𝑌1𝑖𝑖 �𝑀𝑀0,𝑌𝑌1
𝑖𝑖−1,𝑌𝑌2

𝑖𝑖−1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
(𝑛𝑛) , 𝑆𝑆𝑖𝑖� 

          (𝑏𝑏)
=
�𝐼𝐼(
𝑛𝑛

𝑖𝑖=1

𝑋𝑋𝑖𝑖 ;𝑌𝑌1𝑖𝑖 �𝑀𝑀0,𝑌𝑌1
𝑖𝑖−1,𝑌𝑌2

𝑖𝑖−1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
(𝑛𝑛) , 𝑆𝑆𝑖𝑖� + 𝑛𝑛𝜖𝜖11𝑛𝑛  

           = �𝐼𝐼(
𝑛𝑛

𝑖𝑖=1

𝑋𝑋𝑖𝑖 ;𝑌𝑌1𝑖𝑖 |𝑈𝑈𝑖𝑖 , 𝑆𝑆𝑖𝑖) + 𝑛𝑛𝜖𝜖11𝑛𝑛 . 

where (a) follows from (18) and (b) follows from the Markov 
chain 𝑌𝑌2

𝑖𝑖−1 → �𝑀𝑀0,𝑌𝑌1
𝑖𝑖−1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1

(𝑛𝑛), 𝑆𝑆𝑖𝑖� → 𝑌𝑌1𝑖𝑖  due to the 
degradedness of 𝑌𝑌2 than to 𝑌𝑌1.  

The last bound on 𝑅𝑅0 + 𝑅𝑅1 is proved as follows 

𝑛𝑛(𝑅𝑅0 + 𝑅𝑅1) = 𝐻𝐻(𝑀𝑀0,𝑀𝑀1|𝑆𝑆𝑛𝑛) 

      = 𝐻𝐻(𝑀𝑀0,𝑀𝑀1|𝑆𝑆𝑛𝑛 ,𝑌𝑌1
𝑛𝑛 ,𝑌𝑌3

𝑛𝑛) + 𝐼𝐼(𝑀𝑀0,𝑀𝑀1;𝑌𝑌1
𝑛𝑛 ,𝑌𝑌3

𝑛𝑛 |𝑆𝑆𝑛𝑛) 

       ≤ 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐼𝐼�𝑀𝑀0,𝑀𝑀1;𝑌𝑌1𝑖𝑖 ,𝑌𝑌3𝑖𝑖 �𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
(𝑛𝑛) , 𝑆𝑆𝑖𝑖 ,𝑌𝑌1

𝑖𝑖−1,𝑌𝑌3
𝑖𝑖−1�

𝑛𝑛

𝑖𝑖=1

 

       = 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐻𝐻�𝑌𝑌1𝑖𝑖 ,𝑌𝑌3𝑖𝑖 �𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
(𝑛𝑛) , 𝑆𝑆𝑖𝑖 ,𝑌𝑌1

𝑖𝑖−1,𝑌𝑌3
𝑖𝑖−1�

𝑛𝑛

𝑖𝑖=1

 

       −�𝐻𝐻�𝑌𝑌1𝑖𝑖 ,𝑌𝑌3𝑖𝑖 �𝑀𝑀0,𝑀𝑀1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
(𝑛𝑛) , 𝑆𝑆𝑖𝑖 ,𝑌𝑌1

𝑖𝑖−1,𝑌𝑌3
𝑖𝑖−1�

𝑛𝑛

𝑖𝑖=1

 

       ≤ 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐻𝐻(𝑌𝑌1𝑖𝑖 ,𝑌𝑌3𝑖𝑖|𝑆𝑆𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

       −�𝐻𝐻�𝑌𝑌1𝑖𝑖 �𝑀𝑀0,𝑀𝑀1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
(𝑛𝑛) , 𝑆𝑆𝑖𝑖 ,𝑌𝑌1

𝑖𝑖−1,𝑌𝑌3
𝑖𝑖−1�

𝑛𝑛

𝑖𝑖=1

 

       (𝑎𝑎)
=
𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐻𝐻(𝑌𝑌3𝑖𝑖|𝑆𝑆𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

+ 𝐻𝐻(𝑌𝑌1𝑖𝑖|𝑌𝑌3𝑖𝑖 , 𝑆𝑆𝑖𝑖) 

        −�𝐻𝐻�𝑌𝑌1𝑖𝑖 �𝑀𝑀0,𝑀𝑀1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
(𝑛𝑛), 𝑆𝑆𝑖𝑖 ,𝑌𝑌1

𝑖𝑖−1,𝑌𝑌3
𝑖𝑖−1,𝑌𝑌3𝑖𝑖�

𝑛𝑛

𝑖𝑖=1

 

      = 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐻𝐻(𝑌𝑌3𝑖𝑖|𝑆𝑆𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

      +�𝐼𝐼�𝑀𝑀0,𝑀𝑀1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
(𝑛𝑛) ,𝑌𝑌1

𝑖𝑖−1,𝑌𝑌3
𝑖𝑖−1;𝑌𝑌1𝑖𝑖 �𝑌𝑌3𝑖𝑖 , 𝑆𝑆𝑖𝑖�

𝑛𝑛

𝑖𝑖=1

 

      (𝑏𝑏)
≤ 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐻𝐻(𝑌𝑌3𝑖𝑖 |𝑆𝑆𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

+ 𝐼𝐼(𝑋𝑋𝑖𝑖 , 𝑆𝑆𝑖𝑖 ;𝑌𝑌1𝑖𝑖 |𝑌𝑌3𝑖𝑖 , 𝑆𝑆𝑖𝑖) 

      = 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐻𝐻(𝑌𝑌3𝑖𝑖|𝑆𝑆𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

+ 𝐼𝐼(𝑋𝑋𝑖𝑖 ;𝑌𝑌1𝑖𝑖 |𝑌𝑌3𝑖𝑖 , 𝑆𝑆𝑖𝑖). 

where (a) follows from the chain rule for entropy and the fact 
that 𝑌𝑌3𝑖𝑖 = 𝑓𝑓(𝑀𝑀0,𝑀𝑀1, 𝑆𝑆𝑛𝑛) and (b) follows from (17). 

Therefore the proof of the converse part is immediate using 
the standard time-sharing schemes and the Theorem’s proof is 
complete.                                                                                             ∎ 

Proposition 2.1: The capacity region of MBC with SI non-
causally available at the transmitter and at all the receivers 
with two deterministic components, i.e. when there exist two 

deterministic functions 𝑓𝑓1, and 𝑓𝑓3 such that 𝑌𝑌1 = 𝑓𝑓1(𝑋𝑋, 𝑆𝑆), and 
𝑌𝑌3 = 𝑓𝑓3(𝑋𝑋, 𝑆𝑆), is the set of all rate pairs (𝑅𝑅0,𝑅𝑅1) such that 

          𝑅𝑅0  ≤  min{𝐼𝐼(𝑈𝑈;𝑌𝑌2|𝑆𝑆),𝐻𝐻(𝑌𝑌3|𝑆𝑆)} 
          𝑅𝑅1  ≤  𝐻𝐻(𝑌𝑌1|𝑈𝑈, 𝑆𝑆)                                                        (19) 
𝑅𝑅0 + 𝑅𝑅1  ≤  𝐻𝐻(𝑌𝑌1,𝑌𝑌3|𝑆𝑆) 

for some 
𝑝𝑝(𝑢𝑢, 𝑣𝑣, 𝑠𝑠, 𝑥𝑥,𝑦𝑦1,𝑦𝑦2,𝑦𝑦3) = 𝑝𝑝(𝑠𝑠)𝑝𝑝(𝑢𝑢|𝑠𝑠)𝑝𝑝(𝑣𝑣|𝑢𝑢, 𝑠𝑠) 

𝑝𝑝(𝑥𝑥|𝑣𝑣, 𝑠𝑠)𝐼𝐼�𝑦𝑦1 = 𝑓𝑓1(𝑥𝑥, 𝑠𝑠)�𝐼𝐼�𝑦𝑦3 = 𝑓𝑓3(𝑥𝑥, 𝑠𝑠)�𝑝𝑝(𝑦𝑦2|𝑦𝑦1) 

Proof:  

Achievability: We can obtain (19) by setting 𝑋𝑋 = 𝑌𝑌1 and 
𝑉𝑉 = 𝑌𝑌3 in (16). 

