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Abstract—We investigate spatially coupled code ensembles. For Another important branch started with the introduction of
transmission over the binary erasure channel, it was receiy  convolutional code§13] by Elias and the introduction of the
shown that spatial coupling increases thebelief propagation sequential decodinglgorithm by Wozencraft[[14]. Viterbi

threshold of the ensemble to essentially thenaximum a-priori . f .
threshold of the underlying component ensemble. This expias introduced theViterbi algorithm [15]. It was shown to be

why convolutional LDPC ensembles, originally introduced ty —Optimal by Forney([16] and Omura [1L7] and to be eminently
Felstrom and Zigangirov, perform so well over this channel. practical by Heller [18], [19].

We show that the equivalent result holds true for transmisson An important development in transmission over the continu-
over general binary-input memoryless output-symmetric clan- ;5 input, band-limited, additive white Gaussian noisencieh
nels. More precisely, given a desired error probability anda gap N . . .
to capacity, we can construct a spatially coupled ensemblehich was the |nv§ntlon of thdﬁtt_'ce codes|lt was shown _'nI:QD]_
fulfills these constraintsuniversally on this class of channels under [24] that lattice codes achieve the Shannon capacity. Akbrea
belief propagation decoding. In fact, mostcodes in that ensemble through in bandwidth-limited communications came about
have that property. The quantifier universal refers to the single  when Ungerboeck [25]=[27] invented a technique to combine
ensemble/code which is good for all channels but we assumeath coding and modulation. Ungerboeck’s technique ushered in a

the channel is known at the receiver. ) .
The key technical result is a proof that under belief propaga new era of fast modems. The technique, caliedis-coded

tion decoding spatially coupled ensembles achieve esseiifj the ~Modulation(TCM), offered significant coding gains without
area threshold of the underlying uncoupled ensemble. compromising bandwidth efficiency by mapping binary code

We conclude by discussing some interesting open problems. symbols, generated by a convolutional encoder, to a larger
(non-binary) signal constellation. In 28], [29] Forneyosied
that lattice codes as well as TCM schemes may be generated
by the same basic elements and the generalized technique was
termedcoset-coding

Ever since the publication of Shannon’s seminal paper [1] Coming back to binary linear codes, in 1993, Berrou,
and the introduction of the first coding schemes by HanGlavieux and Thitimajshima[30] proposaarbo codes. These
ming [2] and Golay [[3], coding theory has been concernexbdes attain near-Shannon limit performance under low-
with finding low-delay and low-complexity capacity-achiey complexity iterative decoding. Their remarkable perfoncea
schemes. The interested reader can find an excellent bitoriead to a flurry of research on the “turbo” principle. Around
review in [4]. Let us just briefly mention some of the highligh the same time, Spielman in his thesis|[3L].][32] and MacKay
before focusing on those parts that are the most relevant fard Neal in[[33]-{[35], independently rediscovered lowsign
our purpose. parity-check (LDPC) codes and iterative decoding, botioint

In the first 50 years, coding theory focused on the coduced in Gallager's remarkable thesis1[37]. Wiberg showed
struction of algebraic coding schemes and algorithms thaf38] that both turbo codes and LDPC codes fall under the
were capable of exploiting the algebraic structure. Twdyearumbrella of codes based on sparse graphsd that their
highlights of this line of research were the introduction otferative decoding algorithms are special cases of shm-
Bose-Chaudhuri-Hocquenghem (BCH) codeés [5], [6] as wedroduct algorithm. This line of research was formalized by
as Reed-Solomon (RS) codes [7]. Berlekamp devised Kschischang, Frey, and Loeliger who introduced the notion o
efficient decoding algorithni [8] and this algorithm was thefactor graphs[39].
interpreted by Massey as an algorithm for finding the shortes The next breakthrough in the design of codes (based on
feedback-shift register that generates a given sequérice fparse graphs) came with the idea of usimggular LDPC
More recently, Sudan introduced a list decoding algorithoodes by Luby, Mitzenmacher, Shokrollahi and Spielman
for RS codes that decodes beyond the guaranteed erfdB], [41]. With this added ingredient it became possible to
correcting radius[10]. Guruswami and Sudan improved upaonstruct irregular LDPC codes that achieved performance
this algorithm [11] and Koetter and Vardy showed how taithin 0.0045dB of the Shannon limit when transmitting
handle soft information [12]. over the binary-input additive white Gaussian noise chan-

[. INTRODUCTION
A. Historical Perspective
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nel, see Chung, Forney, Richardson and Urbahké [42]. TBe Prior Work on Spatially Coupled Codes
development of these codes went hand in hand with the . .
development of a systematic framework for their analysis %,T_he potential of _spa_ﬂally coupled codes has '099 be_en rec-
Luby, Mitzenmacher, Shokrollahi and Spielmani[43].][44Han gnized. Our_contnbutlon lies j[heref(_)re_ not in the mtro’_ntnn
Richardson and Urbank& [45]. of a new coding scheme, but in clarifying the mechanism that
A central research topic for codes on graphs is the intera{ggke these codgs perform so well. _ _

tion of the graphical structure of a code and its performance "€ term spatially coupled codesvas coined in [[8].
Turbo codes themselves are a prime example how the “riglgonvolutlonal LDPC codes (more precisely, terminated oenv

structure is important to achieve good performanice [3d __t|onaI.LDI_DC codes),wh|ph weremtroduced by Felstr.ord an

Further important parameters and structures are, the de%?angwovm_], and their many variants belong to thiassl

distribution (dd) and in particular the fraction of degtees /Ny do We introduce a new term? The three perhaps most

variable nodes, multi-edge ensembles [46], degree-twesiodnPortant reasons are: (i) the term “convolutional” coejur

in a chain [47], and protographs [48]. [49]. up a _falrly specific node interconnection structure whereas
Currently sparse graph codes and their associated iteraffPeriments have. shown that the particular nature of t.he

decoding algorithms are the best “practical” codes in teofns connection is not important and that the threshold saturati

their trade-off between performance and complexity ang thEff€Ct 0ccurs as soon as the connection is sufficiently gfron
are part of essentially all new communication standards. (i) @ well known result for convolutional codes says tha th
Polar codes represent the most recent development in cBgundary conditions are *forgotten” exponentially fasif for

ing theory [50]. They are provably capacity achieving ofpatially coupled codes it is exactly the boundary conditio

binary-input memoryless output-symmetric (BMS) channeléhich causes the effect and there is no decay of this effect
the spatial dimension of the code; (iii) the same effect

(and many others) and they have low decoding complexit{).

They also have no error floor due to a minimum distandéS (émpirically) been shown to hold in many other graphical
which increases like the square root of the blocklength. Tlﬁ‘%Ode'IS* most of“them outside the realm of coding; the term
simplicity, elegance, and wide applicability of polar cedave SPatial coupling” is perhaps then somewhat more generally

made them a popular choice in the recent literature. ThetPlicable. _ _ _ _
are perhaps only two areas in which polar codes could beThere is a con3|der_aple literature on convglutlonal—hke
further improved. First, for polar codes the convergence bPPC ensembles. Variations on the constructions as well
their performance to the asymptotic limit is slow. Currgntb @S Some analysis can be found in Engdahl and Zigangirov
rigorous statements regarding this convergence for thergen [53], Engdahl, Lentmaier, and Zigangirol[56], Lentmaier,
case are known. But “calculations” suggest that, for a fixeduhachev, and Zigangirov [57], as well as Tanner, D. Srid-
desired error probability, the required blocklength sedike hara, A. Sridharan, Fuja, and Costello][58].
1/6", where§ is the additive gap to capacity and whegre N [59], [60], Sridharan, Lentmaier, Costello and Zigawogir
depends on the channel and has a value arduf§], [52]. consider density evolution (DE) analysis for convolutibna
Note that random block codes under MAP decoding hal&PC ensembles and determine thresholds for the BEC.
a similar scaling behavior but with = 2. This implies a The equivalent results for general channels were reporyed b
considerably faster convergence to the asymptotic behavigentmaier, Sridharan, Zigangirov and Costello [in][60].][61
The value2 is a lower bound for. for any system since the This DE analysis is in many ways the starting point for our
variations of the channel itself imply that> 2. The second investigation. By comparing the thresholds to the thresof
aspect isuniversality the code design of polar codes depend§e underlying ensembles under MAP decoding (seele.g., [62])
on the specific channel being used and one and the same deligHickly becomes apparent that an interesting effect rbast
cannot simultaneously achieve capacity over a non-trafids  at work. Indeed, in a recent paper [63], Lentmaier and Festwe
of channels (under successive cancellation decoding). ~ followed this route and independently formulated the eigal
Let us now connect the content of this paper to the previo@t the belief propagation (BP) threshold of convolutional
discussion. Our main aim is to explain the role of a furthdfDPC ensembles and the MAP threshold of the underlying
structural element in the realm of sparse graph codes @esi@nsemble as a conjecture.
the previously discussed such examples), namely that ofA representation of convolutional LDPC ensembles in terms
“spatial coupling.” We will show that this coupling of graph of a protograph was introduced by Mitchell, Pusane, Zigan-
leads to a remarkable change in their performance. Ensemigi&ov and Costello[[64]. The corresponding representafion
designed in this way combine some of the nice elements téfminated convolutional LDPC ensembles was introduced by
polar codes (namely the fact that they are provably capacitgntmaier, Fettweis, Zigangirov and Costello|[65]. A vayie
achieving under low complexity decoding) with the pradticaf constructions of LDPC convolutional codes from the graph
advantages of sparse graph codes (the codes are competitxer perspective is shown by Pusane, Smarandache, Vilntobe
already for moderate lengths). Perhaps most importaritly,and Costello[[66].
is possible to construatniversal such codes for the whole A pseudo-codeword analysis of convolutional LDPC codes
class of BMS channels. Here, universality refers to the fasas performed by Smarandache, Pusane, Vontobel, and
that one and the same ensemble is good for a whole clasgCaftello in [66]-[68]. Such an analysis is important if we
channels, assuming that at the receiver we have knowledgemaint to understand the error-floor behavior of spatiallypted
the channel. ensembles.



In [69], Papaleo, lyengar, Siegel, Wolf, and Corazza studlyge threshold saturation phenomenon also applies to denera
the performance of windowed decoding of convolution®MS channels.
LDPC codes on the BEC. Such a decoder has a decodingror typical sparse graph ensembles the MAP threshold is not
complexity which is independent of the chain length, aequal to the Shannon threshold but the Shannon threshold can
important practical advantage. Luckily, it turns out thhet only be reached by taking a sequence of such ensembles (e.g.,
performance under windowed decoding, when measuredainsequence of increasing degrees). There are some notable
terms of the threshold, approaches the “regular™ (withowxceptions, like MN ensembles or HA ensembles. Kasai and
windowed decoding) threshold exponentially fast in the-wirBakaniwa take this as a starting point to investigate_in [77]
dow size, se€ [70][[71]. The threshold saturation phenamenwhether by spatially coupling such ensembles it is possible
therefore does not require an infinite window size. to create ensembles which are universally capacity acigevi

The scaling behavior of spatially coupled ensembles, i.ender BP decoding.
the relationship between the chain length, the number of
variables per section, and the error probability is disedssE: Spatial Coupling for General Communication Scenarios,
by Olmos and Urbanke in [72]. Signal Processing, Computer Science, and Statistical iBfiys

The principle which underlies the good performance of
spatially coupled ensembles is broad. It has been shown to
apply to a variety of problems in communications, computer

It was recently shown irf [53] that for transmission over thecience, signal processing, and physics. To mention some
BEC spatially coupled ensembles have a BP threshold whichncrete examples, the threshold saturation effect (dimam
is essentially equal to the MAP threshold of the underlyingal/algorithmic threshold of the system being equal to the
uncoupled ensemble. Further, this threshold is also d@aignt static or condensation threshold) of coupled graphicaletsod
equal to the MAP threshold of the coupled ensemble. Thigs been observed for rate-less codes by Aref and Urbanke
phenomena was calletireshold saturatiorin [53] since the [78], for channels with memory and multiple access channels
BP threshold takes on its largest possible value (the MAKth erasure by Kudekar and Kasai [79], [80], for CDMA
threshold). This significant improvement in the performenchannels by Takeuchi, Tanaka, and Kawabata [81], for relay
is due to the spatial coupling of the underlying code. Thostannels with erasure by Uchikawa, Kasai, and Sakaniwa
“sections” of the code that have already succeeded in degodj82], for the noisy Slepian-Wolf problem by Yedla, Pfister,
can help their neighboring less fortunate sections in tltede and Narayanan [83], and for the BEC wiretap channel by
ing process. In this manner, the information propagates frcRathi, Urbanke, Andersson, and Skoglund][84]. Uchikawa,
the “boundaries”, where the bits are known perfectly toward&urkoski, Kasai, and Sakaniwa recently showed an improve-
the “middle”. In a recent paper [63], Lentmaier and Fettweisient of the BP threshold has also for transmission over
independently formulated the same statement as a corgectite unconstrained AWGN channel using low-density lattice
and provided numerical evidence for its validity. Theyibtite codes [[85]. Further, Yedla, Nguyen, Pfister and Narayanan,
the observation of the equality of the two thresholds to @aLi demonstrated the universality of spatially-coupled coites

It was shown in [[64], [[6]7], [[68], [[73] that if we couplethe 2-user binary input Gaussian multiple-access chamtkl a
component codes whose Hamming distance grows linearlyfinite state ISI channels like the dicode-erasure channél an
the blocklength then also the resulting coupled ensemlales hthe dicode channel with AWGN[[86],[[87]. InN_[86] they
this property (assuming that the number of “sections” oli€®p show in addition that for a fixed rate pair, spatially-couble
of the underlying code is kept fixed). The equivalent result ensembles universally saturate the achievable region tthe
true for stopping sets. This implies that for the transmissi set of channel gain parameters that are achievable for the fix
over the BEC the block BP threshold is equal to the bit BRate pair) under BP decoding. Similarly, in [87] they prawid
threshold and that such ensembles do not exhibit error floensmerical evidence that spatially coupled ensembles aehie
under BP decoding. the symmetric information rate for the dicode erasure chhnn

and the dicode channel with AWGN.
. _ In signal processing and computer science spatial coupling

D. Prior Result_s for General Binary-Input Memoryles%as found success in the field of compressed sensirdg [88]-
Output-Symmetric Channels [97]. In [88], Kudekar and Pfister use sparse measurement

As pointed out in a preceding section, BP thresholds fematrices with sub-optimal verification decoding and shoat th
transmission over general BMS channels were computed $patial coupling boosts thresholds of sparse recovenB0h [
means of a numerical procedure by Lentmaier, Sridhard@l1], Krzakala, Mézard, Sausset, Sun, and Zdeborova das wel
Zigangirov and Costello i [61]. Further, in74] (conjertd) as Donoho, Javanmard, and Montanari show that by carefully
MAP thresholds for some LDPC ensembles were computddsigning dense measurement matrices using spatial ogupli
according to the Maxwell construction. Comparing these twane can achieve the best possible recovery thresholdthee.,
values, one can check empirically that also for transmissione achieved by the optiméf decoder. Thus, the phenomena
over general BMS channels the BP threshold of the couplefithreshold saturation is also demonstrated in this calsis. T
ensembles is essentially equal to the (conjectured) MAfevelopment is quite remarkable.
threshold of the underlying ensemble. Indeed, recently bot Statistical physics is another very natural area in which
[75] as well as[[76] provided further numerical evidencetthahe threshold saturation phenomenon is of interest. For the

C. Prior Results for the Binary Erasure Channel



so-called randomK -SAT problem, random graph coloring,to individual codes rather than ensembles and how this gives
and the Curie-Weiss model, spatially coupled ensembles weise to codes which are universally close to capacity under B
investigated by Hassani, Macris, and Urbanke] [92]-[94]. ldecoding for the whole class of BMS channels.

all these cases, the threshold saturation phenomenon wag/e end in Section IV-E with a discussion of what challenges
observed. This suggests that it might be possible to stushjil lie ahead. In particular, spatial coupling has beeavah
difficult theoretical problems in this area, like the existe empirically to lead to the threshold saturation phenomenon
of the static threshold, by studying the dynamical threshoh wide class of graphical models. Rather than proving each
of a chain of coupled models, perhaps an easier problesach scenario in isolation, we want a common framework to
Further spatially-coupled models were considered by Telkieu analyze all such systems.

and Tanakal[95]. Many of the proofs are relegated to the appendices. This
makes it possible to read the material on two levels — a casual
F. Main Results and Consequences level, skipping all the proofs and following only the flow diet

r%{lgument, and a more detailed level, consulting the méateria

In this paper we show that for transmission over gene .
|&_the appendices.

BMS channels coupled ensembles exhibit the threshold s
uration phenomenon. By choosing e.g. regular component

ensembles of fixed rate and increasing degree, this implies [I. UNCOUPLEDSYSTEMS

that coupled ensembles can achieve capacity over this ClﬂésRegular Ensembles

of channels. More precisely, for eagh> 0 there exists a o ,

coupled ensemble which achieves at least a fractions of ~ Definition 1 (d;, d,)-Regular Ensemble)Fix 3 < d; <

capacityuniversally under belief propagation decoding, oveflr: di,dr € N, andn so that”dl/‘?T = N The(dy, d;)-regular
the whole class of BMS channels. The qualifier "universal” isPPC ensemble of blockllengbln is defined as follows. There
important here. aren variablenodes and 3~ checknodes. Each variable node

Coupled ensembles inherit to a large degree the error figétS degre€; and each check node has degigeAccordingly,
behavior of the underlying ensemble. Further, such an enséfich variable node haf socketsi.e., d; places to connect
ble can be chosen so that it has a non-zero error correctffy €49€ t0, and each check node Hassockets. Therefore,
radius, and hence does not exhibit error floors. To achiel¥"® are in totaldyn variable-node sockets and the same
this, it suffices to take the variable-node degree to be at leQUMPer of check-node sockets. Number both kinds from
five. This guarantees that a randomly chosen graph from si@di- Consider the set of permutatiofison {1,.. ., nd:}.
an ensemble is an expander with expansion exceeding threBdow this set with a uniform probability distribution. To

quarters with high probability. This expansion guarantaes sample from the(dl,.dr)-regular ensemble, sample frofi )
error correcting radius under the so-called flipping decog@nd connect the variable to the check node sockets according

[96] as well as under the BP decoder, assuming that the chosen permutation. This is tbenfiguration modebf

suitably clip both the received as well as the internal mg=sa LDPC ensembles. It is inspired by the configuration model of
[O7]. random graphd [98, Section 2.4]. ]

Although one can empirically observe the threshold sat-
uration phenomenon for a wide array of component codes, Binary-Input Memoryless Output-Symmetric Channels
we state and prove the main result only for regular LDPC

ensembles. This keeps the exposition manageable. Throughout we will assume that transmission is taking place

over a BMS channel. LetX denote the input and let’

. be the output. Further, lep(Y = y|X = xz) denote the
G. Outline transition probability describing the channel. An alternative
In Section[1l we briefly review regular LDPC ensemblesharacterization of the channel is by means of its so-cdlled
and their asymptotic (in the blocklength) analysis. Much dfistribution, denote it by. More preciselyg is the distribution

this material is standard and we only include it here to sef

the notation and to make the paper largely self-contained. T p(Y X =1)
two most important exceptions are our in-depth discussfon o In m
the Wasserstein distance and the the so-called area tiadesho p(V [ X =

in particular the (Negativity) LemmaP7. conditioned thatX = 1.

In SectionIl we review some basic properties of coupled Givenc, we writec, |c|, and|¢]| to denote the corresponding
ensembles. Using simple extremes of information combinidg distribution, the|D| distribution and the cdf in théD|-
techniques, we will see in Section III+G that coupling indeedomain, respectively, seg [62, Section 4.1.4].
increases the BP threshold significantly, even though theselypically we do not consider a single channel in isolation
simple arguments are not sufficient to characterize the BBt a wholefamily of channels. We writd BMS(o)} to denote
threshold under coupling exactly. the family parameterized by the scatarOften it will be more

We state our main result, namely that the BP threshold ebnvenient to denote this family Hy,, }, i.e., to use the family
coupled ensembles is essentially equal to the area threshafl L-densities which characterize the channel family. If it is
of the underlying component ensemble, in Secfioh 1V. Wenportant to make the range of the parameteexplicit, we
also discuss how one can easily strengthen this result ty apwill write {c,}9.



Sometimes it is convenient to use thatural parameter The three fundamental channel familiesBEC(¢)}],
. 1
of the family. For example, for the three fundamental chaqgsqp)}g, and{BAWGNC(c)}&° are all complete, ordered,
nels, the BEC, the binary symmetric channel (BSC) and tkgnooth, and symmetric.
binary additive white-Gaussian noise channel (BAWGNC),
. . . 1

the correslpondlng channel families are g|yen{|55§§(e)}0, C. MAP Decoder and MAP Threshold
{BSC(p)}¢, and {BAWGNC(o)}5°. Other times, it is more ) _ o »
convenient to use a common parameterization. E.g., we wjll|N€ Pitmaximum a posterior(bit-MAP) decoder for bit

write {BMS(h)} to denote a channel family where BWiS finds t.he value of; wr_]?ch maxifnizes?(xi | y{‘). It. minimizes
denotes the element in the family eftropyh. the bit error probability and is optimal in this sense. The

Assume that we are given a channel fam{BMS(c)}7. blode ma:ijurr;]_ahposte_no_r(block—nMAf) clitech(_ar _fmdsﬂ:he
We say that the family iscompleteif H(BMS(z)) — 0, codewordz} which maximizesp(z7 | y7). It minimizes the

H(BMS()) — 1, and for eachh € [0,1] there exists a block error probability and is optimal in this sense.

: Definition 2 (MAP Threshold)Consider an ordered and
t that HBMS =h.H . th t
?u??trigi;bdz(f)ineg ilr-w( Sectggg_)_l]:-lD ere H.) is the entropy complete channel family{c,}. The MAP thresholdof the

. . . d;, d,)-regular ensemble for this channel family is denoted
Let pz| x (2 |z) denote the transition probability assouatergy " (d,.d,) and defined by

to a BMS channet’ and letpy | x (y | z) denote the transition

probability of another BMS channel We then say that’ is inf{h € [0,1] : liminf E[H(XT] | Y{"(h))/n] >0},
degradedvith respect ta if there exists a channgl; |y (2| y) oo
so that where HX{" | Y{"(h)) is the conditional entropy of the trans-
mitted codewordX7{, chosen uniformly at random from the
Pz x(z|x) = mex(yla?)pz\y(ZIy). code, given the received messagg(h) and where the ex-
y pectationE[-] is wrt the (d;, d,-)-regular ensemble. ]

Discussion Define R; = Pr{X; # X;(Y")}, whereX;(Y}")

. . , L
We will use the notatior < ¢’ to denote that" is degraded is the MAP estimate of bitbased on the observatidfj*. Note

wrt ¢ (as a mnemonic think of as the erasure probability Ofthat by the Fano inequality we have(K, | Y7") < ha(P..).

a BEC and replace with <). o
. . A that t tt bou®"*(d;,d, that
A useful characterization of degradation, [62, Theorqﬂi_'&;;(nf| YS)/\g]efgi Ballyn?raler:ng abou¥”(dy.d;) so tha
1 1 =

4.74], is thatc < ¢’ is equivalent to
1 n 1 n n
1) hz(E[E Z Pe.i]) ZE[E Z ha(Peq)] > E[Z H(X; | Y{")/n]
=1 =1 =1

/ f@)lel(z) dz < / @)\ () da -
0 0 > BH(X]|Y)/n] > 6> 0.

for all f(x) that are non-increasing and concave [onl]. _ o
Here, |¢|(z) is the so called D|-density associated to the- In words, if we are transmittingbovethe MAP threshold, then

densityc, see[[62, p. 179]. In particular, this characterizatiopi‘eler‘semb'.e average bit-error probability is lower bodrizle
implies that F(a) < F(b) for a < b if F(-) is either the hy ~(9), a strictly positive constant. This ensemble is therefore

Battacharyya or the entropy functional. This is true sinothb MOt suitable for reliable transmission above this threghol
are linear functionals of the distributions and their respe N general we cannot conclude froffjH (X7 [ Y7")/n] < 4

kernels in the|D|-domain are decreasing and concave. Afjat the average error probability is snhll.
alternative characterization in terms of the cumulativetrdi

bution functions|€|(z) and |¢’|(z) is that for all > € [0, 1], D. Belief Propagation, Density Evolution, and Some Impor-
L L tant Functionals
/ |€|(z)dx g/ |€'|(z) d. 2 In principle one can investigate the behavior of coupled
z z ensembles under any message-passing algorithm. We limit

A BMS channel family{BMS(¢)}7 is said to beordered ©Ur investigation to the analysis of the BP decoder, the most

by degradanon_ ifo; < o9 implies c,, < c,,. (The reverse . haveE[H(XT | Y7)/n] > L liminf—so0 LE[H(XT | Y ()] > 0

order,o; > o2, is also allowed but we generally stick to theor all n > ny, lets say. Further, foi < n < no, E[H(XT | Y{*)/n] is

stated convention.) strictly positive unless the channel is trivial. The claiolldws by taking the
We say that anL-density c is symmetric if a(—y) _ minimum of all of the bounds fol < n < ng as well as the bound for

_ .. . n > ng.
a(y)e™”. We recall that all densities which stem from BMS 27his s possible if we have the slighty stronger con-

channels are symmetric, s€e |[62, Sections 4.1.4, 4.1.8 aidn E[>-7  H(X;|Y")/n] < 4. In this case § >

. . . . 1 n n — 1 n : n
4.1.9]. All densities which we consider are symmetric. WeElXim H(X: [Y1)] = SB[, Bypr [he(ming ple | Y1) =
will therefore not mention symmetry explicitly in the segue 3=12oi=1 Evy 2minap(z [Y1)]] = ZEDZ, 2P, so that
A BMS ch | famil . idto b thif f SB[ Peyi] < 50. The last step in the previous chain of inequalities
channel family{c,} is said to besmoothif for 515 Sihce under' MAP decoding the error probability citioded that we

all continuously differentiable functiong(y) so thate¥/2f(y)  observedy? is equal tomin, p(z [y7). An alternative way to prove this

is bounded, the integra,ff(y)cg(y) dy exists and is a con- is to realize that KIX; | Y]") represents a BMS channel with a particular
‘ entropy and to use extremes of information combining to fir@worst error

tinU_Ol_J.SW differentiable function with respect tg, see [[62, probability such a channel can have. The extremal channtiisrcase is the
Definition 4.32]. BEC.



powerful local message-passing algorithm. We are intedest > F(agee ® (apec ® (®§:3ai))
in the asymptotic performance of the BP decoder, i.e., the
performance when the blocklength tends to infinity. This
asymptotic performance is characterized by the so-caked d
sity evolution (DE) equatior [45]. > F(agee ® (age 1)) = o,
i Definition 3 (Density Evolutlon)Fpr Z_Z 1, the DE equa- The same remark and the same proof technique applies to the
tion for a (d;, d,)-regular ensemble is given by other cases.

X) = Cc® (infl)®dl—1_ Lemma 6 (Duality Rule 4162, p. 196])For anya andb

H(a®b) + H(a®b) = H(a) + H(b).

Here, c is the L-density of the BMS channel over whichNote: We give a simple proof of this identity at the end of the
transmission takes place and is the density emitted by proof of Lemmad5B.
variable nodes in thé-th round of density evolution. Initially
we havexy, = Ay, the delta function a0. The operators® F. Fixed Points, Convergence, and BP Threshold
and @ correspond to the convolution of densities at variable L ) )
and check nodes, respectively, see [62, Section 4.1.4]m e say that the density is afixed point(FP) of DE for
As mentioned, all distributions associated to BMS channeq%e (d1, dr)-regular ensemble and the channef
are symmetric and symmetry is preserved under DE,[sée [62, x=c® (xBdr—h)@di—1, 3)
Chapter 4] for details. There are a number of functionals of ] ] ]
densities are of interest to us. The most important funation More succinctly, when the underlying ensemble is undetstoo
are the Battacharyya, the entropy, and the error probgbilfom the context, we say thdt, x) is a FP.

functional. For a density these are denoted b(a), H(a), ~ One way to generate a FP is to initializg with Ay and to
and &(a), respectively. Assuming is an L-density, they are run DE, as stated in Definitidd 3. We call such a FP a FP of

given by forward DE. The resulting FPs are the “natural” FPs since they
have a natural operational meaning — if we pick sufficiently
B(a) = /a(y)efy/z dy, H(a) = /a(y) log, (1+e~%) dy, ang eqsembles, these are the FPs which we can observe in
simulations when we run the BP decoder.
¢a) = l/a(y)ef(y/2+|y/2\) dy. Definition 7 (Weak ConvergenceYVe say that a sequence
2 ' ' of distributions{a;} converges weakly to a limit distribution

We end this section with the following useful fact. The prod? if for the corresponding cumulative distributions in the
can be found in AppendixIA. | D|-domain, call them{2;}, for all bounded and continuous

Lemma 4 (Entropy versus Battacharyyd&or any L- functionsf(xz) on[0,1] we have
densitya, %%(a) < H(a) < B(a). . 1 1
i [ 2 = [ @),
(3 o0 0 0

E. Extremes of Information Combining and the Duality Rulgn equivalent definition is thagl; ()

> F(ag ® (a2471))

BEC

converges tg2(|(x) at

When we are operating on BMS channels, the quantitiggints of continuity ofz. ]
appearing in the DE equations are distributions. Theseane h A simple proof of the following lemma can be found at the
to track analytically in general, unless we are transngtomer end of Sectiof 113I.
the BEC. Often we only need bounds. In these casé®mes  Lemma 8 (Convergence of Forward DE[=[62, Lemma 4.75]):
of information combiningdeas are handy, see [99]-[103]. [62The sequencéx,} of distributions of forward DE converges
p. 242]. weakly to a symmetric distribution.

