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Abstract—We investigate spatially coupled code ensembles. For
transmission over the binary erasure channel, it was recently
shown that spatial coupling increases thebelief propagation
threshold of the ensemble to essentially themaximum a-priori
threshold of the underlying component ensemble. This explains
why convolutional LDPC ensembles, originally introduced by
Felström and Zigangirov, perform so well over this channel.

We show that the equivalent result holds true for transmission
over general binary-input memoryless output-symmetric chan-
nels. More precisely, given a desired error probability anda gap
to capacity, we can construct a spatially coupled ensemble which
fulfills these constraintsuniversally on this class of channels under
belief propagation decoding. In fact, mostcodes in that ensemble
have that property. The quantifier universal refers to the single
ensemble/code which is good for all channels but we assume that
the channel is known at the receiver.

The key technical result is a proof that under belief propaga-
tion decoding spatially coupled ensembles achieve essentially the
area threshold of the underlying uncoupled ensemble.

We conclude by discussing some interesting open problems.

I. I NTRODUCTION

A. Historical Perspective

Ever since the publication of Shannon’s seminal paper [1]
and the introduction of the first coding schemes by Ham-
ming [2] and Golay [3], coding theory has been concerned
with finding low-delay and low-complexity capacity-achieving
schemes. The interested reader can find an excellent historical
review in [4]. Let us just briefly mention some of the highlights
before focusing on those parts that are the most relevant for
our purpose.

In the first 50 years, coding theory focused on the con-
struction of algebraic coding schemes and algorithms that
were capable of exploiting the algebraic structure. Two early
highlights of this line of research were the introduction of
Bose-Chaudhuri-Hocquenghem (BCH) codes [5], [6] as well
as Reed-Solomon (RS) codes [7]. Berlekamp devised an
efficient decoding algorithm [8] and this algorithm was then
interpreted by Massey as an algorithm for finding the shortest
feedback-shift register that generates a given sequence [9].
More recently, Sudan introduced a list decoding algorithm
for RS codes that decodes beyond the guaranteed error-
correcting radius [10]. Guruswami and Sudan improved upon
this algorithm [11] and Koetter and Vardy showed how to
handle soft information [12].

Another important branch started with the introduction of
convolutional codes[13] by Elias and the introduction of the
sequential decodingalgorithm by Wozencraft [14]. Viterbi
introduced theViterbi algorithm [15]. It was shown to be
optimal by Forney [16] and Omura [17] and to be eminently
practical by Heller [18], [19].

An important development in transmission over the continu-
ous input, band-limited, additive white Gaussian noise channel
was the invention of thelattice codes. It was shown in [20]–
[24] that lattice codes achieve the Shannon capacity. A break-
through in bandwidth-limited communications came about
when Ungerboeck [25]–[27] invented a technique to combine
coding and modulation. Ungerboeck’s technique ushered in a
new era of fast modems. The technique, calledtrellis-coded
modulation(TCM), offered significant coding gains without
compromising bandwidth efficiency by mapping binary code
symbols, generated by a convolutional encoder, to a larger
(non-binary) signal constellation. In [28], [29] Forney showed
that lattice codes as well as TCM schemes may be generated
by the same basic elements and the generalized technique was
termedcoset-coding.

Coming back to binary linear codes, in 1993, Berrou,
Glavieux and Thitimajshima [30] proposedturbo codes. These
codes attain near-Shannon limit performance under low-
complexity iterative decoding. Their remarkable performance
lead to a flurry of research on the “turbo” principle. Around
the same time, Spielman in his thesis [31], [32] and MacKay
and Neal in [33]–[36], independently rediscovered low-density
parity-check (LDPC) codes and iterative decoding, both intro-
duced in Gallager’s remarkable thesis [37]. Wiberg showed
[38] that both turbo codes and LDPC codes fall under the
umbrella of codes based on sparse graphsand that their
iterative decoding algorithms are special cases of thesum-
product algorithm. This line of research was formalized by
Kschischang, Frey, and Loeliger who introduced the notion of
factor graphs[39].

The next breakthrough in the design of codes (based on
sparse graphs) came with the idea of usingirregular LDPC
codes by Luby, Mitzenmacher, Shokrollahi and Spielman
[40], [41]. With this added ingredient it became possible to
construct irregular LDPC codes that achieved performance
within 0.0045dB of the Shannon limit when transmitting
over the binary-input additive white Gaussian noise chan-
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nel, see Chung, Forney, Richardson and Urbanke [42]. The
development of these codes went hand in hand with the
development of a systematic framework for their analysis by
Luby, Mitzenmacher, Shokrollahi and Spielman [43], [44] and
Richardson and Urbanke [45].

A central research topic for codes on graphs is the interac-
tion of the graphical structure of a code and its performance.
Turbo codes themselves are a prime example how the “right”
structure is important to achieve good performance [30].
Further important parameters and structures are, the degree
distribution (dd) and in particular the fraction of degree-two
variable nodes, multi-edge ensembles [46], degree-two nodes
in a chain [47], and protographs [48], [49].

Currently sparse graph codes and their associated iterative
decoding algorithms are the best “practical” codes in termsof
their trade-off between performance and complexity and they
are part of essentially all new communication standards.

Polar codes represent the most recent development in cod-
ing theory [50]. They are provably capacity achieving on
binary-input memoryless output-symmetric (BMS) channels
(and many others) and they have low decoding complexity.
They also have no error floor due to a minimum distance
which increases like the square root of the blocklength. The
simplicity, elegance, and wide applicability of polar codes have
made them a popular choice in the recent literature. There
are perhaps only two areas in which polar codes could be
further improved. First, for polar codes the convergence of
their performance to the asymptotic limit is slow. Currently no
rigorous statements regarding this convergence for the general
case are known. But “calculations” suggest that, for a fixed
desired error probability, the required blocklength scales like
1/δµ, whereδ is the additive gap to capacity and whereµ
depends on the channel and has a value around4, [51], [52].
Note that random block codes under MAP decoding have
a similar scaling behavior but withµ = 2. This implies a
considerably faster convergence to the asymptotic behavior.
The value2 is a lower bound forµ for any system since the
variations of the channel itself imply thatµ ≥ 2. The second
aspect isuniversality: the code design of polar codes depends
on the specific channel being used and one and the same design
cannot simultaneously achieve capacity over a non-trivialclass
of channels (under successive cancellation decoding).

Let us now connect the content of this paper to the previous
discussion. Our main aim is to explain the role of a further
structural element in the realm of sparse graph codes (besides
the previously discussed such examples), namely that of
“spatial coupling.” We will show that this coupling of graphs
leads to a remarkable change in their performance. Ensembles
designed in this way combine some of the nice elements of
polar codes (namely the fact that they are provably capacity
achieving under low complexity decoding) with the practical
advantages of sparse graph codes (the codes are competitive
already for moderate lengths). Perhaps most importantly, it
is possible to constructuniversal such codes for the whole
class of BMS channels. Here, universality refers to the fact
that one and the same ensemble is good for a whole class of
channels, assuming that at the receiver we have knowledge of
the channel.

B. Prior Work on Spatially Coupled Codes

The potential of spatially coupled codes has long been rec-
ognized. Our contribution lies therefore not in the introduction
of a new coding scheme, but in clarifying the mechanism that
make these codes perform so well.

The term spatially coupled codeswas coined in [53].
Convolutional LDPC codes (more precisely, terminated convo-
lutional LDPC codes), which were introduced by Felström and
Zigangirov in [54], and their many variants belong to this class.
Why do we introduce a new term? The three perhaps most
important reasons are: (i) the term “convolutional” conjures
up a fairly specific node interconnection structure whereas
experiments have shown that the particular nature of the
connection is not important and that the threshold saturation
effect occurs as soon as the connection is sufficiently strong;
(ii) a well known result for convolutional codes says that the
boundary conditions are “forgotten” exponentially fast; but for
spatially coupled codes it is exactly the boundary condition
which causes the effect and there is no decay of this effect
in the spatial dimension of the code; (iii) the same effect
has (empirically) been shown to hold in many other graphical
models, most of them outside the realm of coding; the term
“spatial coupling” is perhaps then somewhat more generally
applicable.

There is a considerable literature on convolutional-like
LDPC ensembles. Variations on the constructions as well
as some analysis can be found in Engdahl and Zigangirov
[55], Engdahl, Lentmaier, and Zigangirov [56], Lentmaier,
Truhachev, and Zigangirov [57], as well as Tanner, D. Srid-
hara, A. Sridharan, Fuja, and Costello [58].

In [59], [60], Sridharan, Lentmaier, Costello and Zigangirov
consider density evolution (DE) analysis for convolutional
LDPC ensembles and determine thresholds for the BEC.
The equivalent results for general channels were reported by
Lentmaier, Sridharan, Zigangirov and Costello in [60], [61].
This DE analysis is in many ways the starting point for our
investigation. By comparing the thresholds to the thresholds of
the underlying ensembles under MAP decoding (see e.g. [62]),
it quickly becomes apparent that an interesting effect mustbe
at work. Indeed, in a recent paper [63], Lentmaier and Fettweis
followed this route and independently formulated the equality
of the belief propagation (BP) threshold of convolutional
LDPC ensembles and the MAP threshold of the underlying
ensemble as a conjecture.

A representation of convolutional LDPC ensembles in terms
of a protograph was introduced by Mitchell, Pusane, Zigan-
girov and Costello [64]. The corresponding representationfor
terminated convolutional LDPC ensembles was introduced by
Lentmaier, Fettweis, Zigangirov and Costello [65]. A variety
of constructions of LDPC convolutional codes from the graph-
cover perspective is shown by Pusane, Smarandache, Vontobel,
and Costello [66].

A pseudo-codeword analysis of convolutional LDPC codes
was performed by Smarandache, Pusane, Vontobel, and
Costello in [66]–[68]. Such an analysis is important if we
want to understand the error-floor behavior of spatially coupled
ensembles.
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In [69], Papaleo, Iyengar, Siegel, Wolf, and Corazza study
the performance of windowed decoding of convolutional
LDPC codes on the BEC. Such a decoder has a decoding
complexity which is independent of the chain length, an
important practical advantage. Luckily, it turns out that the
performance under windowed decoding, when measured in
terms of the threshold, approaches the “regular”” (without
windowed decoding) threshold exponentially fast in the win-
dow size, see [70], [71]. The threshold saturation phenomenon
therefore does not require an infinite window size.

The scaling behavior of spatially coupled ensembles, i.e.,
the relationship between the chain length, the number of
variables per section, and the error probability is discussed
by Olmos and Urbanke in [72].

C. Prior Results for the Binary Erasure Channel

It was recently shown in [53] that for transmission over the
BEC spatially coupled ensembles have a BP threshold which
is essentially equal to the MAP threshold of the underlying
uncoupled ensemble. Further, this threshold is also essentially
equal to the MAP threshold of the coupled ensemble. This
phenomena was calledthreshold saturationin [53] since the
BP threshold takes on its largest possible value (the MAP
threshold). This significant improvement in the performance
is due to the spatial coupling of the underlying code. Those
“sections” of the code that have already succeeded in decoding
can help their neighboring less fortunate sections in the decod-
ing process. In this manner, the information propagates from
the “boundaries”, where the bits are known perfectly towards
the “middle”. In a recent paper [63], Lentmaier and Fettweis
independently formulated the same statement as a conjecture
and provided numerical evidence for its validity. They attribute
the observation of the equality of the two thresholds to G. Liva.

It was shown in [64], [67], [68], [73] that if we couple
component codes whose Hamming distance grows linearly in
the blocklength then also the resulting coupled ensembles have
this property (assuming that the number of “sections” or copies
of the underlying code is kept fixed). The equivalent result is
true for stopping sets. This implies that for the transmission
over the BEC the block BP threshold is equal to the bit BP
threshold and that such ensembles do not exhibit error floors
under BP decoding.

D. Prior Results for General Binary-Input Memoryless
Output-Symmetric Channels

As pointed out in a preceding section, BP thresholds for
transmission over general BMS channels were computed by
means of a numerical procedure by Lentmaier, Sridharan,
Zigangirov and Costello in [61]. Further, in [74] (conjectured)
MAP thresholds for some LDPC ensembles were computed
according to the Maxwell construction. Comparing these two
values, one can check empirically that also for transmission
over general BMS channels the BP threshold of the coupled
ensembles is essentially equal to the (conjectured) MAP
threshold of the underlying ensemble. Indeed, recently both
[75] as well as [76] provided further numerical evidence that

the threshold saturation phenomenon also applies to general
BMS channels.

For typical sparse graph ensembles the MAP threshold is not
equal to the Shannon threshold but the Shannon threshold can
only be reached by taking a sequence of such ensembles (e.g.,
a sequence of increasing degrees). There are some notable
exceptions, like MN ensembles or HA ensembles. Kasai and
Sakaniwa take this as a starting point to investigate in [77]
whether by spatially coupling such ensembles it is possible
to create ensembles which are universally capacity achieving
under BP decoding.

E. Spatial Coupling for General Communication Scenarios,
Signal Processing, Computer Science, and Statistical Physics

The principle which underlies the good performance of
spatially coupled ensembles is broad. It has been shown to
apply to a variety of problems in communications, computer
science, signal processing, and physics. To mention some
concrete examples, the threshold saturation effect (dynami-
cal/algorithmic threshold of the system being equal to the
static or condensation threshold) of coupled graphical models
has been observed for rate-less codes by Aref and Urbanke
[78], for channels with memory and multiple access channels
with erasure by Kudekar and Kasai [79], [80], for CDMA
channels by Takeuchi, Tanaka, and Kawabata [81], for relay
channels with erasure by Uchikawa, Kasai, and Sakaniwa
[82], for the noisy Slepian-Wolf problem by Yedla, Pfister,
and Narayanan [83], and for the BEC wiretap channel by
Rathi, Urbanke, Andersson, and Skoglund [84]. Uchikawa,
Kurkoski, Kasai, and Sakaniwa recently showed an improve-
ment of the BP threshold has also for transmission over
the unconstrained AWGN channel using low-density lattice
codes [85]. Further, Yedla, Nguyen, Pfister and Narayanan,
demonstrated the universality of spatially-coupled codesin
the 2-user binary input Gaussian multiple-access channel and
finite state ISI channels like the dicode-erasure channel and
the dicode channel with AWGN [86], [87]. In [86] they
show in addition that for a fixed rate pair, spatially-coupled
ensembles universally saturate the achievable region (i.e., the
set of channel gain parameters that are achievable for the fixed
rate pair) under BP decoding. Similarly, in [87] they provide
numerical evidence that spatially coupled ensembles achieve
the symmetric information rate for the dicode erasure channel
and the dicode channel with AWGN.

In signal processing and computer science spatial coupling
has found success in the field of compressed sensing [88]–
[91]. In [88], Kudekar and Pfister use sparse measurement
matrices with sub-optimal verification decoding and show that
spatial coupling boosts thresholds of sparse recovery. In [90],
[91], Krzakala, Mézard, Sausset, Sun, and Zdeborova as well
as Donoho, Javanmard, and Montanari show that by carefully
designing dense measurement matrices using spatial coupling
one can achieve the best possible recovery threshold, i.e.,the
one achieved by the optimalℓ0 decoder. Thus, the phenomena
of threshold saturation is also demonstrated in this case. This
development is quite remarkable.

Statistical physics is another very natural area in which
the threshold saturation phenomenon is of interest. For the
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so-called randomK-SAT problem, random graph coloring,
and the Curie-Weiss model, spatially coupled ensembles were
investigated by Hassani, Macris, and Urbanke, [92]–[94]. In
all these cases, the threshold saturation phenomenon was
observed. This suggests that it might be possible to study
difficult theoretical problems in this area, like the existence
of the static threshold, by studying the dynamical threshold
of a chain of coupled models, perhaps an easier problem.
Further spatially-coupled models were considered by Takeuchi
and Tanaka [95].