Converse: Bound on 𝑅𝑅0 is the same as Theorem 2. Now 
using Fano’s inequality we have  

𝑛𝑛𝑅𝑅1 ≤ 𝑛𝑛𝜖𝜖11𝑛𝑛 + �𝐼𝐼�𝑀𝑀1;𝑌𝑌1𝑖𝑖 �𝑀𝑀0,𝑌𝑌1
𝑖𝑖−1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1

(𝑛𝑛), 𝑆𝑆𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

 

         ≤ 𝑛𝑛𝜖𝜖11𝑛𝑛 + �𝐼𝐼�𝑀𝑀1,𝑋𝑋𝑖𝑖 ,𝑌𝑌2
𝑖𝑖−1;𝑌𝑌1𝑖𝑖 �𝑀𝑀0,𝑌𝑌1

𝑖𝑖−1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
(𝑛𝑛) , 𝑆𝑆𝑖𝑖�

𝑛𝑛

𝑖𝑖=1

 

        (𝑎𝑎)
=
𝑛𝑛𝜖𝜖11𝑛𝑛 + �𝐼𝐼�𝑀𝑀1,𝑋𝑋𝑖𝑖 ;𝑌𝑌1𝑖𝑖 �𝑀𝑀0,𝑌𝑌1

𝑖𝑖−1,𝑌𝑌2
𝑖𝑖−1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1

(𝑛𝑛), 𝑆𝑆𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

 

        (𝑏𝑏)
=
𝑛𝑛𝜖𝜖11𝑛𝑛 + �𝐻𝐻�𝑌𝑌1𝑖𝑖 �𝑀𝑀0,𝑌𝑌1

𝑖𝑖−1,𝑌𝑌2
𝑖𝑖−1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1

(𝑛𝑛), 𝑆𝑆𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

 

         = 𝑛𝑛𝜖𝜖11𝑛𝑛 + �𝐻𝐻(𝑌𝑌1𝑖𝑖|𝑈𝑈𝑖𝑖 , 𝑆𝑆𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

, 

where (a) follows from 𝑌𝑌2
𝑖𝑖−1 → �𝑀𝑀0,𝑌𝑌1

𝑖𝑖−1, 𝑆𝑆𝑛𝑛� → 𝑌𝑌1𝑖𝑖 , (b) 
follows from the fact that 𝑌𝑌1𝑖𝑖  is a function of (𝑀𝑀0,𝑀𝑀1, 𝑆𝑆𝑛𝑛). 

For sum of the rates we have 

𝑛𝑛(𝑅𝑅0 + 𝑅𝑅1) = 𝐻𝐻(𝑀𝑀0,𝑀𝑀1|𝑆𝑆𝑛𝑛) 

               = 𝐻𝐻(𝑀𝑀0,𝑀𝑀1|𝑆𝑆𝑛𝑛 ,𝑌𝑌1
𝑛𝑛 ,𝑌𝑌3

𝑛𝑛) + 𝐼𝐼(𝑀𝑀0,𝑀𝑀1;𝑌𝑌1
𝑛𝑛 ,𝑌𝑌3

𝑛𝑛 |𝑆𝑆𝑛𝑛) 

               ≤ 𝑛𝑛𝜖𝜖0𝑛𝑛 + �𝐼𝐼�𝑀𝑀0,𝑀𝑀1;𝑌𝑌1𝑖𝑖 ,𝑌𝑌3𝑖𝑖 �𝑌𝑌1
𝑖𝑖−1,𝑌𝑌3

𝑖𝑖−1, 𝑆𝑆𝑛𝑛�
𝑛𝑛

𝑖𝑖=1

 

               = 𝑛𝑛𝜖𝜖0𝑛𝑛 + �𝐻𝐻�𝑌𝑌1𝑖𝑖 ,𝑌𝑌3𝑖𝑖 �𝑌𝑌1
𝑖𝑖−1,𝑌𝑌3

𝑖𝑖−1, 𝑆𝑆𝑛𝑛�
𝑛𝑛

𝑖𝑖=1

 

               ≤ 𝑛𝑛𝜖𝜖0𝑛𝑛 + �𝐻𝐻(𝑌𝑌1𝑖𝑖 ,𝑌𝑌3𝑖𝑖|𝑆𝑆𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

.                                            ∎ 

Proposition 2.2: The capacity region of deterministic MBC 
with SI non-causally available at the transmitter and at all the 
receivers, i.e. when there exist three deterministic 
functions 𝑓𝑓1, 𝑓𝑓2, and 𝑓𝑓3 such that  𝑌𝑌1 = 𝑓𝑓1(𝑋𝑋, 𝑆𝑆),𝑌𝑌2 =
𝑓𝑓2(𝑋𝑋, 𝑆𝑆), and 𝑌𝑌3 = 𝑓𝑓3(𝑋𝑋, 𝑆𝑆), is the set of all rate 
pairs (𝑅𝑅0,𝑅𝑅1) such that 

          𝑅𝑅0  ≤  min{𝐻𝐻(𝑌𝑌2|𝑆𝑆),𝐻𝐻(𝑌𝑌3|𝑆𝑆)} 
          𝑅𝑅1  ≤  𝐻𝐻(𝑌𝑌1|𝑌𝑌2, 𝑆𝑆)                                                       (20) 
𝑅𝑅0 + 𝑅𝑅1  ≤  𝐻𝐻(𝑌𝑌1,𝑌𝑌3|𝑆𝑆) 
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for some 
𝑝𝑝(𝑢𝑢, 𝑣𝑣, 𝑠𝑠, 𝑥𝑥,𝑦𝑦1,𝑦𝑦2,𝑦𝑦3) = 𝑝𝑝(𝑠𝑠)𝑝𝑝(𝑢𝑢|𝑠𝑠)𝑝𝑝(𝑣𝑣|𝑢𝑢, 𝑠𝑠) 

𝑝𝑝(𝑥𝑥|𝑣𝑣, 𝑠𝑠)𝐼𝐼�𝑦𝑦1 = 𝑓𝑓1(𝑥𝑥, 𝑠𝑠)�𝐼𝐼�𝑦𝑦2 = 𝑓𝑓2(𝑥𝑥, 𝑠𝑠)�𝐼𝐼�𝑦𝑦3 = 𝑓𝑓3(𝑥𝑥, 𝑠𝑠)� 

Proof:  

 Achievability: The achievability part is immediate if we 
set 𝑈𝑈 = 𝑌𝑌2 in (19). 

Converse:  

𝑛𝑛𝑅𝑅0 = 𝐻𝐻(𝑀𝑀0|𝑆𝑆𝑛𝑛 ,𝑌𝑌2
𝑛𝑛) + 𝐼𝐼(𝑀𝑀0;𝑌𝑌2

𝑛𝑛 |𝑆𝑆𝑛𝑛) 

         ≤ 𝑛𝑛𝜖𝜖02𝑛𝑛 + �𝐼𝐼�𝑀𝑀0;𝑌𝑌2𝑖𝑖 �𝑌𝑌2
𝑖𝑖−1, 𝑆𝑆𝑛𝑛�

𝑛𝑛

𝑖𝑖=1

 

         = 𝑛𝑛𝜖𝜖02𝑛𝑛 + �𝐻𝐻�𝑌𝑌2𝑖𝑖 �𝑌𝑌2
𝑖𝑖−1, 𝑆𝑆𝑛𝑛�

𝑛𝑛

𝑖𝑖=1

≤ 𝑛𝑛𝜖𝜖02𝑛𝑛 + �𝐻𝐻(𝑌𝑌2𝑖𝑖|𝑆𝑆𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

. 

𝑛𝑛𝑅𝑅1 = 𝐻𝐻(𝑀𝑀1|𝑀𝑀0, 𝑆𝑆𝑛𝑛) ≤ 𝑛𝑛𝜖𝜖11𝑛𝑛 + �𝐼𝐼�𝑀𝑀1;𝑌𝑌1𝑖𝑖 �𝑀𝑀0,𝑌𝑌1
𝑖𝑖−1, 𝑆𝑆𝑛𝑛�

𝑛𝑛

𝑖𝑖=1

 

         = 𝑛𝑛𝜖𝜖11𝑛𝑛 + �𝐻𝐻�𝑌𝑌1𝑖𝑖 �𝑀𝑀0,𝑌𝑌1
𝑖𝑖−1, 𝑆𝑆𝑛𝑛�

𝑛𝑛

𝑖𝑖=1

 

        (𝑎𝑎)
=
𝑛𝑛𝜖𝜖11𝑛𝑛 + �𝐻𝐻�𝑌𝑌1𝑖𝑖 �𝑀𝑀0,𝑌𝑌1

𝑖𝑖−1, 𝑆𝑆𝑛𝑛 ,𝑌𝑌2𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

 

         ≤ 𝑛𝑛𝜖𝜖11𝑛𝑛 + �𝐻𝐻(𝑌𝑌1𝑖𝑖|𝑌𝑌2𝑖𝑖 , 𝑆𝑆𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

. 

where (a) follows from the fact that 𝑌𝑌2𝑖𝑖  is function 
of (𝑀𝑀0, 𝑆𝑆𝑛𝑛).                                                                                         ∎ 