Lemma 5 (Extremes of Information Combinindpet F(-) Lemma 9 (BP Threshold)Consider an ordered and com-
denote either K1) or B(-) and leto € [0,1]. Letagec andagsc  plete channel family{c,}. Let x,(c) denote the distribution
denoteL-densities from the familieSBEC(¢)} and{BSC(p)}, in the ¢-th round of DE when the channelis. Then theBP
respectively, so thak'(agec) = F'(agsc) = . Then for anyb, thresholdof the (d;, d,.)-regular ensemble is defined as

() min,.pa)—a F(@®b) = F(agc ®b) - PSS

(i) maXa:F((:):a F(a®b) = Faee ® b) o®(dy,d,) =sup{o : xe(0) = Ajoo}-

(iii) min,.p(a)y—o F(a @ b) = F(apsc E b) In other words, the BP threshold is characterized by theskirg
(V) max,.p(a)y—a F(a®b) = F(agec @ b) channel parameter so that the forward DE FP is trivial.
Discussion:Although the extremes of information combining We have just seen that the FPs of forward DE are important
bounds are only stated for pairs of distributions, they ralyy  since they characterize the BP threshold. But there exist FP
extend to more than two distributions. E.g., we claim th&fat cannot be achieved this way. Let us review a general
min,, pa)—a F(2®9) = F(age)? = o To see this, lefa;}2., method of constructing FPs. Assume that, given a channel
be any set of distributions so that(a;) = a. Then we can family {c,}, we need a FPx which has a givenerror

use Lemmals repeatedly to conclude that probability &(x), entropy H(x), or Battacharyya parameter
J 4 B(x). Such FPs can often be constructed, or at least their
F(a1 ® (®i=p2:)) = F(2sec ® (®7p2i)) existence can be guaranteed, by a procedure introduced]in [7

= F(az ® (apec ® (®{_52;)) Let us recall this procedure for the case of fixed entropy.



Consider a smooth, complete, and ordered farhily} and H. The Wasserstein Metric: Definition and Basic Properties
the (d, d,)-regular ensemble. Let us denoteythe ordinary | the sequel we will often need to measure how close var-

density evolution operator at fixed chanrgl Formally, ious distributions are. Sometimes it is convenient to campa
Th(a) = ¢y @ (aBdr—1)@d—1, (4) their entropy or their Ba‘Ftacharyya constant. But so_mesilane_ _
more general measure is required. The Wasserstein metric is
For anye € [0, 1], we define the density evolution operator abur measure of choice.
fixed entropye, call it R, as Definition 12 (Wasserstein Metric £[104, Chapter 6]):
Let |a| and |b| denote two| D|-distributions. The Wasserstein
Re(a) = Thae)(a), (®)  metric, denoted byi(|al, |b]), is defined as

where h(a, e) is the solution of HTy(a)) = e. Whenever

no such value ofh exists, R.(a) is left undefined. Since, d(al, [b])

for a givena, the family 7;(a) is ordered by degradation,

H(Tn(a)) is a non-decreasing function af. As a conse- where Lig1)[0,1] denotes the class of Lipschitz continuous

quence the equation (#,(a)) = e cannot have more thanfunctions on[0, 1] with Lipschitz constant. ]

a single solution. Furthermore, by the smoothness of tR@scussionIn the sequel we will say that a functiof(x) is

channel familyc,, H(7,(a)) is continuous as a function of Lip(c) as a shorthand to mean that it is Lipschitz continuous

h. Notice that HTy(a)) = 0: if the channel is noiselesswith constant. If we want to emphasize the domain, then we

the output density at a variable nodes is noiseless as wallite e.g., Ligc)[0, 1]. Why have we defined the metric in the

Therefore, a necessary and sufficient condition for a smiuti| D|-domain? As the next lemma shows, convergence in this

h(a,e) to exist (when the family{c,} is complete) is that metric implies weak convergence. Since all the distrilngio

H(T1(a)) = H((a®—1)®d—1) > ¢ (see Theorem 6 iri [74]). of interest are symmetric, it suffices to look at {tig}-domain
Definition 10 (DE at Fixed Entropg): Seta, = c.. For instead of theD-domain. To ease our notation, however, we

¢ >0 computeaygy; = Re(ar). m will formally write expressions likel(a, b), i.e., we will allow

Discussion:lt can be shown that if the above procedure givée arguments to be e.d.-distributions. It is then implied

rise to an infinite sequence, i.e., B.(-) is well-defined at that the metric is determined using the equivaléntdomain

each step, then this sequence has a converging subsequegpeesentations as defined above.

In fact, in practice one observes that the sequence itselflemma 13 (Basic Properties of the Wasserstein Metric):

converges. The computation of the convolutions is typjcalln the following, a, b, c, andd denoteL-distributions.

done numerically either by sampling or via Fourier transfer  In the |D| domain we have the following expressions for

as in ordinary density evolution. Due to the monotonicit§3(a) and Ha) (compare this to the expressions in tie

of H(Tu(a)) in h, the value ofh(as,e) can be efficiently domain given in Section I[-D),

aw | [ 1@el)- bl s ©

j_ )eLip(1)[0,1]

found by a bisection method. The procedure is halted when 1

some convergence criterion is met — e.g., one can requite tha B(la]) = / V1 —2?|a|(z)dx

(a properly defined) distance betweenanda,.; becomes 0 .

smaller than a threshold. H(Ja]) = / h2(1 — x)|a|(x)dx,
Any FP of the above transformatioR., i.e., anya such 0 2

thata = Re(a), is also a FP of ordinary density evolution fokyherep, () = —2log, = — (1 — 2)log,(1 — z) is the binary

the channek, with h = h(a, e). Furthermore, if a sequenceentropy function. Seé [104], [1D5] for more details on nuatri
of densities such that,, = R.(a,) converges (weakly) t0 a for probability measures.

densitya, thena is a FP of R, with entropye. (i) Alternative Definitions

G. BP Threshold for Large Degrees d(a,b) = ,y) (@) fa‘yp(y) |b|E[|X — Yl
What happens to the BP threshold when we fix the design b) 2 ( B q
rater = 1 —d;/d, and increase the degrees? The proof of the d(a, || |(z) — |B(2)|da.

following lemma, which uses basic extremes of informatio
combining arguments, can be found in Apperidix B.

Lemma 11 (Upper Bound on BP Threshol@onsider
transmission over an ordered and complete farjidy} of
BMS channels using afd;, d,.)-regular dd and BP decoding.
Let r = 1 — & be the design rate and l&t"(d;,d,) denote
the BP threshold Then,

Izii) Boundednessd(a, b) <1.

(iii) Metrizable and Weak Convergendéne Wasserstein met-
ric induces the weak topology on the space of probability
measures oi0, 1]. In other words, the space of proba-
bility measures under the weak topology is metrizable
and convergence in the Wasserstein metric is equivalent
to weak convergence (see [104, Theorem 6.9]).

. hz(w+—71) (iv) Polish SpaceThe space of probability distributions on
b (dy, dr) < (1 r)dr)e—Q\/m' [0, 1] metrized by the Wasserstein distance is a complete
" separable metric space, i.e., a Polish space, and any mea-
In particular, by increasing, while keeping the rate fixed, sure can be approximated by a sequence of probability

the BP threshold converges to measures with finite support, i.e., distributions of therfor



Yo cd(r — x;), whereY " (¢; = 1, ¢; > 0, and |. Wasserstein Metric and Degradation
z; € [0,1]. Further, the space is compact. (See [104, when densities ordered by degradation, some the Wasser-
Theorem 6.18].) stein metric inherits some additional properties.
(v) Convexity Let a € [0, 1]. Then Lemma 14 (Wasserstein Metric and Degradatiol): the
following a andb denoteL-distributions.

d(ca 4+ ab, ac + ad) < ad(a,c) + ad(b,d). ] ) )
( ) @9 (b.d) (i) Wasserstein versus Degradatidret a < b. Let || and

In general, if)", a; = 1, then |B| denote the correspondind)|-domain cdfs. Define
D(a,b) = folx(|%|(x) — [2A|(z))dz. Note thatD(a,b)
d(z aiai,Zaibi) < Zaid(ai, bs). can be seen as a measure of how mbcis degraded

W{‘t a since it is the average of the non-negative integrals
J. (IB|(z) — [2A|(z))dz (cf. @)). Then

D(a,b) > d*(a,b)/4.
da®c,b@d)<da®c,b®c)+db®c,b®d) (3,b) 2 d*(a,b)/
< 2d(a, b) + 2d(c, d), Eurthermore,D(a, b) < 1 and for any symmetric densi-
ties such that < b < ¢, D(a,c) = D(a,b) + D(b,c).
and fori > 2 and any distributior, d(a®‘®c,b® ®c) < (i) Entropy and Battacharyya Bound Wasserstein Distance

(vi) Regularity wrt ®: The Wasserstein metric satisfies the
regularity propertyd(a ® c,b ® c) < 2d(a, b), so that

2id(a, b). Leta < b. Then
(vii) Regularity wrt ®=: The Wasserstein metric satis- < — < —
fies the regularity propertyd(a c,b ¢ < d(2,b) < 2v/(In2)(H(b) ~ H(2)) < 2v/B(b) - B(a)
(3b) (c) < d(a,b) (iii) Continuity for Ordered Farrlilies Consider a smooth
dam@c,bmd) <damc,b®Ec)+dbEc,bmEd) family of L-distributions{c,}7 ordered by degradation

so thatB(-) is continuous wrto € [o,5]. Then the

< d(a,b) +d(c,d). . o . ?
- ( )+ ( ) Wasserstein metric is also continuoussin

Further, Discussion: Property [fi) is particularly useful. Imagine a
i sequence of distributionga;}? , ordered by degradation,
d(ai,bi)gd(a,b)Z(l—%Q(a))%(l—%Q(b))%. i.e.,ag < a; < --- < a,. Thenap, < a, and we know

from [62] that D(ap,a,) = f012(|91|n — |A]p)dz is non-

negative since it is the “average” of the non-negative irgksyg

(viii) Regularity wrt DE Let 7.(-) denote the DE operator forf1(|21|n — |2A|o)dz. Now note thatD(-,-) is additive and
the dd(d;, d) and the channel. Thend(T¢(a), Tc (b)) < tﬁatD(ao,an) < 1. From these two facts we can conclude

Jj=1

ad(a, b), with that there must exist an index 0 < ¢ < n — 1, so that
dy—1 D(aj,ai4+1) < 1. More generally, we can conclude for any

a=2(d —1) 2(1_%2(3))“‘?”' (1-B2(b))™T . 1 < k < n that there must exist an index0 < i < n — k,

=] so that D(a;,a;4) < min{%lﬁl,l} < 2t This follows

by upper bounding the average of all these- k + 1 such

(ix) Wasserstein Bounds Battacharyya and Entropy. distances. By propertyl(i) this implies “closeness” alsaha

|B(a) — B(b)| < /d(a,b)/2 — d(a,b) Wasserstein sense. In words, in a sequence of distributiens
B dered by degradation we are always able to find a subsequence
d(a,b)
IH(a) —H(b)| < hQ(—’) of distributions which are “close” in the Wasserstein sense
1 As an exercise in using the basic properties of the Wasser-
< E\/d(a’ b)\/2 —d(a,b). stein distance, let us give a proof of Lemfia 8.
) ) Proof: Since we are considering a sequence of dis-
(x) Battacharyya Sometimes Bounds Wasserstein tributions obtained by forward DE, we have > x/i1

for ¢ > 0. Therefore, the quantitie®(x,,x,41) are non-
< — 2 < — s M+

d(Ao.2) < /1= B(a)? < V2(1 - B(a)), negative and they are additive in the sense hé&ty,x,) =

d(A+o0,3) < B(a). S 00 D(xg,x¢41)- Further, D(-,-) is upper bounded by.

Discussion:Perhaps the most useful property of the Wassdi-follows that {x.} forms a Cauchy sequence wrt o, -)
stein metric is that it interacts nicely with the operatiafs and hence also wrti(,-). '_I'h|s In turn |mp_lles th_at{xl’}
variable- and check-node convolution. This is the essent@VErges wrtd(-, -) a_nd this convergence is equwal_ent o
of properties i), [wi), and[(vli). For example, it is eas weak convergence. Finally, symmetry can be tested in terms
to see why property[{wlii) might be useful: Given that twcPf bounded contlnuqus functionals and weak convergence
distributionsa andb are close, it asserts that after one iteratioR€S€rves such functionals. u

of DE these two distributions are again close. Indeed, as we

will see shortly, depending on the Battacharyya paramdter\b GEXIT Curve

the starting distributions the distance might in fact beeom As we have discussed in the preceding section, FPs of DE
smaller, i.e., we might have @ontraction play a crucial role in the asymptotic analysis. E.g., the BP



threshold is characterized by the existence/non-existefh@a
non-trivial FP of forward DE for a particular channel. 5
An even more powerful picture arises if instead of Iookin% 6 0.6 ,,"
at a single FP at a time we visualize a whotdlectionof FPs. ™ :
In order to visualize many FPs at the same time it is convenigyy 0.4
to project them. E.g., given the FP péir x) we might decide
to plot the point(H(c), H(x)) in the two-dimensional unit box 0.2
[0,1] x [0, 1].
Example 15 (BP EXIT Curve for BECNote that for the 0.0 0.2 04 06 08 ¢ 00 02 04 06 0.8 ¢
BEC, erasure probability is equal to Battacharyya paramete

and also equal to entropy. Even though all these parametlgrs 1. Left: The BP EXIT curve of théd; = 3. d. — 6)-regular ensemble

e . ig- 1.
are _equal in this case, our language will reflect that we e\mgen transmitting over the BEC. The curve has a charadtefi€’ shape.
plotting entropy. Right: The construction of the MAP threshold from the BP EXilrve. The

Rather than plotting; itself it is convenient to plot thEXIT ~dark gray area is equal to the design rate of the code.
value (1 — (1 — x)%~1)%_ This is the locally best estimate
of a bit based on the internal messages oskcludingthe
direct observation. For this choice the resulting curvesisally
called theBP EXIT curve, see[[106]/1107] and [62, Section
3.14 and 4.10]. It is théBP EXIT curve since the estimate
is a BP estimate. And it is the BEXIT (where the E stands general case, presenting some partial results.
for “extrinsic”) curve since the estimate excludes the e A good cﬁoice for the projection operator for general

value associated to this bit. channels is theGEXIT functional[74]. For the BEC this

H P dr—1\\d;—1 i ) ) B . .
The FP equation ig = ¢(1 — (1 — 2% 1)), which we  .,inciges with the EXIT functional that we saw in Exarmiplé 15.
can solve fore to get For the general case take a FR, %, ) and defing/ = x@4-—1,

0.2

(L, zu(1))

In the remainder of this section we address the first question
i.e., we will discuss a particularly effective choice of the
%rojection operator. In the next section we will address the
qguestion of the existence and nature of this curve for the

x Then
e(r) = . @)
( ) (1 — (1 — ;pdrfl))dlfl G(C @dl) B %H(CU ® y®dl)
Using [7) we can write down the parametric characterization oY %H(cg) ’
of the BP EXIT curve where we think ofy as fixed with respect ter. In words,
( z 1-(1- x)drfl)dl) G(c,, ) measures the ratio of the change in entropy ot
(1—(1—gdr=1))d-1" ' y®d (the entropy of the decision of any variable node under

This curve is shown in the left-hand side in Figlite 1 for thgp decoding) versus the change of entropy of the channel

. as a function ofr.
gif)é;iggfgv?ﬁ:umli)rietr?igdcgses ?Ozp';fg;hgp)e'(t:]ne fgg’ Discussion:Note that if the parameterization in is Lips-
1 1 l7 T

: . it ie i " B -
threshold) there is only one FP at= 0 corresponding to chitz, i.e., if for some pos_ltlvg c(?nstam |H_(C"2) Hico)| <
aloy — o1], then the derivativei-H(c,) exists almost every-

perfect decoding; foe = €*°(d;, d,-) there are 2 FPs, one is at L AN )
z = 0 and the other is the FP corresponding to forward D ;here. Further, in this case alsqdd ®y™) is Lipschitz and

and fore > ¢*(d;, d,) there are exactly 3 FPs of DE, Onetﬁncg dlfl“fteregnlab_le aﬂmostg\ger])c/whe;e. This follows sibg
of the FPs is at: = 0 and the remaining two FPs are strictly( e Duality Rule in) Lemmal, for, > o1,

positive, one of which istable denoted byzs(¢), whereas the H(co, ® y®4) — H(c,, ® y®)]

oth_er i;unstable denoted byzy(¢). The stal_t)le FP is the FP + [H(co, y®dl) ~ Hlc,, y®dl)]
which is reached by forward DE. For details see Lenima 59.

A quantity which will appear throughout this paper is the = [H(co,) = H(co,)] < afoz — 0],
value of the unstable FP when transmitting over BECG- where the last step on the right-hand side assumes that the
1). We denote this FP by,(1). More preciselyxy(1) is the parameterization is such tha{¢}) increases inr. The claim
smaller non-zero solution af = (1 — (1 —x)%~1)4~1 Note follows since both terms on the left are non-negative (due
that z,(1) depends on the degrees, but we drop it from the degradation), so that in particular the first term is upper
notation for ease of exposition. bounded bya|os — o1, i.e., it is Lipschitz. This formulation
Discussion The above example raises the following twalso shows that the numerator is no larger than the denooninat
questions. (1) We have a large degree of freedom in selectiisg that the ratio exists) and that the GEXIT value is upper
the projection operator. Which one is “best”? (2) From thiounded byl (and is non-negative).
above example we see that the set of FPs forms a smoothVe get the GEXITcurve by plotting (H(c, ), G(c,, y®%))
curve. Indeed, for the BEC it is not hard to see that the onfgr a family of FPs{c,, x,}. This is shown in Figurg]2 for
FPs are the ones on the curve together with all the FPsthé (3, 6)-regular ensemble assuming that transmission takes
the form(c., A4~ ), wherec, is any element of the family of place over the BAWGNC. In the last section we have already
BEC channels and\ , ., corresponds to erasure value of 0. I&xplained how we can construct in the general case FPs by
this picture still valid for general channel families? a numerical procedure. To plot Figuté 2 we have used this
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procedure to get a complete family of FPs for all entropiéor a proof of the following see Lemma 4.7, [62].

from 0 to 1. In each of the two pictures of Figuié 2 there is Lemma 16 (GEXIT for Smooth and Ordered Channels):

a small black dot. This dot marks a particular FP and the tweor a smooth, ordered, channel familcy}y, f(h, w),
small inlets show the corresponding distribution of thersted as a function ofw, exists, is continuous, non-negative,
¢, as well as the message distribution emitted at the variallen-increasing and concave on its entire domain. Further
nodes, call itx,. For a detailed discussion we refer the readgf(h,0) = 1 and f(h, 1) = 0.

to [62], [74]. We remark that the above lemma also holds wHep} is
. . piece-wise linear.
- Xo L Xo
o I Sl A
O G K. Existence of GEXIT Curve
0.6 c 0.6 co As we briefly discussed above, for the BEC it is trivial to
04 04 see that the BP GEXIT curve indeed exists. But for general
' ' BMS channels this is not immediate. The aim of this section
0.2 0.2 is to show the existence of the BP GEXIT curve for at least
a subset of parameters.

00 02 04 06 H(co) 00 02 04 06 H(c) Let us first recall the following lemma which was stated and

proved in a slightly weaker form in [108]. For the convenienc
_ of the reader we reproduce the proof in Apperidix E.
o Fanamcion o e BNt s on o covepananss LM 17 (Suffcient Conditon for Continuityssume
a FP(co, x») of DE. The two figures show the FP densityas well as the that communication takes place over an ordered and complete
input densityc, for two points on the curves (see inlets). family {c}n, whereh = H(cy), using the dd pai(d;, d,).
Then, for anyh € [0, 1], there exists at most one densiy

Why do we use this particular representation? As we wilo that(cy,x,) forms a FP which fulfills
discuss in detail in Sectidn 1I}L, assuming this curve irdlee o o
exists and is “smooth”, the area which is enclosed by it is B(en)(dr = 1)(dr = 1)(1 = Blaw)")" 77 < 1. ©)
equa_l tf”’ =1—d;/d,, the design rate_of the ense_mble. Furthermore, if such a densigy exists, then it coincides with

This is easy to see for the BEC. To simplify notation, denotf. torward DE EP. FinallyB(x,) is Lipschitz continuous

S d :
the GEXIT value in this case b(e,y™), wheree is the it respect t0%(cs ). More precisely, if two FPscy, , x, )
erasure probabilityz is the FP for this channel parameteryq ¢,  x,,) satisfy the conditionB(cy, )(d; — 1)(dy — 1)(1 —

andy = 1— (1 —z)% 1. We then haveZ(e, y%) = (1 — (1 — B(xn, )2)4 2 < 1 - 6 for somes > 0, then
x)®~1)d Let us integrate the area which is enclosed by this ™ - '
curve. We call the corresponding integral the GEXIT intégra |B(xn, ) — Bxn, )| < 1 |B(ch, ) — Blcn,)] - (10)
For our particular case it is given by ! TS ! ?
1 The following lemma states that, at least for sufficiently
/(1 — (1= )4 Hdide = / (1-(1—z)> Y4 (x)dz  large entropies, the BP GEXIT curve indeed exists and is well
dta g 0 behaved.
=e(z)(1 - (1 - x)l ") ot Lemma 18 (Continuity For Large Entropiesissume that
d—2 dr—1\dy—1 communication takes place over an ordered and complete
= di(dr — 1)/0 (@) —2)" (1 - (1 —2)" )" de family {cy}n, whereh = H(cy), using the dd pair(d;, d,.).

1 . Consider the set of FP paifgcy, x,)} obtained by applying
=1—-di(d, — 1)/ a(l—a)"?do forward DE to each channe}. Let
0

1 11 oade—1ydi—1

=1+ dz(l —z)&! g_dl/ (1—2) ldr=1-— i a() =(1—(1—z)" )4,
0 dr b(x) = (di = 1)°(dy — 1)°a(1 - 2)** ),

Perhaps surprisingly, the result stays valid for generahaokls co(z) = /I/a(x)'
as we will discuss in Sectidn IltL. This property is one of the
main ingredients in our proof. Let = be the unique solution 0, 1] of the equation

Note that givenc, andz,, the GEXIT functionalG(cy, zy,) b(z) — 0 11
can be expressed in the fornfiz,(w)f(h,w)dw, where a(w) —b(x) =0. (11)
f(h,w) is called as the GEXIT kernel. In thé&|-domain this then  the  family

Chy Xn) Fo_p ,  with
kernel is given by {(en h)}h:h(dz,dr,{ch})

h(d;,d,,{cn}) = hpms(c(z)), satisfies [(9), is Lipschitz
—iz)(1—jw) continuous wrt to the Battacharyya parameter of the
))dz channel, wherehgus(:) is the function which maps the
Battacharyya constant of an element of the family to the
—k(z,w) corresponding entropy. FurtheB(x,) > xy(1) > 0 for all
(8) h>h(dy,d,, {cu} .

log, (1+ €

1dch(z)/ Z(l—l—iz)(l—i—jw)
<, 4 (1+iz)(14jw)

o\
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. d _z - - = o -
dd z a__ B =heec heawonc  hesc b DE FP pair with channel entropy > h(d;, d,, {cs}), where
@ 4 05479 0.75 08156 07544 0.7428 0.825 : ad
6.8 04107 075 06822 05971 05604 069541’1(dl,dr7{ch}) is the value defined in Lemnfad18. Then for
©,12) 03277 075  0.6024 05097 0.4719 0.618511,h2 > h(d, d;, {cn}) we have
(12,16) 02752 0.75  0.5483 04530  0.4087 0.5658

(3.6) 03805 05 06787 05931 05651 07010 (n(2))’ H(xn,) — HOu)? < i, s x0,) <

(4,8) 03512 05 0.6384 0.5485  0.5152  0.6590 2 b bisMho ) =

(5,10) 0.3192 05 0.6022 0.5094  0.4717 0.6229 392 9\/3

(6,12) 0.2916 0.5 0.5717 04773 04357 05924 < 22 ¢ ¢ )i (In(2)|H(ca,) — H(ca )|)§.
(3/12) 02127 025  0.4970 04012 03513 05335 ~ /§ i V5 ! 2
(4,16) 0.1957 0.25 0.4690 0.3736  0.3210 0.5005 )
(5,20) 0.1774 0.25 0.4426 0.3481 02933 0.4721 The proof of the following lemma can be found in Ap-
(6, 24) 0.1616 0.25 0.4200 03267  0.2702  0.4483pendix[F.

(7.28) 01483 0.25 0.4006 03086 02509 04281 | ammg 21 (Entropy Product Inequalitylzivena andb,

TABLE | N

ToP BRANCHES OFGEXIT CURVES ARELIPSCHITZ CONTINUOUS FROM

INDICATED CHANNEL ENTROPY UNTIL 1. THE NUMBERSZ, B = hgec, a®b 7/ / |a| |b| (17 y)d:cdy

heawene, AND hgsc ARE COMPUTED ACCORDING ToLEMMAEIB THE

FINAL NUMBER h IS A UNIVERSAL UPPER BOUND VALID FOR ALL BMS ~ ~

CHANNELS AND IT WAS COMPUTED ACCORDING TOLEMMA [19. Z/ / |m|(x)|%|(y)kwwyy(xay)dxdya
where
) ) 2 1+ 3:62y2
Table[] shows the resulting bounds for various regular dds krwyy(x,y) =

. () (1 - 2%42)°’

and various channels. These bounds were computed as follows

For a fixed dd pair(d;, d,) we first computed: numerically. and where the cumulative distributiofi|(z) = fo |af (=
This is easy to do since we know that there is a unique|(x fo |b|(2)dz are used to defing|(z) = f |21|

solution of the equatiom(z) — b(z) = 0 in (0,1]. Further, and|%| =/ |%| )dz and the kernek(z,y) is as glven
a(0) = b(0) = 0, a’(0) = ¥'(0) = —(di — 1)2(dr —1)2<0, in@). We claim that

and a(1) — b(1) = 1. We can therefore find this unique (i) Bound on Kernel:

solution efficiently via bisection. Oncg is found, we find
the corresponding Battacharyya parameter of the channel by
computinge(z). Finally, we can convert this into an entropy

value via the appropriate functiatgvs(- ) E.g. for the family  (ij) Bound for Partially Degraded Case:et a’ be degraded

of BSC channels we havgsc(x) = ha(5(1 — V1 —22)). with respect to the channel densityand letb’ be such
Although it is easy and stable to compute the above lower thatd(b’,b) < §. Then

bound on the entropy numerically, it will be convenient to

e
—
—
<
(¥}
—
|
Wl

have a universal and analytic such lower bound. This is H((@ —a)® (b’ —b)) < 8 B(a' —a)V/20.

accomplished in the following lemma, whose proof can be In ( )

found in Appendi{E. (ili) Bound for Fully Degraded Casé:et a’ be degraded with
Lemma 19 (Universal Bound on Continuity Region): respect to the channel densityand letb’ be degraded

Assume that communication takes place over an ordered with respect to the channel densly Then
and complete family{c,}», whereh = H(c,), using the

dd pair (d;, d,.) with d,. > 4 andd; > 3. Let a(x) be defined H(@ —a)® (b" — b)) < o Ba' —a)B(b' —b).
as in Lemma18. Consider the set of FP paffsy,xs)} In(2)
which is derived by applying forward DE to each changel ~ Corollary 22 (Continuity of the BP GEXIT Curve)-et
Then the GEXIT curve associated fécy, x») }y-5, Where  {ca} be a smooth BMS channel family and (ef, x.) denote a
. forward DE FP pair with channel entropy> h(d;, d., {cu}),
T=1-((d—1)(d—1))" 72, h=/T/a(T), where h(d;, d,, {cp}) is the value defined in Lemm@a]18.

Then,G(c, (xP4~1)®d) is continuous wrt tch.

is Lipschitz continuous wrt the Battacharyya parametehef t Proof: The GEXIT functional is defined as

channel. Alsoh(d;, d,, {c,}) <, whereh(dl,dr, {cn}) is the
quantity introduced in Lemmia 118, and< 54\/_1 , S0 that Gy = iH(ch/ ® 7p)

(d-—2)1 - on ,
h tends to zero whed, tends to infinity. h'=h

Table[] lists these universal upper bouridfor all the dds. ~ We will find it more convenient to parameterize the densities
The following corollary follows immediately from Usingb = b(h) = B(cy). Let us define

Lemmal1Y, property{ii) of Lemm@a]l4, and propefiy (ix) of o

Lemmal[I3. D(',b) = ay e ®2).
Corollary 20 (Continuity of Entropy)Let {c,} be a

: P . : :
smooth BMS channel family and 16t x,) denote a forward We claim thatD(¥’,b) is continuous in both its arguments.

Note thatGy = D(b(h),b(h))‘%h) and, correspondingly, we

3Note that we have made the dependence on the channel fajuiy, define Gy = D(b,b). To show continuity ofD in the first
explicit in the notation ofi(dy, dr, {cn}). component note thdtD(bv”,b) — D(V', b)) — 0 by the smooth
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channel family assumption. To show continuity bf in the Definition 25 (GEXIT Integral of Ensembleonsider the
second component conside(d, — cy) ® (zor — 2)). By  (dy, d,.)-regular ensemble and assume tHat,x,}J is a
(the Entropy Product Inequality) Lemrhal21, propeffy (iWg family of FPs of DE. Defing, = x4 ~1. Then

have

- 7 dc
8 G, dy, {coxo¥?) = | H(EZ & y@h) do.
(o — ) (2 —20)) | < 5| B(com — )| [Blzy —2) e (erinal) = [ H(GE @35 o
8 m
- bl/l _ b/l % ,
In 2| 1Bz =2l In the sequel it will be handy to explicitly evaluate the ontal.
from which we obtain The proof of the following lemma is contained in Appendix G.
8
[(DO",V) — D", b)) < g | B —z)l, Lemma 26 (Evaluation of GEXIT Integralpssume that

communication takes place over an ordered, complete and

piece-wise smooth familycy }4, using the degree-distribution
air (d;,d,). Let {cy,xn}n be the FP family of forward DE.
&tx = xu-, b* > h(d), d,, {ca}), whereh(d, d,, {c}) is the

showing thatD is actually Lipschitz in its second argument
It follows, in particular, thatG, is continuous inb. Since
the Battacharyya parameter is a bounded functional and
channel family is smooth, we ha () s continuous ink.