F. Main Results and Consequences

In this paper we show that for transmission over general
BMS channels coupled ensembles exhibit the threshold sat-
uration phenomenon. By choosing e.g. regular component
ensembles of fixed rate and increasing degree, this implies
that coupled ensembles can achieve capacity over this class
of channels. More precisely, for eachδ > 0 there exists a
coupled ensemble which achieves at least a fraction1− δ of
capacityuniversally, under belief propagation decoding, over
the whole class of BMS channels. The qualifier ”universal” is
important here.

Coupled ensembles inherit to a large degree the error floor
behavior of the underlying ensemble. Further, such an ensem-
ble can be chosen so that it has a non-zero error correcting
radius, and hence does not exhibit error floors. To achieve
this, it suffices to take the variable-node degree to be at least
five. This guarantees that a randomly chosen graph from such
an ensemble is an expander with expansion exceeding three-
quarters with high probability. This expansion guaranteesan
error correcting radius under the so-called flipping decoder
[96] as well as under the BP decoder, assuming that we
suitably clip both the received as well as the internal messages
[97].

Although one can empirically observe the threshold sat-
uration phenomenon for a wide array of component codes,
we state and prove the main result only for regular LDPC
ensembles. This keeps the exposition manageable.

G. Outline

In Section II we briefly review regular LDPC ensembles
and their asymptotic (in the blocklength) analysis. Much of
this material is standard and we only include it here to set
the notation and to make the paper largely self-contained. The
two most important exceptions are our in-depth discussion of
the Wasserstein distance and the the so-called area threshold,
in particular the (Negativity) Lemma 27.

In Section III we review some basic properties of coupled
ensembles. Using simple extremes of information combining
techniques, we will see in Section III-G that coupling indeed
increases the BP threshold significantly, even though these
simple arguments are not sufficient to characterize the BP
threshold under coupling exactly.

We state our main result, namely that the BP threshold of
coupled ensembles is essentially equal to the area threshold
of the underlying component ensemble, in Section IV. We
also discuss how one can easily strengthen this result to apply

to individual codes rather than ensembles and how this gives
rise to codes which are universally close to capacity under BP
decoding for the whole class of BMS channels.

We end in Section IV-E with a discussion of what challenges
still lie ahead. In particular, spatial coupling has been shown
empirically to lead to the threshold saturation phenomenonin
a wide class of graphical models. Rather than proving each
such scenario in isolation, we want a common framework to
analyze all such systems.

Many of the proofs are relegated to the appendices. This
makes it possible to read the material on two levels – a casual
level, skipping all the proofs and following only the flow of the
argument, and a more detailed level, consulting the material
in the appendices.

II. U NCOUPLEDSYSTEMS

A. Regular Ensembles

Definition 1 ((dl, dr)-Regular Ensemble):Fix 3 ≤ dl ≤
dr, dl, dr ∈ N, andn so thatndl/dr ∈ N. The(dl, dr)-regular
LDPC ensemble of blocklengthn is defined as follows. There
aren variablenodes andn dl

dr
checknodes. Each variable node

has degreedl and each check node has degreedr. Accordingly,
each variable node hasdl sockets, i.e., dl places to connect
an edge to, and each check node hasdr sockets. Therefore,
there are in totaldln variable-node sockets and the same
number of check-node sockets. Number both kinds from1
to ndl. Consider the set of permutationsΠ on {1, . . . , ndl}.
Endow this set with a uniform probability distribution. To
sample from the(dl, dr)-regular ensemble, sample fromΠ
and connect the variable to the check node sockets according
to the chosen permutation. This is theconfiguration modelof
LDPC ensembles. It is inspired by the configuration model of
random graphs [98, Section 2.4]. �

B. Binary-Input Memoryless Output-Symmetric Channels

Throughout we will assume that transmission is taking place
over a BMS channel. LetX denote the input and letY
be the output. Further, letp(Y = y |X = x) denote the
transition probability describing the channel. An alternative
characterization of the channel is by means of its so-calledL-
distribution, denote it byc. More precisely,c is the distribution
of

ln
p(Y |X = 1)

p(Y |X = −1)

conditioned thatX = 1.
Givenc, we writec, |c|, and|C| to denote the corresponding

D distribution, the|D| distribution and the cdf in the|D|-
domain, respectively, see [62, Section 4.1.4].

Typically we do not consider a single channel in isolation
but a wholefamily of channels. We write{BMS(σ)} to denote
the family parameterized by the scalarσ. Often it will be more
convenient to denote this family by{cσ}, i.e., to use the family
of L-densities which characterize the channel family. If it is
important to make the range of the parameterσ explicit, we
will write {cσ}σσ.
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Sometimes it is convenient to use thenatural parameter
of the family. For example, for the three fundamental chan-
nels, the BEC, the binary symmetric channel (BSC) and the
binary additive white-Gaussian noise channel (BAWGNC),
the corresponding channel families are given by{BEC(ǫ)}10,

{BSC(p)}
1
2
0 , and {BAWGNC(σ)}∞0 . Other times, it is more

convenient to use a common parameterization. E.g., we will
write {BMS(h)} to denote a channel family where BMS(h)
denotes the element in the family ofentropyh.

Assume that we are given a channel family{BMS(σ)}σσ.
We say that the family iscomplete if H(BMS(σ)) = 0,
H(BMS(σ)) = 1, and for eachh ∈ [0, 1] there exists a
parameterσ so that H(BMS(σ)) = h. Here H(·) is the entropy
functional defined in Section II-D.

Let pZ |X(z |x) denote the transition probability associated
to a BMS channelc′ and letpY |X(y |x) denote the transition
probability of another BMS channelc. We then say thatc′ is
degradedwith respect toc if there exists a channelpZ |Y (z | y)
so that

pZ |X(z |x) =
∑

y

pY |X(y |x)pZ |Y (z | y).

We will use the notationc ≺ c′ to denote thatc′ is degraded
wrt c (as a mnemonic think ofc as the erasure probability of
a BEC and replace≺ with <).

A useful characterization of degradation, see [62, Theorem
4.74], is thatc ≺ c′ is equivalent to

∫ 1

0

f(x)|c|(x)dx ≤
∫ 1

0

f(x)|c′|(x)dx (1)

for all f(x) that are non-increasing and concave on[0, 1].
Here, |c|(x) is the so called|D|-density associated to theL-
densityc, see [62, p. 179]. In particular, this characterization
implies thatF (a) ≤ F (b) for a ≺ b if F (·) is either the
Battacharyya or the entropy functional. This is true since both
are linear functionals of the distributions and their respective
kernels in the|D|-domain are decreasing and concave. An
alternative characterization in terms of the cumulative distri-
bution functions|C|(x) and |C′|(x) is that for allz ∈ [0, 1],

∫ 1

z

|C|(x)dx ≤
∫ 1

z

|C′|(x)dx. (2)

A BMS channel family{BMS(σ)}σσ is said to beordered
by degradation ifσ1 ≤ σ2 implies cσ1 ≺ cσ2 . (The reverse
order,σ1 ≥ σ2, is also allowed but we generally stick to the
stated convention.)

We say that anL-density c is symmetric if a(−y) =
a(y)e−y. We recall that all densities which stem from BMS
channels are symmetric, see [62, Sections 4.1.4, 4.1.8 and
4.1.9]. All densities which we consider are symmetric. We
will therefore not mention symmetry explicitly in the sequel.

A BMS channel family{cσ} is said to besmoothif for
all continuously differentiable functionsf(y) so thatey/2f(y)
is bounded, the integral

∫
f(y)cσ(y)dy exists and is a con-

tinuously differentiable function with respect toσ, see [62,
Definition 4.32].

The three fundamental channel families{BEC(ǫ)}10,

{BSC(p)}
1
2
0 , and{BAWGNC(σ)}∞0 are all complete, ordered,

smooth, and symmetric.

C. MAP Decoder and MAP Threshold

The bit maximum a posteriori(bit-MAP) decoder for biti
finds the value ofxi which maximizesp(xi | yn1 ). It minimizes
the bit error probability and is optimal in this sense. The
block maximum a posteriori(block-MAP) decoder finds the
codewordxn1 which maximizesp(xn1 | yn1 ). It minimizes the
block error probability and is optimal in this sense.

Definition 2 (MAP Threshold):Consider an ordered and
complete channel family{ch}. The MAP thresholdof the
(dl, dr)-regular ensemble for this channel family is denoted
by h

MAP(dl,dr) and defined by

inf{h ∈ [0, 1] : lim inf
n→∞

E[H(Xn
1 |Y n

1 (h))/n]>0},

where H(Xn
1 |Y n

1 (h)) is the conditional entropy of the trans-
mitted codewordXn

1 , chosen uniformly at random from the
code, given the received messageY n

1 (h) and where the ex-
pectationE[·] is wrt the(dl, dr)-regular ensemble. �

Discussion: Define Pe,i = Pr{Xi 6= X̂i(Y
n
1 )}, whereX̂i(Y

n
1 )

is the MAP estimate of biti based on the observationY n
1 . Note

that by the Fano inequality we have H(Xi |Y n
1 ) ≤ h2(Pe,i).

Assume that we are transmitting abovehMAP(dl,dr) so that
E[H(Xn

1 |Y n
1 )/n] ≥ δ > 0.1 Then

h2(E[
1

n

n∑

i=1

Pe,i])≥E[
1

n

n∑

i=1

h2(Pe,i)] ≥ E[

n∑

i=1

H(Xi |Y n
1 )/n]

≥ E[H(Xn
1 |Y n

1 )/n] ≥ δ > 0.

In words, if we are transmittingabovethe MAP threshold, then
the ensemble average bit-error probability is lower bounded by
h−1
2 (δ), a strictly positive constant. This ensemble is therefore

not suitable for reliable transmission above this threshold.
In general we cannot conclude fromE[H(Xn

1 |Y n
1 )/n] ≤ δ

that the average error probability is small.2

D. Belief Propagation, Density Evolution, and Some Impor-
tant Functionals

In principle one can investigate the behavior of coupled
ensembles under any message-passing algorithm. We limit
our investigation to the analysis of the BP decoder, the most

1We haveE[H(Xn
1 |Y n

1 )/n] ≥ 1
2
lim infn→∞

1
n
E[H(Xn

1 |Y n
1 (h))] > 0

for all n > n0, lets say. Further, for1 ≤ n ≤ n0, E[H(Xn
1 | Y n

1 )/n] is
strictly positive unless the channel is trivial. The claim follows by taking the
minimum of all of the bounds for1 ≤ n ≤ n0 as well as the bound for
n > n0.

2This is possible if we have the slightly stronger con-
dition E[

∑n
i=1 H(Xi | Y n

1 )/n] ≤ δ. In this case δ ≥
1
n
E[
∑n

i=1 H(Xi |Y n
1 )] = 1

n
E[
∑n

i=1 EY n
1
[h2(minx p(x |Y n

1 ))]] ≥
1
n
E[
∑n

i=1 EY n
1
[2minx p(x | Y n

1 )]] = 1
n
E[
∑n

i=1 2Pe,i], so that
1
n
E[
∑n

i=1 Pe,i] ≤ 1
2
δ. The last step in the previous chain of inequalities

follows since under MAP decoding the error probability conditioned that we
observedyn1 is equal tominx p(x | yn1 ). An alternative way to prove this
is to realize that H(Xi | Y n

1 ) represents a BMS channel with a particular
entropy and to use extremes of information combining to find the worst error
probability such a channel can have. The extremal channel inthis case is the
BEC.
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powerful local message-passing algorithm. We are interested
in the asymptotic performance of the BP decoder, i.e., the
performance when the blocklengthn tends to infinity. This
asymptotic performance is characterized by the so-called den-
sity evolution (DE) equation [45].

Definition 3 (Density Evolution):For ℓ ≥ 1, the DE equa-
tion for a (dl, dr)-regular ensemble is given by

xℓ = c⊛ (x�dr−1
ℓ−1 )⊛dl−1.

Here, c is the L-density of the BMS channel over which
transmission takes place andxℓ is the density emitted by
variable nodes in theℓ-th round of density evolution. Initially
we havex0 = ∆0, the delta function at0. The operators⊛
and � correspond to the convolution of densities at variable
and check nodes, respectively, see [62, Section 4.1.4].�
As mentioned, all distributions associated to BMS channels
are symmetric and symmetry is preserved under DE, see [62,
Chapter 4] for details. There are a number of functionals of
densities are of interest to us. The most important functionals
are the Battacharyya, the entropy, and the error probability
functional. For a densitya these are denoted byB(a), H(a),
andE(a), respectively. Assuminga is anL-density, they are
given by

B(a) =

∫

a(y)e−y/2 dy, H(a) =

∫

a(y) log2(1+e
−y)dy,

E(a) =
1

2

∫

a(y)e−(y/2+|y/2|) dy.

We end this section with the following useful fact. The proof
can be found in Appendix A.

Lemma 4 (Entropy versus Battacharyya):For any L-
densitya, B2(a) ≤ H(a) ≤ B(a).

E. Extremes of Information Combining and the Duality Rule

When we are operating on BMS channels, the quantities
appearing in the DE equations are distributions. These are hard
to track analytically in general, unless we are transmitting over
the BEC. Often we only need bounds. In these casesextremes
of information combiningideas are handy, see [99]–[103], [62,
p. 242].

Lemma 5 (Extremes of Information Combining):Let F (·)
denote either H(·) or B(·) and letα ∈ [0, 1]. Let aBEC andaBSC

denoteL-densities from the families{BEC(ǫ)} and{BSC(p)},
respectively, so thatF (aBEC) = F (aBSC) = α. Then for anyb,

(i) mina:F (a)=α F (a⊛ b) = F (aBEC ⊛ b)
(ii) maxa:F (a)=α F (a⊛ b) = F (aBSC ⊛ b)

(iii) mina:F (a)=α F (a � b) = F (aBSC � b)
(iv) maxa:F (a)=α F (a � b) = F (aBEC � b)

Discussion:Although the extremes of information combining
bounds are only stated for pairs of distributions, they naturally
extend to more than two distributions. E.g., we claim that
mina:F (a)=α F (a

⊛d) = F (aBEC)
d = αd. To see this, let{ai}di=1

be any set of distributions so thatF (ai) = α. Then we can
use Lemma 5 repeatedly to conclude that

F (a1 ⊛ (⊛d
i=2ai)) ≥ F (aBEC ⊛ (⊛d

i=2ai))

= F (a2 ⊛ (aBEC ⊛ (⊛d
i=3ai))

≥ F (aBEC ⊛ (aBEC ⊛ (⊛d
i=3ai))

= · · ·
≥ F (ad ⊛ (a⊛d−1

BEC ))

≥ F (aBEC ⊛ (a⊛d−1
BEC )) = αd.

The same remark and the same proof technique applies to the
other cases.

Lemma 6 (Duality Rule – [62, p. 196]):For any a and b

H(a⊛ b) + H(a � b) = H(a) + H(b).
Note:We give a simple proof of this identity at the end of the
proof of Lemma 53.

F. Fixed Points, Convergence, and BP Threshold

We say that the densityx is a fixed point(FP) of DE for
the (dl, dr)-regular ensemble and the channelc if

x = c⊛ (x�dr−1)⊛dl−1. (3)

More succinctly, when the underlying ensemble is understood
from the context, we say that(c, x) is a FP.