IV. THREE-RECEIVER LESS NOISY BROADCAST 
CHANNEL WITH SIDE INFORMATION 

Define 𝒫𝒫∗ as the collection of all random variables 
(𝑈𝑈,𝑉𝑉, 𝑆𝑆,𝑋𝑋,𝑌𝑌1,𝑌𝑌2,𝑌𝑌3) with finite alphabets such that 

𝑝𝑝(𝑢𝑢, 𝑣𝑣, 𝑠𝑠, 𝑥𝑥, 𝑦𝑦1, 𝑦𝑦2, 𝑦𝑦3) = 
𝑝𝑝(𝑠𝑠)𝑝𝑝(𝑢𝑢|𝑠𝑠)𝑝𝑝(𝑣𝑣|𝑢𝑢, 𝑠𝑠)𝑝𝑝(𝑥𝑥|𝑣𝑣, 𝑠𝑠)𝑝𝑝(𝑦𝑦1, 𝑦𝑦2, 𝑦𝑦3|𝑥𝑥, 𝑠𝑠) 

 
(21) 

Theorem 3: A rate triple(𝑅𝑅1,𝑅𝑅2,𝑅𝑅3) is achievable for 3-
receiver less noisy broadcast channel with SI non-causally 
available at the transmitter provided that 

𝑅𝑅1  ≤  𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑉𝑉) − 𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑉𝑉) 
𝑅𝑅2  ≤  𝐼𝐼(𝑉𝑉;𝑌𝑌2|𝑈𝑈) − 𝐼𝐼(𝑉𝑉; 𝑆𝑆|𝑈𝑈)                                             (22) 
𝑅𝑅3  ≤  𝐼𝐼(𝑈𝑈;𝑌𝑌3) − 𝐼𝐼(𝑈𝑈; 𝑆𝑆) 

for some joint distribution on 𝒫𝒫∗. 

 Corollary 3.1: By setting 𝑆𝑆 ≡ ∅ in the above rate region, it 
reduces to the capacity region of 3-receiver less noisy BC 
given in [13]. 

 Proof: The proof uses Cover’s superposition [28] and 
Gel’fand-Pinsker random binning coding [15] procedures 
along with Nair’s indirect decoding and is similar to the proof 
of Theorem 1 and thus only an outline is provided. 

 Fix n and a distribution on 𝒫𝒫∗. 

 Again note that side information is distributed i.i.d 
according to 

𝑝𝑝(𝒔𝒔) = �𝑝𝑝(𝑠𝑠𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

 Randomly and independently generate 2𝑛𝑛(𝑅𝑅3
′ +𝑅𝑅3) sequences 

𝒖𝒖(𝑚𝑚3
′ ,𝑚𝑚3), each distributed i.i.d according to∏ 𝑝𝑝(𝑢𝑢𝑖𝑖)𝑛𝑛

𝑖𝑖=1  and 
randomly throw them into 2𝑛𝑛𝑅𝑅3  bins. 

 For each 𝒖𝒖(𝑚𝑚3
′ ,𝑚𝑚3), randomly and independently generate 

2𝑛𝑛(𝑅𝑅2
′ +𝑅𝑅2) sequences 𝒗𝒗(𝑚𝑚3

′ ,𝑚𝑚3,𝑚𝑚2
′ ,𝑚𝑚2), each distributed i.i.d 

according to ∏ 𝑝𝑝𝑉𝑉|𝑈𝑈(𝑣𝑣𝑖𝑖|𝑢𝑢𝑖𝑖)𝑛𝑛
𝑖𝑖=1  and randomly throw them into 

2𝑛𝑛𝑅𝑅2  bins. 

 Now for each generated 𝒗𝒗(𝑚𝑚3
′ ,𝑚𝑚3,𝑚𝑚2

′ ,𝑚𝑚2), randomly and 
independently generate       2𝑛𝑛(𝑅𝑅1

′ +𝑅𝑅1)      sequences 
 𝒙𝒙(𝑚𝑚3

′ ,𝑚𝑚3,𝑚𝑚2
′ ,𝑚𝑚2,𝑚𝑚1

′ ,𝑚𝑚1) each one distributed i.i.d 
according to ∏ 𝑝𝑝𝑋𝑋|𝑉𝑉(𝑥𝑥𝑖𝑖|𝑣𝑣𝑖𝑖)𝑛𝑛

𝑖𝑖=1  and randomly throw them into 
2𝑛𝑛𝑅𝑅1  bins. 

 Encoding is succeeded with small probability of error 
provided that 

𝑅𝑅3
′  ≥  𝐼𝐼(𝑈𝑈; 𝑆𝑆) 

𝑅𝑅2
′  ≥  𝐼𝐼(𝑉𝑉; 𝑆𝑆|𝑈𝑈) 

𝑅𝑅1
′  ≥  𝐼𝐼(𝑋𝑋; 𝑆𝑆|𝑉𝑉) 

(23) 
(24) 
(25) 

and decoding is succeeded if 

𝑅𝑅3 + 𝑅𝑅3
′  ≤  𝐼𝐼(𝑈𝑈;𝑌𝑌3) 

𝑅𝑅2 + 𝑅𝑅2
′  ≤  𝐼𝐼(𝑉𝑉;𝑌𝑌2|𝑈𝑈) 

𝑅𝑅1 + 𝑅𝑅1
′  ≤  𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑉𝑉) 

(26) 
(27) 
(28) 

Now combining (23), (24), and (25) with (26), (27) and (28) 
gives us (22).                                                                                      ∎ 

Theorem 4: The capacity region of the three-receiver less 
noisy BC with SI non-causally available at the transmitter and 
at the receivers is the set of all rate triples (𝑅𝑅1,𝑅𝑅2,𝑅𝑅3) such 
that 

𝑅𝑅1  ≤  𝐼𝐼(𝑋𝑋;𝑌𝑌1|𝑉𝑉𝑉𝑉) 
𝑅𝑅2  ≤  𝐼𝐼(𝑉𝑉;𝑌𝑌2|𝑈𝑈𝑈𝑈) 
𝑅𝑅3  ≤  𝐼𝐼(𝑈𝑈;𝑌𝑌3|𝑆𝑆) 

 
(29) 
 

Proof: 

Achievability: The direct part of the proof is achieved if one 
sets 𝑌𝑌𝑘𝑘 = (𝑌𝑌𝑘𝑘 , 𝑆𝑆), 𝑘𝑘 = 1,2,3, in (22). 

Converse: The converse part uses an extension of lemma 1 
in [13]. 

Lemma 1: [13] Let the channel 𝑋𝑋 → 𝑌𝑌 be less noisy than 
the channel 𝑋𝑋 → 𝑍𝑍. Consider (𝑀𝑀, 𝑆𝑆𝑛𝑛) to be any random vector 
such that 

(𝑀𝑀, 𝑆𝑆𝑛𝑛) → 𝑋𝑋𝑛𝑛 → (𝑌𝑌𝑛𝑛 ,𝑍𝑍𝑛𝑛) 

forms a Markov chain. Then 
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1. 𝐼𝐼(𝑌𝑌𝑖𝑖−1;𝑍𝑍𝑖𝑖�𝑀𝑀, 𝑆𝑆𝑛𝑛)  ≥  𝐼𝐼(𝑍𝑍𝑖𝑖−1;𝑍𝑍𝑖𝑖�𝑀𝑀, 𝑆𝑆𝑛𝑛) 
2. 𝐼𝐼(𝑌𝑌𝑖𝑖−1;𝑌𝑌𝑖𝑖�𝑀𝑀, 𝑆𝑆𝑛𝑛)  ≥  𝐼𝐼(𝑍𝑍𝑖𝑖−1;𝑌𝑌𝑖𝑖�𝑀𝑀, 𝑆𝑆𝑛𝑛) 

Proof: First of all note that since the channel is memoryless 
we have 

�𝑀𝑀1,𝑀𝑀2,𝑀𝑀3,𝑌𝑌1
𝑖𝑖−1,𝑌𝑌2

𝑖𝑖−1,𝑌𝑌3
𝑖𝑖−1, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1

𝑛𝑛 � → (𝑋𝑋𝑖𝑖 , 𝑆𝑆𝑖𝑖) → (𝑌𝑌1𝑖𝑖 ,𝑌𝑌2𝑖𝑖 ,𝑌𝑌3𝑖𝑖) 