. . . h uantity introduced in Lem 8. Then,
Consequently(, is continuous irh. [ ] a y mal
d
G(dy, dy, {cn, b ) =1 — d_l — A,

L. Area Theorem

In Section1I-) we introduced the GEXIT curve associate\f‘fhere
to a regular ensemble, see e.g. Figlife 2. In Sediionl II-K, _ H(x) + (d — 1 — ﬂ)H(xdT) — (d — DH(x® 1),

we then derived conditions which guarantee that this curve d,

indeed exists and is continuous in a given region. We Willis. ssionNote that this GEXIT integral has a simple graphi-

now discuss the GEXIT integral, the area under the GEXIJ,| interpretation: it is the area under the GEXIT curve as e.

curve. In order to derive some properties of this integral, Wi in the right-hand picture of Figufé 1. The condition
will first introduce GEXIT integrals in a slightly more gerér . - h(d;,d,, {cu}) ensures that this curve is well defined
form before we apply them to ensembles. i

Definition 23 (Basic GEXIT Integral)Given two families
{cs}g and{z,}7, the GEXIT integral{c,,z, }J is defined as

and integrable.
We have seen in the last section that the value of a GEXIT
integral of an ensemble is determined by the expresdioinve

- T e will soon see that it is crucial to describe the region whére
G({co,20}g) = / H(d—” ® z,) do. is negative. The following lemma, whose proof can be found
z 7 in Appendix[H, gives a characterization of this property.

n Lemma 27 (Negativity)Let (c,x) be anapproximateFP of

Discussion:In the above definition, and some definitions behe (d;,d,)-regular ensemble of design rate= 1 — d;/d,..
low, we need regularity conditions to ensure that the irstlsgr Assume thatl, > 1 + 5(&)% and for some fixed) < § <
exist. Rather than stating some general conditions here, Y\re(z)dl )2, d(x, c® (xB—1)@d-1) < 5. Let
will discuss and verify them in the specific cases. E.g., ond6v2d- ’ -
case we will discuss is if the channel famdy is smooth and
z, IS a polynomial inc with “coefficients” which are fixed
densities. v

Definition 24 (GEXIT Integral of Code)Consider a bi- For0 < r < 4t if Hx) € (3™ + gt ot -
nary linear code of length whose graphical representation isd e—4(d,‘—1)(”2:éT)% — ], thenA < —r.
a tree. Assume that we are given an ordered family of channé- -

{eols. Assume t_hat when all varla_ble nod(_es See the channg ictly negative for alk with entropies in the rang@®, d; /d).
c, the distribution of the resulting extrinsic BP messag

densi hei-th iabl de | Th he GEXIT Rote thatd; /d, corresponds to the Shannon threshold for a
. ensity at t ?H varla' € node 1%,,. 1hen the ~.  code of ratel —d;/d,. In the preceding lemma we introduced
integral associated of thé-th variable node i€+({c,,25.i}3)-  the notion of anapproximateFP of DE: we say thatc, x)

[ | ) . _
. . o . is a d-approximate FP if for somé > 0 we haved(x,c ®
Discussion Note that the distributiorz, ; is the best guess (Xd,‘_lg)gdl_l) <5 (¢

we can make about bit given the code constraints and all
observations except the direct observation orni.bithis is why
we have called the distribution thextrinsic message density. M. Area Threshold

Note further that we have assumed that the graphical steictu The most important goal of this paper is to show that suit-
of the code is a tree. Therefore, BP equals MAP, the optima@le coupled ensembles achieve the capacity. The preceding
such estimator. (Negativity) Lemmd_2]7 is an important tool for this purpose.

The GEXIT integral applied to an ensemble is just thgut we will in fact prove a refined statement, namely we will

integral under the GEXIT curve of this ensemble. determine the threshold for fixed dds. This threshold is the

A:H(x)+(dl—1—%

T

JH(xE4) — (d — DHES ).

cussion:In words, for sufficiently high degreesi(x) is



dd.  rate nSh hiEc hisc hfavane
(5,6) 0.1667 0.8333 0.8333 0.8332 0.8333
(4,5) 0.2 0.8 0.7997 0.7992 0.7994
(3,4) 0.25 0.75 0.7460 0.7407 0.7428
(4,6) 0.3333  0.6667 0.6657 0.6633  0.6645
(3,5) 0.4 0.6 0.5910 0.5772 0.5841
(3,6) 0.5 0.5 0.4881 0.4681 0.4794
(3,7) 0.5714  0.4286 0.4154 0.3912  0.4057
(3,8) 0.6250 0.3750 0.3613 0.3345 0.3514
(3,9) 0.6667 0.3333 0.3196 0.2912  0.3099

TABLE Il
NUMERICALLY COMPUTED AREA THRESHOLDS FOR SOME DDS AND
CHANNELS.
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is Lipschitz continuous at least in the rangec [0.341, 1].
An explicit check shows thatl(x,—.341) < 0, SO thath4 >
0.341. We know that forh € [0.341.1] the expressiorn —
j—i — A(xy) corresponds to the area under this GEXIT curve
betweenh and 1. This expression is therefore a decreasing
function inh, or equivalently,A(xy) is an increasing function
in h. Using bisection, we can therefore efficiently find the area
threshold and we get ~ 0.49985. Note that for this case
the area threshold has the interpretation as that uniqueeha
parameteh” so that the enclosed area under the GEXIT curve
betweenh and1 is equal tol — j—i. This is obviously the
reason for callinch” the area threshold.

The same interpretation applies to any dg ¢,) and any

so-called area threshold and it was first introduced_in [#4] BMS channel where the area threshtt{d;, d,, {cx}) is such

the context of the Maxwell construction.

Definition 28 (Area Threshold)Consider the (d;,d,)-

that the GEXIT curve fromh?(d;, d,, {cn}) up till 1 exists
and is integrable. Empirically this is true fail regular dds

regular ensemble and transmission over a complete amst all BMS channels. Consider e.g. the case of (the)

ordered channel familf{c,}i_,. For eachh € [0,1], let x,
be the forward DE FP associated to chanagl The area
threshold denote it byh?(d;, d,, {cy}), is defined as

n?(di, dy, {cn}) = sup{h € [0, 1] : A(xw, di,d;) < 0},

whereA(xy, d;, d,) is equal toA, which is given in LemmBa26,
evaluated at the FR,, when transmitting with théd;, d,)-
regular ensemble. [
Note that A(Aj.,d;,d.) = 0 and thatx, = A, for

all b < hBP(d;,d,, {cs}). Therefore the set over which we

take the supremum is non-empty an8"(d;,d,,{cx}) <

h4(d;, d,, {cn}). Also note that we have made the dependence
of the area threshold on the channel family and the dd

explicitd
Table[dl gives some values fart(d;, d,., {c,}) for various
dds and channels.

Recall that the GEXIT integral has a simple graphical
interpretation — it is the area under the GEXIT curve, as8@Miry 4 The area threshold for tH8, 6)

ensemble and transmission over the BAWGNC, see Figure 4.
From Table[ll we are assured that this curve exists and is
smooth at least in the range € [0.5931,1]. This region is
unfortunately too small. But it is easy to compute the curve
numerically over the whole range. Since the resulting cisve
smooth everywhere, it is easy to compute the area threshold
numerically in this way. We gei? ~ 0.4792.

S G(co,x)

0.4

0.2

BP threshold
Area threshold

0.0 02 04 06 H(c,)

-regular ensemble and transmission

of course that both the curve and the integral exist. The ar@@r the BAWGNC. This upper bound is given by the entropy ealthere

threshold is therefore that channel paramatéfd;, d,., {c.})
such that the GEXIT integral frora“(d;,d,,{cy}) to 1 is
equal tol — £, the design rate.

Consider e.g. the case of th{e0, 20)-regular dd depicted

the dark gray vertical line hits the-axis. Numerically the upper bound is at
a channel entropy of roughl.4792. For comparison, the BP threshold is at
a channel entropy of roughif.4291.

Fortunately, if we fix the rate then for all dd of sufficiently

in Figure[3. From LemmB&_19 we know that the GEXIT curvéigh degree this interpretation applies.

<
6
s
G
0.6
=]
0.4 B 2
7} <]
02 £ i
o @
oM <
0.0 02 04 0.6 H(co)

Lemma 29 (Area Threshold Approaches Shannon):
Consider a sequence @, d,)-regular ensembles of fixed
design rate- = 1 — d;/d, and withd,, d,. tending to infinity.

Assume that, > 1+ 5(:=)5 and thath(d;, d;, {ca}) <

j—i - dle*4(‘ir*1)(2qff))%, whereh(d;, d,, {cy}) is defined in
LemmalI8. Then for any BMS channel famify, }

Ly 4
% — die DS < A (dy, dy, {en}) < %
Furthermore, A(xpa,d;, d,) 0 and, for fixed rate

and increasing degrees, the sequence of the area thresh-

Fig. 3. The area threshold for tfi0, 20)-regular ensemble and transmissiong|ds hA(dl d, {Ch}) converges to the Shannon threshold
) Y

over the BSC. We have” ~ 0.49985. For comparison, the BP threshold is

at a channel entropy of roughly.2528.

“We keep the explicit notation df(d;, dy, {ca}) andh?(d;, dr, {cn}) in
the statements of the lemmas and theorems but drop it in t&f for ease
of exposition.

nShannot g, ) = j—l = 1 —r universallyover the whole class
of BMS channel families.

~ _ 1
Proof: Note thath < h < —¢*v2

1
" (d—2)1 )
the universal upper bound anin LemmaI9. Thush < j—i -

ld,—o0 0, whereh is
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e~ 4D E s fulfilled for sufficiently large degrees. is independently chosen from the range- w + 1,...,4]. A
Let us begin with the lower bound art*. Consider anyr < detailed construction of this ensemble can be found_in [53].
h< d_g 674(dr71)(2qf;))% Letx. be the correspondingBp For the whole paper we will always be interested in the
d, @ : h p 9 - o .
a g a(dp—1)(20=02)4 s that limit vyhen M te_nd_s 'go infinity whileL as well asd, a_nd d, _
FP. Clearly, Hx) < G- — die o, SUPPose Tal stay fixed. In this limit we can analyze the system via density
L

H(x) € [(%)dl{u_ﬁ, j_i_dle*‘l(dr*l)(uedr)% —k]. Then evolution, simplifying our task.

from the (Negativity) Lemm& 27 it follows thati(x,) < 0 Not surprisingly, spatially coupled ensembles inherit ynan
and hencad > j—l —dl€_4(dT_l)(2(111;T))%- Now suppose that pf their properties from the und_eﬂymg ensemble. Perhapstm
T _ ~  importantly, the local connectivity is the same. Furthée t

H(x) < (5)77 + g7y (the leftboundary in the Negativity gesign rate of the coupled ensemble is close to that of the
lemma). Sinceéa > h, we know from Corollary 20 that t,) original one. A proof of the following lemma can be found in
is a continuous function wii with H(x,—1) = 1. Thus, from .
the mean value theorem, there must exists a channel entropyemma 30 (Design Rate)fhe design rate of the ensemble
h* such that Hix,-) lies within the interval prescribed by the(q,, d,., L, w), with w < L, is given by
Negativity lemma. Therefore, also in this casé > % — o

' d, dw+1-230,(5)"

dje—4@-1D(4E)F R(dy,dy, L,w) = (1 — L) — =L

. d, d, 2L+ 1
Let us now consider the upper bound. From above argu—_l_h . firel valent fd ibi all
ments, sincé < h4, the BP GEXIT integral fromh* to 1 is ere s an entirely equivalent way of describing a spatia

given by Lemma Z6. If we combine this with the definitioncoupled ensemble in terms of a circular construction. This

of the area threshold, i.e., the expressibrin LemmalZ® is construction has the advantage that it is completely symienet

s - This simplifies some of the ensuing proofs.
-positive ah?, t that the BP GEXIT integral at th ! ) ;
non-posfive a we get fhat the integral at the Definition 31 (Circular Ensemble)Given an(d;, d,., L, w)

area threshold is at least equal lto- 3_1_ Now, note that the ensemble we can associate to itcimcular ensemble. This
BP GEXIT curve is always upper bounded lbyand so the . . '
circular ensemble hasy — 1 extra sections, all of whose

integral fromh“ to 1 can be at most equal tb— h*. Puttin .
9 q 9 variable nodes are set to zero. To be concrete, we assume that

things together we have that' < nShannon— %_ .
Let us prove the last claim of the lemma. We want to shothe sections are numbered fromL, L + w — 1], where the

that at the area threshold(x,,d;,d,) = 0. Recall that the zﬁztltc;]lsslgL;gr;SL]i @aLrj-tT eLsfigo_n‘;']o;tehfhgrg(lggl :encstﬁ)rzts)le
area threshold was defined as the supremum over sl that ’ j

. In this new circular ensemble all index calculations (for
A(xn,d;, d,) is less than or equal to zero. Therefore, all w . S
. . . . e connections) are done moduld + w and indices are
need to show is thatl(xy, d;, d,.) is continuous as a function

of b aroundh. mapped to the range-L, L + w — 1]. For all positions in the

Note thath4 is strictly larger tharh. Thus, from Corol- 95! € L+ 1, L+ w = 1] the channel ise; = Ao,

g oo and consequentlyy; = A .. For all “regular’ positions
!ary Pll we conclude '_[hat the Wasserst-em distariog, x;) i € [-L,L] the aszsociatedojzhannel is the standard channel
is continuous wrt. It is not hard to verify thatA(xy, d;, d,) :

. ) 7 . _.c. This circular ensemble has design rate equadl tod;/d,.
is also continuous wrt the Wasserstein distance. Comhmlrig 9 q 1/

we get thatA(xy, d;, d,-) is continuous wrt aroundh?. =

As we will see, it is the global structure which helps all the

individual codes to perform so well — individually they can
I1l. COUPLED SYSTEMS only achieve their BP threshold, but together they reach the
) MAP performance.

A. Spatially Coupled Ensemble

Our goal is to show that coupled ensembles can achiefe Density Evolution for Coupled Ensemble
capacity on general BMS channels. Let us recall the definitio Let us describe the DE equations for thié,d,, L, w)
of an ensemble which is particularly suited for the purpdse ensembile. In the sequel, densities Ardensities. Let denote
analysis. We call it the(d;, d,, L,w) ensemble. This is the the channel and lex; denote the density which is emitted
ensemble we use throughout the paper. For a quick historibgl variable nodes at position Throughout the paper) ., .
review on some of the many variants see Sedfion I-B. denotes an.-density with all its mass atoo and represents

The variable nodes of the ensemble are at posifierds L], the perfect decoding density. Alsdy, denotes an.-density
L € N. At each position there aré/ variable nodes)M € with all its mass at0 and represents a density with no
N. Conceptually we think of the check nodes to be locatédformation.
at all integer positions froni—oco, oc]. Only some of these Definition 32 (DE of the(d;, d,, L, w) Ensemble):Let x,,
positions actually interact with the variable nodes. Attead € Z, denote the average-density which is emitted by vari-
position there arej—lM check nodes. It remains to describeble nodes at positioh Fori ¢ [— L, L] we setx; = A . In
how the connections are chosen. We assume that each &f theords, the boundary variable nodes have perfect informatio
connections of a variable node at positiois uniformly and Fori € [—L, L], the FP condition implied by DE is
independently chosen from the range . ., i+ w — 1], where w1
w is a “smoothing” parameter. In the same way, we assume x; = c ® (l Z(
that each of thel, connections of a check node at position Wi =0

g
L

(12)

Bd,—1 ®d;—1
xi+j—k) .



Define
w—1 w—1
1 1 @d,—1\ ®di—L
9Kty Xeur1) = (E Z(E Z Xitjk) ) :
j=0 k=0

Note thatg(x, ..., x) = (x24-—1)®d—1 "where the right-hand
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x(+1) is generated fronx*) by applying the DE equation
(I2) to each sectione [—L, L],

¢ ¢ ¢
xl(, +1) =Cc® g(XZ(-_)w+17 s 7Xz('+)w—1)'

We call this theparallel schedule.

underlying(d;, d,-)-regular ensemble. Also define

~ 1 w! 1 wl d7~—1 @dl
G(XicwtL 5+ o Xipar1) = (E Z(E in-hj—k) ) .
j=0 k=0

As before we see thaj(x,...,x) denotes the EXIT value
of DE for the underlying(d;, d,)-regular ensemble. It is not
hard to see[[62] that botly(x;—w11,---,Xitw—1) as well
as J(Xi—w+1y -+ s Xitw—1)
all their argumentsx;, j = @ —w + 1,...,i + w — 1.
More precisely, if we degrade any of the densitigs j =
t—w+1,...,i+1—1, then g(-) (respectivelyj(-)) is
degraded. We say that(-) (respectivelyj(-)) is monotone

in its arguments. [ ]

Lemma 33 (Sensitivity of DE)rix the parameter$d;, d,.)
andw and assume that(a;,b;) < k,i=—-w+1,...,w—1.
Then

d(c® g(a w1, 3w 1),C® G(b_wi1- - by 1))
< 2(d; — 1)(d, — 1).

Proof: Fori € [0,w — 1], definea; = 2 S0~ "a;_;, and
bi = 2 31~ bi_y. Setc; = a2 ! andd; = bP* . Then
using properties{v) and_(Vii) of Lemniall3 we see that

(i) - @
d(Ci, dl) S (d», — 1)d(2~31, bl) S (dr — 1),%
Using once again propertyi(v) of Lemrhal 13

w—1 w—1
1 1
d(— iy — d;) < (dr — 1)K.
(- ; i, o ; ) <( )k
Finally, using property[ (Vi) of Lemm@a13
d(c® g(a ity 13u-1),¢® g(b_wir,-. ., bu_1))

w—1 w—1
1 1
—d - ’ ®d;—1 - d; ®d;—1
(co(G X e hew (G )

< 2(dy—1)(dy— 1)

C. Fixed Points and Admissible Schedules

Definition 34 (FPs of Density Evolution)Consider DE for
the (d;, d,, L, w) ensemble. Lek = (x_r,...,xz). We callx
the constellation(of L-densities). We say that forms a FP
of DE with channelc if x fulfills (L2) for ¢ € [-L, L]. As
a short hand we say thét,x) is a FP. We say thafc, x) is
a non-trivial FP if x; # A, for at least one € [—L, L].
Again, fori ¢ [—L, L], x;, = Aj . ]

Definition 35 (Forward DE and Admissible Schedules):
Considerforward DE for the (d;, d,., L, w) ensemble. More
precisely, pick a channel. Initialize x(*) = (Aq, ..., Ao).
Let x¥ be the result of¢ rounds of DE. This means that

arbitrary subset of the sections is updated, constraingdoyn
the fact that every section is updated in infinitely many step
We call such a scheduldmissible We callx(®) the resulting
sequence of constellations. [
Lemma 36 (FPs of Forward DE)Consider forward DE
for the (d;,d,, L, w) ensemble. Lek*) denote the sequence
of constellations under an admissible schedule. T€ncon-

are monotone wrt degradation inVe'9es to a FP of DE, with each component being a symmetric

L-density and this FP is independent of the schedule. In
particular, it is equal to the FP of the parallel schedule.

Proof: Consider first the parallel schedule. We claim that
the vectorx(¥) are ordered, i.ex(® = x(1) = ... = 0 (the
ordering is section-wise ardlis the vector ofA. ). This is
true sincex(?) = (Ao, ..., Aq), whereax™ < (c,...,c) <
(Ao, ..., Ag) = xO. It now follows by induction on the
number of iterations and the monotonicity of the function
g(-) that the sequence®) is monotonically decreasing. More
precisely, we havegg”l) < 11(.5). Hence, from Lemma 4.75
in [62], we conclude that each section converges to a limit
density which is also symmetric. Call the limit>). Since
the DE equations are continuous it follows th&®) is a FP
of DE (12) with parametetr. We callx(>) the FP of forward
DE.

That the limit (exists in general and that it) does not depend
on the schedule follows by standard arguments and we will
be brief. The idea is that for any two admissible schedules th
corresponding computation trees are nested. This meahs tha
if we look at the computation graph of schedule lets say 1
at time ¢ then there exists a timé€ so that the computation
graph under schedulzis a superset of the first computation
graph. To be able to come to this conclusion we have crucially
used the fact that for an admissible schedule every section
is updated infinitely often. This shows that the performance
under schedule 2 is at least as good as the performance under
schedule 1. Since the roles of the schedules are symmetric,
the claim follows. [ ]

D. Entropy, Error and Battacharyya Functionals for Coupled
Ensemble

Definition 37 (Entropy, Error, and Battacharyya):et x be
a constellation. LeF'(-) denote either the H) (entropy),&(-)
(error probability), or5(-) (Battacharyya) functional defined
in Section1=D.

We define the (normalize@ntropy, error andBattacharyya
functionals of the constellatiox to be

L

1
iy i:z_:L Foa)-
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E. BP GEXIT Curve for Coupled Ensemble boundary. ForL. around10 and above, the BP threshold of

We now come to a key object, the BP GEXIT curve fofach ensemble is close to the area threshold of the undgrlyin
the coupled ensemble. We have discussed how to compute BF5)-regular ensemble, namely.4792 for the BAWGNC
GEXIT curves for uncoupled ensembles in Secfiorlil-E. F&Nd 0-4680 for the BSC (see the values in Tallé Il). The
coupled ensembles the procedure is similar. picture suggests that the threshold saturation effecthwvias

In Sectior(II=C we have seen that for coupled systems gplown analytically to hold for the BEC i [V4] also occurs
of forward DE are well defined and that they can be computé®f 9eneral BMS channels.
by applying a parallel schedule. This procedure allows us toThe aim of this paper is to prove rigorously that the situatio
computesomeFPs. is indeed as indicated in Figuke 5, i.e., that the BP threshol

But we can also use DE at fixed entropy, as discusseficoupled ensembles is essentially equal to the area thicesh
in Section[T, to compute further FPs (in particular unséablf the underlying uncoupled ensemble.
ones). More, precisely, fix the desired average entropy @f th
constellation, call ith. Start with the initializatiork”) = A, ,
the vector of allA,. In each iteration proceed as followsF: Review for the BEC
Perform one round of DE without incorporating the channel, Let us briefly recall the main result of [53] which deals
i.e., set with transmission over the BEC. Lef..(d;,d,, L, w) and

MO g(xge—1) N ) ). epre(dr, dr, L,w) denote the BP threshold and the MAP
i tmwtl 0 Mitw—l threshold of thed;, d,., L, w) ensemble. Also, let¥¥-(d;, d,.)
Now find a channet, € {c,}, assuming it exists, so that afterdenote the MAP threshold of the underlyiiig, d,.)-regular
the convolution with this channel the average entropy of théDPC ensemble. Then the main result lof|[53] states that
constellation is equal ta. Continue this procedure until the
constellation has converged (under some suitable metric). l}gxlmggx;oeézc(dz,dy,L,w) :I}gréongréoeg‘E’c(dz,dr,L,w)
Assume that we have computed (via the above procedure) — e (dy, d,)
a complete family{c,,x,} of FPs of DE, i.e., a family so BEC\EL, Gr)-
that for eac?h € [0,1], there exists a parameter so that Ao (see [[62]) asdj,d, —» oo, with the ratio dy/d,
h=5rg Xl g H(x,.:). Then we can derive from it a BP fyeaq e (dy,d,) — di/d,. Thus, with increasing degrees,
GEXIT curve by projecting it onto (dy, d,, L,w) ensembles under BP decoding achieve the Shan-

1 L non capacity for the BEC.
{H(Ca)a 2L——|—1 i;L G(Ca'a g(xa,i—uH—la- LT Xo’,é—ﬁ-‘w—l))}a

where g(-) was introduced in Section[_II[B, and G- First Result

Tl-ﬁ-lZiL:—L G(Coy §(Xo it s - - Xo it ) is the Before we state and prove our main result (namely that
(normalized) GEXIT function of the constellatiorx,. coupled codes can achieve capacity also for general BMS
Figure[® shows the result of this numerical computation whemannels), let us first quickly discuss a simple argumentkwhi
shows that spatial coupling of codes does have a non-trivial
effect.

First consider the uncoupled case. We have seen in
LemmalIl that when we fix the design rdte- d;/d, and
increase the degrees the BP threshold convergés What
happens if we couple such ensembles? We know that for the
BEC such ensembles achieve capacity. The next lemma asserts
that this implies a non-trivial BP threshold also for gehera
BMS channels.

Lemma 38 (Lower Bound on Coupled BP Threshold):
H(c,) H(c,) Consider transmission over an ordered and complete family

Fig. 5. BP GEXIT curves of the ensemble, = 3,d. = 6,L) for {cy} of BMS channels using &d;,d,, L,w) ensemble and
L = 4,8,16, and 32 and transmission over the BAWGNC (left) and thegp decoding.

BSC (right). The BP thresholds ang? 3,6,4) = 0.4992/0.4878, :
(fight). The resholds atgenc,sscl ) / Let h® = h®(d;,d,, L,w, {cy}) denote the corresponding

heP (3,6,8) = 0.4850/0.47303, hE, (3,6,16) =
BAWGNC/BSC\*? -? ’ BAWGNC/BSC\*" - BP __ _BP -
0.4849/0.4729, h% (3,6,32) = 0.4849/0.4720. The lightdark BP threshold and let® = €*(d;, d,, L, w) denote the corre

BAWGNC/BSC . I
gray areas mark the interior of the BP/MAP GEXIT functionlo underlying  Sponding BP threshold for transmission over the BEC. Then

(3, 6)-regular ensemble, respectively.

B (CuBP(dy,d,,Low {ca})) = Eoer (13)
transmission takes place over the BAWGNC (left-hand side)
and the BSC (right-hand side). Note that the resulting curvé particular, for every > 0 there exists av € N and a dd
look similar to the curves when transmission takes place owair (di, d..) with d;/d,. fixed, so that
the BEC, se€ [53]. For small values bfthe curves are far to
the right due to the significant rate loss that is incurrechat t B(Cuse(dydy Lo {en})) = di/dr = 0.
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Proof: Consider DE of the coupled ensemble (EF1(12))(i) 2(d; — 1)(d, — 1)(1 — 2“7 < 1, ¢ = (1 — r)(1 —

Applying the Battacharyya functional, we get dye~ 4 -V _ L
w-l o w-1 =1 Gy B(dy, v, {en}) < (1—1r)(1—dye—t-DEGEDS) _ L
1 1 B, —1 15 T~7 h =~ r d,’
B(x;) = B(cy) <%(E > (E > Xivjok) )) ; whereh(d;, d,, {c,}) is the bound stated in Lemnial18,
=0 k=0 (V) w > 2432,

(14)

(V) w > 2(di = 1)(d, — (55

where we use the multiplicative property of the Battacharyyvi) « > 2(d, — 1)(d, — 1)d2(4(v/2 + Zodi(d, —1)))?,

functional at the variable node side. (YVe say that the ensembld;, d,, L,w) is admissible if the

Using the linearity of the Battacharyya functional an -
: ; . arameters(d;,d,) and w are admissible. If we are only
extremes of information combining bounds for the check no@%ncerned about the conditions i, d, ), then we will sa
convolution ([62, Chapter 4]) we get s Y

that (d;, d,) is admissible. (]
1wzt 1wzt g\ di—1 Discussion:Conditions [[fi), [il) and[(ili) are fulfilled if we take
B(x;) < %(Ch)(l_a (1—5 > Blxivjr)) ) . the degrees sufficiently large. Conditiohd (i), (v), anil ¢an
j=0 k=0 (15) all be fulfilled by picking a sufficiently large connectiondtfn
w.

The preceding set of equations is formally equivalent to the Why do we impose these conditions? At several places we
DE equations for the same spatially coupled ensemble a#@f Simple extremes of information combining bounds and

the BEC. Therefore, if3(cy) < €(d;, d,, L, w) then the DE these bounds are loose and require, for the proof to work, the
recursions, initialized withe, must converge ta\ .., which above conditions. We believe that with sufficient effortstbe

implies [13). bounds can be tightened and so the restrictions on the degree

Further, from [53] we know that for sufficiently large@n be removed or at least significantly loosened. We leave
degreegd;, d,), with their ratio fixed, and withv sufficiently thiS as an interesting open problem.
large, €(d;, d,, L,w) approachesd,/d, arbitrarily closely Numerical experiments |nd|c_ated that for ahy< d; < d, _
(see the discussion in the preceding section), which prodw > 2 the threshold saturation phenomenon happens, with
the final claim. m a “wiggle-size” which vanishes exponentially in.

Example 39 (3,6) Ensemble and BS@)): Let us spe- Note that the above bounds imply the following bounds
cialize to the case of transmission over the BSC ugihg)- Which we will need at various places:
regular ensemble. Then we haWc) = 2./p(1 —p). Using (vii) d, > (1 + m@% In(2(d, — 1)3)),
the above argument and solving fom 2./e(1 —¢) > 1, we (viii) d, > 1+ 5(Tir)%-

conclude that by a proper choice of and (d;,d,) we can . : .
transmit reliably at least up to an error probability(f67 Instead of condition[{ji) above we can impose the stronger
", but somewhat easier to check conditian< (1 — r)(1 —

Combining the above result with Lemniad 4 we conclude a0y 3y g =
that the BP threshold of the coupled ensemble is at ledst e ") — g, whereh is the upper bound stated
(d;/d,)? — 6. In summary, for general BMS channels andd 1Lemmaljl:!a, or even further strengthen the condition to

2(

4
regular ensembles of fixed rate and increasing degrees, théi% < (1 =71 = dpe~ =Dy +- The last
uncoupled BP threshold tends t but their coupled BP condition can be easily checked to be satisfied for suffityient
threshold is lower bounded by a non-zero value. We conclugigge degrees.
that coupling changes the performance in a fundamental way.
In the rest of the paper we will strengthen the above result by
showing that this non-zero value is in fact the area threshdd. Main Result

of the underlying ensemble and as degrees become large, thifheorem 41 (BP Threshold of t{é,, d,, L, w) Ensemble):

will tend to the Shannon threshold;/d, . Consider transmission over a complete, smooth, and ordered
family of BMS channels, denote it by{c,}, using the
IV. MAIN RESULTS admissible ensemblgl;, d,., L, w). Let h®(d;, d,, L, w, {cp})
andh"*(d;,d,, L,w, {cy}) denote the corresponding BP and
MAP threshold. Further, leR(d;, d,., L, w) denote the design
In the sequel we will impose some restrictions on thgte of this ensemble and set= 1 — dy/d,. Finally, let
parameters. Rather than repeating these restrictionsah egA (4, 4, {c,}) denote the area threshold of the underlying

statement, we collect them once and for all and give them(@ 4, )-regular ensemble and the given channel family. Then
name.

Definition 40 (Admissible Parametersfix the design rate n(dy, dy, {cn})— f(di, dy, w)
r of the uncoupled system. We say that the paraméikrg,.) < b*®(dy, dy, L, w, {c}) (16)
andw are admissibleif the following conditions are fulfilled < P
. d; . <h (dlvd’l‘aLawa{ch})
with 7 =1 — 2L
N d \/—bi b). b — 6 <hA(d dy, {c })4.% (17)
M) dr = V3bIn(b), b = grazmy=y: = BaL 6y i L ’

A. Admissible Parameters
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where f(d;,d.,w) = 8(d, — 1)3(\/5 + %dl(dr - combining with Lemma_26. Putting things together we

1))/ 24—l " Note that f(d;,d,,w) depends only on get
the dd(d;,d,) andw but is universal wrt the channel family 1 1 h —h#
{cu}. Furthermore, Glen xaha) = Glanxaln) > 2(d, —1)3
. . . d, We get the stated condition ai¥** by lower bounding
Jm - lim B(dy, dr, L,w) = 1= 2= (18) K by 2L.
Discussion (i) The lower bound orm®*(d;,d,, L, w, {cy}) expressed in

(i) The boundh®™ < h"" is trivial and only listed for

(I6) is the main result of this paper. It shows that, up to
a term which tends to zero whemntends to infinity, the

BP threshold of the coupled ensemble is at least as large
as the area threshold of the underlying ensemble.
Empirical evidence suggests that the convergence speed

Define K = 21 + w. We first provide a lower bound on wrt w is exponential. Our bound only guarantees a
the conditional entropy for the circular ensemble when convergencg speed of ordgf1/w.

transmitting over a BMS channel with entropyWe then  Let us summarize. In order to prove Theorfem 41 we “only”
show that setting)—1 sections td) does not significantly have to prove the lower bound arf*. Not surprisingly, this -
decrease this entropy. Overall this gives an upper bouﬁdalso_the most difficult to accomplish. The remainder of thi
on the MAP threshold of the coupled ensemble in ternt@per is dedicated to this task.

of the area threshold of the underlying ensemble.