One way to generate a FP is to initializex0 with ∆0 and to
run DE, as stated in Definition 3. We call such a FP a FP of
forwardDE. The resulting FPs are the “natural” FPs since they
have a natural operational meaning – if we pick sufficiently
long ensembles, these are the FPs which we can observe in
simulations when we run the BP decoder.

Definition 7 (Weak Convergence):We say that a sequence
of distributions{ai} converges weakly to a limit distribution
a if for the corresponding cumulative distributions in the
|D|-domain, call them{Ai}, for all bounded and continuous
functionsf(x) on [0, 1] we have

lim
i→∞

∫ 1

0

f(x)d|A|i(x) =
∫ 1

0

f(x)d|A|(x).

An equivalent definition is that|A|i(x) converges to|A|(x) at
points of continuity ofx. �

A simple proof of the following lemma can be found at the
end of Section II-I.

Lemma 8 (Convergence of Forward DE – [62, Lemma 4.75]):
The sequence{xℓ} of distributions of forward DE converges
weakly to a symmetric distribution.

Lemma 9 (BP Threshold):Consider an ordered and com-
plete channel family{cσ}. Let xℓ(σ) denote the distribution
in the ℓ-th round of DE when the channel iscσ. Then theBP
thresholdof the (dl, dr)-regular ensemble is defined as

σBP(dl, dr) = sup{σ : xℓ(σ)
ℓ→∞→ ∆+∞}.

In other words, the BP threshold is characterized by the largest
channel parameter so that the forward DE FP is trivial.

We have just seen that the FPs of forward DE are important
since they characterize the BP threshold. But there exist FPs
that cannot be achieved this way. Let us review a general
method of constructing FPs. Assume that, given a channel
family {cσ}, we need a FPx which has a givenerror
probability E(x), entropy H(x), or Battacharyya parameter
B(x). Such FPs can often be constructed, or at least their
existence can be guaranteed, by a procedure introduced in [74].
Let us recall this procedure for the case of fixed entropy.
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Consider a smooth, complete, and ordered family{ch} and
the(dl, dr)-regular ensemble. Let us denote byTh the ordinary
density evolution operator at fixed channelch. Formally,

Th(a) = ch ⊛ (a�dr−1)⊛dl−1. (4)

For anye ∈ [0, 1], we define the density evolution operator at
fixed entropye, call it Re, as

Re(a) = Th(a,e)(a), (5)

where h(a, e) is the solution of H(Th(a)) = e. Whenever
no such value ofh exists,Re(a) is left undefined. Since,
for a given a, the family Th(a) is ordered by degradation,
H(Th(a)) is a non-decreasing function ofh. As a conse-
quence the equation H(Th(a)) = e cannot have more than
a single solution. Furthermore, by the smoothness of the
channel familych, H(Th(a)) is continuous as a function of
h. Notice that H(T0(a)) = 0: if the channel is noiseless
the output density at a variable nodes is noiseless as well.
Therefore, a necessary and sufficient condition for a solution
h(a, e) to exist (when the family{ch} is complete) is that
H(T1(a)) = H((a�dr−1)⊛dl−1) ≥ e (see Theorem 6 in [74]).

Definition 10 (DE at Fixed Entropye): Set a0 = ce. For
ℓ ≥ 0 computeaℓ+1 = Re(aℓ). �

Discussion:It can be shown that if the above procedure gives
rise to an infinite sequence, i.e., ifRe(·) is well-defined at
each step, then this sequence has a converging subsequence.
In fact, in practice one observes that the sequence itself
converges. The computation of the convolutions is typically
done numerically either by sampling or via Fourier transforms
as in ordinary density evolution. Due to the monotonicity
of H(Th(aℓ)) in h, the value ofh(aℓ, e) can be efficiently
found by a bisection method. The procedure is halted when
some convergence criterion is met – e.g., one can require that
(a properly defined) distance betweenaℓ and aℓ+1 becomes
smaller than a threshold.

Any FP of the above transformationRe, i.e., anya such
that a = Re(a), is also a FP of ordinary density evolution for
the channelch with h = h(a, e). Furthermore, if a sequence
of densities such thataℓ+1 = Re(aℓ) converges (weakly) to a
densitya, thena is a FP ofRe, with entropye.

G. BP Threshold for Large Degrees

What happens to the BP threshold when we fix the design
rater = 1− dl/dr and increase the degrees? The proof of the
following lemma, which uses basic extremes of information
combining arguments, can be found in Appendix B.

Lemma 11 (Upper Bound on BP Threshold):Consider
transmission over an ordered and complete family{ch} of
BMS channels using an(dl, dr)-regular dd and BP decoding.
Let r = 1 − dl

dr
be the design rate and lethBP(dl, dr) denote

the BP threshold. Then,

h
BP(dl, dr) ≤

h2(
1

2
√
dr−1

)

1−((1− r)dr)e−2
√
dr−1

.

In particular, by increasingdr while keeping the rater fixed,
the BP threshold converges to0.

H. The Wasserstein Metric: Definition and Basic Properties

In the sequel we will often need to measure how close var-
ious distributions are. Sometimes it is convenient to compare
their entropy or their Battacharyya constant. But sometimes a
more general measure is required. The Wasserstein metric is
our measure of choice.

Definition 12 (Wasserstein Metric – [104, Chapter 6]):
Let |a| and |b| denote two|D|-distributions. The Wasserstein
metric, denoted byd(|a|, |b|), is defined as

d(|a|, |b|) = sup
f(x)∈Lip(1)[0,1]

∣
∣
∣

∫ 1

0

f(x)(|a|(x)−|b|(x))dx
∣
∣
∣, (6)

where Lip(1)[0, 1] denotes the class of Lipschitz continuous
functions on[0, 1] with Lipschitz constant1. �

Discussion: In the sequel we will say that a functionf(x) is
Lip(c) as a shorthand to mean that it is Lipschitz continuous
with constantc. If we want to emphasize the domain, then we
write e.g., Lip(c)[0, 1]. Why have we defined the metric in the
|D|-domain? As the next lemma shows, convergence in this
metric implies weak convergence. Since all the distributions
of interest are symmetric, it suffices to look at the|D|-domain
instead of theD-domain. To ease our notation, however, we
will formally write expressions liked(a, b), i.e., we will allow
the arguments to be e.g.L-distributions. It is then implied
that the metric is determined using the equivalent|D|-domain
representations as defined above.

Lemma 13 (Basic Properties of the Wasserstein Metric):
In the following,a, b, c, andd denoteL-distributions.

In the |D| domain we have the following expressions for
B(a) and H(a) (compare this to the expressions in theL
domain given in Section II-D),

B(|a|) =
∫ 1

0

√

1− x2|a|(x)dx,

H(|a|) =
∫ 1

0

h2

(1− x

2

)

|a|(x)dx,

whereh2(x) = −x log2 x− (1− x) log2(1− x) is the binary
entropy function. See [104], [105] for more details on metrics
for probability measures.

(i) Alternative Definitions:

d(a, b) = inf
p(x,y):p(x)∼|a|;p(y)∼|b|

E[|X − Y |],

d(a, b) =

∫ 1

0

||A|(x)− |B|(x)|dx.

(ii) Boundedness: d(a, b) ≤ 1.
(iii) Metrizable and Weak Convergence: The Wasserstein met-

ric induces the weak topology on the space of probability
measures on[0, 1]. In other words, the space of proba-
bility measures under the weak topology is metrizable
and convergence in the Wasserstein metric is equivalent
to weak convergence (see [104, Theorem 6.9]).

(iv) Polish Space: The space of probability distributions on
[0, 1] metrized by the Wasserstein distance is a complete
separable metric space, i.e., a Polish space, and any mea-
sure can be approximated by a sequence of probability
measures with finite support, i.e., distributions of the form



8

∑n
i=1 ciδ(x − xi), where

∑n
i=1 ci = 1, ci ≥ 0, and

xi ∈ [0, 1]. Further, the space is compact. (See [104,
Theorem 6.18].)

(v) Convexity: Let α ∈ [0, 1]. Then

d(αa+ ᾱb, αc+ ᾱd) ≤ αd(a, c) + ᾱd(b, d).

In general, if
∑

i αi = 1, then

d(
∑

αiai,
∑

αibi) ≤
∑

αid(ai, bi).

(vi) Regularity wrt ⊛: The Wasserstein metric satisfies the
regularity propertyd(a⊛ c, b⊛ c) ≤ 2d(a, b), so that

d(a⊛ c, b⊛ d) ≤ d(a⊛ c, b⊛ c) + d(b⊛ c, b⊛ d)

≤ 2d(a, b) + 2d(c, d),

and fori ≥ 2 and any distributionc, d(a⊛i⊛c, b⊛i⊛c) ≤
2id(a, b).

(vii) Regularity wrt �: The Wasserstein metric satis-
fies the regularity propertyd(a � c, b � c) ≤
d(a, b)

√

1−B2(c) ≤ d(a, b), so that

d(a � c, b � d) ≤ d(a � c, b � c) + d(b � c, b � d)

≤ d(a, b) + d(c, d).

Further,

d(a�i, b�i)≤d(a, b)
i∑

j=1

(1−B2(a))
i−j
2 (1−B2(b))

j−1
2 .

(viii) Regularity wrt DE: Let Tc(·) denote the DE operator for
the dd(dl, dr) and the channelc. Thend(Tc(a), Tc(b)) ≤
αd(a, b), with

α = 2(dl − 1)

dr−1∑

j=1

(1−B2(a))
dr−1−j

2 (1−B2(b))
j−1
2 .

(ix) Wasserstein Bounds Battacharyya and Entropy:

|B(a)−B(b)| ≤
√

d(a, b)
√

2− d(a, b) ,

|H
(
a)− H(b

)
| ≤ h2

(d(a, b)

2

)

≤ 1

ln 2

√

d(a, b)
√

2− d(a, b) .

(x) Battacharyya Sometimes Bounds Wasserstein:

d(∆0, a) ≤
√

1−B(a)2 ≤
√

2(1−B(a)),

d(∆+∞, a) ≤ B(a).

Discussion:Perhaps the most useful property of the Wasser-
stein metric is that it interacts nicely with the operationsof
variable- and check-node convolution. This is the essence
of properties (vi), (vii), and (viii). For example, it is easy
to see why property (viii) might be useful: Given that two
distributionsa andb are close, it asserts that after one iteration
of DE these two distributions are again close. Indeed, as we
will see shortly, depending on the Battacharyya parameter of
the starting distributions the distance might in fact become
smaller, i.e., we might have acontraction.

I. Wasserstein Metric and Degradation

When densities ordered by degradation, some the Wasser-
stein metric inherits some additional properties.

Lemma 14 (Wasserstein Metric and Degradation):In the
following a andb denoteL-distributions.
(i) Wasserstein versus Degradation: Let a ≺ b. Let |A| and

|B| denote the corresponding|D|-domain cdfs. Define
D(a, b) =

∫ 1

0
x(|B|(x) − |A|(x))dx. Note thatD(a, b)

can be seen as a measure of how muchb is degraded
wrt a since it is the average of the non-negative integrals
∫ 1

z
(|B|(x) − |A|(x))dx (cf. (2)). Then

D(a, b) ≥ d2(a, b)/4.

Furthermore,D(a, b) ≤ 1 and for any symmetric densi-
ties such thata ≺ b ≺ c, D(a, c) = D(a, b) +D(b, c).

(ii) Entropy and Battacharyya Bound Wasserstein Distance:
Let a ≺ b. Then

d(a, b) ≤ 2
√

(ln 2)(H(b)− H(a)) ≤ 2
√

B(b)−B(a)

andB(b)−B(a) ≤
√

2(H(b)− H(a)) .
(iii) Continuity for Ordered Families: Consider a smooth

family of L-distributions{cσ}σσ ordered by degradation
so thatB(·) is continuous wrtσ ∈ [σ, σ]. Then the
Wasserstein metric is also continuous inσ.

Discussion: Property (i) is particularly useful. Imagine a
sequence of distributions{ai}ni=0 ordered by degradation,
i.e., a0 ≺ a1 ≺ · · · ≺ an. Then a0 ≺ an and we know
from [62] that D(a0, an) =

∫ 1

0
z(|A|n − |A|0)dz is non-

negative since it is the “average” of the non-negative integrals
∫ 1

y
(|A|n − |A|0)dz. Now note thatD(·, ·) is additive and

that D(a0, an) ≤ 1. From these two facts we can conclude
that there must exist an indexi, 0 ≤ i ≤ n − 1, so that
D(ai, ai+1) ≤ 1

n . More generally, we can conclude for any
1 ≤ k ≤ n that there must exist an indexi, 0 ≤ i ≤ n − k,
so thatD(ai, ai+k) ≤ min{ k

n−k+1 , 1} ≤ 2k
n . This follows

by upper bounding the average of all thesen − k + 1 such
distances. By property (i) this implies “closeness” also inthe
Wasserstein sense. In words, in a sequence of distributionsor-
dered by degradation we are always able to find a subsequence
of distributions which are “close” in the Wasserstein sense.

As an exercise in using the basic properties of the Wasser-
stein distance, let us give a proof of Lemma 8.

Proof: Since we are considering a sequence of dis-
tributions obtained by forward DE, we havexℓ ≻ xℓ+1

for ℓ ≥ 0. Therefore, the quantitiesD(xℓ, xℓ+1) are non-
negative and they are additive in the sense thatD(x0, xn) =∑n−1

ℓ=0 D(xℓ, xℓ+1). Further,D(·, ·) is upper bounded by1.
It follows that {xℓ} forms a Cauchy sequence wrt toD(·, ·)
and hence also wrtd(·, ·). This in turn implies that{xℓ}
converges wrtd(·, ·) and this convergence is equivalent to
weak convergence. Finally, symmetry can be tested in terms
of bounded continuous functionals and weak convergence
preserves such functionals.

J. GEXIT Curve

As we have discussed in the preceding section, FPs of DE
play a crucial role in the asymptotic analysis. E.g., the BP
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threshold is characterized by the existence/non-existence of a
non-trivial FP of forward DE for a particular channel.

An even more powerful picture arises if instead of looking
at a single FP at a time we visualize a wholecollectionof FPs.
In order to visualize many FPs at the same time it is convenient
to project them. E.g., given the FP pair(c, x) we might decide
to plot the point(H(c),H(x)) in the two-dimensional unit box
[0, 1]× [0, 1].

Example 15 (BP EXIT Curve for BEC):Note that for the
BEC, erasure probability is equal to Battacharyya parameter,
and also equal to entropy. Even though all these parameters
are equal in this case, our language will reflect that we are
plotting entropy.

Rather than plottingx itself it is convenient to plot theEXIT
value (1 − (1 − x)dr−1)dl . This is the locally best estimate
of a bit based on the internal messages only,excluding the
direct observation. For this choice the resulting curve is usually
called theBP EXITcurve, see [106], [107] and [62, Sections
3.14 and 4.10]. It is theBP EXIT curve since the estimate
is a BP estimate. And it is the BPEXIT (where the E stands
for “extrinsic”) curve since the estimate excludes the received
value associated to this bit.

The FP equation isx = ǫ(1− (1− xdr−1))dl−1, which we
can solve forǫ to get

ǫ(x) =
x

(1− (1 − xdr−1))dl−1
. (7)

Using (7) we can write down the parametric characterization
of the BP EXIT curve

( x

(1− (1 − xdr−1))dl−1
, (1− (1− x)dr−1)dl

)

.