Just like [13], for any 1 ≤ 𝑟𝑟 ≤ 𝑖𝑖 − 1 

𝐼𝐼(𝑍𝑍𝑟𝑟−1,𝑌𝑌𝑟𝑟𝑖𝑖−1;𝑌𝑌𝑖𝑖�𝑀𝑀, 𝑆𝑆𝑛𝑛) 
= 𝐼𝐼�𝑍𝑍𝑟𝑟−1,𝑌𝑌𝑟𝑟+1

𝑖𝑖−1;𝑌𝑌𝑖𝑖�𝑀𝑀, 𝑆𝑆𝑛𝑛� 
+𝐼𝐼�𝑌𝑌𝑟𝑟 ;𝑌𝑌𝑖𝑖�𝑀𝑀, 𝑆𝑆𝑛𝑛 ,𝑍𝑍𝑟𝑟−1,𝑌𝑌𝑟𝑟+1

𝑖𝑖−1� 
≥ 𝐼𝐼�𝑍𝑍𝑟𝑟−1,𝑌𝑌𝑟𝑟+1

𝑖𝑖−1;𝑌𝑌𝑖𝑖�𝑀𝑀, 𝑆𝑆𝑛𝑛� 
+𝐼𝐼�𝑍𝑍𝑟𝑟 ;𝑌𝑌𝑖𝑖�𝑀𝑀, 𝑆𝑆𝑛𝑛 ,𝑍𝑍𝑟𝑟−1,𝑌𝑌𝑟𝑟+1

𝑖𝑖−1� 
= 𝐼𝐼�𝑍𝑍𝑟𝑟 ,𝑌𝑌𝑟𝑟+1

𝑖𝑖−1;𝑌𝑌𝑖𝑖�𝑀𝑀, 𝑆𝑆𝑛𝑛� 

where the inequality follows from the memorylessness of the 
channel and the fact that  𝑌𝑌 is less noisy than  𝑍𝑍, i.e. 

𝐼𝐼�𝑌𝑌𝑟𝑟 ;𝑌𝑌𝑖𝑖�𝑀𝑀,𝑆𝑆𝑛𝑛 ,𝑍𝑍𝑟𝑟−1,𝑌𝑌𝑟𝑟+1
𝑖𝑖−1�  ≥  𝐼𝐼�𝑍𝑍𝑟𝑟 ;𝑌𝑌𝑖𝑖�𝑀𝑀, 𝑆𝑆𝑛𝑛 ,𝑍𝑍𝑟𝑟−1,𝑌𝑌𝑟𝑟+1

𝑖𝑖−1�. 

 Proof of the second part follows the same lines as the first 
part with negligible variations.                                                       ∎ 

 Now we stick to the proof of the converse 

𝑛𝑛𝑅𝑅3 = 𝐻𝐻(𝑀𝑀3|𝑆𝑆𝑛𝑛) = 𝐻𝐻(𝑀𝑀3|𝑆𝑆𝑛𝑛 ,𝑌𝑌3
𝑛𝑛) + 𝐼𝐼(𝑀𝑀3;𝑌𝑌3

𝑛𝑛 |𝑆𝑆𝑛𝑛) 

         ≤ 𝐻𝐻(𝑀𝑀3|𝑌𝑌3
𝑛𝑛) + 𝐼𝐼(𝑀𝑀3;𝑌𝑌3

𝑛𝑛 |𝑆𝑆𝑛𝑛) 

         ≤ 𝑛𝑛𝜖𝜖3𝑛𝑛 + �𝐼𝐼�𝑀𝑀3;𝑌𝑌3𝑖𝑖 �𝑆𝑆𝑛𝑛 ,𝑌𝑌3
𝑖𝑖−1�

𝑛𝑛

𝑖𝑖=1

 

         ≤ 𝑛𝑛𝜖𝜖3𝑛𝑛 + �𝐼𝐼�𝑀𝑀3;𝑌𝑌3𝑖𝑖 �𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌3

𝑖𝑖−1�
𝑛𝑛

𝑖𝑖=1

 

         ≤ 𝑛𝑛𝜖𝜖3𝑛𝑛 + �𝐼𝐼�𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌3

𝑖𝑖−1;𝑌𝑌3𝑖𝑖 �𝑆𝑆𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

 

         ≤ 𝑛𝑛𝜖𝜖3𝑛𝑛 + �𝐼𝐼�𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌2

𝑖𝑖−1;𝑌𝑌3𝑖𝑖 �𝑆𝑆𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

 

         = 𝑛𝑛𝜖𝜖3𝑛𝑛 + �𝐼𝐼(𝑈𝑈𝑖𝑖 ;𝑌𝑌3𝑖𝑖|𝑆𝑆𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

. 

where 𝑈𝑈𝑖𝑖 ≜ �𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌2

𝑖𝑖−1� and the last inequality 
follows from lemma 1. 

𝑛𝑛𝑅𝑅2 = 𝐻𝐻(𝑀𝑀2|𝑀𝑀3, 𝑆𝑆𝑛𝑛) = 𝐻𝐻(𝑀𝑀2|𝑀𝑀3, 𝑆𝑆𝑛𝑛 ,𝑌𝑌2
𝑛𝑛) 

        +𝐼𝐼(𝑀𝑀2;𝑌𝑌2
𝑛𝑛 |𝑀𝑀3, 𝑆𝑆𝑛𝑛) ≤ 𝐻𝐻(𝑀𝑀2|𝑌𝑌2

𝑛𝑛) + 𝐼𝐼(𝑀𝑀2;𝑌𝑌2
𝑛𝑛 |𝑀𝑀3, 𝑆𝑆𝑛𝑛) 

        ≤ 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐼𝐼�𝑀𝑀2;𝑌𝑌2𝑖𝑖 �𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖 ,𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌2

𝑖𝑖−1�
𝑛𝑛

𝑖𝑖=1

= 𝑛𝑛𝜖𝜖2𝑛𝑛  

        +�𝐼𝐼�𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌2

𝑖𝑖−1;𝑌𝑌2𝑖𝑖 �𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌2

𝑖𝑖−1, 𝑆𝑆𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

 

        = 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐼𝐼(𝑉𝑉𝑖𝑖 ;𝑌𝑌2𝑖𝑖|𝑈𝑈𝑖𝑖 , 𝑆𝑆𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

, 

where 𝑉𝑉𝑖𝑖 ≜ �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌2

𝑖𝑖−1�. It is clear that for the 

given choice of 𝑈𝑈𝑖𝑖  and 𝑉𝑉𝑖𝑖 , we have the Markov chain (2) 
satisfied for the channel is assumed to be memoryless. 

𝑛𝑛𝑅𝑅1 = 𝐻𝐻(𝑀𝑀1|𝑆𝑆𝑛𝑛 ,𝑀𝑀2,𝑀𝑀3) = 𝐻𝐻(𝑀𝑀1|𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑛𝑛 ,𝑌𝑌1
𝑛𝑛) 

         +𝐼𝐼(𝑀𝑀1;𝑌𝑌1
𝑛𝑛 |𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑛𝑛) 

          ≤ 𝐻𝐻(𝑀𝑀1|𝑌𝑌1
𝑛𝑛) + 𝐼𝐼(𝑀𝑀1;𝑌𝑌1

𝑛𝑛 |𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑛𝑛) 

          ≤ 𝑛𝑛𝜖𝜖1𝑛𝑛 + �𝐼𝐼�𝑀𝑀1;𝑌𝑌1𝑖𝑖 �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌1

𝑖𝑖−1�
𝑛𝑛

𝑖𝑖=1

 

         (𝑎𝑎)
≤ 𝑛𝑛𝜖𝜖1𝑛𝑛 + �𝐼𝐼�𝑋𝑋𝑖𝑖 ;𝑌𝑌1𝑖𝑖 �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1

𝑛𝑛 ,𝑌𝑌1
𝑖𝑖−1�

𝑛𝑛

𝑖𝑖=1

 

          = 𝑛𝑛𝜖𝜖1𝑛𝑛 + �𝐼𝐼(𝑋𝑋𝑖𝑖 ;𝑌𝑌1𝑖𝑖 �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1
𝑛𝑛 )

𝑛𝑛

𝑖𝑖=1

 

          −�𝐼𝐼�𝑌𝑌1
𝑖𝑖−1;𝑌𝑌1𝑖𝑖 �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1

𝑛𝑛 �
𝑛𝑛

𝑖𝑖=1

 

         (𝑏𝑏)
≤ 𝑛𝑛𝜖𝜖1𝑛𝑛 + �𝐼𝐼(𝑋𝑋𝑖𝑖 ;𝑌𝑌1𝑖𝑖 �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1

𝑛𝑛 )
𝑛𝑛

𝑖𝑖=1

 

           −�𝐼𝐼�𝑌𝑌2
𝑖𝑖−1;𝑌𝑌1𝑖𝑖 �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1

𝑛𝑛 �
𝑛𝑛

𝑖𝑖=1

 

           = 𝑛𝑛𝜖𝜖1𝑛𝑛 + �𝐼𝐼�𝑋𝑋𝑖𝑖 ;𝑌𝑌1𝑖𝑖 �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌2

𝑖𝑖−1, 𝑆𝑆𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

 

           = 𝑛𝑛𝜖𝜖1𝑛𝑛 + �𝐼𝐼(𝑋𝑋𝑖𝑖 ;𝑌𝑌1𝑖𝑖|𝑈𝑈𝑖𝑖 , 𝑆𝑆𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

, 

where (a) follows from the memorylessness of the channel and 
(b) follows from lemma 1. 