It is not hard to see that the BP GEXIT curve is the san@. Extensions

for both the(dl,dr)—regul_ar ensemble and the circular |, Theorem[@lL we start with a smooth, complete and
ensemble (when all sections have the standard channgiyered channel family. But it is straightforward to cortver
Indeed, forward DE (see Definition 135) converges tgis theorem and to apply it directly to single channels ca to
the same FP for both ensembles. Consider the circulg§jiection of channels. The next statement makes this geeci
ensemble and let € (b4, 1]. The conditional entropy
yvhen transmitting over the BM_S channel with entrapy Corollary 42 (d;, d,, L, w) Universally Achieves Capacity):
is at least equal td — d;/d, minus the area under thetpe (4, ¢, 1 w) ensemble is universally capacity achieving
BP EXIT curve of[h, 1] (see Theorem 3.120 in[62]). for the class of BMS channels. More precisely, assume we
Indeed, from the proof of Theorem 4.172 in[62], Weye givene > 0 and a target raték. Let C(R) denote the set

have of BMS channels of capacity at lea& To eachc € C(R)
h,{giong[H(X{l 1Y ()] /n>1— % — G({caxa}l). associate the familyc,}i_,, by defining
Note that the above integraly({c ; 1) is evaluated cn = {%[(H(C) WAoo thl, 0<h < Hc),

hs Ah -
at the BP FPs. From Lemmas]19 and 29, the BP Fp L@ ~H(©)Ao + (1 =h))c], H()<h <.
densitiesx, exist and the GEXIT integral is well-definedThen there exists a set of paramet@is d,, L, w) so that
for allh > h? > h.
Here, the entropy is normalized by= KM, where K R(dy,dr, L,w) > R — e,
is the length of the circular ensemble and denotes inf b*(d;,d,, L,w,{cp}) >1— R+e.
the number of variable nodes per section. Assume that ceC(R)
we setw — 1 consecutive sections of the circular enSince for eachc € C(R) the associated familyfcy}i_, is
semble to0 in order to recover the original ensembleordered by degradation, this implies that we can transnif wi
As a consequence, we “remove” an entropy (degrettgs ensemble reliably over each of the channel§(iR) at a
of freedom) of at mos{w — 1)/K from the circular rate of at leastR — 4e, i.e., arbitrarily close to the Shannon
system. The remaining entropy is therefore positive (atidhit.
hence we are above the MAP threshold of the cou- Proof: Fix the ratio of the degrees so th&t — 3¢ <
pled ensemble) as long ds— d;/d, — (w —1)/K — 1 —d;/d, < R — 2e. Note that for eachc € C(R) the
G({cn,xn}t) > 0. From Lemmag26 and P9 we haveconstructed family{c,} is piece-wise smooth, ordered and
G({cn, xu}pa) = 1—d;/d,, so that the condition becomescomplete. By applying Theorefi 41 to each such channel
G({en,xn}pa) — G({en,xn}s) < (w — 1)/K. For all family we conclude that for admissible parameters (i.eloag
channels withh > h4 we haveG(c,, x,) > ﬁ. as we choose the degrees and the connection width sufficientl
For a derivation of this statement we refer the readé@rge) the threshold of the ensemhlé,, d,,w, L) for the
to the proof of part (vi) of Theoreri #7. This impliesgiven channel family is at leagt*(d;, d,., {cn}) — f(d;, d,-, w),
that G({ca, xu}24) > (b —h?)/(2(d, — 1)3). Further- whereh”(d;,d,, {cy}) is the area threshold anfi{d;, d,, w)
more, G({cn,xn }z) < G({cn,xu}14). This follows from is a universal quantity, i.e., a quantity which does not delpe
the definition of area threshold, which implies that foon the channel family and which converges towhen w
h > h?, A(xy,d;,d.) > 0 (cf. Lemma[2Z6) and then tends to infinity. Further, we know from Lemnial29 that

completeness. Consider the upper bounchti stated
in (I7). Start with the circular ensemble stated in Defi-
nition[31. The original ensemble is recovered by setting
the w — 1 consecutive positions ifil, L +w — 1] to 0.
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1

the area thresholti*(d;, d,, {cx}) approaches the Shann0n</z* 5 /
1 - 1¢|(y))[d 1 — |€|(y))dy + 6 < 3V0.
threshold uniformly over all BMS channels for increasing™ /o Vol = [€](y))ldy + Z*( I€l(y))dy + 0 <

degrees. By our choice df;,d,) the Shannon threshold is|n words, any density which was close ta is still close

1—(1—dy/d,) > 1 - R+ 2e Therefore, by first choosing 1o z. we have therefore the sét;}’) of channels which
connection widthw, we can ensure that the BP threshol ; = ~ I8
lon widthw, w u that for everya € C(R) there exists an elemest € {&;}/(%)

is at leastl _—_R + €. Finally, by choosing the constellationg thatd(a, &;) < 3v/3 anda < &. This implies in particular

!engthL_ sufficiently large, we can ensure that the_ rate loss Wg ¢ min; 1 — H@&) > R — hQ(%\/g) > R — ¢, where in the

incur with respect to the design rate the underlying ensembpl o step we use the relation between the Wasserstein ctistan

is sufﬂmen}ly small so that the design rate of the coupleg,q entropy given by (ix) in Lemniall3, also we assumed that

ensemble is at leagt — 4e. _ o B we fixed§ so thaths(2+/3) < e. In words, all channels in
Corollary 43 (Universally Capacity Achieving Codes): (&) 1131) have capacity at least — c.

Assume we are given > 0 and a target ratdt. Let C(R) From Corollary[4P we know that, given a finite set of
denote the set of BMS channels of capacity at Idasthen .
channels fromC(R — ¢), there exists a set of parameters

ge_re&e)\xisttr']s t?]esiélloof Wri)r?ran:gtéerﬁ, dte%l(ug) Ogerig (?Itelneqiitt (di,d,, L,w) which has rate at lea®t — 5¢ and BP threshold
9 property. at leastl — R + 2¢ universally for the whole family. Since

of (d;,d,, L, w) with blocklengthn, where we assume that ﬁach element of{Ei}fg) is an element ofC(R — ¢) this

only goes over the subsequence of admissible values. The . v . ()
ensemble “works” in particular for all channe{s;};) and
im EC(n)G(dl,dT,L,w)[]]-{supcec(R) PEP(C(n),0)<e}] = L. these channels “dominate” all channelsdfR) in the sense
that for element ot € C(R) there is an element o{f&i}fi‘?
which is degraded wrt.

For each elemeng; we know by standard concentration
@eorems that “almost all” elements of the ensemble have a bi
error rate of the BP decoder going to z€rol[45]][62]. Sinee th
“almost all” means all but an exponentially (in the blockdém)
small subset and since we only have a finite number of channel
families, this implies that almost all codes in the ensemble
work for all the channels in the finite subset. But since the
finite subset dominates all channelsdfR) this implies that

almost all codes work for all channels in this set. [ |

In words, almost all codes ifi;, d,., L, w) of sufficient length
are good for all channels i@(R).

Proof: Note that according td_{iv) in Lemniall3 the spac
of |D| distributions endowed with the Wasserstein metric
compact, and hence so & R). Hence there exists a finite
set of channels, denote it k{y:z}fg) so that each channel in
C(R) is within a (Wasserstein) distance at méstom the set
{c;}. We will fix the value ofé shortly.

Let us modify the sefc;} so thatC(R) is not only close to
{c;} but is also “dominated” by it. For eache {c;}, define

1 Ze) <y <1, D. Proof of Main Result — Theoremnl41

_ 1 We start by proving some basic properties which any spatial
where z*(|¢]) is the supremum of alk so that J.(1 = FP has to fulfil. Since we are considering a symmetric
€l(y))dy = V. If no suchz € [0,1] exists then set ensemble (in terms of the spatial arrangement) it will béuise
z*(|€]) = 0. We claim that for any so thatd(a,c) < d,a < ¢. g consider “one-sided” EPs.
In other words we claim thaf,' |2|(y)dy < [ |€|(y)dy for  Definition 44 (FPs of One-Sided DEWe say thatx is a
any z € [0, 1] (cf. (). 3 one-sided FP (of DE) with channelif (I2) is fulfilled for

For z*(je]) < = < 1, [1[€|(y)dy = 1 — 2, the maxi- j ¢ [—N,0] with x; = A, for i < —N. We say that the FP
mum possible, and hence this integral is at least as largenas afree boundary condition ifx; = xo for i > 0. We say
[ |24 (y)dy. Consider therefore the range< = < z*(|€|). that it has aforced boundary condition if; = A, for i > 0.

In this case Lastly, we say that it has ancreasingboundary condition if
1 (@) 1 x;—1 < x; fori > 0, wherex;, fori > 1, are fixed but arbitrary

[ 181y 2 Va1 -2+ (1= V6) [ lelwey symmetric densities. :
o 1 - 1 Definition 45 (Proper One-Sided FPsWe say thatx is

‘2)/ 1€|(y)dy + \/S/ (1 |€|(y))dy > / €/(y)dy + 5 non-decreasingf x; < x,.1 for i — —N, ..., 1. Let (c,x)

© 1 . L be anon-trivial and non-decreasingne-sided FP (with any
C .
< / €| (3)dly +/ 120 () — €] () |dy > / 120 (y)dy. boundary condition). As a short hand, we then say fbat)
z z 2 is a proper one-sided FPFigure[6 shows an example. m
Definition 46 (One-Sided Forward DE and Schedules):

In () we use the definition of¢|(y). To obtain (b) we use _ - LA : .
that for = < 2*(|¢]) we havele(l Z(el(y) > f:*(\c\)(l ~ Similar to Definition[35, one can definene-sided forward

DE by initializing all sections withA, and by applying DE
|€|(y)) = V4. Finally, in (c) we use the alternative definition ’ 9 0 Y appying

s i according to an admissible schedule. [ |
ofliheﬂ\:Vasserstem distance in Lemma 13. There are two key ingredients of the proof. The first
urther,

ingredient is to show that any one-sided spatial FP which is
increasing, “small” on the left, and “not too small” and “flat

1 ~
d(€,a) < d(E,c) +d(c,a) < /0 €] = |€](y)ldy + 0 on the right must have a channel parameter very close to the
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implies of course that the constellation lengthis also chosen

R B RN sufficiently large.) More precisely,
f(dladTv ’LU) = (%E)I%) L,}ggoo C(dla dTv 57 w, K7 L)
16 -14 -12 -10 -8 -6 -4 -2 0 2(dy—1)(d,—1)

2
=8(d, — 1)3(\/§+ﬁdl(dr—1)) A
Fig. 6. A proper one-sided FPc,x) with free boundary condition for n w

the ensemble((dl) = h3,dr. = 6,N = 16,hw :N?,)) and the chanr:jel The proof of Theoremh 47 can be found in Appendix J. The
c¢ =BAWGNC(os) with ¢ = 1.03978. We have Hc) = 0.46940 an ; ; ; ;
. . e, proof of the following Theorerf 48 is contained in Apendix K.
H(x) = 0.17. The height of the vertical bar at sect | to Hx;). , ,
G ® height of the vertical bar at sectidris equal to He) Theorem 48 (Existence of FPEix r» € (0,1) and let
(d,d,,w) be admissible in the sense of conditiofis @ (ii),

; L N i _ d
area thresholch”. This is made precise in (the Saturation@’ l(m' (@), (i) in Definition with r =1 - a; Let ,
Theoren{4y. {cs}4—, be a smooth, ordered and complete channel family.

The second key ingredient is to show the existence of a sucH" the sequelN(d;, d,,w) is a positive constant which
a one-sided FRc*,x*). Figure[T shows a typical (two-sided)dep_ends on the en_semble but not the channel or the channel
such example. This is accomplished in (the Existence) ThdgMily andc(d:,d;) is a positive constant which depends on
rem[Z8. Once these two theorems have been established,¥h@ndd:, but not on the channel the channel family/V or
w.

-12 0 4 8 Forany N > N(d;,d,,w) and0 < § < ””“T(l), there exists
a proper one-sided FR*, x*) on [—N, 0] with parameters
(di,d,,w) and with forced boundary condition so that the

Les e sy e, following conditions are fulfilled:
. I, (i) Constellation is close td\ ., “on the left”: Let
I 1 1 we(d,d,
.° » le(N+1)(——7N(’ 5))
16-14-12-10 -8 6 4 2 0 2 4 6 8 1012 14 16 2 (N+1)

« .
Fig. 7. Unimodal FP of thdd, = 3,d, = 6,L = 16, w = 3) ensemble . Then%(xi.) S_é for i € [ N, f\f + N . 1]',,

for the BAWGNC{) with o = 0.9480 (channel entropy 0.4789). The (i) Constellation is not too small “on the right’Let
constellation has entropy equal@®. The bottom figure plots the entropy of (1) (d d )

the density at each section. Notice the small values towtireifoundary, a Ny = (N n 1) (xu _ welay, ar )
fast transition, and essentially constant values in thediaidThe top figure 4 (N + 1)5
shows the actual densities at sectidnk2, +-8, =4, 0. Notice that for densities

towards the boundary the mass shifts towards the “rightficating a high ThenB(x;) > xy(1) for i € [-No,0].

reliability. Also plotted in the middle figure relating toc®n 0 is the BP : S -
forward DE density of th€3, 6)-regular ensemble at = 0.9480. The density Discussion:in WOI’d_S, the _theorem ;qys that for any fixed
is right on the top of the density at sectionof the coupled-code ensemble,w € N andé > 0, if we pick IV sufficiently large, we can
i.e., these two densities are visually indistinguishafilee density in section construct a FP constellation which is small on the left for a
+4 is also “close” to the density at sectiOnThus in the flat part, the densities linear fraction of the total length and reasonably large ten t

become close to the BP density of the underlying ensemble. . . -
right, also for a linear fraction of the total length.

proof of our main theorem is rather short and straightfodwvar Proof of TheorerfL 41We are ready to prove the remaining

- statement of our main theorem, i.d..1(16). (€t d,.) andw
Theorem 47 (Saturation)fix r € (0, 1) and let(di, dr, w) " yicciple in the sense of conditios [, ([ (i€,

be admissible, with = 1 — 3%, in the sense of conditionEI(ii), . e o 0
@, @ @, @ and w of Definition EQL Let (c*,x") (vi) in Definition[40 and set = 1—g-. We want to show that
be a proper one-sided FP ¢r N, 0], with forced boundary 1® > h* — 8(d, — 1)*(v2 + 25di(d, — 1))/ 24=dezl),

condition, so that for somé& > 0, 2(w—1) < L, andL+w < First note thah® is a decreasing function df. This follows
K < N the following conditions hold. by comparing DE for two constellations of increasing sizd an
(i) Constellation is close ta\, ., “on the left”: verifying that DE of the larger constellation “dominatesi (
the sense of degradation) DE of the smaller constellation. |
B(x" yyp) < 0. the ensuing arguments we will take advantage of this fact — if

we can lower bound the threshold for a particular constelat

(if) Constellation is not too small “on the right™ size then we will have automatically lower bounded also the

B(x* ) > au(1). threshold for all smaller constgllation size;. This i; @ﬂent
since at several steps we will need to pitk“sufficiently”
Then large, where the restrictions on the constellation siza $tem
our use of simple extremes of information combining bounds.
H(c*) = b4 (di, dr, {a})| < e(di,dy, 6,0, K, L). Choose a channel, call it, from the channel family

{en} with H(c) < b? — 8(d, — 1)3(vV2 + Zdi(d, —

Herec(d;,d,,é,w, K, L) is a function which can be made ar
2(di—1)(dr—1)

bitrarily small by choosing sufficiently small,w sufficiently 1)) . We will show that for any admissible
large, andL and K sufficiently large compared ta. (This ensembléd;,d,, L, w), whereL is chosen “sufficiently large,”
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the forward DE process converges to the trivial FP. By olin words, for each € [— N, N] the constellation is decreasing.
remarks above concerning the monotonicity of the threshdldis therefore also decreasing if we run one step of DE with
in terms ofL, this implies that folanylength L, DE converges the channet < c*. As a consequence, since DE preserves the
to the trivial FP, hence proving our main statement. order imposed by degradation, we must hatfe?) < x(©) for
As stated in Theorenl #7f(d;,d,,w) is the limit of all £> 0. Thus the process must converge to a FP of DE with
c(dy, dy, 6, w, K, L) when firstL and K tend to infinity and forced boundary condltlon. Call this resulting &P°).
thend tends to zero. We claim that, for the fixed parameters We claim that%(xLH) < y(1). Assume to the contrary
(di,d,,w), foranyd > 0 there existL, i, N € N, sufficiently that this is not true. Then we can apply TheorEnl 47 to

large, so that (c,x(>)) to arrive at a contradiction. Let us discuss this
(& (5)
N(dy, dy,w) < N, (19) p(on;t in det)a|l Sincex; " < x;/, for alllﬁ we must have
X, = ><Jrl forall ¢ € [-N, ]. Combined with the fact
2(w - 1) <L, (20) (00) (c0)
1 & d that x,” ' = Ay for ¢ > N, we conclude that(c,x'*)
L<(N+ 1)(_ _ M) (21) is a proper one-sided FP dr-N, N] with forced boundary
2 (N+1) condition. Furthermore, from_(19)[(PO)._(21) arid1(22) we

Liw< K < (N+1)(xui1) _U(fjc\gcjl_,lﬁ;;)) < N_L (22) See thatx(>) satisfies all hypotheses of Theor&m 47. More
precisely, by assumption the constellation is large forlése
H(c) < b® — ¢(dy, dy, 0, w, K, L), (23) N — L sections. Hence from the choice &f as given by

we must haves (x> ) > z,(1). From it is clear
where N (d;, d,.,w) and c(d;, d,) are the constants given in 22 (v75) = au(D) )

atB(x ) < 4. As a consequence, from the Theofleth 47
Theorem[4B. To fulfill [2B), as discussed in TheorEn 4'?1 N+L " ! .
e(dy,d,,6,w,K,L) is a continuous function in its param- we conclude that k&) > b* — c(d;, dr, 6, w, K, L). But this

oters wh|ch converges t@(d, 132 + : le( - co\r/l\';radlcts our initial assumption on(¢§ (cf. 423)). .
n e are now ready to prove our main claim. Consider a

1))y/ 2d=Did—D) if we let § tend to0 and let X and L coupled ensemble ofi, L + 1] with parametergd;, d,, w).
tend to infinity. Therefore, by choosing sufficiently small, More precisely, the coupled ensemble has sections frofi+-
and L and K sufficiently large we fulfill [28). By a proper 1] with i ¢ [1,L + 1] set to A_.. Initialize all sections in
such choice we also fulfill[{20) and the first inequality 0[1 L + 1] to Ay. Call this constellationy(o) Run forward
(22). Now note that increasiny loosens all above conditions.pg with the channet on y(O call the result{y(®}, and let

In particular, for anyd > 0 and K, L,w € N, by choosing y() ) )

N sufficiently large we fulfill [19), IIle) and the last two— denote the hml(to) WhICh 's a FP. We ha\yé { X
inequalities of [2R). We have now fixed all parameters. <L, L"’(' 1], sincey; "for i € [1, L+ 1] andy;”

Let (c*,x*) be the proper one-sided FP $aN, 0] whose A+oo < X; for z ¢ [1,L+ 1] and DE preserves the ordermg.
existence is promised by Theordml 48. Recall that it haSTglerefore‘B( ) < %(X(Loi)l) < ay(1), foralli € [1, L+1].
forced boundary condition, i.e., it is a FP if we assumket B;, for somej € [1,L + 1], denote the maximum of
that x* = A, for i > 0. Furthermore, from[{21) and(22), the Battacharyya parameter over all sectlons/@f) From
and smce(c ,x*) is a proper one-sided FP, we satisfy th&xtremes of information combining we have

" %
Egnﬂf&zﬂé‘:’ﬁg{r??? Thus we conclude thdtH > B, — %(yj ) < BO)(1 — (1 — B)b—1yd=

Next, create from the FRc*, x*) on [~ N, 0] the constel- < (- (1 =Byt hHnt
lation x on [—N, N] by appending to*, N densitiesA, on
the right which are part of the constellatlon and by deflnln
x; = Ag for i > N (forced boundary condition). Note th t
this redefined constellatiofc*,x) is not a FP since it does
not fulfill the FP equations for the positionse [1, N].

Initialize DE with x, i.e., setx(?) = x. Apply forward DE
to x with the channet as chosen previously (cf_{(23)). CallE. Conclusion and Outlook

the resulting constellation, aftérsteps of DEx(®). We have shown one can construct low-complexity coding
We claim that( f)or aIIE > 0, x) s spatially monotonically gchemes which are universal for the whole class of BMS
increasing, i.ex{” < x\?,, foralli € [-N, N], and tha®  cpannels by spatially coupling regular LDPC ensemblessThu
is monotonically decreasing as a functionfoﬁ.e.,g(“l) =< we resolve a long-standing open problem of whether there
x(). exist low-density parity-check ensembles which are capaci
To prove the first claim recall that®) = x, which is achieving using BP decoding. These ensembles are not only
monotonically increasing and has forced boundary comtlitigytractive in an asymptotic setting but also for applicagiand
on the right. But DE preserves the monotonicity so that fefiandards since they can easily be designed to have botth, goo

The last inequality implies thaB,; = 0 sinceB; € [zy(1), 1]

4 excluded From propertyi(x) of Lemrhal13 we conclude that
Ay ALo) < BE)) <B; =0, foralli e [1,L+1].

In other wordSy("O) = A_, as claimed.

i o

everyl > (0, X( (+)1. for all i € [-N, N]. thresholds and low error floors. In addition, these ensesnble
Consider now the second claim. Assume we run Oﬂ? stepa@k universalin the sense that one and the same ensemble is

DE onx(® with the channet*. Then fori € [-N, 0], Xi = good for the whole class of BMS channels, assuming that the

(1) < c* < Ay — x@ " channel is known at the receiver. In fact, we have shown the

l

% by construction. Foi € [1, N], x
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stronger statement that almost all codes in such an ensemble performance, and how to optimally choose the scheduling
are good for all channels in this class. (e.g., windowed decoding) to control the complexity of

Let us discuss some open questions. the decoderl[75].

Maxwell Conjecture:As a byproduct of our proof, we
know that the MAP threshold of coupled ensembles is
essentially equal to the area threshold of the uncoupled
ensemble. In addition we know that the MAP threshold
of the uncoupled ensemble is also upper bounded by the
area threshold. The Maxwell conjecture states that in fact
the MAP threshold of the uncoupled ensembleségial

to the area threshold. So if one can establish that the
MAP threshold of the uncoupled ensemble is at least
as large as the MAP threshold of the coupled ensemble,

General Models:As was discussed briefly in the intro-
duction, the threshold saturation phenomenon has been
empirically found to hold in a large variety of systems.
This suggests that one should be able to formulate a
rather general theory rather than finding a separate proof
for each of these cases. For all one-dimensional systems
this has recently been accomplished(in [109]. For higher-
dimensional or infinite-dimensional systems this is a
challenging open problem.
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APPENDIXA
ENTROPY VERSUSBATTACHARYYA — LEMMA [4]

Lemma 49 (Bounds on Binary Entropy Functiompet

are currently not covered by our statement. (2) = —wlogy(x) — (1 — 2)log,(1 — x). Then for
General Ensemblesin a similar vein, we restricted * €1[0,1/2],
our investigation to regular ensembles to keep things ho(z) > 1 — (1 — 2x)?, (24)
simple, but the same technique applies in principle also to S ZEEY
irregular or even structured ensembles. Again, depending ha(z) < 2v2(l —2), (25)
on the structure of the underlying ensemble, much effort ha(z) < _1;53 (26)
might be required to derived the necessary bounds. 4
Wiggle SizePerhaps the weakest link in our derivationis ~ Proof: To prove [2#), write
the treatment of the connection width In our current [T, Lemma 1.1] 1 & (1-22)%
statements this connection width has to be chosen large(z) = =" "1 — o >

- n2 4 n(2n—1)
Empirically, small such lengths, such as the extreme case =1
w = 2 give already excellent results and by increasing > 1—(1-22)2 I & 1 (1 22)?
the convergence to the area threshold seems to happen = 2In2 4~ n(2n —1) B )
exponentially fast. How to derive practically relevant nl
bounds for such small values af is an important open =1
problem. Consider now [[@5). Setg(z) = 2/0-=z)z —
Scaling:More gen_erally, _from a practical_ point of view,hQ(I) lom(ioz)2 = V1—22 — h2(152)_ We want to
what is needed is a firm understanding of how thehow thatg(z) > 0 for z € [0, 1]. We have
performance of such codes scale in each of the parameters / . 1 142
ind;, d,., L, M, as well agv. Only then will it be possible g(z)=— i + 52 In (1 — Z)7

to design codes in a principled fashion.
Practical Issuesfurther important topics are, the design
of good termination schemes which mitigate the rate-

,,( )= — 1 n 1
T =TT 2 T - 2 me

loss, a systematic investigation of how structure in thEhe following claims are straightforward to verify usingeth
interconnection pattern as well as the codes influences gwplicit formulae forg(z), ¢'(z), andg” (2): (i) g(0) = g(1) =
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0, (i) ¢’(0) =0, (i) ¢”(0) > 0, (iv) ¢"(2) = 0 has exactly x (and this minimum is achieved if the input density is from
one solution in0, 1]. the BSC family). The right-hand side represents the maximum
Suppose there exists@, 0 < w < 1, so thatg(w) < 0. input entropy which we can have at the input of a variable node
Then from (i), (ii) and (iii) we must have(z) = 0 for at least if we want an output entropy equal to (and this minimum
three distinct elements d6, 1]. Rolle’s theorem then implies is achieved if the input density is from the BEC family). Note
that ¢'(z) = 0 has at least two distinct solutions if), 1) that we can extend the inequalify [27)ath = € [0, 1] without
and hence at least three distinct solutiong(nl] (since by changing the condition since fare (c, 1], the right hand side
(|) ¢'(0) = 0). Using Rolle’s theorem again, this implies thats strictly bigger thanl, whereas the left-hand side is always
g"(z) = 0 has at least two solutions [0, 1], contradiction bounded above by.

(iv). The preceding condition is equivalent to saying that in orde
We prove[(2B) along similar lines. Considgr) = zi— for DE to succeed, we must have
art +wlogy(x), wherea = 4(1 +1In (M))~1035>1 < x
Note thatg(z) < Lzt — ho(z) for = € [0, 3] (to verify this, = (ha((1 = (1 = 2k (2)) 2 1) /2)) =t
upper bound the term-(1 — x)log,(1 — 17) of the entropy for all z € [0,1]. We can also write this as
function by z/1n(2)). So if we can prove thag(xz) > 0 for ha ()
x eD[ 1] then we are done. N B c< (L= (1 = 20)7—1)/2)) 1"
irect inspections of the quantities shows tlgé0) = 0,
g(04) = +oo, g(z*) = g¢'(z*) = 0, where z* = wherez € [0,3].

1464(1;31%(2)4 ~ 0.05157, andg(2) > 0. We want to show that cannot be too large, i.e., we are

It follows that if there exists an < [0, 1] so thatg(z) < 0 looking for an upper bound on. Note that any value of
then g(x) must have at least roots in this range, therefore9ives @ bound. Let us choose = 2\/7 This gives the
by Rolle ¢’(z) must have at least roots, and again by Rolle Pound

g" (z) must have at least roots But an explicit check shows h2(2\/—)
that ¢"(z) = — 33, + zln@) = 0. Sog"(x) = 0 can only cs e Vo 1
ot (ha(i=f ™y
have a single solution. [ | _ _ . _ _
Proof of Lemmd#Let |a| denote the density in thgD|- To obtain the above inequality we first write — 22:) ! as
domain. Then exp((d, — 1)log(1 — 2z)). Forz € [0, 1] we use the Taylor
expansion
VH(|a]) \//h2 | [(z)dz > \// 1 —22)|a|(z (2z)?  (2z)3 1
—2r) = 20— - < 2= — .
log(1—2x) 2x 5 3 < —2x T
Jensen
> / V1 —22|a|(2)dz = B(|a]). Thus exg(d, —1)log(1—2x)) < exp(—v/d, — 1) andha((1—
0 (1—22)%=1)/2) > hy(=X"1) . We want to simplify the
. 2 2
This proves that3(|a|)” lower bounds Ha|). For the upper expression even further. Usirig [110, Lemma I1.1] and briggi
bound we have out the first term in the summation,
1 & 2n
2(7) 2L 2) 21112Z n(2n —1)
/ (VI —ha(155)) lalz)0= + H(lal) ! S
>1—- — _
>1 - g (12 Z 1—22)?
>0 by (29) with z = ;z n—>2
1 (1 =22 &
u =1-——(1-22)%- (1 —2x)
2zt 2 21n2 ZJ @)
APPENDIXB 2 1, 8(x —1/2)4
UPPERBOUND ON BP THRESHOLD— LEMMA [1]] =1- m(x - 5) C In(2)(1 —4(x —1/2)2) (28)

Proof: We use ideas from extremes of information comg
bining. We get an upper bound on the BP threshold by
assuming that the densities at check nodes are from the B %(.El—e 1> e Vet _ e Vet 1 i
family and that densities at variable nodes are from the B - 2In2 2In2 1—e—2Vd—l1
family. d -1 e~ Va1

Let z represent the entropy of the variable-to-check message >1- M e 2Vl e
2In2 l1—e 2Vd,—1
and letc denote the entropy of the channel. If for any [0, c|
We conclude that

ha((1 = (L= 2hy (@) 7)/2) > (/)T (27) ha(5a—r) _ Ilad=)

then DE will not converge to the perfect decoding FP. Thé = (A1) ( e ) T 1 —de2Vd—1’
left-hand side represents the minimum entropy at the output 22 \© l—e=2Vdr 1

of a check node which we can get if the input entropy is [ |

ubstltutmgx = (1 —e V4 —1)/2 we have




APPENDIXC
BASIC PROPERTIES OF THEWASSERSTEINMETRIC —
LEMMA [13

Proof:

(i) Alternative Definitions The equivalence of the basic
definition (cf. Definition[IR) and the first alternative
description is shown in (6.2) and (6.3) ih_[104]. The

equivalence of the first and second alternative description

is shown in [111].