This curve is shown in the left-hand side in Figure 1 for the
(3, 6)-regular ensemble and has a typicalC shape. In fact,
one can show that, in this case, forǫ < ǫBP(dl, dr) (the BP
threshold) there is only one FP atx = 0 corresponding to
perfect decoding; forǫ = ǫBP(dl, dr) there are 2 FPs, one is at
x = 0 and the other is the FP corresponding to forward DE;
and for ǫ > ǫBP(dl, dr) there are exactly 3 FPs of DE, one
of the FPs is atx = 0 and the remaining two FPs are strictly
positive, one of which isstable, denoted byxs(ǫ), whereas the
other isunstable, denoted byxu(ǫ). The stable FP is the FP
which is reached by forward DE. For details see Lemma 59.

A quantity which will appear throughout this paper is the
value of the unstable FP when transmitting over BEC(ǫ =
1). We denote this FP byxu(1). More precisely,xu(1) is the
smaller non-zero solution ofx = (1− (1−x)dr−1)dl−1. Note
that xu(1) depends on the degrees, but we drop it from the
notation for ease of exposition.
Discussion: The above example raises the following two
questions. (1) We have a large degree of freedom in selecting
the projection operator. Which one is “best”? (2) From the
above example we see that the set of FPs forms a smooth
curve. Indeed, for the BEC it is not hard to see that the only
FPs are the ones on the curve together with all the FPs of
the form(cǫ,∆+∞), wherecǫ is any element of the family of
BEC channels and∆+∞ corresponds to erasure value of 0. Is
this picture still valid for general channel families?

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.0 ǫ

(1
,
x

u
(1
))

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.0 ǫ

ǫB
P

ǫM
A

P

∫
= 1

2

Fig. 1. Left: The BP EXIT curve of the(dl = 3, dr = 6)-regular ensemble
when transmitting over the BEC. The curve has a characteristic “C” shape.
Right: The construction of the MAP threshold from the BP EXITcurve. The
dark gray area is equal to the design rate of the code.

In the remainder of this section we address the first question,
i.e., we will discuss a particularly effective choice of the
projection operator. In the next section we will address the
question of the existence and nature of this curve for the
general case, presenting some partial results.

A good choice for the projection operator for general
channels is theGEXIT functional [74]. For the BEC this
coincides with the EXIT functional that we saw in Example 15.
For the general case take a FP(cσ, xσ) and definey = x�dr−1

σ .
Then

G(cσ, y
⊛dl) =

d
dσH(cσ ⊛ y⊛dl)

d
dσH(cσ)

,

where we think ofy as fixed with respect toσ. In words,
G(cσ, ·) measures the ratio of the change in entropy ofcσ ⊛

y⊛dl (the entropy of the decision of any variable node under
BP decoding) versus the change of entropy of the channelcσ
as a function ofσ.

Discussion:Note that if the parameterization inσ is Lips-
chitz, i.e., if for some positive constantα, |H(cσ2)−H(cσ1)| ≤
α|σ2 − σ1|, then the derivatived

dσH(cσ) exists almost every-
where. Further, in this case also H(cσ⊛y⊛dl) is Lipschitz and
hence differentiable almost everywhere. This follows since by
(the Duality Rule in) Lemma 6, forσ2 ≥ σ1,

[H(cσ2 ⊛ y⊛dl)− H(cσ1 ⊛ y⊛dl)]

+ [H(cσ2 � y⊛dl)− H(cσ1 � y⊛dl)]

= [H(cσ2 )− H(cσ1 )] ≤ α|σ2 − σ1|,
where the last step on the right-hand side assumes that the
parameterization is such that H(cσ) increases inσ. The claim
follows since both terms on the left are non-negative (due
to degradation), so that in particular the first term is upper
bounded byα|σ2 − σ1|, i.e., it is Lipschitz. This formulation
also shows that the numerator is no larger than the denominator
(so that the ratio exists) and that the GEXIT value is upper
bounded by1 (and is non-negative).

We get the GEXITcurveby plotting (H(cσ), G(cσ, y
⊛dl))

for a family of FPs{cσ, xσ}. This is shown in Figure 2 for
the (3, 6)-regular ensemble assuming that transmission takes
place over the BAWGNC. In the last section we have already
explained how we can construct in the general case FPs by
a numerical procedure. To plot Figure 2 we have used this
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procedure to get a complete family of FPs for all entropies
from 0 to 1. In each of the two pictures of Figure 2 there is
a small black dot. This dot marks a particular FP and the two
small inlets show the corresponding distribution of the channel
cσ as well as the message distribution emitted at the variable
nodes, call itxσ. For a detailed discussion we refer the reader
to [62], [74].
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Fig. 2. The BP GEXIT curve for the(dl = 3, dr = 6)-regular ensemble
and transmission over the BAWGNC. Each point on the curve corresponds to
a FP(cσ , xσ) of DE. The two figures show the FP densityx as well as the
input densitycσ for two points on the curves (see inlets).

Why do we use this particular representation? As we will
discuss in detail in Section II-L, assuming this curve indeed
exists and is “smooth”, the area which is enclosed by it is
equal tor = 1− dl/dr, the design rate of the ensemble.

This is easy to see for the BEC. To simplify notation, denote
the GEXIT value in this case byG(ǫ, ydl), where ǫ is the
erasure probability,x is the FP for this channel parameter,
andy = 1− (1−x)dr−1. We then haveG(ǫ, ydl) = (1− (1−
x)dr−1)dl . Let us integrate the area which is enclosed by this
curve. We call the corresponding integral the GEXIT integral.
For our particular case it is given by
∫

(1 − (1− x)dr−1)dl dǫ =
∫ 1

0

(1−(1−x)dr−1)dlǫ′(x)dx

=ǫ(x)(1 − (1− x)dr−1)dl | 10+

− dl(dr − 1)

∫ 1

0

ǫ(x)(1 − x)dr−2(1− (1 − x)dr−1)dl−1 dx

=1− dl(dr − 1)

∫ 1

0

x(1− x)dr−2 dx

=1 + dlx(1 − x)dr−1 | 10 − dl

∫ 1

0

(1− x)dr−1 dx = 1− dl
dr
.

Perhaps surprisingly, the result stays valid for general channels
as we will discuss in Section II-L. This property is one of the
main ingredients in our proof.

Note that givench andzh, the GEXIT functionalG(ch, zh)
can be expressed in the form

∫
zh(w)f(h, w)dw, where

f(h, w) is called as the GEXIT kernel. In the|D|-domain this
kernel is given by
∫ 1

0

dch(z)
dh

(∑

i,j=±1

(1+iz)(1+jw)

4
log2

(

1+
(1−iz)(1−jw)
(1+iz)(1+jw)

))

︸ ︷︷ ︸

=k(z,w)

dz.

(8)

For a proof of the following see Lemma 4.77, [62].
Lemma 16 (GEXIT for Smooth and Ordered Channels):

For a smooth, ordered, channel family{ch}h, f(h, w),
as a function ofw, exists, is continuous, non-negative,
non-increasing and concave on its entire domain. Further
f(h, 0) = 1 andf(h, 1) = 0.
We remark that the above lemma also holds when{ch} is
piece-wise linear.

K. Existence of GEXIT Curve

As we briefly discussed above, for the BEC it is trivial to
see that the BP GEXIT curve indeed exists. But for general
BMS channels this is not immediate. The aim of this section
is to show the existence of the BP GEXIT curve for at least
a subset of parameters.

Let us first recall the following lemma which was stated and
proved in a slightly weaker form in [108]. For the convenience
of the reader we reproduce the proof in Appendix E.

Lemma 17 (Sufficient Condition for Continuity):Assume
that communication takes place over an ordered and complete
family {ch}h, whereh = H(ch), using the dd pair(dl, dr).

Then, for anyh ∈ [0, 1], there exists at most one densityxh
so that(ch, xh) forms a FP which fulfills

B(ch)(dl − 1)(dr − 1)(1−B(xh)
2)dr−2 < 1 . (9)

Furthermore, if such a densityxh exists, then it coincides with
the forward DE FP. Finally,B(xh) is Lipschitz continuous
with respect toB(ch). More precisely, if two FPs(ch1 , xh1)
and(ch2 , xh2) satisfy the conditionB(chi)(dl−1)(dr−1)(1−
B(xhi)

2)dr−2 ≤ 1− δ for someδ > 0, then

|B(xh1)−B(xh2)| ≤
1

δ
|B(ch1)−B(ch2)| . (10)

The following lemma states that, at least for sufficiently
large entropies, the BP GEXIT curve indeed exists and is well
behaved.

Lemma 18 (Continuity For Large Entropies):Assume that
communication takes place over an ordered and complete
family {ch}h, whereh = H(ch), using the dd pair(dl, dr).
Consider the set of FP pairs{(ch, xh)} obtained by applying
forward DE to each channelch. Let

a(x) = (1− (1 − x)dr−1)dl−1,

b(x) = (dl − 1)2(dr − 1)2x(1 − x)2(dr−2),

c(x) =
√

x/a(x).

Let x̃ be the unique solution in(0, 1] of the equation

a(x)− b(x) = 0. (11)

Then the family {(ch, xh)}1
h=h̃(dl,dr,{ch}), with

h̃(dl, dr, {ch}) = hBMS(c(x̃)), satisfies (9), is Lipschitz
continuous wrt to the Battacharyya parameter of the
channel, wherehBMS(·) is the function which maps the
Battacharyya constant of an element of the family to the
corresponding entropy. Further,B(xh) ≥ xu(1) > 0 for all
h ≥ h̃(dl, dr, {ch})3.
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dd x̃ dl
dr

B = h̃BEC h̃BAWGNC h̃BSC h

(3, 4) 0.5479 0.75 0.8156 0.7544 0.7428 0.8254
(6, 8) 0.4107 0.75 0.6822 0.5971 0.5694 0.6958
(9, 12) 0.3277 0.75 0.6024 0.5097 0.4719 0.6185
(12, 16) 0.2752 0.75 0.5483 0.4530 0.4087 0.5658
(3, 6) 0.3805 0.5 0.6787 0.5931 0.5651 0.7010
(4, 8) 0.3512 0.5 0.6384 0.5485 0.5152 0.6590
(5, 10) 0.3192 0.5 0.6022 0.5094 0.4717 0.6229
(6, 12) 0.2916 0.5 0.5717 0.4773 0.4357 0.5924
(3, 12) 0.2127 0.25 0.4970 0.4012 0.3513 0.5335
(4, 16) 0.1957 0.25 0.4690 0.3736 0.3210 0.5005
(5, 20) 0.1774 0.25 0.4426 0.3481 0.2933 0.4721
(6, 24) 0.1616 0.25 0.4200 0.3267 0.2702 0.4483
(7, 28) 0.1483 0.25 0.4006 0.3086 0.2509 0.4281

TABLE I
TOP BRANCHES OFGEXIT CURVES AREL IPSCHITZ CONTINUOUS FROM

INDICATED CHANNEL ENTROPY UNTIL 1. THE NUMBERSx̃, B = h̃BEC,
h̃BAWGNC , AND h̃BSC ARE COMPUTED ACCORDING TOLEMMA 18. THE

FINAL NUMBER h IS A UNIVERSAL UPPER BOUND, VALID FOR ALL BMS
CHANNELS AND IT WAS COMPUTED ACCORDING TOLEMMA 19.

Table I shows the resulting bounds for various regular dds
and various channels. These bounds were computed as follows.
For a fixed dd pair(dl, dr) we first computed̃x numerically.
This is easy to do since we know that there is a unique
solution of the equationa(x) − b(x) = 0 in (0, 1]. Further,
a(0) − b(0) = 0, a′(0) − b′(0) = −(dl − 1)2(dr − 1)2 < 0,
and a(1) − b(1) = 1. We can therefore find this unique
solution efficiently via bisection. Oncẽx is found, we find
the corresponding Battacharyya parameter of the channel by
computingc(x̃). Finally, we can convert this into an entropy
value via the appropriate functionhBMS(·). E.g. for the family
of BSC channels we havehBSC(x) = h2(

1
2 (1−

√
1− x2)).

Although it is easy and stable to compute the above lower
bound on the entropy numerically, it will be convenient to
have a universal and analytic such lower bound. This is
accomplished in the following lemma, whose proof can be
found in Appendix E.

Lemma 19 (Universal Bound on Continuity Region):
Assume that communication takes place over an ordered
and complete family{ch}h, where h = H(ch), using the
dd pair (dl, dr) with dr ≥ 4 anddl ≥ 3. Let a(x) be defined
as in Lemma 18. Consider the set of FP pairs{(ch, xh)}
which is derived by applying forward DE to each channelch.
Then the GEXIT curve associated to{(ch, xh)}h>h

, where

x = 1− ((dl − 1)(dr − 1))−
1

dr−2 , h =
√

x/a(x),

is Lipschitz continuous wrt the Battacharyya parameter of the
channel. Also,̃h(dl, dr, {ch}) ≤ h, whereh̃(dl, dr, {ch}) is the

quantity introduced in Lemma 18, andh ≤ e
1
4
√
2

(dr−2)
1
4

, so that

h tends to zero whendr tends to infinity.
Table I lists these universal upper boundsh for all the dds.

The following corollary follows immediately from
Lemma 17, property (ii) of Lemma 14, and property (ix) of
Lemma 13.

Corollary 20 (Continuity of Entropy):Let {ch} be a
smooth BMS channel family and let(ch, xh) denote a forward

3Note that we have made the dependence on the channel family,{ch},
explicit in the notation of̃h(dl, dr , {ch}).

DE FP pair with channel entropyh > h̃(dl, dr, {ch}), where
h̃(dl, dr, {ch}) is the value defined in Lemma 18. Then for
h1, h2 > h̃(dl, dr, {ch}) we have

(ln(2))2

2
|H(xh1)− H(xh2)|2 ≤ d(xh1 , xh2) ≤

≤ 32
1
4

√
δ
d(ch1 , ch2)

1
4 ≤ 2

√
2√
δ
(ln(2)|H(ch1)− H(ch2)|)

1
8 .

The proof of the following lemma can be found in Ap-
pendix F.

Lemma 21 (Entropy Product Inequality):Given a andb,

H(a⊛ b) =

∫ 1

0

∫ 1

0

|a|(x)|b|(y)k(x, y)dxdy

=

∫ 1

0

∫ 1

0

˜|A|(x) ˜|B|(y)kxxyy(x, y)dxdy,

where

kxxyy(x, y) =
2

ln(2)

1 + 3x2y2

(1 − x2y2)3
,

and where the cumulative distributions|A|(x) =
∫ x

0
|a|(z)dz,

|B|(x) =
∫ x

0 |b|(z)dz are used to definẽ|A|(x) =
∫ 1

x |A|(z)dz
and ˜|B|(x) =

∫ 1

x
|B|(z)dz and the kernelk(x, y) is as given

in (8). We claim that

(i) Bound on Kernel:

kxxyy(x, y) ≤
8

ln(2)
(1− x2)−

3
2 (1− y2)−

3
2 .

(ii) Bound for Partially Degraded Case:Let a′ be degraded
with respect to the channel densitya and letb′ be such
that d(b′, b) ≤ δ. Then

H((a′ − a)⊛ (b′ − b)) ≤ 8

ln(2)
B(a′ − a)

√
2δ.

(iii) Bound for Fully Degraded Case:Let a′ be degraded with
respect to the channel densitya and letb′ be degraded
with respect to the channel densityb. Then

H((a′ − a)⊛ (b′ − b)) ≤ 8

ln(2)
B(a′ − a)B(b′ − b) .

Corollary 22 (Continuity of the BP GEXIT Curve):Let
{ch} be a smooth BMS channel family and let(ch, xh) denote a
forward DE FP pair with channel entropyh > h̃(dl, dr, {ch}),
where h̃(dl, dr, {ch}) is the value defined in Lemma 18.
Then,G(ch, (x

�dr−1
h

)⊛dl) is continuous wrt toh.
Proof: The GEXIT functional is defined as

Gh =
∂

∂h′
H(ch′ ⊛ zh)

∣
∣
∣
∣
h′=h

.