 Now using the standard time-sharing scheme, we can easily 
conclude that any achievable rate triple for the three-receiver 
less noisy BC with SI non-causally available at the transmitter 
and at the receivers, must satisfy (29) and the proof is 
complete.                                                                                             ∎ 

Proposition 3.1: The capacity region of the three-receiver 
less noisy BC with SI non-causally available at the transmitter 
and at all the receivers with one deterministic component, i.e. 
when there exists a function 𝑓𝑓1 such that 𝑌𝑌1 = 𝑓𝑓1(𝑋𝑋, 𝑆𝑆), is the 
set of all rate triples (𝑅𝑅1,𝑅𝑅2,𝑅𝑅3) such that 

𝑅𝑅1  ≤  𝐻𝐻(𝑌𝑌1|𝑉𝑉, 𝑆𝑆) 
𝑅𝑅2  ≤  𝐼𝐼(𝑉𝑉;𝑌𝑌2|𝑈𝑈, 𝑆𝑆) 
𝑅𝑅3  ≤  𝐼𝐼(𝑈𝑈;𝑌𝑌3|𝑆𝑆) 

 
(30) 
 

 Achievability: By setting 𝑋𝑋 = 𝑌𝑌1 in (29), (30) is obtained. 

 Converse: Bounds on 𝑅𝑅2 and 𝑅𝑅3 and the choice of auxiliary 
random variables 𝑈𝑈𝑖𝑖  and 𝑉𝑉𝑖𝑖  are the same as that of Theorem 4. 
Bound on 𝑅𝑅1,  though, is: 

𝑛𝑛𝑅𝑅1 = 𝐻𝐻(𝑀𝑀1|𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑛𝑛 ,𝑌𝑌1
𝑛𝑛) + 𝐼𝐼(𝑀𝑀1;𝑌𝑌1

𝑛𝑛 |𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑛𝑛) 

= 𝑛𝑛𝜖𝜖1𝑛𝑛 + �𝐼𝐼�𝑀𝑀1;𝑌𝑌1𝑖𝑖 �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑛𝑛 ,𝑌𝑌1
𝑖𝑖−1�

𝑛𝑛

𝑖𝑖=1
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≤ 𝑛𝑛𝜖𝜖1𝑛𝑛 + �𝐼𝐼�𝑋𝑋𝑖𝑖 ;𝑌𝑌1𝑖𝑖 �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑛𝑛 ,𝑌𝑌1
𝑖𝑖−1�

𝑛𝑛

𝑖𝑖=1

 

= 𝑛𝑛𝜖𝜖1𝑛𝑛 + �𝐼𝐼(𝑋𝑋𝑖𝑖 ;𝑌𝑌1𝑖𝑖|𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑛𝑛)
𝑛𝑛

𝑖𝑖=1

− 𝐼𝐼�𝑌𝑌1
𝑖𝑖−1;𝑌𝑌1𝑖𝑖 �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑛𝑛� 

≤ 𝑛𝑛𝜖𝜖1𝑛𝑛 + �𝐼𝐼(𝑋𝑋𝑖𝑖 ;𝑌𝑌1𝑖𝑖|𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑛𝑛)
𝑛𝑛

𝑖𝑖=1

− 𝐼𝐼�𝑌𝑌2
𝑖𝑖−1;𝑌𝑌1𝑖𝑖 �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑛𝑛� 

= 𝑛𝑛𝜖𝜖1𝑛𝑛 + �𝐼𝐼�𝑋𝑋𝑖𝑖 ;𝑌𝑌1𝑖𝑖 �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑛𝑛 ,𝑌𝑌2
𝑖𝑖−1�

𝑛𝑛

𝑖𝑖=1

 

= 𝑛𝑛𝜖𝜖1𝑛𝑛 + �𝐻𝐻�𝑌𝑌1𝑖𝑖 �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑖𝑖−1,𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌2

𝑖𝑖−1, 𝑆𝑆𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

 

= 𝑛𝑛𝜖𝜖1𝑛𝑛 + �𝐻𝐻(𝑌𝑌1𝑖𝑖|𝑉𝑉𝑖𝑖 , 𝑆𝑆𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

where again 𝑉𝑉𝑖𝑖 ≜ �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌2

𝑖𝑖−1�.                              ∎ 

 Proposition 3.2: The capacity region of the three-receiver 
less noisy BC with SI non-causally available at the transmitter 
and at all the receivers with two deterministic components, i.e. 
when there exist two deterministic functions 𝑓𝑓1, and 𝑓𝑓2 such 
that 𝑌𝑌1 = 𝑓𝑓1(𝑋𝑋, 𝑆𝑆) and 𝑌𝑌2 = 𝑓𝑓2(𝑋𝑋, 𝑆𝑆), is the set of all rate 
triples (𝑅𝑅1,𝑅𝑅2,𝑅𝑅3) such that 

𝑅𝑅1  ≤  𝐻𝐻(𝑌𝑌1|𝑌𝑌2𝑆𝑆) 
𝑅𝑅2  ≤  𝐻𝐻(𝑌𝑌2|𝑈𝑈, 𝑆𝑆) 
𝑅𝑅3  ≤  𝐼𝐼(𝑈𝑈;𝑌𝑌3|𝑆𝑆) 

 
(31) 
 

Achievability: The direct part is proved by setting 𝑋𝑋 = 𝑌𝑌1,  
and 𝑉𝑉 = 𝑌𝑌2 in (29). 

Converse: The bound on 𝑅𝑅3 is the same as in Theorem 4. 
For other bounds using Fano’s inequality we have 

𝑛𝑛𝑅𝑅2 ≤ 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐼𝐼�𝑀𝑀2;𝑌𝑌2𝑖𝑖 �𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌2

𝑖𝑖−1�
𝑛𝑛

𝑖𝑖=1

 

        (𝑎𝑎)
=
𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐻𝐻�𝑌𝑌2𝑖𝑖 �𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1

𝑛𝑛 ,𝑌𝑌2
𝑖𝑖−1, 𝑆𝑆𝑖𝑖�

𝑛𝑛

𝑖𝑖=1

 

         = 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐻𝐻(𝑌𝑌2𝑖𝑖|𝑈𝑈𝑖𝑖 , 𝑆𝑆𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

, 

𝑛𝑛𝑅𝑅1 ≤ 𝑛𝑛𝜖𝜖1𝑛𝑛 + �𝐼𝐼�𝑀𝑀1;𝑌𝑌1𝑖𝑖 �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑛𝑛 ,𝑌𝑌1
𝑖𝑖−1�

𝑛𝑛

𝑖𝑖=1

 

         = 𝑛𝑛𝜖𝜖1𝑛𝑛 + �𝐻𝐻�𝑌𝑌1𝑖𝑖 �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑛𝑛 ,𝑌𝑌1
𝑖𝑖−1�

𝑛𝑛

𝑖𝑖=1

 

        (𝑏𝑏)
=
𝑛𝑛𝜖𝜖1𝑛𝑛 + �𝐻𝐻�𝑌𝑌1𝑖𝑖 �𝑀𝑀2,𝑀𝑀3, 𝑆𝑆𝑛𝑛 ,𝑌𝑌1

𝑖𝑖−1,𝑌𝑌2𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

 

         ≤ 𝑛𝑛𝜖𝜖1𝑛𝑛 + �𝐻𝐻(𝑌𝑌1𝑖𝑖 |𝑌𝑌2𝑖𝑖 , 𝑆𝑆𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

. 

where (a) and (b) both follows from the fact that 𝑌𝑌2𝑖𝑖  is a 
function of (𝑀𝑀2, 𝑆𝑆𝑛𝑛).                                                                        ∎ 

Proposition 3.3: The capacity region of deterministic three-
receiver less noisy BC with SI non-causally available at the 
transmitter and at all the receivers is the set of all rate triples 
(𝑅𝑅1,𝑅𝑅2,𝑅𝑅3) such that 

𝑅𝑅1  ≤  𝐻𝐻(𝑌𝑌1|𝑌𝑌2, 𝑆𝑆) 
𝑅𝑅2  ≤  𝐻𝐻(𝑌𝑌2|𝑌𝑌3, 𝑆𝑆) 
𝑅𝑅3  ≤  𝐻𝐻(𝑌𝑌3|𝑆𝑆) 

 
(32) 
 

 Achievability: By setting 𝑈𝑈 = 𝑌𝑌3,𝑉𝑉 = 𝑌𝑌2, and 𝑋𝑋 = 𝑌𝑌1 in 
(29), one can obtain (32). 