(i) BoundednessFollows directly from either of the two
alternative descriptions.

(iii) Metrizable and Weak Convergencgee [104, Theorem
6.9].

(iv) Polish SpaceSee [104, Theorem 6.18].

(v) Convexity We have

1
’/ f@)(alal(z) + aol(x) - alel(z) - alo|(x)) da| <
‘/f (la|(x)—[c|(z dx‘—l—a‘/f (|6](x |D|(:17))da:’.

(vi) Regularity wrt@: Let f(-) be Lip(1)[0,1]. Without loss
of generality assume thaf(0) = 0. Indeed, since we
consider the difference of densities, subtracting a comsta
does not affect the integral. Defindx) for = € [—1,1]

by settingf(z) = f(x) for z € [0,1] and f(z) = f(—=z)
for x € [—1,0]. Then f(z) is Lip(1)[-1,1] and also
f£(0) =0.

let 9 = a®cande = b ® ¢ be the D-domain

representation. Thud(d, ¢) is characterized by
| Foie) - e d:
O [ )00 - e

8 /11 /ll(ﬂ(x)c(y) -
9| [y [ i) ~ el pte. ]

In step (i) we use the construction 6fz) along with the
relation betweerD and|D| domains given by[{29). We
definedg(z, y) = tanh(tanh ™' (x)+tanh ' (y)) = 1””_;‘”7;
and step (ii) follows by explicitly writing the variable
node convolution in theD-domain. In step (i) we
defined

b(x)e(y))f (9(a. ) dody|

S ST gtz jy)(+ i) (1 + jy).

ie{£1}je{+1}
To obtain this equivalent formulation of the integral in
step (iii) we make use of the symmetry conditions/of
densities and the implied relationship betwéemnd|D|
densities fory € [0, 1],

B 1—y 1+y

a( y)—a(y)Hy lal(y) ——-

We claim thath(z,y) is Lip(2)[0,1] (as a functionz).
This will settle the proof of the lemma. Notice that

, aly) = (29)
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h(z,y) is a linear combination of four functions. Let us
consider a generic term. Writing-, -) explicitly, we have

|f(g(iz, jy))(1+iz)— f(g(iz, jy)) (1 +i2)|(1+jy)

e gy . iz+jy . .
—|f(1+Z.j$y)(1+m)—f(1+ij2y)(1+lz)|(1+19)
147y . 1z+7y . .
S|f(m)(1+m)—f(m)(l‘Fmﬂ(l‘Hy)
12+7y . 1z+7y . .
+|f(1+ij2y)(1+117)—f(1+ij2y)(1+lz)|(1+19)
(1-9%

2 (14 iz)(1 + jy) |(iz — iz)|

(I+ijay) (1 +ijzy)
+ (1 + jy)|(iz — iz)|

In (i) we use the Lipschitz continuity of (-) andi? =

j? = 1to obtain the first term. We ug¢(-)| < 1 to obtain
the second term in (i). Indeed, singds Lip(1)[0, 1] and
f(0) = 0 we must have f(x)| = |f(j])| = |f(l]) —

f(0)] < ]z| < 1. Also, in the above expression, we can
replace|(ix — iz)| by |z — z|.

Now we sum over all possiblg j and divide by 4 to get

i|x—z|><( Z

ie{+1},5e{x1}
(1-9% )
(1 +ijzy)(1 +ijzy)/’

(2, y) — (1+jy)

LD

ie{+1},5e{x1}

h(z,y)| <

(1 +iz)(1 + jy)

Since)_ ¢ 11y jy = 0 we have

S Uty =4
ie{£1},je{£1}
Let us consider the other term. We split the sum into two
parts, one sum oveij > 0 and the other oveij < 0.
We have

: : (1-v?) _, 1=y
2 I i)~ A=y
> (i)l + jy) v ol ¥

(1 +djzy)(1 +ijzy) (14 2y)

ij>0

Adding the two we get the total contribution

1 1 1—y?
2(1 — )( ) - <4,
1+zy 1—2zy 1 — 222
Putting everything together we get

To get a good bound od(a®* & ¢, b®* @& c) in terms of
d(a,b) for ¢ > 2 consider

1 U o .
Z - -1

E > a@t I ® b@] ,
Jj=

and note that the Wasserstein metric can be expressed
directly in the L-domain as

_/OOO‘/_Z(a(y) ‘ﬁdx
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Applying this representation we observe that (ix) Wasserstein Bounds Battacharyya and Entrdpst g be
1 a positive function or{0, 1] and let f be aC? concave
da®c®c b@®c®c)= Zd(a a® @c,b¥ @) decreasing function of0, 1]. Then, for anyc > |g|o,

which yields / I'(@)g)dr < e 51 - %/01 9(2)de) — (1))

d(a® @ c,b® ® c) < 2id(a,b).
Before proving the inequality let us use it to establish the

(vii) Regularity wrtm: Let f(x) be-Lip(l)[O, 1]. Lgta =alc stated bOUI"IdS Setz) = [|B|(z)—|2|(2)]. Then|g|o <
ande 1= b ® ¢ be theD-domain representation. 1 and fo 2)dz = d(a, b). Now, for the Battacharyya
bound letf V1 — 22 and note
[ 0l - e e 5-
@ [ [ [5B(b) ~ B(a)| = | / F(2)(8(2) — a(2))dz
| [ [ Galt@)ielts) = lol)lel ) (ay) oy
: 1 - |- / FE(B1(2) ~ 12](=)dz
< [ avetw] | s (laie) - olta) de | 0
!/
where step (a) follows since in thé&|-domain, check- < _/0 fiz
node convolution corresponds to a multiplication of the We obtai
values. e obtain
But note that if f(x) is Lip(1)[0,1] then f(zy) is | B(b) a) <V1-(1-d b))2
Lip(|y|)[0, 1]. Hence, = \/d(a, b \/2 -
1
dlamc,bm®c) <d(a, b)/ dy [¢|(y)y For the entropy case we s¢fz) = hQ(lgz). The same
( 0) argument as above yields
E(O=J; “Zel()dy
= d(a,b)(1 —2¢&(c d(a,b
(@01 2 € H(E) — H(@)| < o(1%0))
B(c)<21/€(0)(1-€(0)) .
= d(a, b)y/1 — B(c). _12\/dab\/2 d(a,b).

Above, the relation between the Battacharyya and error
parameters can be obtained via extremes of information
combining (see[[62]). Let us focus on the last part. To
get a good bound or(a®!, b¥?) in terms ofd(a, b) for

We prove the stated inequality. Let us define

g(Z) = CJ]'{ZZl*% .]01 g(z)dx}

i > 2, consider wherec > |g|~. For eachz € [0,1] we havefol(g(z) -
i g(z))dz > 0 with equality atz = 1. Hence,
= lz a7 g pBI 1 z
i 0= [ 1) / (9() — g())d ) 0z
and note that the Wasserstein metric can be expressed
directly in the D-domain as / f'(z — §(2))dz.
d(a, b) / ‘ / y)dy| de This yields
1
Applying this representation, we observe that —/ f(2)g(2)dz < — / f(z
0
1 lz H7
dlam®c¢,bmEc) = zd( , 6. (f(l__/o g(z)dz) — f(1)).
This yields (x) Battacharyya Sometimes Bounds Wasserstgince the
d(a®6%%) < id(a,b)(1 —2€&(c)) cumulative| D|-distribution of A, is equal tol on [0, 1],
i the maximum possible value, we have
=d(a,b) ) (1-2€@® 7 mb® 1)) 1
= o, 80) = [ (1 [2())e:
i 0
=d(a,b) > (1-2¢(a))" 7 (1-2¢€(b))’ " =1-2¢(a)</1-2(a)>. (30)
=1 Similarly, since the cumulativeD|-distribution of A; is
. 0 on[0,1), we have
< d(a,6) Y2(1-%2(a)) 7 (1-87(0)) 7 0:1), we ha
| - R 050 = [ i) = 2¢@ < B@. @D
(viii) Regularity wrt DE Follows from properties (Vi) and (Vii). 0
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APPENDIXD It is straightforward to show that for oddwe have
WASSERSTEINMETRIC AND DEGRADATION — LEMMA [1T4

oot [ =0 @de = (@ +w)? - 22k

(i) Wasserstein versus Degradatidret f be a function of 1'
bounded total variation oif0, 1]. (This implies thatf

and for eveni we have

has left and right limits.) Note that we includg(0—)| / (1—2x)f(x)dz > —l(‘f — (& — w;)?)hy
and|f(1+)] in the definition of totaI varlatlon which we Ii 2
denote by |f(z)|dz. Define F(z) = [} f(z)dz. We wherez = 1 — z. Indeed, for odd we have |~ (f(z) —
claim that if 7' > 0 then hil{z>a;—wy)dz > 0 for all z € [z;,2;41] with
equality atz = x;,1. Hence
/ F(a)de) / /(@) ) > / F)ldr)”
/ (1 - x)(f(ac) - hi1{121i+1*wi})d‘r
This claim implies statemen{] (i) by setting(z) z; . B
(]%B](1 — 2) = [[(1 = 2)) and noting that, in this case, :/ o / Dl Ode)ds >0
f() |f |dZ < 2. x4 ( T; (f( ) ' {1211+1—wz}) ) o
We now prove the claim. Let be the set of points: which gives
n [0, 1], including the endpoints, wher&z—) f(z+) < i
0. Note thatS is closed and we may assunfe= 0 / (1 — ) f(x)da
on S. The complement ofS' is a collection of disjoint z;

open intervals such thaft is either strictly positive or
strictly negative in each interval. Consider the subset of
intervals on whichf is strictly negative. Without loss )
of generality we may take this collection to be finite. = __h (7 Tipr = (T + wi)7) -
Indeed, suppose there are countably infinitely many such
intervals.J,, J, ... Define an approximatioffy, by setting

Ti41
> / (1 — «r)hil{mzwwrl—wi})dx

The argument for evenis similar. We obtain

fi(@) = —f(x) for : € ux MJ and f(z) = f(x) 2/ (1—2)f(z)de >
otherwise. ThenFy(z fo fr(2)dz > F(x) > 0 and Ini_1 Ul
F}, — F uniformly. Furthermoref0 | fr(x)] = fol |f(z)] haoi_1w3;_1 + hojws; + 2(hai_1wai—1 — hajwa;)To;

andfO |f/.(x)| converges tof0 |f/(x)| from below.
By taking unions of intervals as necessary we can find an
increasing sequende= 1, xs, ..., Lok, Top+1 = 1 such o
that onI; = [z;,z;-1] we havef > 0 for ¢ odd and !
[T, Tit1] [z i 2/(1—x)f(x)d:v—2hiwi2
0

Defining z2,12 = 0 for notational convenience, we can
write

f < 0 for ¢ even. The sequence of points is strictly

increasing except possibly for the last pair which may .

coincide atl. Define > QZ(hQ' \Wai—1 — haite; ) Ta;
R i=1
hi = max|f(z)]

=1 [ s/ = [ 15eiden, —2Z<Z hzmwza-l—hzjwﬂ) (@21 = o)
I; I; j=1

k

wherew,; = 0 if h; = 0. Note thatw,; < |I;|. We have _ 22F($gi+1)(£2i — Fagisn) 2 0,
1 2k 1 2k i=1
/0 | (@)]dz > 2> b /0 f(z)|dz = > haw; . and the proof is complete.
=1 = (i) Entropy and Battacharyya Bound Wasserstéiet us first
We claim in addition that focus on the inequality between the Wasserstein distance
1 2% and the Battacharyya parameter. From point (i) we know
2/,F@me§:mw? that
0 i=1 1
The desired result then follows from Jensen’s inequality d(a,b) < 2\// z(|%B[ — [2U])dz
2

1= 3 > 1= . _

S S - / (181(x) — [21](2)dr ) .
Now, note that By integrating by parts twice we have

/OIF(x)Z/Ol(l—x)f(:v)d:v. %(a):/ol V1= 22al(2)dz
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/1—z 7%/|Ql| dgcd
and

H(a) = /01 s (157 ) al(2)dz

_ ﬁ 01(1 _ (/1 2] ()dlr ) dz

Thus we obtain

/OZ(I%I—IQlI)dz < (In2)(H(b)—H(a)) < B(b)—B(a).
This yields

d(a,b) <2+/(In2)(H

(b) —H(a)) < 2/B(b) — B(a).

For the final inequality first note thag(z) = (1 —

z?)*l(fluosu ) - [Al2)dz) < 1. Let v =
fO 2)dz = (In2)(H(b) — H(a)) . It follows that
1
B(b) - B@) = [ (o)
! 1
< /170 ﬁdz = arccos(1 — v)

< SV = 5 V/m2(Hb) — HQ@)
2(H(b) — H(a)).

Continuity for Ordered FamiliesAssume thata < b.
From point [[l) we know that

d(a,b) < 2/B(b) — B(a),

<

(iii)

and the continuity follows from the continuity of theby M (1)By,|B(p(a

Battacharyya parameter for smooth channel families.

APPENDIXE
SUFFICIENT CONDITION FOR CONTINUITY — LEMMA [I7,
CONTINUITY FOR LARGE ENTROPIES— LEMMA [18,
UNIVERSAL BOUND ON CONTINUITY REGION —
LEMMA [I9

Lemma 50 (Bound of8): Consider twolL-densitiesa; <
az. Then, for any degree distributigs(-),

(B(p(az)) — B(p(a1))) < (B(az)—B(a1))p (1 — B*(a1)).

Proof: Let a be a density and let/ be distributed
according to the correspondin®|-distribution. By Jensen’s
inequality we have

B(a) = E[(1 - U*)2] < (B[l - U?)2 = (1 - ma1)?,

where we have introduced the notationy , = E[U2*]. The
Taylor expansior(l — u?)z =1 — Y7° | ayu?* gives

o0
a) =1- E QMg k
k=1

whereqy, is positive for eaclk. The functionalsn, ; have the
important (Fourier) propertyn, ), = p(max) 6218 Since

5We introduced here only the even moments, since only theseerded.
The odd moments are multiplicative as well.

27

u* is convex and increasing for > 1, we havem,, , >
ma, k. Hence,

B(p(az)) — B(p(a1))
= Zak (P(ma1,k) - p(mag,k))
k=1
< Zakpl(mal,k)(mahk - maz,k)
k=1
< Pl(mal,l)(z v (May e — mazvk))
k=1
pl(l — %2(31))(2 Oék(mal,k - ma2-,k))
k=1
— /(1= B(a1)) (B(az) — Bar)).

[ |
Lemma 51 (Bound on Derivative &): Consider two L-
densitiesa; < as. Let 0 < hy < hy < 1 and letc,, and
cn, denote the two corresponding channels from an ordered
family {cn}. SetBy, = B(cy, } for i = 1,2. Then, for any dd
pair (A, p)

| B(Th, (a1)) = B(Th, (a2))] <

a|B(a1) — B(az)| + | By,

wherea = B, N (1)p/(1 — B%(ay)).

Proof: First, sinceB(a ® b) = B(a) B(b), B(Tu(a)) =
BuA(%B(p(a))). Second, sincd < A(z) < 1 and N (z) <
N(1), |[Mz1) = Ma2)| < N (1)|z1 — x2| for all 1,29 € [0,1].
This implies that B (T4, (a1))—B(Tx, (a2))| is upper bounded
1)) — B(p(az))|. Using the triangle in-

_Bh2|a

equality, we get

|B(Th, (a1)) — B(Th, (a2))]
< [B(Th, (a1) =B (T, (32))[+] B(Th, (32)) = B(Th, (a2))|
< /\/(1)Bh1|%(p(al)) - %(p(aQ)” + |Bh1 - Bh2|' (33)

The first term above can be bounded using Lerinja 50m

Proof of Lemm@& T7Denote byx, the BP FP for the channel
¢y, and notice that any other FR for the same channel
is necessarily upgraded with respectstg i.e., x; < X.
Indeed,x; < Ag. By applying the denS|ty evolution operator,
we deduce tha; < xl(f), Wherexl(f is the density after
iterations of BP. By taking the limif — oo we getx;, < x.
We conclude that if, does not satisfy[{9) then neither can
any other FP for the same channel.

Assume on the other hand thatsatisfies[(P) and that there
exists a distinct FP for the same channel, necessarily dpgra
with respect tox,, also satisfying[(9). Call this density. In
this case,

Xp 5 xh are FPs

|B(w) — B(x)| | B(Ta(xn)) — B(Tu(x))|

0)|B(x) — B(xy)l,

a contradiction sincé > 0. The above argument shows that
there can be at most one FP with this property and that this
FP must be the forward DE one.

Lemma51
< -



28

Let us now prove Lipschitz continuity, c.f(1L0). Under our T
hypotheses, the two FPs,, and x,, are the BP FPs for =
channelsc,, and cy,. Consider therefore the respective BP Py
sequences (starting with) {X}(j)}gzo, {Xl(é)}gzo. For eacl,

x}(f;) (respectivelwﬁ?) is degraded with respect tq, (respec- 0.4
tively xy,), and therefore satisfies the conditidh (9), since the

latter does. Furthermore, assuming without loss of geitgral 0.2
hy > h;, we havexl(f;) - x}(f;). Let d(p) = |%(X1(fi)) - %(x}(f;)ﬂ.

Since DE is initialized withA,, we haves, = 0. By applying 00 02 0.4 B(c)=g(p)

Lemmd5] we gef1 < (1—0) d,+| By, — B, |, and therefore Fig. 8. Consider the3, 6)-regular ensembles. Th@-shaped curve on the

9 -1 right is [34). This curve has two branches. The top branclesga tighter
6<(Q+(1-6)+(1=0)"+-+(1—6)"")[Bs, — Bn,| bound and pairg§B(c), B(x)) generated by DE must lie above this branch.

1— (1 _ 5)@ The second curve, given by {35), denotes the region (abaveutve) where
PR S |Bh — By | . there can be at most one FP. The GEXIT curve for the BEC is shasva
-1 (1 —0) ! 2 dashed curve. The portion of this GEXIT curve starting(atl) which is
. . . tained in th i teed to b th.
The thesis follows by taking thé — oo limit. g comanec e gray area s gratanieed fo be smoo
Proof of Lemmd&I8For 3 € [0, 1] define
B constant the densities generated by forward DE are noiadtriv
)= (1— (1— p2)d 1)M' (34) and are Lipschitz continuous. This insertion is equivatent
— — T 2 . ~
evaluatinge(z) at x = Z.
Note thatg(1) = 1 and thatg(p) is continuous. Let us finish the proof by showing th&(x,) > xy(1) for

Assume that we run forward DE with the chanreand allh > h. Indeed, from the extremes of information combining
that B(c) = ¢(5), for somes € [0,1]. We then claim that we have
for the resulting FPx, B(x) > 3. To see this, let{x® Ao 1dy—1
denote the sequence of( c)iensities with) = Ao. EJsin}g Blxn) < (1= (1 =B0w)™ )™,
the Battacharyya functional on the DE equations and therere above we have replacéc,) < 1. Above inequality
extremes of information combining bounds we see that  implies that eithefB(x,) = 0 or B(xy) € [xu(1), 1]. From the
a1 above discussion we know that far> h the densities gen-

: erated by forward DE are non-trivial. Putting things togeth

B(x) > %(c)(l - (1- %(X(Fl))z)dﬁl) we conclude thaf3(x,) > y(1)

Note that if B(x(*~1) > 3 then Lemma 52 (Unique Zero)For d, > d; > 3 let
(0 (1 (=1 2yd—1 == a(zr) = (1— (1 —a)& a1,
B(x) > B(c) (1~ (1 - Blx P ) b(2) = (ds — 1)2(dy — 1)20(1 2200,
> g@)(1--p)"1) T =5 elw) = v/a/alz).

The induction is anchored by noting that= B(Ay) > 8 Then therg i§ a unique solu_tio_n ofz) = b(x) in th~e interval
since we assumed thate [0, 1]. In summary, for eacts € (0,1], call it z. Further,c(x) is increasing forr € [a:,_l].
(0,1], equation[(34) gives us the lower boutsdx) > 3 for the Proof: Set L2 =d—-1landR = d’“R_ 1, multiply the
FP x of forward DE with the channeB(c) = ¢(3). Another €duation byl/L* and sety = (1 —z)". This gives t2he
way of interpreting[[34) is that it gives us an upper bound difluivalent quat';)mz(y) :QB]@' whereA(y) = (1-y)~/L*,
B(c) if we fix B(x) = 3. andB(y) = R*(y"" 7 —y> =),

According to Lemmd 17, the GEXIT curve is Lipschitz_ "€ funcﬂonél(y) is (i) decreasing and convex fdr > 2,
continuous (in the Battacharyya parameter) at the(dgPxy) (i) A(0) =1/L*> 0, (iii) A(1) = 0. The function5(y) is

if (i) increasing fory € [0,y1 = (38=2)F], (ii) decreasing for
y € [y1,1], (iii) concave fory € [y, = (W)R,l],

B(xn) > \/1 — (B(ew)(di — 1)(d, —1))"7=.  (35) and (iv) B(0) = B(1) = 0. Note that0 g(yjf <1)3(jf since we

Note that [3#) as well ag (B5) (if we interpret the inequalitfj‘ssurned thalt > 2. . . .
as an equality) give rise to curves in tfi8(c), B(x)) space. We. concludeNI'[hat n .the regiold, y there '52 exactly one
Inserting [(3%) into[(3b) gives us the points where these w%)lu'uon, call itg: there is at Ieas}t%>c>Ln>eQS|nddL = A(0) >
curves cross. If we sey/z = B(x,), massage the resultingB(0) = 0, whereasA(y,) < 1/L? < R/8 < R273t%® <
expression, and set it 10, we get [Il). As shown in the R?2-2*% (2% —1) = B(3) < B(y:) (sincey; is the position
subsequent LemmiabZ{11) has a unique positive solutishere B(y) is maximized); and there is only one solution
in (0,1] (i.e., the two curves only cross oncé);z) < a(z) since in[0,y1], A(y) is strictly decreasing, whereds(y) is
after this solution, and(3) is an increasing function aboveincreasing.
this solution. The situation is shown in Figlire 8. In the region,y € [y1,1) there can be no further solution

Inserting this solution back intd(B4) gives us a valusince A(y:1) < B(y1), A(1) = B(1) =0, and A(y) is convex
of B(cy) so that for all channels with larger BattacharyyavhereasB(y) is concave.
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Note thatb(x) starts at0, then increases until it reaches We finish the lemma by proving > z(1). Indeed, since
its maximum, and then decreases back)tavhich it reaches 7 # 0, all we need to show is thal — (1 —z)4-—1)d—1 > a
at + = 1. Let & be the largest value withif0,1] so that For 3 = d, = d; one can verify the validity of the claim
b(z) = 1 (we will verify shortly that this is well defined). directly. In general, we have
Sinceb(z) = 1 buta(x) < 1 for all z € [0,1], it is clear that de—1ndy—1 do—2nd—1
# < 7. Note thatZ is obtained fromg. Recall that we want 1-A-7)% )" =2 (1 -1 -7)")"

to show thatc(z) is increasing forz € [#,1]. We will show _ ( _ )dl oo
the stronger statement thatz) is increasing forz € [#,1]. (di — 1)(dr -1) - dr—1
This is equivalent to showing that/a(z) is increasing in this - 1 TE
range. Note thatz/a(z))" = p(x)q(x), where = ((dz —1)(d, — )) =%
qlz) =1— (1 — I)dr*Q((dldT —d; —d)x+ 1), where the last inequality follows since
-1 drzd
andp( ) >0 for z € [0,1]. The factorg(x) can be written (m) = ey =%
asyl1(dyd, — dy — d,) — y2((dydy — dy — dy + 1) + 1), The Battacharyya parameter of the channel is thus upper

wherey = 1 — z. This ponnomlaI has two sign changes an@ounded by,/Z/a(z). Using the upper bound on the entropy
hence by Descarte’s rule of signs at most two positive rdptsin Lemmal4, we get the claimed bound.

follows thatg(x) has at mose roots forz < 1. Sinceg(0) = 0 It remains to show that this bound converge$) twhen we
andg(1) = 1, there must be exactly one root @fz) in (0, 1] fix the rate and let the dds tend to infinity. To simplify our
and once the function is positive, it stays so witfin1]. It notation, letl = d; —1 and R = d, — 1. We have
therefore suffices to prove thq(;v) > 0. By definition of:v .  ~—L
we have(l — &)% 2 = m We therefore have b= \/Z/a(T \/(1 - (LR)fﬁ) (1 - (LR)fﬁ)
q(z) =r(2) | .=z, where @ — N i)
(didy—dy—d,) /% 1 < R) T =etyl—emw
_ 1_ T T _ ) 1
=T TD@ - @D -DvE cotVi oA V2
- - (d=2)7

A quick check shows that(z) > 0 for z € [m, 1].
The proof will be complete if we can show that < Where (a) is obtained by using the following sequence of

[m, 1]. We do this in two steps. We claim thatinequalities,

N o clny/(d—1)(dr—1) o 1 I

P2i=—"g—y — wherec= —omsa— and \/(1 - (LR)*%) _ \/elen(lf(LR)7%)
dr—2

that z € [m,l]. The second claim is immediate.

10r —ar Taylor Expansion
To see the first, forln 1—x) Lam BT (L(LR) R d.>4
B el~(LrR) FT L TR L <e2(d7‘ 2) < e%,

b(i) > (di—1)2(dr—1)eln /(dj—1)(d, — 1) &2 In(1=2)

=

—20dr2)i We finish the proof by showing that < h and B(x,) >
> (d;—1)(d, — — — —%
Z (di=1)%(dr —Ljeln v/ (di —1)(dr —1)e xy(1) for h > h. Let us first show thah < h. Note that
_ (di=1)(d~2)In(di—1)(d,—1) _ | _ b(). ﬁ hews(c(Z)), where recall thathgys(-) is the function
dy —2+Iny/(d —1)(d, - 1) — which maps the Battacharyya constant of an element of the

family to the corresponding entropy. Thus we have c().

The proof is now complete by observing thdtz) < ¢(T),
due to the monotonicity of the functios(z) for z > z, as
shown in Lemm#&52. |

This shows that that the maximum bfz) in [0, 1] is above

1 and soz is well defined. Since furtheb(x) is a unimodal

function andt was defined to be the largest valuewé [0, 1]

so thatb(z) = 1 it follows thatz > &, as claimed. [ |
Proof of Lemmd& T9Let a(z),b(z) andc(x) be as defined

in LemmalI8. We will provide an upper bound on the unique

solution of a(z) = b(x). Notice thata(z) represents the DE

equations for a BEC with parameter= 1. Therefore, we By definition, we have

know that forz > (1), a(z) > . We claim thatb(x) and

I(x) = z intersect only at one point if0, 1]. Indeedb(z) = =, / / la|(z)[6](y)E(x, y)dzdy,
€ (0,1], is equivalent to

APPENDIXF
ENTROPY PRODUCT INEQUALITY — LEMMA [2]]

T with the kernel as given in the statement. Differentiatiweg,
v=1-(d-1)d—1) 7= =7 have

Sinceb(1) = 0, wheread (1) = 1, we conclude that for: € _ 1 I+y L +axy

_ ky(x,y) = — In —xln ,

[z, 1], b(z) < . 21n(2) 1- 1—=ay
We further claim thatt > z,(1). Let us assume this for a

moment. Then we have(a:) > > b(:c) for = € [E 1]_ We 6Recall that for the BEC(1), the DE equation is given dy= (1 — (1 —
T ’ x)4~1)d—1 Furthermore, there are 3 FPs namelyz@(1) (unstable) and

conclude that the unique solution ofz) = b(z) in (0,1] iS 1 (sable). Finally, we have thatl — (1 — z)dr~1)di—1 > & if and only if
upper bounded by. x=0orz € [zy(1),1]. See Chapter 3 if [62] for more details.
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1 — 22

kyy (2, y) = — 7 code. LetY denote the result of passing the codeword
. In(2)(1 = y?)(1 — 2%y?) through a BMS channel with density Then
2 1+ 32%y? Bd
kwwyy(x y) ln( ) (1 _ xzyz)g . H(X | Y) = drH(X) — H(X T).
Integrating by parts twice for each dimension, we see that ~ Proof: Let X, .., X, be uniform random bits and let
- 7 denote their parity. Supposg; is transmitted through the
- BMS channel with density. Let the received vector bE.
Hla®b) = / / |al()le] z,y)drdy The entropy of the single parity check code i$XHZ =

- - 0,Y). By symmetry we have X |Z = 0,Y) = H(X|Z =
= / / 2| (2)[B(y) kzayy (z, y)dady. 1,Y) = H(X|ZY). Now H(X,Z[Y) = H(X|Y) +
0 -0 H(Z|X,Y) = H(X|Y) = Y% H(x), but we also have
This proves the alternative representation of this infegra  H(x, Z|Y) = H(Z|Y)+H(X|Z,Y) = H(x®4)+H(X|Z,Y).
Note that the bound(i) is implied by;—3-> < (1 —  Thus, the entropy of the single parity check code is
22721 —y?)" % . Letu= (1 —a?)" 1andv*(1—y)71.
Then the desired mequallty is equivalentﬁgm <
usv? foru,v > 1. Raising both sides to the power §fthis Now consider the channel that transmits a bit once through
becomesm < ww. Multiplying both sides by the channel with density and again through a channel with
(u 7 this can be written agw < (v 4+ u — 1)? which is de_nsi_tyb. T_he entropy of t_he comb_ined channel igaH® b). _
equivalent to0 < (v — 1)2 + (u— 1)2 +uv — 1, proving the This is equivalent to the single parity check code of two.bits
claim. Hence
This bound kirayy(2,y) < iy (L — @)~ 3(1 — y2) 3 H(a® b) = H(a) + H(b) — H(a @b),
immediately gives rise to the cialdﬂm) the right-handiei
factorizes and, excluding the constaitin(2), each factor is
just the Battacharyya kernel in this representat(dn—(:z:Q)*%
is the second derivative of 1 — z2, the Battacharyya kernel
in the |D|-domain, cf. [3R)). Note that we can use th
upper bound ork,.,,(z,y) to obtain [i) since by[(R), the
differences(|B’|(y) — |B|(y)) and (|2'|(x) — || (x)) are non-
negative.
It remains to prove the clairfi{ii). We claim thatdfb’, b) <
§ then||B’|(y)—|B|(y)| < min{s, 1—y}. The second bound is
immediate smcé) < |I%|(y) —|B|(y)| < 1 so that]|B’|(y) — H(X|Y) = H(X) + di(d, — 1)H(x) — H(x @ x®4 1)
1B|(y)| < f dy = 1 — y. To see that the difference is less — (dy — H(E4 1), (36)

thand we have|| 5| (y) — B (y)| < [ [[%/](z)~B]()]d= <

H(X|Z,Y) = d.H(x) — H(x®") .

which proves (the Duality Rule of) Lemnia 6. |

Lemma 54 (Entropy of Tree Code{onsider the(d;, d..)-
regular computation tree of height(see e.g., Figurgl 9). This
tree represents a code of lengtht d;(d, — 1) containing
§1+di(d-~2) codewords. LefX be chosen uniformly at random
from the set of codewords and I&t be the result of sending
the components ok through independent BMS channels. The
root node goes through the BMS channelnd all leaf nodes
are passed through the BMS chanreThen,

wherex = ¢ ® (x®dr—1)®di—1,

[ 1187](2) — |B](2)|d= @ temmalld] | d(b’,b). We now have Proof: Using the chain rule, rewrite (X | Y) as
H((a"—a)® (b' — b)) HX|Y) = H(X1 |Y) + H(X 1 | X3, Yo),
// 10| (z) — |2|(2)]]|B| (y) — |%|(y)|kmyy(a:, y)dzdy ~WhereX; corresponds to the root variab_le node and, is the _
set of all the leaf nodes. The first term is computed by density

-3 evolution by considering all the independent messagestritpwi
1n(2) Ba' —a / min{d, 1 —y}(1—y*)"2dy from the leaf nodes into the root node. Indeed, we convolve

8 , V% the channel density with the densities coming from the,
n(2) B(a' —a)v29, check nodes, each of which has density x24-—1. Thus we

et

where to obtain the second inequality we combine the uppger .,
bound o_nkmyy(:c,y) de_rived.above with the alternative rep-  H(x, |v) = H(c @ y®®%) S=c@y®h ! H(x ® x@4r—1)
resentation of3(a) as given in[(3R).