We will find it more convenient to parameterize the densities
usingb = b(h) = B(ch). Let us define

D(b′, b) =
∂

∂b′
H(cb′ ⊛ zb) .

We claim thatD(b′, b) is continuous in both its arguments.
Note thatGh = D(b(h), b(h)) db(h)

dh and, correspondingly, we
defineGb = D(b, b). To show continuity ofD in the first
component note that(D(b′′, b)−D(b′, b)) → 0 by the smooth
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channel family assumption. To show continuity ofD in the
second component consider H((cb′′′ − cb′′) ⊛ (zb′ − zb)). By
(the Entropy Product Inequality) Lemma 21, property (iii),we
have

|H((cb′′′−cb′′)⊛(zb′−zb))|≤
8

ln 2
|B(cb′′′−cb′′)| |B(zb′−zb)|

=
8

ln 2
|b′′′ − b′′| |B(zb′ − zb)| ,

from which we obtain

|(D(b′′, b′)−D(b′′, b))| ≤ 8

ln 2
|B(zb′ − zb)| ,

showing thatD is actually Lipschitz in its second argument.
It follows, in particular, thatGb is continuous inb. Since
the Battacharyya parameter is a bounded functional and the
channel family is smooth, we havedb(h)dh is continuous inh.
Consequently,Gh is continuous inh.

L. Area Theorem

In Section II-J we introduced the GEXIT curve associated
to a regular ensemble, see e.g. Figure 2. In Section II-K
we then derived conditions which guarantee that this curve
indeed exists and is continuous in a given region. We will
now discuss the GEXIT integral, the area under the GEXIT
curve. In order to derive some properties of this integral, we
will first introduce GEXIT integrals in a slightly more general
form before we apply them to ensembles.

Definition 23 (Basic GEXIT Integral):Given two families
{cσ}σσ and{zσ}σσ, theGEXIT integral{cσ, zσ}σσ is defined as

G({cσ, zσ}σσ) =
∫ σ

σ

H(
dcσ
dσ

⊛ zσ)dσ.

�

Discussion:In the above definition, and some definitions be-
low, we need regularity conditions to ensure that the integrals
exist. Rather than stating some general conditions here, we
will discuss and verify them in the specific cases. E.g., one
case we will discuss is if the channel familycσ is smooth and
zσ is a polynomial inσ with “coefficients” which are fixed
densities.

Definition 24 (GEXIT Integral of Code):Consider a bi-
nary linear code of lengthn whose graphical representation is
a tree. Assume that we are given an ordered family of channels
{cσ}σσ. Assume that when all variable nodes “see” the channel
cσ the distribution of the resulting extrinsic BP message
density at thei-th variable node iszσ,i. Then theGEXIT
integral associated of thei-th variable node isG({cσ, zσ,i}σσ).
�

Discussion: Note that the distributionzσ,i is the best guess
we can make about biti given the code constraints and all
observations except the direct observation on biti. This is why
we have called the distribution theextrinsic message density.
Note further that we have assumed that the graphical structure
of the code is a tree. Therefore, BP equals MAP, the optimal
such estimator.

The GEXIT integral applied to an ensemble is just the
integral under the GEXIT curve of this ensemble.

Definition 25 (GEXIT Integral of Ensemble):Consider the
(dl, dr)-regular ensemble and assume that{cσ, xσ}σσ is a
family of FPs of DE. Defineyσ = x�dr−1

σ . Then

G(dl, dr, {cσ, xσ}σσ) =
∫ σ

σ

H
(dcσ

dσ
⊛ y⊛dl

σ

)
dσ.

�

In the sequel it will be handy to explicitly evaluate the integral.
The proof of the following lemma is contained in Appendix G.

Lemma 26 (Evaluation of GEXIT Integral):Assume that
communication takes place over an ordered, complete and
piece-wise smooth family{ch}h, using the degree-distribution
pair (dl, dr). Let {ch, xh}h be the FP family of forward DE.
Setx = xh∗ , h∗ ≥ h̃(dl, dr, {ch}), whereh̃(dl, dr, {ch}) is the
quantity introduced in Lemma 18. Then,

G(dl, dr, {ch, xh}1h∗) = 1− dl
dr

−A,

where

A = H(x) + (dl − 1− dl
dr

)H(x�dr )− (dl − 1)H(x�dr−1).

Discussion:Note that this GEXIT integral has a simple graphi-
cal interpretation; it is the area under the GEXIT curve as e.g.
shown in the right-hand picture of Figure 1. The condition
h
∗ ≥ h(dl, dr, {ch}) ensures that this curve is well defined

and integrable.
We have seen in the last section that the value of a GEXIT

integral of an ensemble is determined by the expressionA. We
will soon see that it is crucial to describe the region whereA
is negative. The following lemma, whose proof can be found
in Appendix H, gives a characterization of this property.

Lemma 27 (Negativity):Let (c, x) be anapproximateFP of
the (dl, dr)-regular ensemble of design rater = 1 − dl/dr.
Assume thatdr ≥ 1 + 5( 1

1−r )
4
3 and for some fixed0 ≤ δ ≤

( ln(2)dl

16
√
2dr

)2, d(x, c⊛ (x�dr−1)⊛dl−1) ≤ δ. Let

A = H(x) + (dl − 1− dl
dr

)H(x�dr )− (dl − 1)H(x�dr−1).

For 0 ≤ κ ≤ 1
4e

dl

dr
, if H(x) ∈ [(34 )

dl−1

2 + 1
(dr−1)3 ,

dl

dr
−

dle
−4(dr−1)(

2dl
11edr

)
4
3 − κ], thenA ≤ −κ.

Discussion:In words, for sufficiently high degrees,A(x) is
strictly negative for allx with entropies in the range(0, dl/dr).
Note thatdl/dr corresponds to the Shannon threshold for a
code of rate1−dl/dr. In the preceding lemma we introduced
the notion of anapproximateFP of DE: we say that(c, x)
is a δ-approximate FP if for someδ > 0 we haved(x, c ⊛
(x�dr−1)⊛dl−1) ≤ δ.

M. Area Threshold

The most important goal of this paper is to show that suit-
able coupled ensembles achieve the capacity. The preceding
(Negativity) Lemma 27 is an important tool for this purpose.
But we will in fact prove a refined statement, namely we will
determine the threshold for fixed dds. This threshold is the
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d.d. rate h
Sha

h
A
BEC h

A
BSC h

A
BAWGNC

(5, 6) 0.1667 0.8333 0.8333 0.8332 0.8333
(4, 5) 0.2 0.8 0.7997 0.7992 0.7994
(3, 4) 0.25 0.75 0.7460 0.7407 0.7428
(4, 6) 0.3333 0.6667 0.6657 0.6633 0.6645
(3, 5) 0.4 0.6 0.5910 0.5772 0.5841
(3, 6) 0.5 0.5 0.4881 0.4681 0.4794
(3, 7) 0.5714 0.4286 0.4154 0.3912 0.4057
(3, 8) 0.6250 0.3750 0.3613 0.3345 0.3514
(3, 9) 0.6667 0.3333 0.3196 0.2912 0.3099

TABLE II
NUMERICALLY COMPUTED AREA THRESHOLDS FOR SOME DDS AND

CHANNELS.

so-called area threshold and it was first introduced in [74] in
the context of the Maxwell construction.

Definition 28 (Area Threshold):Consider the (dl, dr)-
regular ensemble and transmission over a complete and
ordered channel family{ch}1h=0. For eachh ∈ [0, 1], let xh
be the forward DE FP associated to channelch. The area
threshold, denote it byhA(dl, dr, {ch}), is defined as

h
A(dl, dr, {ch}) = sup{h ∈ [0, 1] : A(xh, dl, dr) ≤ 0},

whereA(xh, dl, dr) is equal toA, which is given in Lemma 26,
evaluated at the FPxh, when transmitting with the(dl, dr)-
regular ensemble. �

Note thatA(∆+∞, dl, dr) = 0 and that xh = ∆+∞ for
all h < h

BP(dl, dr, {ch}). Therefore the set over which we
take the supremum is non-empty andhBP(dl, dr, {ch}) ≤
h
A(dl, dr, {ch}). Also note that we have made the dependence

of the area threshold on the channel family and the dd
explicit.4

Table II gives some values forhA(dl, dr, {ch}) for various
dds and channels.

Recall that the GEXIT integral has a simple graphical
interpretation – it is the area under the GEXIT curve, assuming
of course that both the curve and the integral exist. The area
threshold is therefore that channel parameterh

A(dl, dr, {ch})
such that the GEXIT integral fromhA(dl, dr, {ch}) to 1 is
equal to1− dl

dr
, the design rate.

Consider e.g. the case of the(10, 20)-regular dd depicted
in Figure 3. From Lemma 19 we know that the GEXIT curve
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Fig. 3. The area threshold for the(10, 20)-regular ensemble and transmission
over the BSC. We havehA ≈ 0.49985. For comparison, the BP threshold is
at a channel entropy of roughly0.2528.

4We keep the explicit notation of̃h(dl, dr , {ch}) andhA(dl, dr , {ch}) in
the statements of the lemmas and theorems but drop it in the proof for ease
of exposition.

is Lipschitz continuous at least in the rangeh ∈ [0.341, 1].
An explicit check shows thatA(xh=0.341) < 0, so thathA ≥
0.341. We know that forh ∈ [0.341.1] the expression1 −
dl

dl
− A(xh) corresponds to the area under this GEXIT curve

betweenh and 1. This expression is therefore a decreasing
function inh, or equivalently,A(xh) is an increasing function
in h. Using bisection, we can therefore efficiently find the area
threshold and we gethA ≈ 0.49985. Note that for this case
the area threshold has the interpretation as that unique channel
parameterhA so that the enclosed area under the GEXIT curve
betweenhA and 1 is equal to1 − dl

dr
. This is obviously the

reason for callinghA the area threshold.
The same interpretation applies to any dd (dl, dr) and any

BMS channel where the area thresholdh
A(dl, dr, {ch}) is such

that the GEXIT curve fromhA(dl, dr, {ch}) up till 1 exists
and is integrable. Empirically this is true forall regular dds
and all BMS channels. Consider e.g. the case of the(3, 6)
ensemble and transmission over the BAWGNC, see Figure 4.
From Table I we are assured that this curve exists and is
smooth at least in the rangeh ∈ [0.5931, 1]. This region is
unfortunately too small. But it is easy to compute the curve
numerically over the whole range. Since the resulting curveis
smooth everywhere, it is easy to compute the area threshold
numerically in this way. We gethA ≈ 0.4792.
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Fig. 4. The area threshold for the(3, 6)-regular ensemble and transmission
over the BAWGNC. This upper bound is given by the entropy value where
the dark gray vertical line hits thex-axis. Numerically the upper bound is at
a channel entropy of roughly0.4792. For comparison, the BP threshold is at
a channel entropy of roughly0.4291.

Fortunately, if we fix the rate then for all dd of sufficiently
high degree this interpretation applies.

Lemma 29 (Area Threshold Approaches Shannon):
Consider a sequence of(dl, dr)-regular ensembles of fixed
design rater = 1− dl/dr and withdl, dr tending to infinity.

Assume thatdr ≥ 1 + 5( 1
1−r )

4
3 and thath̃(dl, dr, {ch}) <

dl

dr
− dle

−4(dr−1)( 2(1−r)
11e )

4
3 , whereh̃(dl, dr, {ch}) is defined in

Lemma 18. Then for any BMS channel family{ch}
dl
dr

− dle
−4(dr−1)( 2(1−r)

11e )
4
3 ≤ h

A(dl, dr, {ch}) ≤
dl
dr
.

Furthermore, A(xhA , dl, dr) = 0 and, for fixed rate
and increasing degrees, the sequence of the area thresh-
olds h

A(dl, dr, {ch}) converges to the Shannon threshold
h

Shannon(dl, dr) =
dl

dr
= 1− r universallyover the whole class

of BMS channel families.
Proof: Note thath̃ ≤ h̄ ≤ e

1
4
√
2

(dr−2)
1
4
↓dr→∞ 0, whereh̄ is

the universal upper bound oñh in Lemma 19. Thus,̃h < dl

dr
−
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dle
−4(dr−1)( 2(1−r)

11e )
4
3 is fulfilled for sufficiently large degrees.

Let us begin with the lower bound onhA. Consider anỹh <

h < dl

dr
−dle−4(dr−1)( 2(1−r)

11e )
4
3 . Let xh be the corresponding BP

FP. Clearly, H(xh) < dl

dr
− dle

−4(dr−1)( 2(1−r)
11e )

4
3 . Suppose that

H(x) ∈ [(34 )
dl−1

2 + 1
(dr−1)3 ,

dl

dr
−dle−4(dr−1)(

2dl
11edr

)
4
3 −κ]. Then

from the (Negativity) Lemma 27 it follows thatA(xh) < 0

and hencehA ≥ dl

dr
−dle−4(dr−1)( 2(1−r)

11e )
4
3 . Now suppose that

H(xh) < (34 )
dl−1

2 + 1
(dr−1)3 (the left boundary in the Negativity

lemma). Sinceh > h̃, we know from Corollary 20 that H(xh)
is a continuous function wrth with H(xh=1) = 1. Thus, from
the mean value theorem, there must exists a channel entropy
h
∗ such that H(xh∗) lies within the interval prescribed by the

Negativity lemma. Therefore, also in this casehA ≥ dl

dr
−

dle
−4(dr−1)(

2(1−r)
11e )

4
3 .

Let us now consider the upper bound. From above argu-
ments, sincẽh < h

A, the BP GEXIT integral fromhA to 1 is
given by Lemma 26. If we combine this with the definition
of the area threshold, i.e., the expressionA in Lemma 26 is
non-positive athA, we get that the BP GEXIT integral at the
area threshold is at least equal to1 − dl

dr
. Now, note that the

BP GEXIT curve is always upper bounded by1 and so the
integral fromh

A to 1 can be at most equal to1− h
A. Putting

things together we have thathA ≤ h
Shannon= dl

dr
.

Let us prove the last claim of the lemma. We want to show
that at the area thresholdA(xhA , dl, dr) = 0. Recall that the
area threshold was defined as the supremum over allh so that
A(xh, dl, dr) is less than or equal to zero. Therefore, all we
need to show is thatA(xh, dl, dr) is continuous as a function
of h aroundhA.

Note thathA is strictly larger thañh. Thus, from Corol-
lary 20 we conclude that the Wasserstein distanced(xh, xhA)
is continuous wrth. It is not hard to verify thatA(xh, dl, dr)
is also continuous wrt the Wasserstein distance. Combining,
we get thatA(xh, dl, dr) is continuous wrth aroundhA.

III. C OUPLED SYSTEMS

A. Spatially Coupled Ensemble

Our goal is to show that coupled ensembles can achieve
capacity on general BMS channels. Let us recall the definition
of an ensemble which is particularly suited for the purpose of
analysis. We call it the(dl, dr, L, w) ensemble. This is the
ensemble we use throughout the paper. For a quick historical
review on some of the many variants see Section I-B.

The variable nodes of the ensemble are at positions[−L,L],
L ∈ N. At each position there areM variable nodes,M ∈
N. Conceptually we think of the check nodes to be located
at all integer positions from[−∞,∞]. Only some of these
positions actually interact with the variable nodes. At each
position there aredl

dr
M check nodes. It remains to describe

how the connections are chosen. We assume that each of thedl
connections of a variable node at positioni is uniformly and
independently chosen from the range[i, . . . , i+w− 1], where
w is a “smoothing” parameter. In the same way, we assume
that each of thedr connections of a check node at positioni

is independently chosen from the range[i − w + 1, . . . , i]. A
detailed construction of this ensemble can be found in [53].