Converse: Bound on 𝑅𝑅1 is the same as Proposition 3.3. Now 
using Fano’s inequality we have 

𝑛𝑛𝑅𝑅2 ≤ 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐼𝐼�𝑀𝑀2;𝑌𝑌2𝑖𝑖 �𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌2

𝑖𝑖−1�
𝑛𝑛

𝑖𝑖=1

 

         = 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐻𝐻�𝑌𝑌2𝑖𝑖 �𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌2

𝑖𝑖−1, 𝑆𝑆𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

 

        (𝑎𝑎)
=
𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐻𝐻�𝑌𝑌2𝑖𝑖 �𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1

𝑛𝑛 ,𝑌𝑌2
𝑖𝑖−1,𝑌𝑌3𝑖𝑖 , 𝑆𝑆𝑖𝑖�

𝑛𝑛

𝑖𝑖=1

 

         ≤ 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐻𝐻(𝑌𝑌2𝑖𝑖|𝑌𝑌3𝑖𝑖 , 𝑆𝑆𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

, 

where (a) follows from the deterministicness of 𝑌𝑌3𝑖𝑖 . 

𝑛𝑛𝑅𝑅3 ≤ 𝑛𝑛𝜖𝜖3𝑛𝑛 + �𝐼𝐼(
𝑛𝑛

𝑖𝑖=1

𝑀𝑀3;𝑌𝑌3𝑖𝑖 �𝑆𝑆𝑛𝑛 ,𝑌𝑌3
𝑖𝑖−1� 

         = 𝑛𝑛𝜖𝜖3𝑛𝑛 + �𝐻𝐻(
𝑛𝑛

𝑖𝑖=1

𝑌𝑌3𝑖𝑖 �𝑆𝑆𝑛𝑛 ,𝑌𝑌3
𝑖𝑖−1� 

         ≤ 𝑛𝑛𝜖𝜖3𝑛𝑛 + �𝐻𝐻(
𝑛𝑛

𝑖𝑖=1

𝑌𝑌3𝑖𝑖|𝑆𝑆𝑖𝑖).                                                        ∎ 

 Proposition 3.4: The capacity region of deterministic 3-
receiver less noisy BC with SI non-causally available at the 
transmitter and at the receivers 𝑌𝑌1 and 𝑌𝑌2, is the set of all rate 
triples (𝑅𝑅1,𝑅𝑅2,𝑅𝑅3) such that 

𝑅𝑅1  ≤  𝐻𝐻(𝑌𝑌1|𝑌𝑌2, 𝑆𝑆) 
𝑅𝑅2  ≤  𝐻𝐻(𝑌𝑌2|𝑌𝑌3, 𝑆𝑆) 
𝑅𝑅3  ≤  𝐻𝐻(𝑌𝑌3|𝑆𝑆) 

 
(33) 
 

 Proof: Achievability and converse, both are immediate and 
therefore omitted.                                                                              ∎ 

Proposition 3.5: The capacity region of the 3-receiver less 
noisy BC with SI non-causally available at the transmitter and 
at the receivers 𝑌𝑌1 and 𝑌𝑌2, with two deterministic components 
𝑌𝑌1 and 𝑌𝑌2, is the set of all rate triples (𝑅𝑅1,𝑅𝑅2,𝑅𝑅3) such that 
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𝑅𝑅1  ≤  𝐻𝐻(𝑌𝑌1|𝑌𝑌2, 𝑆𝑆) 
𝑅𝑅2  ≤  𝐻𝐻(𝑌𝑌2|𝑈𝑈, 𝑆𝑆) 
𝑅𝑅3  ≤  𝐼𝐼(𝑈𝑈;𝑌𝑌3) − 𝐼𝐼(𝑈𝑈; 𝑆𝑆) 

 
(34) 
 

Proof: The achievability is immediate. For the converse, 
only bounds on 𝑅𝑅2 and 𝑅𝑅3 might be non-trivial. Therefore, 

𝑛𝑛𝑅𝑅3 = 𝐻𝐻(𝑀𝑀3)(𝑎𝑎)
=
𝐻𝐻(𝑀𝑀3|𝑌𝑌3

𝑛𝑛) + 𝐼𝐼(𝑀𝑀3;𝑌𝑌3
𝑛𝑛) − 𝐼𝐼(𝑀𝑀3; 𝑆𝑆𝑛𝑛) 

         = 𝐻𝐻(𝑀𝑀3|𝑌𝑌3
𝑛𝑛) + �𝐼𝐼�𝑀𝑀3;𝑌𝑌3𝑖𝑖 �𝑌𝑌3

𝑖𝑖−1�
𝑛𝑛

𝑖𝑖=1

− 𝐼𝐼(𝑀𝑀3; 𝑆𝑆𝑖𝑖|𝑆𝑆𝑖𝑖+1
𝑛𝑛 ) 

        (𝑏𝑏)
≤ 𝑛𝑛𝜖𝜖3𝑛𝑛 + �𝐼𝐼�𝑀𝑀3,𝑌𝑌3

𝑖𝑖−1;𝑌𝑌3𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

− 𝐼𝐼(𝑀𝑀3, 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ;𝑆𝑆𝑖𝑖) 

      = 𝑛𝑛𝜖𝜖3𝑛𝑛 + �𝐼𝐼�𝑀𝑀3,𝑌𝑌3
𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1

𝑛𝑛 ;𝑌𝑌3𝑖𝑖 �
𝑛𝑛

𝑖𝑖=1

− 𝐼𝐼�𝑆𝑆𝑖𝑖+1
𝑛𝑛 ;𝑌𝑌3𝑖𝑖 �𝑀𝑀3,𝑌𝑌3

𝑖𝑖−1� 

          −𝐼𝐼�𝑀𝑀3, 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌3

𝑖𝑖−1; 𝑆𝑆𝑖𝑖� + 𝐼𝐼�𝑌𝑌3
𝑖𝑖−1; 𝑆𝑆𝑖𝑖 �𝑀𝑀3, 𝑆𝑆𝑖𝑖+1

𝑛𝑛 � 

      (𝑐𝑐)
=
𝑛𝑛𝜖𝜖3𝑛𝑛 + �𝐼𝐼�𝑀𝑀3,𝑌𝑌3

𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ;𝑌𝑌3𝑖𝑖�

𝑛𝑛

𝑖𝑖=1

− 𝐼𝐼�𝑀𝑀3, 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌3

𝑖𝑖−1; 𝑆𝑆𝑖𝑖� 

        = 𝑛𝑛𝜖𝜖3𝑛𝑛 + �𝐼𝐼(𝑈𝑈𝑖𝑖 ;𝑌𝑌3𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

− 𝐼𝐼(𝑈𝑈𝑖𝑖 ; 𝑆𝑆𝑖𝑖) 

where         𝑈𝑈𝑖𝑖 ≜ �𝑀𝑀3,𝑌𝑌3
𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1

𝑛𝑛 �.  (a) follows from the 
independence of the message and side information; (b) follows 
from Fano’s inequality, non-negativity of mutual information, 
and i.i.d-ness of SI; and (c) follows from Cszizár-Körner sum 
identity [29]. 

𝑛𝑛𝑅𝑅2 ≤ 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐼𝐼�𝑀𝑀2;𝑌𝑌2𝑖𝑖 �𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌2

𝑖𝑖−1�
𝑛𝑛

𝑖𝑖=1

 

         ≤ 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐼𝐼�𝑋𝑋2𝑖𝑖 ;𝑌𝑌2𝑖𝑖 �𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌2

𝑖𝑖−1�
𝑛𝑛

𝑖𝑖=1

 

         (𝑎𝑎)
≤ 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐼𝐼�𝑋𝑋2𝑖𝑖 ;𝑌𝑌2𝑖𝑖 �𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1

𝑛𝑛 ,𝑌𝑌3
𝑖𝑖−1�

𝑛𝑛

𝑖𝑖=1

 

          = 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐻𝐻�𝑌𝑌2𝑖𝑖 �𝑀𝑀3, 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌3

𝑖𝑖−1�
𝑛𝑛

𝑖𝑖=1

 

          ≤ 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐻𝐻�𝑌𝑌2𝑖𝑖 �𝑀𝑀3, 𝑆𝑆𝑖𝑖+1
𝑛𝑛 ,𝑌𝑌3

𝑖𝑖−1, 𝑆𝑆𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

 

          = 𝑛𝑛𝜖𝜖2𝑛𝑛 + �𝐻𝐻(𝑌𝑌2𝑖𝑖 |𝑈𝑈𝑖𝑖 , 𝑆𝑆𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

.                                                 ∎ 

where (a) follows from Lemma 1. 

Remark 3.1: The capacity region of proposition 3.3 is the 
same as that of proposition 3.4, while the capacity region of 
proposition 3.2 is different from that of proposition 3.5, 
therefore motivating us to believe that as far as a receiver is 
deterministic, its full knowledge of SI does not affect the 
capacity region. 