<

<

Le@ﬂH(f() + H(Xdr—l) _ H(>~< Xdr—l)_

APPENDIX G Further,

EVALUATION OF GEXIT INTEGRAL — LEMMA [26G
HX 1| X1 =0,Y1) =HX 1| X1 =1,Y01)

For.the proof of LemmDG it will be handy to have the — d[(dr — DH(x) — H(x@d—1Y].
following two lemmas available.
Lemma 53 (Entropy of Single-Parity Check Code): Indeed, when we condition on the root node to take either

Consider a single-parity check code of length. Let X 0 or 1, we split the code intal; codes, each of which is a
denote a codeword, chosen uniformly at random from th&ngle parity-check code of length). — 1. Using the previous
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1+d; (d,—l

Lemmal538, we obtain the above expressions. Combining the ) OH(X; | Y (h)) Oh;(h)
5 + ) = dh . (37)
above statements proves the clgim. [ | - On; oh
Remark 55:We stress that in Lemmalb4¢, x) need not =2
form a FP pair. Thux will be different fromx, in general. GEXIT of leaf nodes

We will use the above expression wherand x are “close” The Ihs evaluates to

(in the Wasserstein sense), i.éc,x) forms an approximate g .

FP pair. This will allow us to give an estimate of the entropy /h*dhﬁH(X [Y) =HX[Y (1)) -HX[Y(®"))

of the tree code. —(1adld —1)—d
Proof of Lemmal[26: Note first that the integral ( +dildr = 1) = l)_

G(di, dr, {cn,xu}y) IS \_/ve_II dgfined. This is true since we (H(x)(l +dy(dy — 1)) — H(xPd) — (d) — 1)H(Xdr—1))_

assumed that > h. This implies that we are integrating over _ o _ _

a continuous function (cf. Corollafy22). Hence the intégrd he last inequality is obtained by using Lemia 54 for the two

exists. All that remains to be shown is that the value of th@ndpoints and recalling that we set xu-.

integral is indeed — ;i_z — A, as claimed. Let us consider the leaf node contributions. By symmetry

To evaluate the integral we consider the code correspondif}§S€ contributions are all identical. If we focus on a sng
to the (d;,d,)-regular computation tree of heigl as in chieck node, then again due to symmetry, the GEXIT integrals
LemmdB4. LetX be chosen uniformly at random from the sepf all leaf nodes is the same. But the sum of all the GEXIT
of codewords and assume that the component correspondH§9rals is equal to the change in entropy of a single-yarit
to the root node is sent through the chanaglwhereas all CN€ck code of length,.. Thus, using Lemma 53, we see that

components corresponding to the leaf nodes are sent throlfif integral of any single GEXIT integral is equal to

the channek,. Let Y be the received word. Sincgy, x, }n 1 d md

J —((d,—1)=(dH(x) — H ™)) ). 38
is, by assumption, a FP family, the density flowing from any dy, (( )~ (d-H) (x ))) (38)
check node into the root nodeyig = xdr*l and so the total Combining all these statements, we get

density seen by the variable node (excluding the observafio L

the variable node itself) ig?% . Therefore, the GEXIT integral (s dr; {Ca, Xn }n) = (1 + di(dr —1) — dl)—
associated to the root of this tree code is the desired iategr _ _ md.\ _ @d,—1
We will evaluate this integral by first determining the sum of (H(X)(l +di(dy — 1)) = H6ET) = (dr — DH(x ))
all the GEXIT integrals associated to this tree and then by di(d- — 1) ((d 1) = (dH(x) — H(xdT)))

subtracting from it the GEXIT integrals associated to thef le d,
nodes. B d A
In the sequel we will perform manipulations, such as writing d, ’
a total derivative as the sum of its partial derivatives oiting It remains to justify the previous derivation. We proceed

a function as the integral of its derivative. In a first pasgs follows. Instead of working witH cn, %, }, we will work

we will assume that all these operations are well definegith a simpler family which is piece-wise linear and “close”
In a second step we will then see how to justify these stegs the original family. Because it is piece-wise linear, the
by approximating the desired integrals by a series of simpiperations are simple to justify. Because it is “close” te th
integrals. original family, the result is “close” to what we want to show

Label the variable nodes of the tree with the §et..., 1+ By taking a sequence of such families which approximate the

d;(d,—1)} so that the root has labél Note that by assumption original family closer and closer, we obtain the desirediites
H(cn) = h, so that the entropy of the first componentof Let us start by constructing a piece-wise linear family] cal
call it by, ish. The entropy of the remaining components, cait {¢,,%,}, which approximates the original famil{cy, x, }.

themh;, i € {2,...,1+ d;(d, — 1)}, are all equal and take Consider the channel familfc, } and sample it uniformly in

on the value HKix,). So we imagine that all components ar@& with a spacing ofAh. To be precise, pick the samples (from

parameterized byi. the original family) ati Ah, for an appropriate range of integers
From Definition[28 we have, i. By a suitable choice we can ensure that= iAh for some

¢ € N. In generalh = 1 will not be of the formiAh. This

1 Y OH(X, | Y (h)) Ohy(h) means that the last sample is not lying on the lattice. But we
G(dy, dr, {cn, xn}ir) = /h oh; oh dh. can ensure that also for the last sample the “gap” (in enjrispy
at mostAh. This is all that is needed for the proof. Hence, for
Note that notational convenience we will ignore this issue and assume
Ly L OH(X Y (1) 8 that all samples ha\_/e the foriv\h. . .
/ dh-LH(X | V() :/ (X1[Y(h) Ohy(h) dht Construct from this set of samples a family by constructing
pe dh e Ohy oh a piece-wise linear interpolation, call the res{dt }. Note that

since the entropy functional is linear, this constructieads

7 For completeness, although the exact marginal does natrfao the (O @ family so that K,) = h. Further,{¢,} is ordered and
computation, note that there aeé*% (4r—2) codewords in the code. Out of piece-wise smooth. We claim that
those, 2% (4r=2) have a0 in the root node. So the marginal &f; = 0/1

is one-half. d(Ch, 6}1) = d(Ch, QacCian + O7C(i+1)Ah) <2/ 1n(2)Aha
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wherei = || anda € [0,1] is a suitable interpolation o = (3 — |z ]), S0 thats goes from0 to 1 in each segment.
factor. In the last step we have made usef (v) in Lerinla 1Bhen in each segment the integral has the form

the convexity property of the Wasserstein distance, and the 1

fact that consecutive samples have an entropy difference of / H((C(iJrl)Ah — Cian) ® Zaja(l — ke bm)do—

(at most) Ah. Further, since they are ordered, i.;an < 0
cn < C(i+1)an, an entropy difference of at mosgth implies 72 Jo'lka! H(c,, — cian) ® bia)
a Wasserstein distance of at mas{/In(2)Ah (cf. (i) of L (Jo + ko +1)! C(i+1)An = Cian b
LemmalT1%). °

To eachc,_;an corresponds a FRy, call it xian. Take So the root integral is in fact well defined. The same argument
=1 il X2 . .
the collection{x;as}. Since this collection is ordered we carfa" be repeated for the leaf integrals to show that they ace al

construct from it an ordered and piece-wise smooth famifyell defined. o
via a linear interpolation of consecutive samples in theesam | We consider one segment and add all the contributions

manner as we have done this for the channel family. We haéhich as we saw can be written down explicitly) we can
0 verify that the sum of all the GEXIT integrals is indeed equal
I

) , _ . ] to the difference of the entropy of the tree. This calculai®
A+ am Xian) = 2y/BXi41an) — Blas) in principle straightforward but somewhat tedious, so wip sk
@ /1 the details.
= 2\/5(%(%“)&1) — B(cian) If {€n, %} were a true FP family then the GEXIT integral

] ) of the root node would be equal t6- j—l — A. This follows by
\/j(Ah)4 the same steps which we used in our initial casual derivation
once we know that all integrals exist and add up to the total
change in the entropy of the tree code, all that is needed to
draw this conclusion is to observe that for a true FP family we
can use a symmetry argument to compute the value of each
leaf GEXIT integral.

However{¢,, X, } is only an approximate (in the Wasserstein

~ ) ’ distance) FP family. But we know that by makidgh suffi-
d(xn; %n) < ovd(xn, Xian) + Qd(xn, X(i+1)An) < \/;(Ah)“- ciently small, we can make the approximation arbitrarilpdo
It is intuitive that by taking a sequence of such approxiorai
hich converges to a true FP family the limiting value of the

exiT integral of the root node should again be- % — A
Let us show this more precisely. '

We have already established that the sum of the individual

d(%p, G ® ((X)Bdr—1)®@di=1) GEXIT integrals is equal to the total change of the entropy

- Bd,—1\@d;—1 = - \®md,.—1\@d,—1 Of the tree code. This change only depends on the endpoints
<A, x0) Fd(en®((x0) ) & ® (%) ) ) but not on the chosen path. In particular, the endpoints for
<d (%, x0) +2d(En, ) +2d(0g UL GETTHEAT e 5L and {ca, xa)l,. are the same.

8 X All'is left is therefore to prove that each leaf GEXIT integra
<4y/In(2)Ah + (4(d; — 1)(dr — 1) + 1)\/;(&1)4' has a value which approachEs](38) wiapproaches. We
know that this would be true if all the messages enteringlchec
nodes werex, and so the GEXIT integral wa;ﬁnl* H(% ®
%P4 =1)dn. But the actual GEXIT integral iﬁl* H(%@zh)dh,
g\fherezh is the density flowing from the “interior” of the tree
into a leaf node. Let us now show that

(i)
<

Step (i) follows from Lemmd 14, propert{](ii). In step (ii)

we made use of the fact that > h(d;,d,,{cs}), so that

according to LemmB1% > 1 — B(cy+)(d; — 1)(d, —1)(1 —

B (xp+)?)% =2 > 0. In step (iii) we used once more Lemind 14

property [). Now consider the distanckxy, x,). We have

The last inequality above follows from considering the sa
steps as before, since the densities are ordered and eac
them are FPs at channels with entropy difference at mast
Recall that{c,,xs} is a FP family, hence we can write

In words, {Cy,*%n}n>n- forms an approximate FP family.
Above, we have used properties (v) and (vi) of Lenimh 13.
Let us now apply the family{cy, Xy }n>n- to the depth-2
tree. More precisely, we consider the depth-2 tree codeavh
the root node is passed through the charpealnd the leaves

are passed through the changgl We claim that all GEXIT ! 0% YL R P Ah—0
integrals are well defined and that their sum is indeed the /. (H( dh ®2n) — H( dh ® X ))dh - 0
difference o_f the entropies. Let us prove this claim in stepsIn fact, let us show that
The root integral has the form )
, dx dx
(i+1)An dn / |H(ﬁ ®zn) — H(ﬁ ® idr71)|dh Ah_7>0 0.
/ H((C(i+1)Ah — CiAh) ) Zh)ﬂ, h* dh dh
iAn

‘ Note that for anyh € [h*, 1] we have
wherex, = (75 — [ a5 )Xr2 180 + ([ 25 — 25)%| 2 an @nd <Ed,—1 _ yoBde—1 SEde—2 = ~Ed,—1\®d;—1
zp = ((Xp)Bdr =)@ |f w[aAgxpand outz, explicih?/hghen we d(%, 2n) = d(%, »%n & ® (% )4
see that the segment froitto (i + 1) has the formy_ (2 — W=Le2ma (%, & ® (REdr—1)®di—1) A0
| & )7 ([ 1— 2 )Fb; o, for some fixed densitiels; , which - b e '
are various convolutions of two consecutive densitigg and Using the same line of reasoning as in in the proof of Corol-
X(i+1)an @nd some strictly positive integers, and k.. Set lary [22, we see that therefore for eaghliman_ |H((éihh ®
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zn) — H(dxh ® xZ% =1 = 0. Since the integrand is alsoln step (a) we have used the expansion of Lerinja 49, where
bounded, it follows by Lebesgue’s dominated convergenog = W n > 0. Note thata,, > 0 and that
theorem that also the integral of this quantity overonverges > . «,, = 1. Most importantly, as mentioned in the proof
to 0 when An is taken to0. of Lemma[s0, the moments., ,, are multiplicative undees.

The only thing which remains to be done is to prove that thEhis implies that ford > 1, H(x®?) =1 - _ a,mg,,
GEXIT integral of the root node when we use the linearize.g., for two distributionsx andy we have -

family converges to the true GEXIT integral when we J&h 1— 2129
tend to0. We will do this in several steps by considering thé —H(x®Ey) =1 — //|F| (21)[9](22) ha( )dz1dzs
chain of integrals

() Gdr,dr, {cna}he), = [ Dbl Y ansardnden = 3 anmsmn
(||) G(dl,dr, {Ch,)A(h}lll*), n>1 n>1
(i) G(di,dy, {Cn,%n}is), where in the first equality we use that in the|-domain the
(iv) G(dp,dy,{Cn,%n}is), check node operation is simply a multiplication.

and by showing that the value of consecutive such integralsAssume at first that k) € [(%)dl2 g = 3@ —1ys) and
is arbitrarily close. Here{s,} is a family which is piece- thatx = c ® y®%~! for some channet. Define v)(z) =
wise constant on each segment, taking on the value of its I€ft— x)xz9—1. Then
boundary. d;

First note that the integral in (i) is well defined, being the A = H(x) — ==H(y) + (di — 1 —di/d;) > anth(myn)
integral over a continuous function. That the integralsi)n ( " n

and (i) are close follows by the same line of arguments as @ d (1—4)4
v ’ ; < H) = SLHO) + (A= 1 = difdy) 2

we just used above. The same idea applies to prove that the d, d, —1
integrals (iii) and (iv) are close to each other. Finally tralue %
of (i) and (iii) is in fact equal. This is true sincgx),} is in (b) d d—1—d/d 1
g 1 T2 1 1/ Gy d,

fact constant on each segment aftg} agrees with{c,} at < H(x) - d—H(X) + ﬁ(l - d—)
the endpoints of the segments. . (<c) 14 . 1 E . a1 ) 14

~ 2ed, 2(d.-—1) d,4 d.e” 8ed,

_ 1 ydp
APPENDIXH In (a) we used the bound/)( ) < (ldfii so that

NEGATIVITY — LEMMA [271

Do anth(my ) < a- 71— Consider step (b). Set(f) =
We prove Lemmd_27 by showing the following sllghtly ( Lemma9]

stronger statement. ha(p > 4pp. Then
Lemma 56:Let x be anL-density and consider a degree- H(x) = H(c® y®%~1) < H(y @dl—l) < H(agg&—;)
distribution (d;,d,) such thatd, > 1 + 5(t2)3. Define Lem@ P
= ’ ®d;—1
I = [(%)dl "+ 2(d_1_1)_3121ej b and L, = [g gt 3 — < Blogsey) = (pp) " < Hy) "
dye—4dr ~D(3)3 K], wherer > 0. In step (c) we substituted the upper and lower bounds on

(i) Assume thatx is a d-approximate EP, i.e.d(x,c ® H(x) for the first and second expression respectively. Also,

(xBd—1)®d-1) < 5 for some channek and § < in the last inequality, we havg—l)g <& (§ — —) since
In(2)d ~— we assumed that, > 1+5(d,./d;)3 > 1 2 3 _ 13y)—1
(12050)2. Then if H(x) € I, A < —gh 4. gl > 145/ i @dl+1( )
(i) For H(x) € I, A < —k. Let us summanze I« = c®y and if H(x) €
’ >, L PRy < _L_
Proof: Sety = x®4-~1 et us first characterize the are e @19 tr;enlA scq. - Let us drop
A'in a more convenient form. We have the Condmonx = c @ y®4=1 and assume instead that

d(x,c ®y®d—1) < 6 Definex = c ® y®%~1. Then

A=H(X) + (d — 1 —dy/d, ) HEM) — (d — 1)H
() + Cgll 1/ dr)HCET) (ld JHE) AgH(i)_%H(y)+B+(H(x)—H(i))
= H( = SEH(y)+(di = 1=di/d, ) (HOE) ~H(y)). di 1d 1 d
T < H(i)—d—lH(y)+B+3\/6_ < —gd—l+3\/5 < _1_6‘ed_l'

For the L-distributionsx andy let |¢| and|y| be the associated
|D| distributions. Following the lead of L. Boczkowski [112]The one-before last step follows since if(¥} € I; then

we write H(x) € [(%)dl{l =R+ W] and so we can apply the

1 @ previous procedure. "Also in the above computations we have
:/ |x|(z)h2( d 1- / |x](= Zanz "dz used property[{ix) of LemmB&13 to bounH(x) — H(X)| <
n>1 3+/0. .,
For H L di g =41 (gel)? _ )
- 1— Z an/ |;| 2n d: & (b) 1— Z o Mo . (39) (X) € [26 dy? dy ¢ ’%]
. . d d
>1 < ~ , >1 A= H(x)——lH(y)—i—(dl —-1- d—l)Zanw(mxm)



dr—1

H(X)_d_TH() dl—l—— Zanm

©) d

< H(x )_d_iH( y) + dl—l—_ Zanm

(c) d; . S~
H) - Hi+ (dl—l—d—r);an(l—%z (H(x)))

@ d p

< ha(p) — d—l(l _ e 4dr=py 4 (dl—d—l)(l — 9p)2(dr=1)

D di_ g it G a0

< —K.

In (a) we upper bound)(z) = (1 — z)z% 1 by 24!, z €

[0,1], and note thatn, , € [0, 1]. In (b) we usem, , < my
(this is true sincer®" is decreasing for each fixed € [0, 1]

as a function ofn) and thatz? ! is increasing. Step (c)
is a consequence of the bound, ; < (1 — 2h; '(H(x)))2.
Let us prove this inequality. Equivalently, we want to show
H(x) < hg( \/W) By Jensen

men = [0 = ([ 1l2)2d:) " =

Using the above we have,

n>1 n>1

The claim is proven by noticing that the lhs above is equal to
H(x).

Step (d) uses the following lower bound on(yji =
H(x®4—1), Set Hx) = ha(p). From extremes of information
combining we know that we get the lowest entropy if we
assume that is a BSC density. Therefore,

1—(1—2p)t—1

2
2(d,-1) In(1-2p) >1—e"

@
) > 1—-(1-2p)*®

4(dT—1)p.

H(y) > ha
=1-—e¢

Consider finally step (e). We know thaf(p) € I,. Combined
with (28) and(1-2p) 2(dr=1) < =4(d-=Dr we conclude that
P> (4 :;zi, )5 n

APPENDIX |
SPACING OF FPs —LEMMA [EAAND TRANSITION LENGTH
OF FPs — LEMMA [6]]

If we are given a proper one-side FP (with any boundary
condition) then consecutive elements of the FP cannot be too
different from each other. This is made precise in the foitmy
lemma.

Lemma 57 (Spacing of FP):et (c,x) be a proper one-
sided FP orf{—N, 0], N > 0 with any boundary condition.

(i) Forie [-N +1,0]

d—1 d—1
: » B(x) — B(xi—1) < l .

d(xi,xi—1) <

(i) Let x; denote the weighted average; =
w2 ZJ e Oxiﬂ»_k. Then, for anyi € [—c0, 0],

—B(xi—1) <

SIH
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Discussion:Each of these two claims states that consecutive
distributions are “close” either wrt the Wasserstein dis&aor
the Battacharyya parameter. Further, the difference leeit
for the distributions themselves or their averages.

Proof:

(i) To simplify notation, fori € [-N + 1,0] fixed, let

w—1
f_( k=0 Xitj—k—1

tions explicitly,

)'dT_l. Writing the DE equa-

1 &L \@®di—1 19l | ed-1
X,L:C@(Ezfj) y X171:C®(Ezfj) .
j=1 Jj=0
Note that the expressions fo; and x;_; are similar.
The only difference is that; containsf,, whereasx; ;

containsfy. Rewrite both expressions in the form
1 — ®di—1 1 < ®di—1
Xi:C®(Ezlaj) s Xl_1:C®(azlb7) s
J= J=

wherea; = b; = f;_4, 71 = 2,...,w, a; = f,, and
b; = fy. Now expandk; as well asx;_; in the form

(aira)
R 1yeees d1
o 2 w- @D 21 Oy
di,...,dy:dit. Ady=d;—1
( )
) dy,....d ®d
Xi—1 = Z —(di—1) by ®cCd,,....du
dl-,---ydw:d1+m+dw:d1*1
wherecy,,.. 4, =as™ ®...®a%% ® c. Note that the

terms in the expansions a{ andx;_; with d; = 0 are
identical. Therefore, if we consideB(x;) — B(x;—1),
these terms cancel. We can upper bound the difference
by the Battacharyya constant of all those terms of the
expansion ofk; which correspond ta; > 1, i.e.,

B(x;) — B(xi—1)
d —1
>, . Ly Qw
s.tdy+-- +dw—dz 1
d —1
< (=1 :
sw Z (dl,...,dw
di>1,....dw,
stdi+-+dy=d—1
o= Ly g -1
w w

If we are interested in the Wasserstein distance instead,
we can proceed in an almost identical fashion. The only
difference is that in the last sequence of inequalities
we use the convexity propertyl(v) and the boundedness
property [[[l) of (the Wasserstein metric) Lemind 13.

(i) Using the convexity property{v) of (the Wasserstein

metric) Lemma_1B and canceling common terms, we get

w—1

1
Xi+g>k,@ E Xz‘+j7k71)

3,k=0

w—1

1
d(%i, %i_1) = d(ﬁ >
§,k=0

w—1

1 w—1
= Wd(z Xitj Z Xi—1—5) <
j=0

J=0

gl
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The proof for the Battacharyya parameter proceeds irfv) For0 <e <1, z.(e) > d21d2'
an identical fashion and uses the linearity of the Battyi) For0 < e < 1, k. (c) > &12

tacharyya parameter. (vii) Let x, andz, denote the universal lower bounds, given

L in the previous part, or.(e) andz.(e), respectively. If
Lemma 58 (Basic Bounds on FP)et (c,x) be a proper we draw a line from0 with slope —x., thenh(x) lies
one-sided FP ofi- N, 0], N > 0 with any boundary condition. below this line forz € [0, .].

Let B; = B(x;) denote the Battacharyya parameter of thgiii) For e € (¢**,1] we have
density of thei-th section. Then for all € [N, 0],

d;—1
| 2u(e) > 2y(1) > (dp — 1) a2, (40)
Bi<B)(1 -1~ > B
k=0 Remark 60:The functioni(z) is the DE equation for the
Proof: For all i € [-N, 0] (d;,d,)-regular ensemble when transmitting over the BEC.
w1 odi_1 The two non-zero solutionsgy(e) and zs(e) represent the
X = C® ( Z Z Xij—k 'dr*l) e unstable and the stable FPs of DE][62]. In the following, we
=0 Yoo will be using extremes of information combining techniques

to relate the Battacharyya parameters Wia).
In Figure[® we see that within a few sections the constel-
lation changes from reliable sections (towards the boundar
.d i\ di—1 to sections which all have more or less the same reliability.
B(xi) = %(C)( Z ( Z Xitj— k )) In other words, this transition happens quickly. This is mad

Since the Battacharyya parameter is multiplicativezirand
linear,

: precise in the following lemma.
Further, recall from Lemm@l 5, properfyl(iv), and the ensuing Lemma 61 (Transition Length):et > be the BP threshold
discussion, tha®(a®4-~1) <1 — (1 — B(a))¥~!, so that  for transmission over the BEC using tiié, d, )-regular (un-

L vl w1 coupled) ensemble. Ferc (e, 1], let z4(€) be the smaller of
Fd d.—1 . . .

B((= Xitjok) ) <1-(1-= B,;,._,) . thetwo strictly positive roots of the equatidiiz) = 0, where

((’U} ];0 J ) ) kzo J— ) h(l') _ 6(1 _ (1 _ x)dr_l)dl_l — 2. For0 S € S EBP, deﬁne

Combining, we get zy(€) = limg e zu(d).

Consider transmission over a BMS changrelLet w be
d _\di—1 admissible in the sense of properfyl (iv) of Definitiod 40. Let

Bi = %(C)(l W Z == Z Bitj—k) ) (c,x) be a proper one-sided FP AN, 0] with any boundary
condition. LetB, = B(x;) denote the Battacharyya parameter

Let f(z) = (1 — 2)>~1, = € [0,1]. Since f”(z) = of the density associated to theh section and define =
( )(d, — 2)(1 — x)>=3 > 0, f(z) is convex. Let B(c).
— % S ¥~ B4 x. Then by Jensen, Then, there exists a positive constatit;, d,) which de-
. . pends ond; andd,, but not onN or the channet, so that
1« 1« for any§ > 0
=3 Fw) = I > u), Y o
/=0 7= {i:0 <B; <zyle)}| < ww.
which proves the claim. | g
Lemma 59 (Basic Properties é{z), [53]): Consider the Proof: Throughout the proof we set = %(c) and we

(di,d,)-regular ensemble withl; > 3 and lete € (¢*°, 1], write B; for B(x;).
where €*°(d;, d,) is the BP threshold the regular ensemble Note first that we have to prove the statement onlyefer
when transmitting over the BEC. Defintgz) = €(1 — (1 — (¢, 1]. This is true since we have defineg(e) to coincide
x)dr—hHdi=1 _ g with z,(e®) for e € [0, ¢*] and since further the functioh,
(i) For e > €, h(z) = 0 has exactly three solutions, onevhich we use to bound the process, is strictly decreasing as
of them being 0 and the other two denotedayye) and @ function ofe. Hence, in the sequel our language will reflect
xs(e) with 0 < zy(€) < xs(€). Further,h(x) < 0 for all the fact that we have € (¢*", 1].

z € [0,zy(e)] andh(x) > 0 for all z € [zyu(e), zs(e)]. (i) The number of sections such tHat € [§, z.(¢)] is at
(i) h'(zu(e)) > 0 and i/ (zs(e)) < 0; |W/ ()| < did, for mostw(25 + 1). If § > x.(e) then the number of sections
x €[0,1]. in this part is 0. Hence wlog assunie< xz.(¢). Let ¢ be the

(i) There exists a unique value < . (e) < xy(e) so that smallest index so thab; > 4. If B, (,—1) > 2« (e) then the
h'(z.(€)) = 0, and there exists a unique valug(e) < claim is trivially fulfilled. Assume therefore tha&, 1) <
z*(€) < xs(€) so thath’(z*(e)) = 0. Further,h(z) is «(¢). From the monotonicity of(-) and the fact thak is
decreasing if0, z(¢)]. increasing,

(iv) Let k.(e) = min{—h'(0), _h(w*(e))} The quantitys.. () _
is non-negative and depends only on the channel param- Xi = €@ G0y X X ()
etere and the degreegl;, d,). = C® g(Xit(w—1)s - > Xit(w—1))-
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This implies (cf. Lemma5B[{i)). Further, by (the Spacing) Lemina 57,
w(B; —B,_1) < 1. Hence,

extremes of info. comb.

B; < €9(Bit(w—1)s - Big(w—1))- 6 Fo ko
— = N> . B,
As a consequence we get w i;m h(Bi) 2 61_;00}1(%1)(%1 Bi-1)
x.(€)/2
Bit(w-1)—Bi > Birw-1) —€9(Bit(w-1)s--» Bit(w-1)) > 6 (6)/ ©/ v dp — 311*(6)(17*(6))2'
Lemmal5d [() Lemma[59 [(vi) - ¥ 0 4
= _h(%z?%(wfl)) > —h(é) > K*(E)(S.

Let us explain how we obtain the last inequality. First we
This is equivalent 0B, (,_1) > B; +r.(€)d. More gen- claim that there must exist a sectionwith 3; between

erally, using the same line of reasoning; 1) > x.(€)/2 and z.(¢). Indeed, suppose on the contrary that this

B, +1r.(€)d, as long asB, (1) < z4(€). was not true. Lett* < k be the smallest section number

We summarize, the total distance we have to cover $ich that®B. > x.(e). Clearly, such ak* exists. Indeed,
z, — & and every(w — 1) sections we cover a distance ofiNcez.(e) < Bjy_(,—1), it follows that By > z.(e). Since
at leastr.,(e)d as long as we have not surpassede). B-o =0, we must haVéBk*_fl Sx*(e)/2-_ThiS implies that
Therefore, after(w — 1)L””;‘52)’55J sections we have either B+ — Br-—1 > ﬁi*(ﬁ)/z Using (the Spacing) Lemnial67 we
passedr, or we must be strictly closer ta, than . (c)s. conclude that’:=t > x.(¢)/2. Hencew < 2d;/.(¢). Using
Hence, to cover the remaining distance we need at m&g universal lower bound an.(c), we getw < 2d}dy, a con-
(w — 2) extra sections. The total number of sections needfigdiction to the hypothesis of the lemma. Finally, accogdi
is therefore upper bounded by — 2 + (w — 1) 229 to LemmalSP partl(iV),—h(x) > k. (c)z for z € [0,z.(c)],

ra () hich implies the i lity. Combined withi{41) this imggi
which, in turn, is upper bounded byz(—j:((:)é + 1). The \t?:altc implies the inequality. Combined with {41) this i

final claim follows by bounding:..(¢) with 1 andx.(¢) by k..