For the whole paper we will always be interested in the
limit when M tends to infinity whileL as well asdl anddr
stay fixed. In this limit we can analyze the system via density
evolution, simplifying our task.

Not surprisingly, spatially coupled ensembles inherit many
of their properties from the underlying ensemble. Perhaps most
importantly, the local connectivity is the same. Further, the
design rate of the coupled ensemble is close to that of the
original one. A proof of the following lemma can be found in
[53].

Lemma 30 (Design Rate):The design rate of the ensemble
(dl, dr, L, w), with w ≤ L, is given by

R(dl, dr, L, w) = (1− dl
dr

)− dl
dr

w + 1− 2
∑w

i=0

(
i
w

)dr

2L+ 1
.

There is an entirely equivalent way of describing a spatially
coupled ensemble in terms of a circular construction. This
construction has the advantage that it is completely symmetric.
This simplifies some of the ensuing proofs.

Definition 31 (Circular Ensemble):Given an(dl, dr, L, w)
ensemble we can associate to it acircular ensemble. This
circular ensemble hasw − 1 extra sections, all of whose
variable nodes are set to zero. To be concrete, we assume that
the sections are numbered from[−L,L + w − 1], where the
sections in[−L,L] are the sections of the original ensemble
and the sections in[L+ 1, L+ w − 1] are the extra sections.
In this new circular ensemble all index calculations (for
the connections) are done modulo2L + w and indices are
mapped to the range[−L,L+w− 1]. For all positions in the
range i ∈ [L + 1, L + w − 1] the channel isci = ∆+∞,
and consequently,xi = ∆+∞. For all “regular” positions
i ∈ [−L,L] the associated channel is the standard channel
c. This circular ensemble has design rate equal to1− dl/dr.
�

As we will see, it is the global structure which helps all the
individual codes to perform so well – individually they can
only achieve their BP threshold, but together they reach their
MAP performance.

B. Density Evolution for Coupled Ensemble

Let us describe the DE equations for the(dl, dr, L, w)
ensemble. In the sequel, densities areL-densities. Letc denote
the channel and letxi denote the density which is emitted
by variable nodes at positioni. Throughout the paper,∆+∞
denotes anL-density with all its mass at+∞ and represents
the perfect decoding density. Also,∆0 denotes anL-density
with all its mass at0 and represents a density with no
information.

Definition 32 (DE of the(dl, dr, L, w) Ensemble):Let xi,
i ∈ Z, denote the averageL-density which is emitted by vari-
able nodes at positioni. For i 6∈ [−L,L] we setxi = ∆+∞. In
words, the boundary variable nodes have perfect information.
For i ∈ [−L,L], the FP condition implied by DE is

xi = c⊛
( 1

w

w−1∑

j=0

( 1

w

w−1∑

k=0

xi+j−k

)�dr−1
)⊛dl−1

. (12)
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Define

g(xi−w+1,. . ., xi+w−1) =
( 1

w

w−1∑

j=0

( 1

w

w−1∑

k=0

xi+j−k
)�dr−1

)⊛dl−1
.

Note thatg(x, . . . , x) = (x�dr−1)⊛dl−1, where the right-hand
side represents DE (without the effect of the channel) for the
underlying(dl, dr)-regular ensemble. Also define

ĝ(xi−w+1,. . ., xi+w−1) =
( 1

w

w−1∑

j=0

( 1

w

w−1∑

k=0

xi+j−k
)�dr−1

)⊛dl

.

As before we see that̂g(x,. . ., x) denotes the EXIT value
of DE for the underlying(dl, dr)-regular ensemble. It is not
hard to see [62] that bothg(xi−w+1, . . . , xi+w−1) as well
as ĝ(xi−w+1, . . . , xi+w−1) are monotone wrt degradation in
all their argumentsxj , j = i − w + 1, . . . , i + w − 1.
More precisely, if we degrade any of the densitiesxj , j =
i − w + 1, . . . , i + 1 − 1, then g(·) (respectively ĝ(·)) is
degraded. We say thatg(·) (respectivelyĝ(·)) is monotone
in its arguments. �

Lemma 33 (Sensitivity of DE):Fix the parameters(dl, dr)
andw and assume thatd(ai, bi) ≤ κ, i = −w+1, . . . , w− 1.
Then

d(c⊛ g(a−w+1, . . . , aw−1), c⊛ g(b−w+1, . . . , bw−1))

≤ 2(dl − 1)(dr − 1)κ.

Proof: For i ∈ [0, w− 1], defineãi = 1
w

∑w−1
k=0 ai−k and

b̃i =
1
w

∑w−1
k=0 bi−k. Setci = ã�dr−1

i anddi = b̃�dr−1
i . Then

using properties (v) and (vii) of Lemma 13 we see that

d(ci, di)
(vii)
≤ (dr − 1)d(ãi, b̃i)

(v)
≤ (dr − 1)κ.

Using once again property (v) of Lemma 13

d(
1

w

w−1∑

i=0

ci,
1

w

w−1∑

i=0

di) ≤ (dr − 1)κ.

Finally, using property (vi) of Lemma 13

d(c⊛ g(a−w+1, . . . , aw−1), c⊛ g(b−w+1, . . . , bw−1))

= d(c⊛ (
1

w

w−1∑

i=0

ci)
⊛dl−1, c⊛ (

1

w

w−1∑

i=0

di)
⊛dl−1)

≤ 2(dl−1)(dr−1)κ.

C. Fixed Points and Admissible Schedules

Definition 34 (FPs of Density Evolution):Consider DE for
the (dl, dr, L, w) ensemble. Letx = (x−L, . . . , xL). We callx
the constellation(of L-densities). We say thatx forms a FP
of DE with channelc if x fulfills (12) for i ∈ [−L,L]. As
a short hand we say that(c, x) is a FP. We say that(c, x) is
a non-trivial FP if xi 6= ∆+∞ for at least onei ∈ [−L,L].
Again, for i /∈ [−L,L], xi = ∆+∞. �

Definition 35 (Forward DE and Admissible Schedules):
Considerforward DE for the (dl, dr, L, w) ensemble. More
precisely, pick a channelc. Initialize x(0) = (∆0, . . . ,∆0).
Let x(ℓ) be the result ofℓ rounds of DE. This means that

x(ℓ+1) is generated fromx(ℓ) by applying the DE equation
(12) to each sectioni ∈ [−L,L],

x
(ℓ+1)
i = c⊛ g(x

(ℓ)
i−w+1, . . . , x

(ℓ)
i+w−1).

We call this theparallel schedule.
More generally, consider a schedule in which in stepℓ an

arbitrary subset of the sections is updated, constrained only by
the fact that every section is updated in infinitely many steps.
We call such a scheduleadmissible. We callx(ℓ) the resulting
sequence of constellations. �

Lemma 36 (FPs of Forward DE):Consider forward DE
for the (dl, dr, L, w) ensemble. Letx(ℓ) denote the sequence
of constellations under an admissible schedule. Thenx(ℓ) con-
verges to a FP of DE, with each component being a symmetric
L-density and this FP is independent of the schedule. In
particular, it is equal to the FP of the parallel schedule.

Proof: Consider first the parallel schedule. We claim that
the vectorsx(ℓ) are ordered, i.e.,x(0) ≻ x(1) ≻ · · · ≻ 0 (the
ordering is section-wise and0 is the vector of∆+∞). This is
true sincex(0) = (∆0, . . . ,∆0), whereasx(1) ≺ (c, . . . , c) ≺
(∆0, . . . ,∆0) = x(0). It now follows by induction on the
number of iterations and the monotonicity of the function
g(·) that the sequencex(ℓ) is monotonically decreasing. More
precisely, we havex(ℓ+1)

i ≺ x
(ℓ)
i . Hence, from Lemma 4.75

in [62], we conclude that each section converges to a limit
density which is also symmetric. Call the limitx(∞). Since
the DE equations are continuous it follows thatx(∞) is a FP
of DE (12) with parameterc. We callx(∞) the FP of forward
DE.

That the limit (exists in general and that it) does not depend
on the schedule follows by standard arguments and we will
be brief. The idea is that for any two admissible schedules the
corresponding computation trees are nested. This means that
if we look at the computation graph of schedule lets say 1
at time ℓ then there exists a timeℓ′ so that the computation
graph under schedule2 is a superset of the first computation
graph. To be able to come to this conclusion we have crucially
used the fact that for an admissible schedule every section
is updated infinitely often. This shows that the performance
under schedule 2 is at least as good as the performance under
schedule 1. Since the roles of the schedules are symmetric,
the claim follows.

D. Entropy, Error and Battacharyya Functionals for Coupled
Ensemble

Definition 37 (Entropy, Error, and Battacharyya):Let x be
a constellation. LetF (·) denote either the H(·) (entropy),E(·)
(error probability), orB(·) (Battacharyya) functional defined
in Section II-D.

We define the (normalized)entropy, error andBattacharyya
functionals of the constellationx to be

F (x) =
1

2L+ 1

L∑

i=−L

F (xi).

�
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E. BP GEXIT Curve for Coupled Ensemble

We now come to a key object, the BP GEXIT curve for
the coupled ensemble. We have discussed how to compute BP
GEXIT curves for uncoupled ensembles in Section III-E. For
coupled ensembles the procedure is similar.

In Section III-C we have seen that for coupled systems FPs
of forward DE are well defined and that they can be computed
by applying a parallel schedule. This procedure allows us to
computesomeFPs.

But we can also use DE at fixed entropy, as discussed
in Section II, to compute further FPs (in particular unstable
ones). More, precisely, fix the desired average entropy of the
constellation, call ith. Start with the initializationx(0) = ∆0,
the vector of all∆0. In each iteration proceed as follows.
Perform one round of DE without incorporating the channel,
i.e., set

x
(ℓ)
i = g(x

(ℓ−1)
i−w+1, · · · , x

(ℓ−1)
i+w−1).

Now find a channelcσ ∈ {cσ}, assuming it exists, so that after
the convolution with this channel the average entropy of the
constellation is equal toh. Continue this procedure until the
constellation has converged (under some suitable metric).

Assume that we have computed (via the above procedure)
a complete family{cσ, xσ} of FPs of DE, i.e., a family so
that for eachh ∈ [0, 1], there exists a parameterσ so that
h = 1

2L+1

∑L
i=−L H(xσ,i). Then we can derive from it a BP

GEXIT curve by projecting it onto

{

H(cσ),
1

2L+ 1

L∑

i=−L

G(cσ, ĝ(xσ,i−w+1,. . ., xσ,i+w−1))
}

,

where ĝ(·) was introduced in Section III-B, and
1

2L+1

∑L
i=−LG(cσ, ĝ(xσ,i−w+1,. . ., xσ,i+w−1)) is the

(normalized) GEXIT function of the constellationxσ.
Figure 5 shows the result of this numerical computation when

L=4

L=32

H(cσ)

L=4

L=32

H(cσ)
Fig. 5. BP GEXIT curves of the ensemble(dl = 3, dr = 6, L) for
L = 4, 8, 16, and 32 and transmission over the BAWGNC (left) and the
BSC (right). The BP thresholds arehBP

BAWGNC/BSC(3, 6, 4) = 0.4992/0.4878,
h

BP
BAWGNC/BSC(3, 6, 8) = 0.4850/0.47303, h

BP
BAWGNC/BSC(3, 6, 16) =

0.4849/0.4729, hBP
BAWGNC/BSC(3, 6, 32) = 0.4849/0.4729. The light/dark

gray areas mark the interior of the BP/MAP GEXIT function of the underlying
(3, 6)-regular ensemble, respectively.

transmission takes place over the BAWGNC (left-hand side)
and the BSC (right-hand side). Note that the resulting curves
look similar to the curves when transmission takes place over
the BEC, see [53]. For small values ofL the curves are far to
the right due to the significant rate loss that is incurred at the

boundary. ForL around10 and above, the BP threshold of
each ensemble is close to the area threshold of the underlying
(3, 6)-regular ensemble, namely0.4792 for the BAWGNC
and 0.4680 for the BSC (see the values in Table II). The
picture suggests that the threshold saturation effect which was
shown analytically to hold for the BEC in [74] also occurs
for general BMS channels.

The aim of this paper is to prove rigorously that the situation
is indeed as indicated in Figure 5, i.e., that the BP threshold
of coupled ensembles is essentially equal to the area threshold
of the underlying uncoupled ensemble.

F. Review for the BEC

Let us briefly recall the main result of [53] which deals
with transmission over the BEC. LetǫBP

BEC(dl, dr, L, w) and
ǫMAP

BEC(dl, dr, L, w) denote the BP threshold and the MAP
threshold of the(dl, dr, L, w) ensemble. Also, letǫMAP

BEC(dl, dr)
denote the MAP threshold of the underlying(dl, dr)-regular
LDPC ensemble. Then the main result of [53] states that

lim
w→∞

lim
L→∞

ǫBP
BEC(dl,dr,L,w) = lim

w→∞
lim

L→∞
ǫMAP

BEC(dl,dr,L,w)

=ǫMAP
BEC(dl, dr).

Also, (see [62]) asdl, dr → ∞, with the ratio dl/dr
fixed, ǫMAP

BEC(dl, dr) → dl/dr. Thus, with increasing degrees,
(dl, dr, L, w) ensembles under BP decoding achieve the Shan-
non capacity for the BEC.

G. First Result

Before we state and prove our main result (namely that
coupled codes can achieve capacity also for general BMS
channels), let us first quickly discuss a simple argument which
shows that spatial coupling of codes does have a non-trivial
effect.

First consider the uncoupled case. We have seen in
Lemma 11 that when we fix the design rate1 − dl/dr and
increase the degrees the BP threshold converges to0. What
happens if we couple such ensembles? We know that for the
BEC such ensembles achieve capacity. The next lemma asserts
that this implies a non-trivial BP threshold also for general
BMS channels.

Lemma 38 (Lower Bound on Coupled BP Threshold):
Consider transmission over an ordered and complete family
{ch} of BMS channels using a(dl, dr, L, w) ensemble and
BP decoding.

Let hBP = h
BP(dl, dr, L, w, {ch}) denote the corresponding

BP threshold and letǫBP = ǫBP(dl, dr, L, w) denote the corre-
sponding BP threshold for transmission over the BEC. Then

B(chBP(dl,dr,L,w,{ch})) ≥ ǫBP. (13)

In particular, for everyδ > 0 there exists aw ∈ N and a dd
pair (dl, dr) with dl/dr fixed, so that

B(chBP(dl,dr,L,w,{ch})) ≥ dl/dr − δ.
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Proof: Consider DE of the coupled ensemble (cf. (12)).
Applying the Battacharyya functional, we get

B(xi) = B(ch)

(

B
( 1

w

w−1∑

j=0

( 1

w

w−1∑

k=0

xi+j−k

)�dr−1
)
)dl−1

,

(14)

where we use the multiplicative property of the Battacharyya
functional at the variable node side.

Using the linearity of the Battacharyya functional and
extremes of information combining bounds for the check node
convolution ([62, Chapter 4]) we get

B(xi) ≤ B(ch)
(

1− 1

w

w−1∑

j=0

(
1− 1

w

w−1∑

k=0

B(xi+j−k)
)dr−1

)dl−1

.