 

V. EXAMPLES 
In this section, we consider Gaussian three-receiver BC  

with additive Gaussian SI and see that the WDP property 
holds for three-receiver BCs, i.e. the capacity region of the 
three receiver BC with additive interference when the 
transmitter has full knowledge of the interference is the 
capacity region of three receiver BC without interference as 
we optimize the transmission procedure. The channel model is 
shown in Fig. 3. The channel input 𝑋𝑋 has limited power to 
transmit, i.e. 

1
𝑛𝑛
�𝐸𝐸(𝑋𝑋𝑖𝑖2)
𝑛𝑛

𝑖𝑖=1

≤ 𝑃𝑃 

 The additive interference is assumed to be common to the 
three channels and is distributed i.i.d according to 𝑁𝑁(0,𝑄𝑄), i.e. 
a normal random variable with zero mean and 
variance 𝑄𝑄. Each channel has also its own additive Gaussian 
noise distributed normally i.i.d with zero mean and 
corresponding variance. Also, assume that for noise powers 
we have 𝑁𝑁1 ≤ 𝑁𝑁2 ≤ 𝑁𝑁3. If the transmitter is fully aware of the 
interference, it can optimize the transmitted signal as in [22] to 
cancel the interference manipulation in the capacity of each 
discrete channel. Split the channel input to three independent 
parts, i.e.  𝑋𝑋1~𝑁𝑁(0,𝑃𝑃1),𝑋𝑋2~𝑁𝑁(0,𝑃𝑃2), and 𝑋𝑋3~𝑁𝑁(0,𝑃𝑃3) such 
that 𝑋𝑋 = 𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3, and 𝑃𝑃 = 𝑃𝑃1 + 𝑃𝑃2 + 𝑃𝑃3. For various 
receivers we have 

 
Figure 3. Gaussian three-receiver broadcast channel with additive Gaussian 

interference. 

 
 

 
𝑌𝑌3 = 𝑋𝑋3 + 𝑆𝑆 + (𝑋𝑋1 + 𝑋𝑋2 + 𝑍𝑍3) 
𝑌𝑌2 = 𝑋𝑋2 + (𝑆𝑆 + 𝑋𝑋3) + (𝑋𝑋1 + 𝑍𝑍2) 
𝑌𝑌1 = 𝑋𝑋1 + (𝑋𝑋2 + 𝑋𝑋3 + 𝑆𝑆) + 𝑍𝑍1 

 
(35) 
 

 We see that inputs to channels with smaller noise are 
themselves considered as noise for noisier channels and inputs 
to channels with more noise are considered as interference for 
channels with smaller noise due to cancellation decoding. We 
optimize the auxiliary random variable in each discrete 
channel as follows 

𝑈𝑈3 = 𝑋𝑋3 + 𝛽𝛽3𝑆𝑆3 = 𝑋𝑋3 + 𝛽𝛽3𝑆𝑆 
𝑈𝑈2 = 𝑋𝑋2 + 𝛽𝛽2𝑆𝑆2 = 𝑋𝑋2 + 𝛽𝛽2(𝑆𝑆 + 𝑋𝑋3) 
𝑈𝑈1 = 𝑋𝑋1 + 𝛽𝛽1𝑆𝑆1 = 𝑋𝑋1 + 𝛽𝛽1(𝑋𝑋2 + 𝑋𝑋3 + 𝑆𝑆) 

 
(36) 
 

and corresponding discrete channel capacity expressions 
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become 

𝑅𝑅3(𝛽𝛽3) = 𝐼𝐼(𝑈𝑈3;𝑌𝑌3) − 𝐼𝐼(𝑈𝑈3; 𝑆𝑆3) 
𝑅𝑅2(𝛽𝛽2) = 𝐼𝐼(𝑈𝑈2;𝑌𝑌2) − 𝐼𝐼(𝑈𝑈2; 𝑆𝑆2) 
𝑅𝑅1(𝛽𝛽1) = 𝐼𝐼(𝑈𝑈1;𝑌𝑌1) − 𝐼𝐼(𝑈𝑈1; 𝑆𝑆1) 

 
(37) 

Starting from noisiest channel and maximizing the 
corresponding channel capacity expression to obtain 
optimized 𝛽𝛽𝑘𝑘 , 𝑘𝑘 = 1,2,3, we have  

𝛽𝛽3
∗ =

𝑃𝑃3

𝑃𝑃 + 𝑁𝑁3
 

𝛽𝛽2
∗ =

𝑃𝑃2

𝑃𝑃1 + 𝑃𝑃2 + 𝑁𝑁2
 

𝛽𝛽1
∗ =

𝑃𝑃1

𝑃𝑃1 + 𝑁𝑁1
 

(38) 

(39) 

(40) 

and corresponding discrete channel capacities become 

𝑅𝑅3(𝛽𝛽3
∗) =

1
2

log �1 +
𝑃𝑃3

𝑃𝑃1 + 𝑃𝑃2 + 𝑁𝑁3
� 

𝑅𝑅2(𝛽𝛽2
∗) =

1
2

log �1 +
𝑃𝑃2

𝑃𝑃1 + 𝑁𝑁2
� 

𝑅𝑅1(𝛽𝛽1
∗) =

1
2

log �1 +
𝑃𝑃1

𝑁𝑁1
� 

(41) 

(42) 

(43) 

As it can be seen, there is no 𝑄𝑄 in the capacity expressions. 

VI. ADDITIVE EXPONENTIAL NOISE THREE-RECEIVER 
BROADCAST CHANNEL WITH EXPONENTIAL DIRT 

While a channel affected by numerous sources of low-
power noise is modeled as a channel with Gaussian noise 
due to the law of large numbers, a channel afflicted by one 
dominant source of noise can be sometimes modeled by 
exponential noise especially when the dominant source of 
noise produces noise in nearly all of the frequency bands. 
This source can be the sun or cosmic rays which afflict 
satellite communications dominantly. Exponential noise can 
also model phase noises and phase interferences in phase 
modulation schemes. Therefore, exponential noise is of 
practical importance, especially in satellite-to-earth 
broadcast communications. 

In this section, we provide simple bounds on the capacity 
region of the AEN-3BC-EI. The inner bound is found with 
the criteria that the mean value of the input signal is far 
more than the mean values of the noise and the interference 
whereas the smaller mean values are much smaller than 
unity and nearly close to zero. The outer bound, however, is 
predicated upon the equality of the mean value of the 
interference to the mean value of the main noise affecting 
the channel. 

The model of the channel is depicted in Fig. 4. 

Here we first provide the mentioned achievable rate for 
the capacity of a channel with AEN and additive 
exponential interference (AEI). 

 
Figure 4. The additive exponential noise three-receiver broadcast channel with 

additive interference 

 
First notice that according to Gelf’and-Pinsker, the capacity 

of a channel with side information non-causally available at 
the transmitter equals 

𝐶𝐶 = max
𝑝𝑝(𝑢𝑢 ,𝑥𝑥|𝑠𝑠)

𝐼𝐼(𝑈𝑈;𝑌𝑌) − 𝐼𝐼(𝑈𝑈; 𝑆𝑆) 

Notice that in this case we have 

𝐼𝐼(𝑈𝑈;𝑌𝑌) − 𝐼𝐼(𝑈𝑈; 𝑆𝑆) = ℎ(𝑌𝑌) − ℎ(𝑌𝑌|𝑈𝑈) − ℎ(𝑈𝑈) + ℎ(𝑈𝑈|𝑆𝑆) 

where 𝑌𝑌 = 𝑋𝑋 + 𝑆𝑆 + 𝑍𝑍, and ℎ(. ) is differential entropy with the 
following constraints on the input 

𝑋𝑋 ≥ 0, 
𝐸𝐸𝐸𝐸 ≤ 𝑚𝑚𝑥𝑥 . 

Now we set 𝑈𝑈 = 𝑋𝑋 + 𝑆𝑆, then we have 

𝐶𝐶 ≥ ℎ(𝑋𝑋 + 𝑆𝑆 + 𝑍𝑍) − ℎ(𝑆𝑆) − ℎ(𝑋𝑋 + 𝑆𝑆) + ℎ(𝑋𝑋) 

The output distribution which maximizes the output entropy 
with the constraint 

𝐸𝐸𝐸𝐸 ≤ 𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑧𝑧 + 𝑚𝑚𝑧𝑧  

is the Exponential distribution. The input distribution that 
makes the output Exponential is due to [34] as follows 

𝑓𝑓𝑋𝑋(𝑥𝑥) =
𝑚𝑚𝑥𝑥(𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑧𝑧) + 𝑚𝑚𝑠𝑠𝑚𝑚𝑧𝑧

(𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑧𝑧)3 𝑒𝑒− 𝑥𝑥
𝑚𝑚𝑥𝑥+𝑚𝑚𝑠𝑠+𝑚𝑚𝑧𝑧𝑢𝑢(𝑥𝑥) 

            +
(𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑧𝑧)(𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑧𝑧) −𝑚𝑚𝑠𝑠𝑚𝑚𝑧𝑧

(𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑧𝑧)2 𝛿𝛿(𝑥𝑥) 

            +
𝑚𝑚𝑠𝑠𝑚𝑚𝑧𝑧

𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑧𝑧
𝛿𝛿′(𝑥𝑥). 