3r(€) (z4(€))*
4

Y

. _ Bt (w-1) = Br—(w—1)
(i) The number of sections such th8t € [x.(¢), zu(e)]

is at most Qw(ﬁ + 1) Let us define We summarize, the total distance we have to cove;is) —
B, _ sz,f %+ . From Lemma z.(e) and every2(w — 1) steps we cover a distance of at
7 - w2 g, k=0 2it+j—k - O,

B, < (B, Bi,....B;) = B; + h(B;). Summing Ieast_g"‘*(e)(fm*(e))2 as long as we have not surpassede).
this inequality over all sections fromoo to k < 0 we get,  Allowing for 2(w — 1) — 1 extra steps to cover the last part,
bounding againv — 1 by w, boundingzy(e) — z.(¢) by 1 and
k ko k _ replacing x.(¢) and z.(e) by their universal lower bounds,
dBi< Y Bt > B proves the claim. u
APPENDIXJ
SATURATION — THEOREM[4T]

k _ 1 rw—it1 Before we proceed to prove the Saturation theorem, we

- Z h(B;) < w2 Z < 9 )(%kJri_%kiJrl) introduce a key technical element required in the preof,

i=—00 i=1 family of spatial (approximate) FPsThis is the content of
< E(%H(w_l) =B (w-1))- Definition[62 and Theorem $3. Then, Theorem 64 shows that

6 the GEXIT integral of this family depends only on its end-
Let us summarize: points. Combined with the Negativity lemrhal27 this imposes
& a strong constraint on the channel value of the spatial FPs,
Bt (w-1) — Bh(w—1) > _5 Z h(B;). (41) culminating in the proof of the Saturation theorem.
w Definition 62 (Interpolation):Let (c*,x*), ¢ € {cn}, de-

. ] _note an increasing one-sided constellation [enV, 0] for
Without loss of generality we can assume that there exists parametergd;, d,,w). Let i* = H(c*) > 0 and let

a sectionk so thatz.(e) < Bjy_(,—1) (We know from point o« 7 < y.

(i) that we must reach this point unless the constellatidnas }he_fam”y (of constellations) for the(d,,d,, L,w)-
short, in which case the statement is trivially fulfilled)oiG  ohsemble, based e, x*), is denoted by{c,,x, }5_.

sider sectionsBy, (1), - - Bry(w-1), SO that in addition  gach elemenk, is symmetric with respect to the spatial
B+ (w-1) < 2u(€). If N0 suchk exists then there are at moSipgex and the components are indexed[by, L]. Hence it
2w — 1 points in the intervalz.(¢), zy(¢)], and the statement g tfices to define the constellations in the rafige, 0] and

is correct a fortiori. then we setx,; = x,—; for i € [0,L]. As usual, we set

Our plan is to use [(41) to lower boundxw, = A, fori¢ [-L,L]. Fori e [-L,0] ando € [0,h*)
Bt (w-1) — Br—(w—1)- This means, we need a lowergefine
6 k

Writing Zf:_oo B, in terms of the®B;s and rearranging terms,

1=—00

bound for —55°"  A(B;). Since by assumption .
w 1=—00 — dg.i o€ (h_ h*)
Brrw-1) < wu(e), it follows that B, < wy(e), so that X = ) 20" 7
PR 6 <k WA L 7 2 ox; +(1-20)A o€0,%]
every contribution in the sum-2 57" h(*B;) is positive he =N L b oo T2
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where foro € (%,h*), (i) xpi = A4 fori ¢ [—L, L] and for allo and
o X (iii) forany o € [o,7) and anyi € [-L+w —1,—w+ 1] U
Ao,i —a(U)xi—((z—h%a)(N—L)]—’— w—1,L—w+1]

(1= (o)X (o= 2 oy (v—L)] 41>

2 d(xd,iaca & g(xa',iwarly cee 7X0,i+w71))
a(0) =((V = L)(2 = Z0)) mod (1). 2 - —1) )
Fina”y, Coy = Ch=h* — c*. | w
Discussion DiscussionFor the boundary—L, — L+w—2]U[L —w+2, L]
(i) Notice that in the above definition when approaches and in the middld—w+ 2, w— 2] the interpolation does not in
h*, thenx,, = x. general result in an approximate FP. Fortunately this do¢s n

(i) In the definition above, we keep the channel constantuse problems. We will see in TheorEn 64 that each section
across the sections and over In other words, the gives only a small contribution to the GEXIT integral. If we
channel remains constant for all the constellations in tlehoosel sufficiently large then we can safely ignore a fixed
family. number of sections.

We denote the two partitions in the interpolation as  Proof:
phases, e.g(h*/2,h*) corresponds to phase | afig %] 0
corresponds to phase Il.

(i) The above interpolation might look complicated. But i)
there is a straightforward interpretation. Think of one-
sided constellations. We are interested in a constellatign)
of size L.

In phase |, the basic idea is to “move” the constellation
x* to the right and at each point in time to “chop off” the
overhanging parts both on the left and on the right. We
do this until the left most section of* is at position

—L. If x* were a continuous function, i.e., suppose
we had a continuum of sections, then this would be
all we need to do. Buk® is discrete, so in order to

That {c,}7 and {x,}2 are ordered by degradation, in-
creasing, and piece-wise linear follows by construction.
In the same way, that,; = A, fori ¢ [-L, L] and
for all o also follows by construction.
It remains to check that the family so defined consggut
an approximate FP family. Since the family, by definition,
is symmetric around the sectidn we check only for the
sections belonging if-L +w — 1, —w + 1].
Phase 1 Think of ; and o as fixed,i € [-L +w —
1, —w+1]. Definec = ¢(o) andj = i—[(2—2 0)(N—
L)]. Setz} = ex} +cx7, ;. With these conventions, we
want to bound

get a continuous interpolation we mte_rpolate “between A2}, o ® 9(Z) i1 22 pw1))-
two consecutive elements @f. This mimics the “wave
effect” we mentioned in the beginning. Using the convexity property(v) of (the Wasserstein
In phase IlI, the residual constellation is uniformly metric) Lemmd_1R, it is sufficient to bound
brought down toA , ., in each section. . . .
In the next lemma we show that if we have an interpolated (x5, enr ® 9(Zj 15 5 Zjrw—1)), @N
family constructed via the above definition, then the résglt d(X 115 ® G(Z5_i1s " 5 Zjrw—1))
family is a family of approximate FPs. , . ,
Lemma 63 (Interpolation Yields Approximate FP Family): separately. The two bounds are identical and their
Let (c*,x*), ¢* € {cu}, denote an increasing one-sided derivation is also essentially identical. Let us therefore
constellation on [~N,0] with free or fixed boundary C(_)ncentr_ate on_the first expression. U_sing first _the
condition for the parameterl;, d,, w) and letw < L < N. triangle inequality and then the r_egulanty properties
Assume that(c*,x*) fulfills the following conditions, for () an(tj) mdatiW?” ?S the cor.1ve>gty property (v), we
1 upper bound the first expression
so.rne0<6gal. . Pp p y
(i) Constellation is close td\ ., “on the left”: d(cne ® 90K _uits s Xoro 1),
%(XtNJrL) < J. Cp+ ® g(Z;warla e aZ;erfl))_'—
(i) Constellation is flat “on the right” +d(X], ene ® GG _yi1s - Xjpw—1))
= B 1 w-l 1 w_l N Hd,—1 ®di—1
=X ; <2a((= 3 D)™ )
Also, d(x*_L_w_H,x) <. =0 k=0
(ili) Constellation is approximate ERFori € [—N, 0], (1 wz‘l( 1 wz—l . )dT_l)@adH)_i_&
* * * * JHk
d(x; " ® g0 _ipp1s- s Xipw—1)) < 0. e
Let {c,,x, }i_, denote the family as described in Defini- - 2(d;—1) ui:ld((l w—1 ) )dH
tion[62. Then this family is an approximate FP family. More T ow & w & Xk ’
precisely, forc = 0 andg = h* =0 =0 w1
0) {cg}gand{gq}z are ordered by degradation, increasing, (l 7* _k)drfl) +5
and piece-wise linear, Lt



d( 2_% Z )+5
> 5 " -
v =0 k=0 k=0
+w—1 w—1 w1
2(d-1)(d,-1) . o
B T Z d(z Kk ’Zcxlfk_kcxlf]prl) +4
I=j k=0 k=0
j+w—1
2(di—1)(d,—1) ) )
B TC d(xl—w+1axl+1)+§
1=j
2(di—1)(dr—1
S M‘i‘&,
w

where to obtain the first inequality we use the approx-
imate nature ok* and in the last step we have used

property [) of Lemmd1B.

Phase Il In this regime we interpolate the “tail” of

the original constellation uniformly té\ | . From the
assumption of the lemma we ha®(x* 5, ;) < 6.
Sincex* is increasing we must hav®(x;_y, ;) <
B(x* ) fori e [-L,0]. LemmalIB, property (i),
then implies thatd(x;_y,;,Ao) < 6 forall i €
[—L,0].

Again, think of; ando as fixed; € [-L+w—1, —w+
1]. Sete = 20/h* andj =i — N + L. Then

d(EXG+CA oo, i ® GO _ypp1H CA oo + 3Ky 1H CAY o)

< dlex+ Ao, Atoo)

+ d(A oo, i ® GO pi1H CA oo - 0 41 CA o)

< 2(d; — 1)(d, — 1)dc + ¢

S<Uw 2(dy — 1)(dy — 1)
w

+9,
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Define
p— L p—
A({co'véo-}g) - Z G({cdag(xd,iﬂu-ﬂv' . '7X0',i+’u)—l)}g)7
i=—L
where G({¢cs, §(Xo it - - .,x,,,m,_l)}g) is the GEXIT inte-
gral introduced in Definitioh 23. Let

d
H(X)+(dz—1—d—l

T

A(x) = JH(xED) — (d — DH(xE 1),

Then A({c,,x,}3) is well defined and

‘1({(:0’50'}5) l
- @ = _ — <
5 1 A(Xg) +A(X£) b(dl7d’r‘757w7 )’

where
1111)(1 + dldr)
2L+1
Discussion:ln words, the theorem says that for any family of
spatial FPs which start and end at a constant (over all sejtio
FP, the GEXIT integral is given by the end-points and is close
to the difference of thel expression introduced in Lemrhal 26.
In fact, from the Lemm& 26 we see that, graphically, this is
equal to the area under the BP GEXIT curve of the underlying
ensemble between the two end-points.

Proof: Let us consider the circular ensemble which is
associated tdd;,d,, L,w) (see Definition[31l). As defined
in the statement of the lemma, fore [—L, L], the chan-
nel “seen” at positioni is c,; = c,. For the remaining
sectionsi € [L + 1,L + w — 1] we impose the “natural”
conditionc, ; = Ay . As a consequence, for these positions
Xoi = A+OO.

b(dy,d,, 6, w, L) = +4(\/§+%dl(dr—1))\/5.

where to obtain the penultimate inequality we use 'Since{cg} as well as{x, } are piece-wise linear, all GEXIT

Lemmal[38 to bound the distance @f ®g(cx}_,\; +
EA+OO, .. .,CX;+U)_1 + EA+OO) to A-l—oo(: Cpx ®
(Do .

L AL), since Ay is always an FP of
DE) and the second expression is the distance

integrals are well defined (see the proof of Lemmd 26).
ConsequentlyA({c,,x,}7) is well-defined.
Instead of determiningl({c,,x,}7), directly, let us deter-
ine the equivalent quantity associated to the circulaeens

exj + €Atoo 10 Moo, Which is bounded using the g e we include the)—1 extra position$L +1, L+w—1].

previous arguments.
[ |

Since for all “extra” positions the associated channel is-co
stant, and so the additional integrals are zero, the nualeric

Next, we show that if we have an approximate family ofajue of these two unnormalized GEXIT integrals is in fact
FPs, then the area under the GEXIT integral associated to thentical.

family depends only on the “end points” of the interpolated we will now derive upper and lower bounds for the GEXIT

family.
Theorem 64 (Area Theorem for Approx. FP Family):

integrals for the given approximate FP family. Recall: fof
[-L+w—-1,—w+ 1 Uw—-1,L —w+ 1] we have a-

Let {c,,x,}7 denote an approximate FP family for thespproximate (in the Wasserstein metric) FP family. Far

(d;,d,, L,w) ensemble. More precisely,

[-L,—L+w—-2|U[—w+2,w—2]U[L—-w+2,L] all we

() {c,}g and{x,}7 are ordered by degradation, increasingenow is that the channel is a monotone functiorvoFinally,

and piece-wise lin
(i) x5 = At fori ¢ [—L, L] and for allo,
(i) xo,; =%, forie[—L, L],
(iv) xz, =xz for i € [-L, L], and
(v) forallie [-L+w—1,—w+1]U[w—1,L —w+1]
ando € [o,7]

—L
—L

d(xa-,iv Co ® g(XU-,i*’LUJrla ce 7Xa,i+w71)) <4

8In fact, we will apply this theorem to the family given in Défian [62.
More generally, however, given a set of distinct orderedsdi®@sa; < as <
-+ < ap, We get a piece-wise linear family by linearly interpolatialways
between consecutive densities.

fori € [L + 1, L +w — 1] the channel is frozen to “perfect.”
Let us start by deriving a lower bound.
Boundary:Fori € [-L,—L+w — 2] U [—w + 2,w —
2]U[L —w + 2, L] the GEXIT integral is non-negative.
Thus, in this regime, we get a lower bound by setting
each GEXIT integral to 0 (cf. Lemn{allL6).
Interior: Consider the GEXIT integrals for € [—L +
w—1,—w+1U[w—-1,L —w+1].
Technique: Rather than evaluating these integrals
directly we use the technique introduced In_[108],
i.e., we consider the computation tree of height



rooted in node as shown in Figurgl9 for the specific
case(d; = 2,d, = 4). More precisely, there are

root

leaves

Fig. 9. Computation tree of height 2 f§2, 4)-regular LDPC ensemble.

d; check nodes connected to this root variable node
and(d,—1) further variable nodes connected to each
such check node. So in total there deheck nodes

in this tree andl + d;(d, — 1) variable nodes. We
call the starting variable node, tieot and all other
variable nodesleaves By symmetry it suffices to
consider one branch of this computation tree in detail.
Let j, j € [i,i + w — 1], denote the position of a
particular check node. We assume that the choice
of j is done uniformly over this interval. Lek;,

l € [1,d, — 1], kb € [j —w + 1,j], denote the
position of thel-th variable node attached to this
check node, and let the index of the root node be
0. For the leaf nodes we assume again a uniform
choice of k; over the allowed interval. Note that,
wlog, we have set the position= 0 for the root
variable node. For each computation tree assign to its
root node the channel, ;, whereas each leaf variable
node at positiort; “sees” the channel, j,. Note that

for our model of the tree, the distribution (averaged
over this choice) which flows into the root node is
exactly §(Xo icwtis- - - Xoim—1), @S required for the
computation ofA({c,, x, }7).

Let us describe the basic trick which will help us to
accomplish the computation. We will first determine
the sum of all GEXIT integrals associated to such
a tree. From this we will then subtract the GEXIT
integrals associated to its leaf nodes. This will give
us the GEXIT integral associated to the root node,
which is what we are interested in.

More precisely, we us&€ (87). The lhs of this equation
gives us the contribution of the overall tree and the
rhs contains the GEXIT integral of the root node plus
the GEXIT integrals of the leaf nodes. For the current
case, we stress that all the operations (integrals of
derivatives and partial derivatives) ih_{37) are well-
defined since the family we consider is piece-wise
linear

Contributions from overall treeRecall that fori

39

[—L, L], X; o =%, andx; z = xz.
Consider first the case = @ andi € [-L + w —
1, —w+1]U[w—1,L —w+1]. From Lemm454 we
know that the conditional entropy (X | Y) of the
tree code is given by

H(%z) + di(d» — DH(xz) — H(%s B x29 1)

— (dy = DHEE Y,
wherez = ¢z ® (x24~1)®4-1 Now recall that
d(%z,xz) < 6. DefineT'(x) as

(1+dy(dy—1))H(x) —H(xB4) — (d; — 1)H(xBd 1),

Then (dropping the subscriptsfor a moment),

HXY) = T(x)]
< [H)—HG L+ (R X5 ) - H(c% )
em. T35} . - _
< ho(d(%,%)/2) 4 ho(d(x @ x®dr =1 xBdr) /9)

I (% x)/2) B A AER) 2 < 2V28.
Exactly the same argument tells us that the entropy of
such a tree for = g is, up to a possible error of size
2v/26, equal toT'(x,). We conclude: the difference
of the total entropy of such a tree is lower bounded
by T'(x5) — T'(xo) — 4/26, call this B — 41/26.
Contributions from leavesWe need to find the
contributions of GEXIT integrals associated to all
the leaf nodes of each such tree rooted at a position
ie[-L+w—-1,-w+1U[w—-1,L —w+ 1].
The exact such sum is difficult to determine. But we
only need an upper bound to derive a lower bound
on the overall GEXIT integral. Note that GEXIT
integrals are non-negative. Hence, let us compute
the sum of GEXIT integrals of leaf nodes @il
computation trees, whether they are rooted in a
positioni € [-L+w—1,—w+1|U[w—1, L—w+1]
or not.

By symmetry, this contribution is easy to determine.
More precisely, consider the following equivalent
procedure. Pick a check node at positipn;j €
[-L, L+w—1]. Every check node hag. connected
variable nodes, where each variable node is picked
with uniform probability and independently from the
range[j —w+ 1, j] and the choice of thé, variables

is iid (note that the connections are taken on the
circular ensemble).

Contributions from checks in the randge L, —L +
2w—=3JU[—w+2,2w—-3|U[L-—w+2,L+w—1]:
Check nodes in this range might see some frozen
channels or channels which do not form approximate
FPs. Hence we upper bound all GEXIT integrals
associated to check nodes in this range lbycf.
Lemmal16). The number of such integralgTsv —
8)d;(d, — 1).

Contributions from checks in the ranfe L + 2w —

2, —w+1JU[2w—2, L —w+1]: Check nodes in this
range only see channels which are approximate FPs



and none of the channels are frozen. There(are-
6w+8)d;(d,—1) such integrals. Let us determine the
contribution for each such integral. Since we consider
an average over all possible computation trees, the
(average) density entering a check node is equal for
all the leaf nodes (there awg. — 1 such densities).
Let us call this densiti,. If we focus on a check
node at positiory, this density is equal to

w—1
1
Xg = — E Xo,j—k-
w
k=0

However, the density entering the check node, at
positionj, from the root node will be different from
X», Since we do not have a family of true FPs. Call
this densityx,. This density is equal to

w—1

1
Xg = E Z Co @ g(xa,jfkqu»la e
k=0

axa',jfk+w71)-

Since we assumed that we have an approximate FP
family and due to the convexity of the Wasserstein
metric, we conclude thai(x,,%,) < §. Let us define
P(x) = H(x)— +H(x®4"). From Lemm&%53 we have
that P(x) is the GEXIT integral of a leaf node if
we had a true FP. Since we have an approximate FP,
each such integral can be upper boundediy;) —
P(xo) + 125V/26, call it C + 251/26. We derive this

as follows. We want to bound the difference

‘/ dx—°’®z,,d /H(C:;—U(@zg)da

where z, = x2%~1 and z, = xB»2 @ %,.
Since the family,{x,} is piece-wise linear, we use
(32) (applied in this case to the single parity-check
code), Lemmd 83 and symmetry to conclude that
[JdoH(%= ® z,) = P(xz) — P(x,). Since the
family, {x,} is piece-wise linear and ordered by
degradation, we can reparameterize the GEXIT in-
tegrals with the Battacharyya parameter which we
denote byb = B(x, ). Thus

‘ / dxb

To see the last inequality, using] (i), Lemial 21 we
have

—3) db‘ \/2d Bdr—L B2 )

H((xpr—xp)®(z6-2p)) < DB (xp—xp W/ 2d(2b, 2p)

8
In(2)
wherex, < xp. SinceB(xy) = b’ and B(x,) =
b, we get H((Xb”);b,)_@?fzri”)) < ln(2) 2d(zy,2p),
which gives us the bound. The last expression can
be further upper bounded (usinig_{vii), Leminal 13)
by % 2d(Xb,)~(b) < %

Accounting:Putting everything together, we have

(2L — 4w + 6) (B — 4/25)

nb. of interior nodessum of GEXIT integrals per tree
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— (2L — 6w + 8)d;(d, — 1)C +
contributions of approx. FP channels
- (Tw—8)dy(d, —1) +
frozen and non FP contributions

8
— (2L — 6w + 8)d;(d, — UE\/S

correction due to approx. FP nature

>(2L +1)(A(xz) — Alxg)) + D,

where
D =—(4w —5)B—(Tw — 8)d;(d, — 1)
> —11w(1 + d;d,) sinceB < 1 + d;d,

—4VOQ2L+ 1) [V2 + ﬁdl(d —1)].

Let us derive an upper bound in the same manner.
Boundary:Fori € [-L,—L +w — 2] U
U[L —w + 2, L] the GEXIT integrals are at most
This gives a contribution ofiw — 5. As usual, fori €
[L+1,L+w— 1] the GEXIT integral is0 and does not
contribute to the area.
Interior: Consider the GEXIT integrals for € [-L +
w—1,—w+1JUw—-1,L —w+1].

[—w + 2,w —

Technique:We use the same procedure as before-
hand. But this time we need a lower bound of the
GEXIT integrals of the leaf nodes.

Contributions from overall treeAs before, the over-

all contribution of each tree is equalTqxz) —1'(x, )

plus an error term of absolute value equakig2s.
Contributions from leavesThe idea is same as be-
fore and as before, we will consider the computation
from the point of view of check nodes. As before,
we split the contribution in two regimes- L, — L +
2w=3|U[~w+2,2w—-3|U[L —w+2,L+w-—1]
and[—L +2w — 2, —w+ 1] U [2w — 2, L —w + 1].
Contributions from checks in the range L, —L +
2w—=3|U[~w+2,2w—-3|U[L—w+2,L+w—1]:
Check nodes in this range might see some frozen
channels or channels which are not approximate FPs.
Since we are looking for an upper bound, we set the
contribution of such check nodes to be 0.
Contributions from checks in the range L + 2w —

2, —w+1]U 2w —2,L —w+ 1]: As we discussed
before, check nodes in this range only see channels
which are approximate FPs and none of the channels
are frozen. Further, all these GEXIT integrals corre-
sponds to computation trees whose roas in the
range[— L+w—1, —w+1]U[w—1, L—w+1]. We can,
therefore, subtract all their contributions, which are
obtained by arguments similar to those used in the
lower bound. There ar@L —6w+8)d,;(d, —1) such
integrals and the contribution for each such integral
is at leastC' — =5 2 0. Here, the last term takes into
account the approximate FP nature of the channels
and C' was defined in the arguments for obtaining
the lower bound.
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Accounting:We have than a distance = /8(L + w)/K. Therefore, if we run DE
on the modified components it is clear that in this range the
(4&,——52+ @L-4w+6) (B+ 4\/%) + output must still be close to the original output. More psedy,
boundary nb. interior nodes total contribution per tree we have for every € [_N’ i+ L+ 1]
— (2L — 6w + 8)d;(d, — 1)C +

d(zzv c* ® g(Zr—w—ﬁ-lv te 7Z;§<+w—1))
contr. of interior check nodes % % " "
5l N (d — 1 8 V5 <d(z, %) Fd(x;, " ® gz ity Zitw—1))
+( —bw ) l( T )m Sli—i_d((:*@g(lew—kl""7X;K+11F1)1C*®g(zzlw+17'--7Z;K+fukl))
correction due to approx. FP nature <K+ 2(dl - 1)(dr - 1)/1,

SQL+1)(Alz) — Alxe)) + B, where to get the penultimate inequality we first replatdy
where C®GXG_ 1y X pw_1), SINCEX™ is a true FP, and then to
obtain the last inequality we apply Lemina 33. Sikcean be

E = (6w - 7)di(d, —1)C + (4w - 5) made arbitrarily small by choosing sufficiently large, this

< 6wdyd, sinceC < 4zl <dwdd, verifies the approximate FP nature foe [—-N,i* + L + 1].
) 9 Let us now focus ori € [i* + L + 2,0]. Note that since
+4VE(2L + 1)[V2 + mdl(dr —1)]. L > 2(w — 1), we can use the above argument in particular

- for ¢ = ¢* +2w — 1. For this choice of all involved densities,

Proof of Theoremi_47 Rather than deriving the boundZ;—W+1""’Zr+w—1’ are equal tox. Therefore, the previous
e(dy,d,, 6, w, K, L) for all values of the parameters, we aré"lr(‘:]ument shows that
only interested in the behavior of this bound for values of d(x,c® g(x,...,x) < K+ 2(d — 1)(d, — 1)k (43)
tending to0 and values of’ and L tending toco. Hence, in
the sequel, nothing is lost by assuming at several spots tBat for i > i* + w all components ot* are equal tox and
§ is “sufficiently” small andK and L are “sufficiently” large so the approximate FP nature of is also verified fori >
(consequentlyV is also sufficiently large). This will simplify i* + 2w — 1. Sincei* + 2w — 1 <" + L + 1, we conclude
our arguments significantly. thatz* is an approximate FP.

Let (c*,x*) denote the proper one-sided FP[enV, 0] with From FP to FP family:From the approximate FR*,z*)
forced boundary condition which fulfills the stated coratis on [—N, 0] we create the approximate FP fam{ly;, z; }5=5"
for somed > 0 and2(w —1) < L andL +w < K < N. We on[-L,0] as described in Definition 62.
prove the claim in several steps, where in each step we asseffomputing GEXIT integral — Definitioh_R3Using the
further properties that such a FP has to fulfill. basic definition of the GEXIT functional in Definitidn R3 we

Constellation is almost flat and not too small “on theconclude that the GEXIT integral associated{tqj,z* }7=5",
right”. Recall that by assumptio(x* ;) > z,(1) so that A({c%,z:}7) is 0 since the channel remains constant through-

o) Lo

B(xF) > xy(l) for i € [-K,0]. Using the same reason-out the interpolation.

ing as in the discussion at the end of Lemma 14, we canComputing GEXIT integral — Theoreln]6¥ve now com-
conclude that there exists ah € [-K,—L — w| such that pute the GEXIT integral associated {a},z* }gzg* by first

D(x7,xz) < D(x,x7) + D(x},x;) + D(X, %1 r4,,) = applying Lemmd._63 and then Theoréni 64.
D(X5 X i) < % for all j < k and j,k € More precisely, from the previous arguments we satisfy all

[i*,i* + L+ w]. From part[{i) of Lemm&4 we conclude thathe hypotheses of Lemnial63. This allows us to conclude

d(x5,xz) < /8(L +w)/K foralli* <j<k<i*+L+w. that the FP family constructed above ftédl’lgf#’l) + 9

Clearly, the right-hand side can be made arbitrarily smgll Bpproximate FP (cf[{42)) ifX is chosen sufficiently large.

picking K sufficiently larger thanL + w. Furthermore, since the starting; (. ; = x for all sections
Constellation can be made exactly flat and not too smadlie [—L,0]) and ending constellationg}(_, ;, = A for all

“on the right”: Create from(c*,x*) the increasing constella- sectionsi € [-L,0]) are flat, we satisfy all the hypotheses of

tion (c*,z*) on [—N,0] with free boundary condition in the TheoreniL6# from which we conclude that the GEXIT integral

following way, is upper bounded by (x) +b(d;, d,, w +6,w, L)E
. . . Flat region has entropy not much smaller th%@: From
zr =" i € [=N,i" +u, part [vill) Lemma[59 we get
Xie gy 121w,

dj—1 4

The graphical interpretation is simple. We replace the tath z3(1) > (do—1)"2T=) > (d,—1)"3 + G) .
flat part on the right plus the extra part on the right which ) ) o o
might not be flat with an exactly flat part. To simplify Ourv_vhere in the last step we have used conditfod (vii) in Defini-
subsequent notation we set = x%. ., and from above tion[40. We conclude that
arguments note thaB(x) > zy(1). HenceB(z}) > zy(1 Lem. 41
foralls w0 = 2 e P00 2 a30) 2 (-1 S+ (3) 7 @9

Constellation is approximate EMote that by going from
x to z no component if—N, i* + L 4+ w] is changed by more  °Note thatA(A4 o) = 0.
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We now proceed by contradiction. Let us assume thad K Choosel = | £~ |. We then claim thak < ; for all 0 <
j < /{. Let us prove this claim immediately. From construction,
we havex = x%,, < X\, ., = X. Next, we claim that
)2, Xj = X1 (w-1)(j-1) 1OF 1 < j < (. Before we prove
this claim, we apply it immediately to conclude that

_ )24 \% . .
A e~ lmr)® L As we just discussed,

di—1)(d.—1 In(2)d

( l )( )+6§( n( ) l
w 16v/2d,

In the last step we assumed without loss of generality _ . JSeSgEy

that 0 is chosen sufficiently small. The inequality then fol- Xj 7 Rix p [ 1— (w—1)(j—1) 7 Xy =X

lows from the condition fv) in Definitioﬂo. This, t0-To prove the intermediate claim we argue inductively that
gether with [44), guarantees that we satisfy the hypoth-

d(x, C*®(Xd7—1)®dl—1) S 2

esis of (the Negativity) Lemm& R7. Hence we conclude Xj =¢" ® g(Xj—1,.-.,%j-1)
that A(x) < —%. From condition [(Mi) in Definition[40 = ® G(Xe L1 wo1)j e K L1 (w_1)(j—2))
A(V2 + Zdy(d, — 1))/ 28D o L Hence for a = X L (w—1)(j—1)"

sufficiently small 6 and a sufficiently largeL, this leads The induction is completed by verifying thag = x?

: ; * RVT) & 9 ' ¥+ L+1"
to the conclusion that the GEXIT integral({c;,z;}7) < Indeed, from the monotonicity of the spatial <P, we get

A(x) + b(dy, dy, w +d,w, L) < 0, a contradiction

to the previous computation. As a consequence, we must have Xie i1 = C ® GG p s X L)
d 2d;, |4 1 Xk 4 L =%0 " N N ~
B* = H(c") > H(x) > _l_dle*4(dr*1)(ucér)3 _ (45) =< @ g(Xo,...,%X0) =X1. 47

d; d’
Let us now bound the distane&x;,x;+1) for 1 < j < ¢.