(15)

The preceding set of equations is formally equivalent to the
DE equations for the same spatially coupled ensemble and
the BEC. Therefore, ifB(ch) < ǫBP(dl, dr, L, w) then the DE
recursions, initialized withch must converge to∆+∞, which
implies (13).

Further, from [53] we know that for sufficiently large
degrees(dl, dr), with their ratio fixed, and withw sufficiently
large, ǫBP(dl, dr, L, w) approachesdl/dr arbitrarily closely
(see the discussion in the preceding section), which proves
the final claim.

Example 39 ((3, 6) Ensemble and BSC(p)): Let us spe-
cialize to the case of transmission over the BSC using(3, 6)-
regular ensemble. Then we haveB(c) = 2

√

p(1− p). Using
the above argument and solving forǫ in 2

√

ǫ(1− ǫ) > 1
2 , we

conclude that by a proper choice ofw and (dl, dr) we can
transmit reliably at least up to an error probability of0.067.

Combining the above result with Lemma 4 we conclude
that the BP threshold of the coupled ensemble is at least
(dl/dr)

2 − δ. In summary, for general BMS channels and
regular ensembles of fixed rate and increasing degrees, their
uncoupled BP threshold tends to0 but their coupled BP
threshold is lower bounded by a non-zero value. We conclude
that coupling changes the performance in a fundamental way.
In the rest of the paper we will strengthen the above result by
showing that this non-zero value is in fact the area threshold
of the underlying ensemble and as degrees become large, this
will tend to the Shannon threshold,dl/dr.

IV. M AIN RESULTS

A. Admissible Parameters

In the sequel we will impose some restrictions on the
parameters. Rather than repeating these restrictions in each
statement, we collect them once and for all and give them a
name.

Definition 40 (Admissible Parameters):Fix the design rate
r of the uncoupled system. We say that the parameters(dl, dr)
andw areadmissibleif the following conditions are fulfilled
with r = 1− dl

dr
:

(i) dr ≥
√
3b ln(b), b = 6

ln(4/3)(1−r) ,

(ii) 2(dl − 1)(dr − 1)(1 − c2)
dr−2

2 < 1, c = (1 − r)(1 −
dre

−4(dr−1)( 2(1−r)
11e )

4
3 )− 1

dr
.

(iii) h̃(dl, dr, {ch}) ≤ (1−r)(1−dre−4(dr−1)(
2(1−r)

11e )
4
3 )− 1

dr
,

whereh̃(dl, dr, {ch}) is the bound stated in Lemma 18,
(iv) w > 2d3l d

2
r ,

(v) w > 2(dl − 1)(dr − 1)(16
√
2dr

ln(2)dl
)2,

(vi) w > 2(dl − 1)(dr − 1)d2r(4(
√
2 + 2

ln 2dl(dr − 1)))2,

We say that the ensemble(dl, dr, L, w) is admissible if the
parameters(dl, dr) and w are admissible. If we are only
concerned about the conditions on(dl, dr), then we will say
that (dl, dr) is admissible. �

Discussion:Conditions (i), (ii) and (iii) are fulfilled if we take
the degrees sufficiently large. Conditions (iv), (v), and (vi) can
all be fulfilled by picking a sufficiently large connection width
w.

Why do we impose these conditions? At several places we
use simple extremes of information combining bounds and
these bounds are loose and require, for the proof to work, the
above conditions. We believe that with sufficient effort these
bounds can be tightened and so the restrictions on the degrees
can be removed or at least significantly loosened. We leave
this as an interesting open problem.

Numerical experiments indicated that for any3 ≤ dl ≤ dr
andw ≥ 2 the threshold saturation phenomenon happens, with
a “wiggle-size” which vanishes exponentially inw.

Note that the above bounds imply the following bounds
which we will need at various places:

(vii) dr ≥ 1
1−r (1 +

2
ln(4/3) ln(2(dr − 1)3)),

(viii) dr ≥ 1 + 5( 1
1−r )

4
3 .

Instead of condition (iii) above we can impose the stronger
but somewhat easier to check conditionh̄ ≤ (1 − r)(1 −
dre

−4(dr−1)( 2(1−r)
11e )

4
3 )− 1

dr
, whereh̄ is the upper bound stated

in Lemma 19, or even further strengthen the condition to
e
1
4
√
2

(dr−2)
1
4
≤ (1 − r)(1 − dre

−4(dr−1)( 2(1−r)
11e )

4
3 ) − 1

dr
. The last

condition can be easily checked to be satisfied for sufficiently
large degrees.

B. Main Result

Theorem 41 (BP Threshold of the(dl, dr, L, w) Ensemble):
Consider transmission over a complete, smooth, and ordered
family of BMS channels, denote it by{ch}, using the
admissible ensemble(dl, dr, L, w). Let hBP(dl, dr, L, w, {ch})
andhMAP(dl, dr, L, w, {ch}) denote the corresponding BP and
MAP threshold. Further, letR(dl, dr, L, w) denote the design
rate of this ensemble and setr = 1 − dl/dr. Finally, let
h
A(dl, dr, {ch}) denote the area threshold of the underlying

(dl, dr)-regular ensemble and the given channel family. Then

h
A(dl, dr, {ch})−f(dl, dr, w)
≤ h

BP(dl, dr, L, w, {ch}) (16)

≤ h
MAP(dl, dr, L, w, {ch})

≤ h
A(dl, dr, {ch})+

(w − 1)(dr − 1)3

L
, (17)
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where f(dl, dr, w) = 8(dr − 1)3
(√

2 + 2
ln 2dl(dr −

1)
)
√

2(dl−1)(dr−1)
w . Note thatf(dl, dr, w) depends only on

the dd(dl, dr) andw but is universal wrt the channel family
{ch}. Furthermore,

lim
w→∞

lim
L→∞

R(dl, dr, L, w) = 1− dl
dr
. (18)

Discussion:

(i) The boundhBP ≤ h
MAP is trivial and only listed for

completeness. Consider the upper bound onh
MAP stated

in (17). Start with the circular ensemble stated in Defi-
nition 31. The original ensemble is recovered by setting
thew − 1 consecutive positions in[L,L + w − 1] to 0.
DefineK = 2L+w. We first provide a lower bound on
the conditional entropy for the circular ensemble when
transmitting over a BMS channel with entropyh. We then
show that settingw−1 sections to0 does not significantly
decrease this entropy. Overall this gives an upper bound
on the MAP threshold of the coupled ensemble in terms
of the area threshold of the underlying ensemble.
It is not hard to see that the BP GEXIT curve is the same
for both the(dl, dr)-regular ensemble and the circular
ensemble (when all sections have the standard channel).
Indeed, forward DE (see Definition 35) converges to
the same FP for both ensembles. Consider the circular
ensemble and leth ∈ (hA, 1]. The conditional entropy
when transmitting over the BMS channel with entropyh

is at least equal to1 − dl/dr minus the area under the
BP EXIT curve of [h, 1] (see Theorem 3.120 in [62]).
Indeed, from the proof of Theorem 4.172 in [62], we
have

lim inf
n→∞

E[H(Xn
1 |Y n

1 (h))]/n ≥ 1− dl
dr

−G({ch, xh}1h).

Note that the above integral,G({ch, xh}1h) is evaluated
at the BP FPs. From Lemmas 19 and 29, the BP FP
densitiesxh exist and the GEXIT integral is well-defined
for all h ≥ h

A ≥ h̃.
Here, the entropy is normalized byn = KM , whereK
is the length of the circular ensemble andM denotes
the number of variable nodes per section. Assume that
we setw − 1 consecutive sections of the circular en-
semble to0 in order to recover the original ensemble.
As a consequence, we “remove” an entropy (degrees
of freedom) of at most(w − 1)/K from the circular
system. The remaining entropy is therefore positive (and
hence we are above the MAP threshold of the cou-
pled ensemble) as long as1 − dl/dr − (w − 1)/K −
G({ch, xh}1h) > 0. From Lemmas 26 and 29 we have
G({ch, xh}1hA) = 1−dl/dr, so that the condition becomes
G({ch, xh}1hA) − G({ch, xh}1h) < (w − 1)/K. For all
channels withh ≥ h

A we haveG(ch, xh) ≥ 1
2(dr−1)3 .

For a derivation of this statement we refer the reader
to the proof of part (vi) of Theorem 47. This implies
that G({ch, xh}hhA) ≥ (h − h

A)/(2(dr − 1)3). Further-
more,G({ch, xh}1h) ≤ G({ch, xh}1hA). This follows from
the definition of area threshold, which implies that for
h > h

A, A(xh, dl, dr) > 0 (cf. Lemma 26) and then

combining with Lemma 26. Putting things together we
get

G({ch, xh}1hA)−G({ch, xh}1h) >
h− h

A

2(dr − 1)3
.

We get the stated condition onhMAP by lower bounding
K by 2L.

(ii) The lower bound onhBP(dl, dr, L, w, {ch}) expressed in
(16) is the main result of this paper. It shows that, up to
a term which tends to zero whenw tends to infinity, the
BP threshold of the coupled ensemble is at least as large
as the area threshold of the underlying ensemble.
Empirical evidence suggests that the convergence speed
wrt w is exponential. Our bound only guarantees a
convergence speed of order

√

1/w.

Let us summarize. In order to prove Theorem 41 we “only”
have to prove the lower bound onhBP. Not surprisingly, this
is also the most difficult to accomplish. The remainder of this
paper is dedicated to this task.

C. Extensions

In Theorem 41 we start with a smooth, complete and
ordered channel family. But it is straightforward to convert
this theorem and to apply it directly to single channels or toa
collection of channels. The next statement makes this precise.

Corollary 42 ((dl, dr, L, w) Universally Achieves Capacity):
The (dl, dr, L, w) ensemble is universally capacity achieving
for the class of BMS channels. More precisely, assume we
are givenǫ > 0 and a target rateR. Let C(R) denote the set
of BMS channels of capacity at leastR. To eachc ∈ C(R)
associate the family{ch}1h=0, by defining

ch =

{
1

H(c) [(H(c)− h)∆+∞ + hc], 0 ≤ h ≤ H(c),
1

1−H(c) [(h− H(c))∆0 + (1− h))c], H(c) ≤ h ≤ 1.

Then there exists a set of parameters(dl, dr, L, w) so that

R(dl, dr, L, w) ≥ R− 4ǫ,

inf
c∈C(R)

h
BP(dl, dr, L, w, {ch}) ≥ 1−R+ ǫ.

Since for eachc ∈ C(R) the associated family{ch}1h=0 is
ordered by degradation, this implies that we can transmit with
this ensemble reliably over each of the channels inC(R) at a
rate of at leastR − 4ǫ, i.e., arbitrarily close to the Shannon
limit.

Proof: Fix the ratio of the degrees so thatR − 3ǫ ≤
1 − dl/dr ≤ R − 2ǫ. Note that for eachc ∈ C(R) the
constructed family{ch} is piece-wise smooth, ordered and
complete. By applying Theorem 41 to each such channel
family we conclude that for admissible parameters (i.e., aslong
as we choose the degrees and the connection width sufficiently
large) the threshold of the ensemble(dl, dr, w, L) for the
given channel family is at leasthA(dl, dr, {ch})−f(dl, dr, w),
wherehA(dl, dr, {ch}) is the area threshold andf(dl, dr, w)
is a universal quantity, i.e., a quantity which does not depend
on the channel family and which converges to0 when w
tends to infinity. Further, we know from Lemma 29 that
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the area thresholdhA(dl, dr, {ch}) approaches the Shannon
threshold uniformly over all BMS channels for increasing
degrees. By our choice of(dl, dr) the Shannon threshold is
1 − (1 − dl/dr) ≥ 1 − R + 2ǫ. Therefore, by first choosing
sufficiently large degrees(dl, dr), and then a sufficiently large
connection widthw, we can ensure that the BP threshold
is at least1 − R + ǫ. Finally, by choosing the constellation
lengthL sufficiently large, we can ensure that the rate loss we
incur with respect to the design rate the underlying ensemble
is sufficiently small so that the design rate of the coupled
ensemble is at leastR− 4ǫ.

Corollary 43 (Universally Capacity Achieving Codes):
Assume we are givenǫ > 0 and a target rateR. Let C(R)
denote the set of BMS channels of capacity at leastR. Then
there exists a set of parameters(dl, dr, L, w) of rate at least
R − 5ǫ with the following property. LetC(n) be an element
of (dl, dr, L, w) with blocklengthn, where we assume thatn
only goes over the subsequence of admissible values. Then

lim
n→∞

EC(n)∈(dl,dr,L,w)[1{supc∈C(R) P
BP
b (C(n),c)≤ǫ}] = 1.

In words, almost all codes in(dl, dr, L, w) of sufficient length
are good for all channels inC(R).

Proof: Note that according to (iv) in Lemma 13 the space
of |D| distributions endowed with the Wasserstein metric is
compact, and hence so isC(R). Hence there exists a finite
set of channels, denote it by{ci}I(δ)i=1 , so that each channel in
C(R) is within a (Wasserstein) distance at mostδ from the set
{ci}. We will fix the value ofδ shortly.

Let us modify the set{ci} so thatC(R) is not only close to
{ci} but is also “dominated” by it. For eachc ∈ {ci}, define

˜|C|(y) =
{√

δ + (1−
√
δ)|C|(y), 0 ≤ y ≤ z∗(|C|),

1, z∗(|C|) ≤ y ≤ 1,

where z∗(|C|) is the supremum of allz so that
∫ 1

z (1 −
|C|(y))dy =

√
δ. If no such z ∈ [0, 1] exists then set

z∗(|C|) = 0. We claim that for anya so thatd(a, c) ≤ δ, a ≺ c̃.
In other words we claim that

∫ 1

z |A|(y)dy ≤
∫ 1

z
˜|C|(y)dy for

any z ∈ [0, 1] (cf. (2)).
For z∗(|C|) ≤ z ≤ 1,

∫ 1

z
˜|C|(y)dy = 1 − z, the maxi-

mum possible, and hence this integral is at least as large as
∫ 1

z |A|(y)dy. Consider therefore the range0 ≤ z ≤ z∗(|C|).
In this case
∫ 1

z

˜|C|(y)dy
(a)
≥

√
δ(1 − z) + (1−

√
δ)

∫ 1

z

|C|(y)dy

(b)
=

∫ 1

z

|C|(y)dy +
√
δ

∫ 1

z

(1 − |C|(y))dy ≥
∫ 1

z

|C|(y)dy + δ

(c)
≥
∫ 1

z

|C|(y)dy +
∫ 1

z

||A|(y)− |C|(y)|dy ≥
∫ 1

z

|A|(y)dy.

In (a) we use the definition of̃|C|(y). To obtain (b) we use
that for z ≤ z∗(|C|) we have

∫ 1

z
(1 − |C|(y)) ≥

∫ 1

z∗(|C|)(1 −
|C|(y)) =

√
δ. Finally, in (c) we use the alternative definition

of the Wasserstein distance in Lemma 13.
Further,

d(c̃, a) ≤ d(c̃, c) + d(c, a) ≤
∫ 1

0

| ˜|C| − |C|(y)|dy + δ

≤
∫ z∗

0

|
√
δ(1− |C|(y))|dy +

∫ 1

z∗
(1− |C|(y))dy + δ ≤ 3

√
δ.