Now with the specified distribution on 𝑋𝑋 and on 𝑆𝑆 and noticing 
that they are independent of each other, it is easily seen 
through the use of Fourier transform that 𝑋𝑋 + 𝑆𝑆 has the 
following distribution 

𝑓𝑓𝑋𝑋+𝑆𝑆(𝑡𝑡) =
𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑠𝑠

(𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑧𝑧)2 𝑒𝑒
− 𝑡𝑡
𝑚𝑚𝑥𝑥+𝑚𝑚𝑠𝑠+𝑚𝑚𝑧𝑧𝑢𝑢(𝑡𝑡) 

               +
𝑚𝑚𝑧𝑧

𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑧𝑧
𝛿𝛿(𝑡𝑡). 

The achievable rate ℜ𝑚𝑚𝑧𝑧  of the above channel is 
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𝐶𝐶 ≥ ln �1 +
𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑧𝑧

𝑚𝑚𝑧𝑧
� +

𝑚𝑚𝑥𝑥(𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑧𝑧) + 𝑚𝑚𝑠𝑠𝑚𝑚𝑧𝑧

(𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑧𝑧)2 . 

         ln�𝑒𝑒 �
(𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑧𝑧)3

𝑚𝑚𝑥𝑥(𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑧𝑧) + 𝑚𝑚𝑠𝑠𝑚𝑚𝑧𝑧
�� 

         −
𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑠𝑠

𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑧𝑧
ln�𝑒𝑒 �

(𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑧𝑧)2

𝑚𝑚𝑥𝑥 + 𝑚𝑚𝑠𝑠
�� 

provided that 𝑚𝑚𝑥𝑥 ≫ 𝑚𝑚𝑠𝑠 ,𝑚𝑚𝑥𝑥 ≫ 𝑚𝑚𝑧𝑧 , and 𝑚𝑚𝑠𝑠  and 𝑚𝑚𝑧𝑧  are both 
close to zero, i.e. much smaller than unity. 

Therefore, we have the following Theorem 

Theorem 5: For 𝑚𝑚𝑥𝑥 ≫ 𝑚𝑚𝑠𝑠 ,𝑚𝑚𝑥𝑥 ≫ 𝑚𝑚𝑧𝑧𝑘𝑘 , 𝑘𝑘 = 1,2,3,  
and 𝑚𝑚𝑠𝑠 and 𝑚𝑚𝑧𝑧  both close to zero, the set of achievable rates 
for the AEN-3BC-EI is given by the closure of the set of rate 
triples (𝑅𝑅1,𝑅𝑅2,𝑅𝑅3) satisfying 

𝑅𝑅1 ≤ ℜ𝑚𝑚𝑧𝑧1
 

𝑅𝑅2 ≤ ℜ𝑚𝑚𝑧𝑧2
 

𝑅𝑅3 ≤ ℜ𝑚𝑚𝑧𝑧3
. 

Now we provide an outer bound on the capacity region of 
AEN-3BC-EI in the case that the interference has the same 
mean value as the main noise of the channel, i.e. 

𝑚𝑚𝑠𝑠 = 𝑚𝑚𝑧𝑧 = 𝑚𝑚 

Now assuming that 𝑋𝑋 is independent of both 𝑆𝑆 and 𝑍𝑍, and also 
𝑆𝑆 is independent of 𝑍𝑍, we see that 

𝑆𝑆 + 𝑍𝑍~𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(2,𝑚𝑚) 

that is 

𝑓𝑓𝑆𝑆+𝑍𝑍(𝑡𝑡) =
𝑡𝑡
𝑚𝑚2 𝑒𝑒

− 𝑡𝑡𝑚𝑚𝑢𝑢(𝑡𝑡). 

Notice that in this case 

ℎ(𝑆𝑆 + 𝑍𝑍) = 2 − 𝜓𝜓(𝑛𝑛)|𝑛𝑛=2 + ln(𝑚𝑚)                                       (44) 

where 

𝜓𝜓(𝑧𝑧) =
𝑑𝑑
𝑑𝑑𝑑𝑑

Γ(𝑧𝑧),    ∀𝑧𝑧 ∈ ℝ 

with the Γ(. ) being the Gamma function defined as 

Γ(𝑧𝑧) = � 𝑡𝑡𝑧𝑧−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑
∞

0
. 

Therefore we have 

𝑑𝑑
𝑑𝑑𝑑𝑑

Γ(𝑧𝑧) =
𝑑𝑑
𝑑𝑑𝑑𝑑

� 𝑡𝑡𝑧𝑧−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑
∞

0
= �

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑡𝑡𝑧𝑧−1)𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑
∞

0
 

               = � 𝑧𝑧 ln(𝑡𝑡) 𝑡𝑡𝑧𝑧−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑
∞

0
= 𝜓𝜓(𝑧𝑧). 

Thus we can write 

𝜓𝜓(2) = 2� 𝑡𝑡 ln(𝑡𝑡) 𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑
∞

0
= 2(1 − 0.577 … ) ≈ 0.845568 

Now if we put the 𝜓𝜓(2) value in (44),  

ℎ(𝑆𝑆 + 𝑍𝑍) = 1.154431 + ln(𝑚𝑚)                                               (45) 

we have 

𝐶𝐶 ≤ 𝐼𝐼(𝑋𝑋;𝑌𝑌) = ℎ(𝑌𝑌) − ℎ(𝑌𝑌|𝑋𝑋) = ℎ(𝑋𝑋 + 𝑆𝑆 + 𝑍𝑍) − ℎ(𝑆𝑆 + 𝑍𝑍) 

The output is exponentially distributed with mean 𝑚𝑚𝑥𝑥 + 2𝑚𝑚 if 

𝑓𝑓𝑋𝑋(𝑥𝑥) =
𝑚𝑚𝑥𝑥(𝑚𝑚𝑥𝑥 + 2𝑚𝑚) + 𝑚𝑚2

(𝑚𝑚𝑥𝑥 + 2𝑚𝑚)3 𝑒𝑒− 𝑥𝑥
𝑚𝑚𝑥𝑥+2𝑚𝑚𝑢𝑢(𝑥𝑥) 

            +
2𝑚𝑚𝑥𝑥𝑚𝑚 + 3𝑚𝑚2

(𝑚𝑚𝑥𝑥 + 2𝑚𝑚)2 𝛿𝛿(𝑥𝑥) +
𝑚𝑚2

𝑚𝑚𝑥𝑥 + 2𝑚𝑚
𝛿𝛿′(𝑥𝑥) 

Therefore the outer bound in this case is as follows 

𝐶𝐶 ≤ ln�𝑒𝑒(𝑚𝑚𝑥𝑥 + 2𝑚𝑚)� − 1.154431 − ln(𝑚𝑚). 

We now have the following Theorem 

Theorem 6: For 𝑚𝑚𝑠𝑠 = 𝑚𝑚𝑧𝑧𝑘𝑘 = 𝑚𝑚, 𝑘𝑘 = 1,2,3, the set of all 
rate triples (𝑅𝑅1,𝑅𝑅2,𝑅𝑅3) satisfying the following constraints, 
constitute an outer bound on the capacity region of AEN-3BC-
EI 

𝑅𝑅1 ≤ ln�𝑒𝑒(𝑚𝑚𝑥𝑥 + 2𝑚𝑚)� − 1.154431 − ln(𝑚𝑚) 
𝑅𝑅2 ≤ ln�𝑒𝑒(𝑚𝑚𝑥𝑥 + 2𝑚𝑚)� − 1.154431 − ln(𝑚𝑚) 
𝑅𝑅3 ≤ ln�𝑒𝑒(𝑚𝑚𝑥𝑥 + 2𝑚𝑚)� − 1.154431 − ln(𝑚𝑚). 

VII. CONCLUSION 
Three-receiver broadcast channels with side information are 

considered. An achievable rate region for multilevel broadcast 
channel with side information is obtained. It is shown that the 
derived rate region is tight for the case where the receivers 
have full knowledge of side information and at least one of the 
receivers is a deterministic function of the input and side 
information. We also obtained an achievable rate region for 
three-receiver less noisy broadcast channel and showed that 
the obtained rate region is tight when side information is fully 
available to all the receivers. We then saw that presence of 
side information in deterministic receivers does not affect the 
capacity region. We also showed that three-receiver broadcast 
channels have the WDP property. Finally, we found an inner 
bound and an outer bound on the capacity region of additive 
exponential noise three receiver broadcast channel with 
exponential interference in special cases. 
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