The flat region is close ta®": We will now show thatx Since these elements are derived by DE we can use our bounds
is close tox®(c*), the BP FP when transmitting over the y

channelc* using the underlying(d;, d,.)-regular ensemble. on how the Wasserstein distanc~e b~ehaves unde[ DEE@" (vii)
In the sequel we will denote@F’(c*’) by x®. To do this, Lemma[IB) to conclude tha&(xj’xjgl) Sdrgd(xjfl’xj)_’

we will first bound the Wasserstein distance betweah Wherea = 2(d; —1)(d, — 1)(1 —B7(x))"=". To obtain
and x, wherex is defined to be equal tg}. ;. Thus to

a we have usedk; > x for all 0 < j < / to get
bound the distance betweerandx®* we bound the distances ™ {B(Xj-1); B(%;j)} > B(x). Continuing with above in-
d(x,x) and d(x,x®). Note from the previous part we have®

quality, it is not hard to see that we gétx;,xj+1) <
that d(x,X) = d(X}+ ., Xj- 4 1 4,) < & @and hence the distance

a’d(%g,%1). This gives a bound of

betweenx and x can be made arbitrarily small by taking  ¢-1 ol —1 1
K sufficiently large. Let us now bound(x,x*). First, we Zd(fg,ijﬂ) < d(Xo,%1) 1 < d(>~<0,>~<1)1—,
show thatd(x,c* ® g(%, ..., x)) can be made arbitrarily small. j=0 “- @
Indeed, Lemmald]

where in the last inequality we usB(x) > H(x) >

2d;

dXx,c* ®g(x,...,%)) <d(X,x) +d(x,c*®g(x,...,x 4 ] ) N
( 9l ) (%) ( 9l ) 4 dze’4(dr’1)(llcdr)3 — dl combined with the condition

* * s s d -
Hd(C®g(x ... x), T @g(%- - X) @ in Definition A to geta < 1. From [@6) we know that
< kt+r+4(di—1)(d,—1)k,  (46) we can makei(Xo, %) as small as we want by choosirg

where to get the last inequality we have used the approximg fficiently large.

FP nature ok (cf. (@3)) and the (sensitivity) Lemni&i33. Since et us now bound the two terms containing Battacharyya

«« can be made arbitrarilv small. we can make the distanggrameters. Note that in each iteration the distance of the
d(%,c* ® g(% %)) as sr)rqall as 'desire d respective Battacharyya constants decreases by a facair of

. . _ . leastp =B(c*)(d;—1)(d,—1)(1—min{B(x), B (xep) }2) 4 2.
Run forward DE, with the channet, starting fromxg = X, Indeed, from Lemm@& 51,

x¥ = x®, andwy = Ay, respectively. Letk, = T« (X¢—1),
sz = Tc*(Xzil) = XBP, ande = Tc* (Wg,l), 14 Z 1. Recall B —B(X < (B * d—1)(d.—1)(1—8 2\dr—2 ‘
thatT.(-) is the DE operator for thé&d;, d,-)-regular ensemble (we) =B(%e) < ( (") (d=1)(dr—1)( (%) )
when transmitting over the channel. We will choose the B(we) — B() < (%(c*)(dl—l)(d —1)(1—B(x )2)dT—2)é'
value of shortly. Then - " *
For the first inequality we again usB(x;) > B(x) for all
, 0 < j < ¢. Above we have also use®h(wg) — B(Xy) =
—1 -

L _ B(Ap)—B(X) < 1andB(wy)—B(x®) = B(Ay) —B(x*) <
SZd(Xj,Xj+1)+2\/%(Wg)—SB(X@)+2\/SB(W[) - %(XBP))' 1. We now have
j=0

d(x, XBP) < d(Xo,%¢) + d(Xe¢, Wg) + d(W(7 XBP)

* 2\d,—2
In the last step we use that, = Xy, sincewy = Ag = Xq B(c")(d—~1)(dr —1)(1-B(x)7) <1
and DE preserves degradation. Similarly, we use> x®°. B(c*)(dy—1)(d,—1)(1=B()?)4 2 < 1.
Therefore we can upper bound the Wasserstein distance.in ' . . . oy -~
terms of the difference of the respective Battacharyya colr:l(-)r the first inequality we use conditio](ii) in Defini

Lemmal
stants according td_{ii), Lemniall4. tion [0 combined withB3(x) > H(x) > 3—j -
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dye= 40 ~1)(7)8 . For the second inequality we useSinceh* andh” are both greater thaim from Lemmd2b we
condition [ii) in DefmltlonIZID combined withh* > di — have

d; 8—4( r 1)(1led )7 1 > h and LemmﬂS /h G(Ch y®dl dh‘ _ |A(XBP) o A(XBPA)| — |A(XBP)|
Therefore we can bound the sum of the two Battacharyya ! /a4 o " ’
terms by 45°2 with 3 = B(c")(di — 1)(d, — 1)(1 = where the last equality follows sincel(x*) = 0 (cf.

min{B(x), B(xe) }*)4 % < 1. Lemmal29).
Putting everything together we conclude that by choosing pytting everything together we get
L, K sufficiently larged(x,x®) can be made as small as

. 2(d; — 1)(d, — 1

desired. |h* —hA|§2(dT—1)3(b(dl,dr, (di )( ) +0,w, L)
h* is close toh“: From Theoreni 84 we have
2V2V(1 + /d, 1—— \Vd 1(d; — 1))

Ale,21a) —A(x)| < b(dy, d 20 =D 2 1) 5, L) AR " l )

oL + 1 = 1y Uy y Wy .

_ APPENDIXK
From above arguments we hav{c;,z;}7) = 0 hence EXISTENCE OFFP — THEOREMZA
2(d; — 1)(d, — 1) Proof: Before proceeding to the main part of the proof,
|AG)| < b(d, dy, +0,w, L). let us show that if we assume that there exists a proper FP

n [N, 0], with forced boundary condition on the right and
1o ON the left { < —N) and with Battacharyya parameter
of the constellation (cf. Definition37) equal tq(1)/2, then

Using the formula forA(-) given in Lemma 26 and propertlesA
(vi) and (iX) given in Lemma13 we have

B\ /7@ the desired properties (i) and (ii) mentioned in the statgme
AGT) = AGJ] < 2\/_ ' of the theorem follow.
X (1 + \/d—r( —1—-=)++Vd,—1(d - 1) ) Constellation is close té\, ., “on the left’: Let N; be the
largest integer so that for all< —N + Ny, B(x;) < 4. We
Recall thatx®® = x®°(c*). Comb|n|ng, we get have a proper FP and > 2d;}d? (becausev is by assumption
admissible in the sense of conditidnl(iv) in Definitibn] 40).
|AG)| < b(dy, dy, 2(di —1)(dr — 1) +6,w,1L) Hence by applying (the Transition Length) Lemina 61 we
w conclude that the number of sections with Battacharyya pa-

+ 2\/5\/5(1 + \/d/—r(dl 11— ﬂ) dy — 1(d; — 1)). rameter bounded betweérandx (1) is at mostwe(d;, d,.) /4,
dy where c(d;, d,) is the constant defined in Lemrial 61. Since
Further the BP GEXIT value for all channels betwaen the Battacharyya parameter of the constellation:él)/2,
andh4 is lower bounded by—dﬁm To show this we first We have
note that from condition[{jii) an ii) in Definitioh 40 we zy(1
satisfy the hypotheses oﬁgm 29. )Hence from Lerima 29 (V +1) 2( ) 2 (N +1= Ny —we(dy, dr)/5)zu(1).
we haveh” > h. Also, from [45) we haver* > h. L welds )2

. Using property

Then for anyh > min{h?,h*} we have®B(x,) > zy(1) [0S impliesthatVy > (N+1)( 53— Tx75 o e
, we conclude that

(cf. LemmaIIB) Thus we conclude that(x,) > z,(1) > @ of (the Wasserstein metric) Lemrhal
5z for anyh > min{h?, *}. Denotingy, = xP* " forall i < =N+ N1, d(x;, Ajoe) < 9,

\5\7e have, Constellation is not too small “on the right"Let N; be as
defined previously. Again, since the Battacharyya paramete
concavity of GEXIT : :
Gleny®h) 5 2 ¢ (yoU) of the constellation is equal te,(1)/2 we have
f info., 1

e Ao W2 o N (Vo).
> L= /1= (B(yn))*

@ . ) where on the rhs above we have replaced the sections with

a

>1—,/1— > value greater than by the maximum value of.

(d- —1)% = 2(d, — 1)3° o

This implies thatV; < (N + 1) . Thus if we define
N> as the number of sections W|th Battacharyya parameter at
least equal tary(1), we must have

To obtain (a) we USEB(xy) = B(cy)(B(yn))4 1, since
cw andx, form a FP pair. This implies thatB(y,))*% =

(BEHTT > (B6a)TT 2 @)TT TS (- Na2 (N 1) = M —weldn dr)/0
%) zu(l)  we(dy,dy)
1)@=2 > (d, — 1)73. The last inequality follows since > (N+1)( 1 6(N+1))’
condition [vil) in Definition[40 implies thatl, > 6. This
implies where we used < W) to obtain the above expression.

It remains to show the existence of the proper FP itself,
|;. with Battacharyya parameter of the constellation equal to
2(dy —1)° xu(1)/2. We use the Schauder FP theorem in a strong form

/ G(cn, y2™)dh| > [n* —h?
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recently proved by Cauty [113]: This theorem states thatyeve Let us show this in detail. We begin with (i). Consider the
continuous mapf from a convex compact subsét of a sequence{|§|“)}. We have

topological vector space to itself has a FP. o

Recall that atopological vector spacé is a vector space %(m(z )= 1 Z %(M(_e))
over a topological fieldF (most often the real or complex N+1 =
numbers with their standard topologies) which is endowed
with a topology such that vector additiaff x S — S and |;| ) / |;| O (4)/T — y2 dy.

scalar multiplicationF xS — S are continuous functions.
LetS = L1[0, 1] (whereL; denotes the.; norm). Note that Now note that,/1 — 42 is a bounded and continuous function
S is a real normed vector space and hence a topological Ve®@ar[o, 1]. Therefore, (weak) convergence off| O} to [¢|(>)

space. Le denote the space of probability measure$ion]  jmplies (weak) convergence oB(|r|¥) to %(m(oo)) =
endowed with the Wasserstein metric. Note tRat- S, where ;. (1) /2.

\f/ve rt('epreszmt eltflmtetﬂtstm bly th(;; .C‘émUIzt'g’ssd'St.”b.‘g'on Let us show (ii). From[(lZ)Jxlg»é_)l < |X|§‘Z) is equivalent to
unctions. Note that the topology dninduce coincides (g) 1 e (£)

with our choice (cf. second alternative definition in pajt (|f |%| z)dr < f |x|ﬂ' () dx for all = € [0, 1]. We have
of LemmalIB). Also, onP the topology induced by the (OO) L (o)

Wasserstein metric is equivalent to the weak topology. &inc / |X[; 71 () do < / X[ (2) da+

[0,1] is a complete separable metric space, sPBisee [104,

Theorem 6.18]. Sinc€0, 1] is compact, so isP, see [104, / |3€|(°°) / |3E|
Remark 6.19].

A Cartesian product of a family of topological vector spaces / |3€|(oo) dx+/ |3€|(f) _ (48)
when endowed with the product topology, is a topologicalvec

tor space. Hence§™V !, endowed with the product topology,
is a topological vector space.
Let S be the subset

By assumption, the sequené@|(“)} converges in the sense

of the Wasserstein metric. Therefore from propefy (iii) of

LemmalIB, for allj € [~N + 1,0], lim o |X[\7(2) =

S ={|X| € SN*!: |x|; is a|D|-distribution i € [N, 0]; |3€|§.°°)(x) for all x € [0,1] such that|3€|§.°°) is continuous at
B(|1X]) = 2u(1)/2; |X|-n < |X|_nq1 < --- < |X[o}. = (in other words, weak convergence is equal to convergence

in distribution). This implies that for alj
Discussion:As we discussed above, we think of the elements

1 1
of P as cumulative distribution functions. In particular, thes lim ’/ |3€|({3) (z) do _/ |3€|(.°°)(a:) del =0
i i £—00 J J

are the cdfs in the so calledd| domain. In the sequel, rather z z

than only referring to cdfs it will often be more convenienso that from[(4B) we conclude that

to write down the|D| distributions|t| or D distributionsr,

directly. / |3€| r)dr < / |3€| () (3

S is non-empty Setting all elements ofz| equal to z
xu(1)/280 4 (1 —zy(1)/2)A; gives an element in this space. S is compact Note thatS is a closed subset oPN+!,

S is convex Let x,y € S with |D|-distributions given by which is compact since it is the product of compact spaces.
lz| and |y| respectively. Leto| = BJg| + (1 — 3)|y| for some HenceS is compact as well.

B € (0,1). SinceB(-) is a linear operator, we see that Definition of mapV'(-): In order to show (via Schauder’s
FP theorem) that contains a FP of DE we need to exhibit
B(lef) = BB(lel) + (1 = 5) Blyl) = 2u(1)/2. a continuous map which mas into itself. Our first step is
Also, using [2), we see thap|;,_; < |v|; forall i € [-N 4+ 1O define a map, call it’(|g]), which “approximates” the DE
1,0]. Hencepx + (1 — By € S. equation and is well-suited for applying the FP theorem. The

S is closed Consider a sequendg|(¥)}5°, of elements of final step in our proof is then to show that the FP of the map

S and assume that this sequence converges in the Wasserdfgigl) is in fact a FP of DE itself.
metric to a limit, call it [f[(). We need to show that The mapV(|x|) is constructed as follows. For| € 5, let

1) € 8, i.e., we claim thatS is closed. In this respect, U ([t]) be the map,

recall from our discussion above thatC PV *! and that on (Ue))i = g(|xlimwt1s - - [tligw—1), i€ [=N,0],

PN+ the topology induced by the Wasserstein metric is the
weak topology. where r|; = At for i < —N, and wherefr|; = Aq for

From Lemmat.25 in [62] we know that each component of! > 0- DefineV =5 — 5 as

1) is a symmetrid D| distribution. It therefore remains to U(lz) ® e, s.t. B(|¢|) = 2%”2“&‘);‘))
shows that (B (J¢| ) = zu(1)/2, and (i) ¢ < [¢i>) v () = 2o(1)/2 < BU ).

for all i € [-N + 1,0]. Both claims follow from the fact that
we can encode the above properties in terms of continuous
functions and that continuous functions preserve the ptigige In words, if U(Jz|) is “too large”, upgrade it by an appropriate
under limits. channellc|. If, on the other handl/(|x|) is “too small” then

a(e)U(Jg]) + a(lz])A,, otherwise
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we take a convex combination with. In the preceding ex- Assertion (i) is equivalent to LemmBa(33) sincelfiz|, |y|) <
pressions, terms likeU (|r|) denote component-wise productsy then a fortiori d(|x|;, [v];) < v, i € [~N,0]. Assertion
i.e., the result is a vector of densities, whereithle component (ii) follows from assertion (i) by applying property{ix) of
is the result of multiplying the-th component of/(|t|) with LemmalIB. To see assertion (iii) we write
the scalam(|x|);. Further,a is a shorthand fof1 — a([x[)). zu(1) zu(1)
It remains to specify the components @f|r|). Note that | B(|e]jg) = Bleljy)| = |2SB(U(|;|)) - 2%(U(|U|))|
N+1 i ; < =
a([r]) € [0,1]Y**. Further, we require that its components are o) B (o)) — BO(E))
)

increasing and that they are all eitheor 1, except possibly

one. l.e..a(fg|) has the form(0,0,...,0,a;,1,...,1), where -2 BU)BWU(y))
i € [-N,0], anda; € [0, 1]. This defines the vector uniquely. 2(N +1)\/4(d, — 1)(d, — 1)v
Pictorially we can think of this map in the following way. We < zu(1) :

start at componentU (|¢[))o. We take an increasing convexp,

combination withAq until the overall Battacharyya constant,B(U(m)) B(U(l))) > xu(1)/2. Recall that the channel

I(SVaq|L)j?| E)xz(l)a{r?('j Irfetrgzt ItshiQOtrgggécdfgt\’/vitt?]eZO\,r:/]eOsneetl’]l?m"y is ordered by degradation. We can therefore apply
o = So p P P roperty [(il) of Lemmd_I}4 to prove our claim.

(U(J&]))-1, and so on. To apply Schauder's theorem, we negdChoosingu as a function of|r| and using assertion (ii)

o ;Ii;ow‘t/h a;[ tf?;e r?/va:aﬂl)ll('Bjtlesfir\:\(laed”-(lj:ierfsl?e(i:nns(? d(;?ntlﬂgoucsa;se above, we can therefore assume that eittU(z|)) >

e VL) s el ¢ o SonSer the €35€.,(1)/2 and B(U (o)) > wu(1)/2 or BU(e)) < u(1)/2
(U([e) = zu(1)/2. In this caseygyy < 1. Since the 5nqa3 (17 (Jy))) < 2u(1)/2. In the first case,

Battacharyya parameter is a strictly increasing and contis -

function of the chann@l, there exists a uniqui| € {|c|,} 4V &) V(o) =d([elig & U], [eljy) ® U([n]))

last inequality follows from assertion (i) and

such that®B(|c|) = =24 _ Note also thatlU([r|) is &, Lem.[13

) =z | (=D " B24(U (). U01)) + 241l Il
monotone (spatially) sincg(-) is monotonic (as a function of - < =
its arguments) anft| is monotone. Consequently(|¢|) @ |c| 0 &m 4(dy = 1)(dr — (N + 1)+
is monotone. Further, from the multiplicative property bét
Battacharyya parameter at the variable node, we get that +4 2(N +1)\/4(d — 1)(d, — 1)v
BV (le]) = BWU(x]) B(Je]) = zu(1)/2. It follows that in zy(1) '

this cas.eV(|§|) €5. Let us now focus on the second case. Letdenote the
Consider next the casB(U ([¢])) < xy(1)/2. If we choose 5146t integer in[—N,0] such thata([z|)i- is non-zero.
a = 1 then we get a Battacharyya parameterlofFurther, Clearly if B(U(|x])) < zu(1), theni* < 0, else we set* = 1.

the increase in the Battacharyya parameter is continuogﬁn“ar'y’ let j* be the corresponding index im(|y|). Let us
Hence there exists am so that the resulting constellation ha%lenoteaﬂ; )i« = a anda(|y|);- = 3. Note that) < o, 8 < 1
&l — I1)g* — M- = & = &

Battachar_yya constant _equgl:tg(l)/z Also, py construction Wilog we can assume that < i*. With this we can upper
the resulting constellation is monotone. This shows thsd alboundd(V(|x|),V(|n|)) by,

in this caseV (Jr]) € S. In both the cases above, the map - =

maintains the symmetric nature of tiiz-distributions. il _

We summarizey” mapssS into itself. In the rest of the proof, > dU ()i, Ul)a) + AU (el)j- BU(l)+ + BAo)
we will use the notationi(|g|, [n]) = 327y d(|tli,[9];) to =N
denote the Wasserstein distance between two constefiation ‘= B

x| and [y). + Y dU([e]);, Ao) + d@U([])i- + alo, Ag).  (49)

Continuity of map/(-): We will show that for everyz| € S =

and for anye > 0, there exists a > 0 such, that ifly| € S Above we have used that far> i* + 1 we haveV (|y[); =
andd([t],|v]) < v, thend(V(z]),V(|]n])) < e. Note that if V(|g]): = Ao. In the casei* = j*, the terms in the interval
d([g], |p]) < v then B - 7%, "] collapse tod(aU ([¢[)i + alo, BU([y])i + BA0).

() dU (e UlD):) < 2(d — 1)(dy — 1), i € [~ N, 0; %(L‘?E'us flrst con&derfthe case when < i*. Note that

N . ) =BV (n])) = xu(1)/2. This implies that if we re-
(i) |%(U(|_§|)i) = BU (o))l < VAl - 1)(d — D, i € place the Wasserstein distance by the Battacharyya pasamet

[=NV, 0]; in (@9) the expression evaluates to 0. Then writing théerm

(i) d(lclyg, [clp) < 2¢ 2NV DDy e asF(B(U(Je);) — BU(l);-)) + BB (a);+) — B(Do))

zu(1)
BU([e]) > 2u(1)/2 andB(U(Jy])) > zy(1)/2H we get

=1

BL=BU(e)))+ Y (1=BUe))

10That the Battacharyya parameter is continuous followsesthe channel

family is smooth. Further, since the Battacharyya kernedtiitly concave i=j"+1
_and t_he channel _famlly is ordered by degradation, the Badigya parameter + (1 — %(@U(m )Z* + QAO))
is strictly increasing. . =
e abuse notation slightly to denote the channel associatdd, y| J
by |c|je, Icljy. respectively, rather than denoting them by the standard < Z I BU(x))i) — BWU([nl)a)l, (50)

parameterizatiorn. i=—N
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where above we uss(Ag) = 1. B and that|r|f = Ao fori > 1.
We now continue with[(49). We us&U (|¢|);+, SU(|n|);~ + Given a densityx| we say that it has a “BEC component”
BAo) < d(U([g))j, U(yl)j=) + BdU(|xl);-, Do), @) of of uif [¢] contains a delta ab of “weight” v (i.e., contains

LemmalIB and[(30) to get the upper bound a mass ofu at Ag). In the sequel we will think ofu as the
7 erasure probability of a binary erasure channel.
Z AU ()i, U(n]):) Let u be the vector of BEC components corresponding to

|e|*. SinceB(U(Jt[*)) < xy(1)/2 we know thaty has some

— _ non-trivial components ifj—N, 0], and by definition of the
- right boundary,u; = 1 for i > 0. We claim that fori €
+V2(N + 1)\l Z | BU([x])i) — BWU(|y[):)l- [N, 0],
i=—N

Finally using assertions (i) and (ii) above we get that Ui 2 g(Uimw1s o Uikw—1). (52)
Let us prove this claim immediately. Extract the BEC compo-

a\v v <2(N4+1)(d—1)(d, -1 : :
VeV () < 2V + 1)(d: = 1)( . v nent from both the left-hand as well as the right-hand side of

+2(N +1)((d — 1)(d — )7 G1). This gives
For the case whepi* = i* we have u; = (1 — ;) BEC(U (2])i) + v

d(aU([g])i + o, BU(|9])i + BA) > (1= ai)g(Uimwt1s -y Uigw—1) + i, (53)

< d(@U([g])ix + alo, @U(|y])i- + alo) where we wroten; as a shorthand foa(Jx|*); and BEC()
+ d(aU(|n])i+ + alo, BU(|n])ix + BA0) denotes weight af\,. To see the second step, i.e., to see that

N . _ N 2 N BEC(U(|x|*)i) > 9(ti—w+1,- -, Uirw—1), let [p|* denote the
Jir, Ullol)er) +d@U([n])s- +al0, BU([n]): +520). density at the output of the check nodes when the input is
Wlog we can assumg > «. This impliesalU (|y|);-+alo < [¢]*. Letv denote the (BEC) density at the output of the check
BU(|y])i++BAq. Hence from[{i) of Lemm&4 we can boundhodes when the input is. Some thought shows thatis also
the second Wasserstein distance above by the differenbe ofthe BEC component db|*. In words, at check nodes the BEC
Battacharyya parameters. Further, component evolves according to density evolution — we get an
B ~ erasure at the output of a check node if and only if at least one
| B(aU (|yl)i- +alo) = BBU(|yl)i- +520)| of the incoming messages is an erasure. At variable nodes we
< [B(aU(|y])i +alo) — B(aU (Jg])i- +alo)| only get a bound. If all inputs to a variable node are erasures
+1B(aU(|t]) e +alo) — B(BU(|9|)s +BAo)|. then the output is also an erasure, but this is only a sufficien

) ) condition. Thus[(53) is proved. tf; = 1, thenu; = 1 and [52)
The first Battacharyya difference on the rhs can be boundgd, e lfoy; < 1, thenu, > wi=ou

) > 42 > (Uit 1y - Uiw—1),
by | B(U([y])i-) = B(U(J])i~)|- For the second difference weyhere the second step follows frofal53).

use same arguments &sl(50) to obtain Extend the constellatiom by N3 = [(N + 1)7%-] + 1

<d(U(|x

dr _q
— d
| B(aU ([r])i- +alo) — B(BU([y])i- +58A0)] sections on the right, with values equaliteand letu() denote
-1 this constellation. We claim that(®) has at least
< X 1B ~ Bl N> v+ 1) (4 = ooy
i== ‘= 2 §(N+1)

Combining everything with the assertions (i) and (ii), insth

case we get sections on the left with Battacharyya value betwéeand ¢

wherec(d,, d,.) is the constant of Lemnia1 and only depends
d(V([g)),V(In])) <2(N +1)(d; — 1)(d, — 1)v on the dd.
1 To prove this claim, we consider our original* (before
2V2VvN + 1((d; — 1)(d, — 1)v)7. . < .
T2v2 + 1 ) v) we extracted the BEC components) which was the FP obtained
Existence of FP ofl/(-) via Schauder We can invoke by Schauder's theorem. We claim that* has at leastV,
Schauder’s FP theorem to conclude th&t) has a FP inS, segments on the left with Battacharyya constant at nipst

call it |g|*. where

Existence of FP of DE{((-)): Let us show that, as a N+1  c(d,d)w
consequence, DE itself has a FR|*, [r|*) with the desired Nyz(N+1) - ————
properties. (@) T T

If B(U(|e[*)) > wu(1)/2, then|g]* = V(|g*) = U(le]") ®
lc]* with |c|* € {|c|,}. Hence indeed(|c|*,|z|*) is a FP of Let us explain each of the terms on the right. There/dre 1
DE. segments to start with, which explains (a). At m@st+1)/2
Consider hence the casB(U(|x|*)) < xy(1)/2. We will sections on the right can have a Battacharyya value,0f)
show that it leads to a contradiction. Recall that in thisecasor larger (sinceB(|z|*) = zu(1)/2). This accounts for the
. . . . (b) term. Finally, all sectiong, with i < —(N + 1)/2 + 1,
&l" = (1 = alg*)U (") + alle]*) Ao, (531)  must be sections wherg|* fulfills the actual FP equations,
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i.e., these cannot be sections where the midp “pushes” tions, from the right, with Battacharyya parameter gretitan
the constellation up ta\,. More precisely, we must havez,(1). Indeed, this can be obtained by considering the sections

a(le]*)i

0 for i < —(N 4 1)/2 + 1. Indeed, from [1, N3] of v(*) and then using(>) > v(®). More precisely,

construction, starting from the rightmost section, eadtise since the sectionfl, N3] of v(?) form a proper FP, if we let
is increased all the way up td, before we move on to V4 denote the number of sections with Battacharyya parameter
the next section on the left. Since the constellatigh has less thans, then we gelﬁB(ZﬁEl v§0)) < N3d + N3 — Nj.

Battacharyya parameter equalatg(1)/2 < 1/2 we conclude
that fori < —(N +1)/2+ 1 we must haver|? = (U(|z|*))i.
which is a true FP of DE for the channdl,. Therefore, for
these section we can apply (the Transition Length) Lefnha
and conclude that there are at mo&i;, d,)w/dé such section
which have Battacharyya value betweemnd zy(1). This is
the term (c).

The claim now follows since the BEC component is
upper bounded by the corresponding Battacharyya parameter
B([el7).

Now consider a further constellatian® on [—N, N3]. We
setv'”) = 0 for all i € [~N,0]. Fori € [1, N3] we sety(®)
the FP of forward DE according to Lemma 22 in|[53], wherg _
the length of the constellation is taken to bg — 1, ¢ = 1,
andx = £(1—d;/d,). More precisely, Lemma 22 i [53] saysan
that if we run forward DE, with free boundary condition, whenhat
transmitting over the BEC witlh = 1 and (d;, d,, N3 — 1, w)

Since & B(Y_ 1 v : e
and combining with the transition length Lemia él, we get
%:Iie expression folN5. Further, from the previous discussion,
there are at leastV, values belowd on the left. Thus,

it is not hard to see that we can simultaneously choose
0>0,w,LeN,KeN N eN such that

(0) 1 N3(1+d—i
) > 41 - M)

1(1—4t) we getN} <

2w—=1)< L,
L < Ny,

0 \We summarizep(™) is a proper one-sided FP of DE for

1 with fixed boundary condition an&(v'%/, ;) < §

d %(vj(vf)_K) > zy(1). But we know from Theorenh 47

such a FPp(*™), must have a channel value close to

e(dy,d,), the area threshold ofd;,d,)-regular ensemble

coupled ensemble, then for large enough length, the oreatsid/Nen transmitting over BEC. More precisely, applying The-

FP of forward DE must be proper (non-trivial and increasind}/©
and we can lower bound the Battacharyya parameter of tﬁf
resulting FP. By our choice o3 this FP (on[1, Ns]) has
Battacharyya parameter at Ie%s{ﬂ —d;/d,). Now sincew >

2d}d} we haveN; = [(N + 1)z*<] +1 > N + L. This
da;
N3

1
implies that w345 > 5. Thus B(w®) > (1 — di/d,).
Clearly, (9 < 49 (component-wise).

e = 1, to both constellation with a fixed boundary condition.

More precisely, we have for alf € [N, Nj] ul?)

o— — [ - o~
g(ugfle)rl’ e u( Y ) and Ug ) = g(vgfle)rlv e 7’Uz(+w121)‘

> 4w —1

We keepugl) = Ay, andvfz) = A, fixed, for all7 > N3 and g
¢ € N and fori < —N both the constellations have sections [2]
fixed to A ... Recall thatu(”) is equal tou on [N, 0] and .
equal to1 for the sectiong1, Ns]. Because of({32), we have 3l
@ > () From the monotonicity of the DE operator we [4]
conclude that the sequeneé” is decreasing and since it is
bounded from below it must converge. Call this limit>).
We claim that the sequenaé?) is increasing in? and since
it is bounded from above it must converge. Call this limit [€]
v{>). Let us prove the claim that') is increasing. Indeed, |,
for i € [-N,0], vfl) > vfo) =0, fori € [1, N5 —w + 1],
vfl) = vfo) (since v§0> is an FP in that region) and for [
i € [N3 —w+2,Ns], vfl) > vfo) (sincevgo) is an FP with 9]
free boundary condition and hence replacing the boundarY
with 1 can only increase the value under DE). Again, from 0
the monotonicity of DE we have that”) in ¢. Sincev(®
is increasing and proper we conclude th&t®) exists and
is proper. Furtherp(>) < 4(>) sincev® < u(® and the
ordering is preserved under iterations of DE.

SinceB(v(>)) > B(v®) > (1 - d;/d,) we claim that

a4
there must exists at leadt; = N3 (1—%—%

(5]

(11]

) Sec-

€ (dl,dr)
enough andK, L, N large enoughg(d;, d,,d, w, K, L) can
be made arbitrarily small and hence the channeb®f) is
strictly less than 1, leading to a contradiction since wetsta
with ¢ = 1. This contradiction tells us that we cannot have
B(U
Apply forward DE, when transmitting through BEC withHence the FP must be a true FP of DE.

m[4T we conclude that the entropy of the channel of
o)

must be less thae(d;, d,.) +c(d;, d,, §,w, K, L). Since
< j—l < 1M, we conclude that by choosingsmall

(lz[*)) < zu(1)/2 when we apply the Schauder theorem.
|
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