In words, any densitya which was close toc is still close
to c̃. We have therefore the set{c̃i}I(δ)i=1 of channels which
“cover” and “dominate” the set of channelsC(R) in the sense
that for everya ∈ C(R) there exists an elementc̃i ∈ {c̃i}I(δ)i=1

so thatd(a, c̃i) ≤ 3
√
δ anda ≺ c̃i. This implies in particular

that mini 1 − H(c̃i) ≥ R − h2(
3
2

√
δ) ≥ R − ǫ, where in the

last step we use the relation between the Wasserstein distance
and entropy given by (ix) in Lemma 13, also we assumed that
we fixed δ so thath2(32

√
δ) ≤ ǫ. In words, all channels in

{c̃i}I(δ)i=1 have capacity at leastR − ǫ.
From Corollary 42 we know that, given a finite set of

channels fromC(R − ǫ), there exists a set of parameters
(dl, dr, L, w) which has rate at leastR− 5ǫ and BP threshold
at least1 − R + 2ǫ universally for the whole family. Since
each element of{c̃i}I(δ)i=1 is an element ofC(R − ǫ) this
ensemble “works” in particular for all channels{c̃i}I(δ)i=1 and
these channels “dominate” all channels inC(R) in the sense
that for element ofc ∈ C(R) there is an element of{c̃i}I(δ)i=1

which is degraded wrtc.
For each element̃ci we know by standard concentration

theorems that “almost all” elements of the ensemble have a bit
error rate of the BP decoder going to zero [45], [62]. Since the
“almost all” means all but an exponentially (in the blocklength)
small subset and since we only have a finite number of channel
families, this implies that almost all codes in the ensemble
work for all the channels in the finite subset. But since the
finite subset dominates all channels inC(R) this implies that
almost all codes work for all channels in this set.

D. Proof of Main Result – Theorem 41

We start by proving some basic properties which any spatial
FP has to fulfill. Since we are considering a symmetric
ensemble (in terms of the spatial arrangement) it will be useful
to consider “one-sided” FPs.

Definition 44 (FPs of One-Sided DE):We say thatx is a
one-sided FP (of DE) with channelc if (12) is fulfilled for
i ∈ [−N, 0] with xi = ∆+∞ for i < −N . We say that the FP
has afree boundary condition ifxi = x0 for i > 0. We say
that it has aforcedboundary condition ifxi = ∆0 for i > 0.
Lastly, we say that it has anincreasingboundary condition if
xi−1 ≺ xi for i > 0, wherexi, for i ≥ 1, are fixed but arbitrary
symmetric densities. �

Definition 45 (Proper One-Sided FPs):We say thatx is
non-decreasingif xi ≺ xi+1 for i = −N, . . . ,−1. Let (c, x)
be a non-trivial and non-decreasingone-sided FP (with any
boundary condition). As a short hand, we then say that(c, x)
is a proper one-sided FP. Figure 6 shows an example. �

Definition 46 (One-Sided Forward DE and Schedules):
Similar to Definition 35, one can defineone-sided forward
DE by initializing all sections with∆0 and by applying DE
according to an admissible schedule. �

There are two key ingredients of the proof. The first
ingredient is to show that any one-sided spatial FP which is
increasing, “small” on the left, and “not too small” and “flat”
on the right must have a channel parameter very close to the
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-16 -14 -12 -10 -8 -6 -4 -2 0

Fig. 6. A proper one-sided FP(c, x) with free boundary condition for
the ensemble(dl = 3, dr = 6, N = 16, w = 3) and the channel
c =BAWGNC(σ) with σ = 1.03978. We have H(c) = 0.46940 and
H(x) = 0.17. The height of the vertical bar at sectioni is equal to H(xi).

area thresholdhA. This is made precise in (the Saturation)
Theorem 47.

The second key ingredient is to show the existence of a such
a one-sided FP(c∗, x∗). Figure 7 shows a typical (two-sided)
such example. This is accomplished in (the Existence) Theo-
rem 48. Once these two theorems have been established, the

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

-12 0 4 8

Fig. 7. Unimodal FP of the(dl = 3, dr = 6, L = 16, w = 3) ensemble
for the BAWGNC(σ) with σ = 0.9480 (channel entropy≈ 0.4789). The
constellation has entropy equal to0.2. The bottom figure plots the entropy of
the density at each section. Notice the small values towardsthe boundary, a
fast transition, and essentially constant values in the middle. The top figure
shows the actual densities at sections±12,±8,±4, 0. Notice that for densities
towards the boundary the mass shifts towards the “right,” indicating a high
reliability. Also plotted in the middle figure relating to section 0 is the BP
forward DE density of the(3, 6)-regular ensemble atσ = 0.9480. The density
is right on the top of the density at section0 of the coupled-code ensemble,
i.e., these two densities are visually indistinguishable.The density in section
±4 is also “close” to the density at section0. Thus in the flat part, the densities
become close to the BP density of the underlying ensemble.

proof of our main theorem is rather short and straightforward.
Theorem 47 (Saturation):Fix r ∈ (0, 1) and let(dl, dr, w)

be admissible, withr = 1− dl

dr
, in the sense of conditions (ii),

(iii), (v), (vi), (vii) and (viii) of Definition 40. Let (c∗, x∗)
be a proper one-sided FP on[−N, 0], with forced boundary
condition, so that for someδ > 0, 2(w−1) ≤ L, andL+w ≤
K ≤ N the following conditions hold.

(i) Constellation is close to∆+∞ “on the left” :

B(x∗−N+L) ≤ δ.

(ii) Constellation is not too small “on the right”:

B(x∗−K) ≥ xu(1).

Then

|H(c∗)− h
A(dl, dr, {ch})| ≤ c(dl, dr, δ, w,K,L).

Herec(dl, dr, δ, w,K,L) is a function which can be made ar-
bitrarily small by choosingδ sufficiently small,w sufficiently
large, andL andK sufficiently large compared tow. (This

implies of course that the constellation lengthN is also chosen
sufficiently large.) More precisely,

f(dl,dr, w) = lim
δ→0

lim
L,K→∞

c(dl, dr, δ, w,K,L)

= 8(dr − 1)3(
√
2+

2

ln 2
dl(dr−1))

√

2(dl−1)(dr−1)

w
.

The proof of Theorem 47 can be found in Appendix J. The
proof of the following Theorem 48 is contained in Apendix K.

Theorem 48 (Existence of FP):Fix r ∈ (0, 1) and let
(dl, dr, w) be admissible in the sense of conditions (i), (ii),
(iii), (iv), (v), (vi) in Definition 40 with r = 1 − dl

dr
. Let

{cσ}1σ=0 be a smooth, ordered and complete channel family.
In the sequel,N(dl, dr, w) is a positive constant which

depends on the ensemble but not the channel or the channel
family and c(dl, dr) is a positive constant which depends on
dl anddr, but not on the channelc, the channel family,N or
w.

For anyN > N(dl, dr, w) and0 < δ < xu(1)
4 , there exists

a proper one-sided FP(c∗, x∗) on [−N, 0] with parameters
(dl, dr, w) and with forced boundary condition so that the
following conditions are fulfilled:

(i) Constellation is close to∆+∞ “on the left” : Let

N1 = (N + 1)
(1

2
− wc(dl, dr)

(N + 1)δ

)

.

ThenB(x∗i ) ≤ δ for i ∈ [−N,−N +N1 − 1].
(ii) Constellation is not too small “on the right”: Let

N2 = (N + 1)
(xu(1)

4
− wc(dl, dr)

(N + 1)δ

)

.

ThenB(x∗i ) ≥ xu(1) for i ∈ [−N2, 0].

Discussion: In words, the theorem says that for any fixed
w ∈ N and δ > 0, if we pick N sufficiently large, we can
construct a FP constellation which is small on the left for a
linear fraction of the total length and reasonably large on the
right, also for a linear fraction of the total length.

Proof of Theorem 41:We are ready to prove the remaining
statement of our main theorem, i.e., (16). Let(dl, dr) andw
be admissible in the sense of conditions (i), (ii), (iii), (iv), (v),
(vi) in Definition 40 and setr = 1− dl

dr
. We want to show that

h
BP ≥ h

A − 8(dr − 1)3(
√
2 + 2

ln 2dl(dr − 1))
√

2(dl−1)(dr−1)
w .

First note thathBP is a decreasing function ofL. This follows
by comparing DE for two constellations of increasing size and
verifying that DE of the larger constellation “dominates” (in
the sense of degradation) DE of the smaller constellation. In
the ensuing arguments we will take advantage of this fact – if
we can lower bound the threshold for a particular constellation
size then we will have automatically lower bounded also the
threshold for all smaller constellation sizes. This is convenient
since at several steps we will need to pickL “sufficiently”
large, where the restrictions on the constellation size stem from
our use of simple extremes of information combining bounds.

Choose a channel, call itc, from the channel family
{ch} with H(c) < h

A − 8(dr − 1)3(
√
2 + 2

ln 2dl(dr −
1))
√

2(dl−1)(dr−1)
w . We will show that for any admissible

ensemble(dl, dr, L, w), whereL is chosen “sufficiently large,”
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the forward DE process converges to the trivial FP. By our
remarks above concerning the monotonicity of the threshold
in terms ofL, this implies that forany lengthL, DE converges
to the trivial FP, hence proving our main statement.

As stated in Theorem 47,f(dl, dr, w) is the limit of
c(dl, dr, δ, w,K,L) when firstL andK tend to infinity and
then δ tends to zero. We claim that, for the fixed parameters
(dl, dr, w), for anyδ > 0 there existL,K,N ∈ N, sufficiently
large, so that

N(dl, dr, w) ≤ N, (19)

2(w − 1) ≤ L, (20)

L ≤ (N + 1)
(1

2
− wc(dl, dr)

(N + 1)δ

)

, (21)

L+w ≤ K ≤ (N+1)
(xu(1)

4
−wc(dl, dr)

(N+1)δ

)

≤ N−L, (22)

H(c) < h
A − c(dl, dr, δ, w,K,L), (23)

whereN(dl, dr, w) and c(dl, dr) are the constants given in
Theorem 48. To fulfill (23), as discussed in Theorem 47,
c(dl, dr, δ, w,K,L) is a continuous function in its param-
eters which converges to8(dr − 1)3(

√
2 + 2

ln 2dl(dr −
1))
√

2(dl−1)(dr−1)
w if we let δ tend to 0 and letK and L

tend to infinity. Therefore, by choosingδ sufficiently small,
andL andK sufficiently large we fulfill (23). By a proper
such choice we also fulfill (20) and the first inequality of
(22). Now note that increasingN loosens all above conditions.
In particular, for anyδ > 0 andK,L,w ∈ N, by choosing
N sufficiently large we fulfill (19), (21), and the last two
inequalities of (22). We have now fixed all parameters.

Let (c∗, x∗) be the proper one-sided FP on[−N, 0] whose
existence is promised by Theorem 48. Recall that it has a
forced boundary condition, i.e., it is a FP if we assume
that x∗i = ∆0 for i > 0. Furthermore, from (21) and (22),
and since(c∗, x∗) is a proper one-sided FP, we satisfy the
conditions of Theorem 47. Thus we conclude that H(c∗) ≥
h
A − c(dl, dr, δ, w,K,L).
Next, create from the FP(c∗, x∗) on [−N, 0] the constel-

lation x on [−N,N ] by appending tox∗, N densities∆0 on
the right which are part of the constellation and by defining
xi = ∆0 for i > N (forced boundary condition). Note that
this redefined constellation(c∗, x) is not a FP since it does
not fulfill the FP equations for the positionsi ∈ [1, N ].

Initialize DE with x, i.e., setx(0) = x. Apply forward DE
to x with the channelc as chosen previously (cf. (23)). Call
the resulting constellation, afterℓ steps of DE,x(ℓ).

We claim that for allℓ ≥ 0, x(ℓ) is spatially monotonically
increasing, i.e.,x(ℓ)i ≺ x

(ℓ)
i+1, for all i ∈ [−N,N ], and thatx(ℓ)

is monotonically decreasing as a function ofℓ, i.e., x(ℓ+1) ≺
x(ℓ).

To prove the first claim recall thatx(0) = x, which is
monotonically increasing and has forced boundary condition
on the right. But DE preserves the monotonicity so that for
everyℓ ≥ 0, x(ℓ)i ≺ x

(ℓ)
i+1, for all i ∈ [−N,N ].

Consider now the second claim. Assume we run one step of
DE on x(0) with the channelc∗. Then fori ∈ [−N, 0], x(1)i =

x
(0)
i by construction. Fori ∈ [1, N ], x(1)i ≺ c∗ ≺ ∆0 = x

(0)
i .

In words, for eachi ∈ [−N,N ] the constellation is decreasing.
It is therefore also decreasing if we run one step of DE with
the channelc ≺ c∗. As a consequence, since DE preserves the
order imposed by degradation, we must havex(ℓ+1) ≺ x(ℓ) for
all ℓ ≥ 0. Thus the process must converge to a FP of DE with
forced boundary condition. Call this resulting FPx(∞).

We claim thatB(x
(∞)
L+1) < xu(1). Assume to the contrary

that this is not true. Then we can apply Theorem 47 to
(c, x(∞)) to arrive at a contradiction. Let us discuss this
point in detail. Sincex(ℓ)i ≺ x

(ℓ)
i+1 for all ℓ we must have

x
(∞)
i ≺ x

(∞)
i+1 for all i ∈ [−N,N ]. Combined with the fact

that x(∞)
i = ∆0 for i > N , we conclude that(c, x(∞))

is a proper one-sided FP on[−N,N ] with forced boundary
condition. Furthermore, from (19), (20), (21) and (22) we
see thatx(∞) satisfies all hypotheses of Theorem 47. More
precisely, by assumption the constellation is large for thelast
N − L sections. Hence from the choice ofK as given by
(22) we must haveB(x

(∞)
N−K) ≥ xu(1). From (21) it is clear

thatB(x
(∞)
−N+L) ≤ δ. As a consequence, from the Theorem 47

we conclude that H(c) ≥ h
A − c(dl, dr, δ, w,K,L). But this

contradicts our initial assumption on H(c) (cf. (23)).
We are now ready to prove our main claim. Consider a

coupled ensemble on[1, L + 1] with parameters(dl, dr, w).
More precisely, the coupled ensemble has sections from[1, L+
1] with i /∈ [1, L + 1] set to∆+∞. Initialize all sections in
[1, L + 1] to ∆0. Call this constellationy(0). Run forward
DE with the channelc on y(0), call the result{y(ℓ)}, and let

y(∞) denote the limit, which is a FP. We havey(ℓ)i ≺ x
(ℓ)
i ,

i ∈ [1, L+ 1], sincey(0)i = x
(0)
i for i ∈ [1, L+ 1] andy(0)i =

∆+∞ ≺ x
(0)
i for i 6∈ [1, L+1] and DE preserves the ordering.

ThereforeB(y
(∞)
i ) ≤ B(x

(∞)
L+1) < xu(1), for all i ∈ [1, L+1].

Let Bj , for somej ∈ [1, L + 1], denote the maximum of
the Battacharyya parameter over all sections ofy(∞). From
extremes of information combining we have

Bj = B(y
(∞)
j ) ≤ B(c)(1 − (1−Bj)

dr−1)dl−1

≤ (1− (1−Bj)
dr−1)dl−1.

The last inequality implies thatBj = 0 sinceBj ∈ [xu(1), 1]
is excluded. From property (x) of Lemma 13 we conclude that
d(y

(∞)
i ,∆+∞) ≤ B(y

(∞)
i ) ≤ Bj = 0, for all i ∈ [1, L + 1].

In other words,y(∞) = ∆∞, as claimed.

E. Conclusion and Outlook

We have shown one can construct low-complexity coding
schemes which are universal for the whole class of BMS
channels by spatially coupling regular LDPC ensembles. Thus,
we resolve a long-standing open problem of whether there
exist low-density parity-check ensembles which are capacity-
achieving using BP decoding. These ensembles are not only
attractive in an asymptotic setting but also for applications and
standards since they can easily be designed to have both, good
thresholds and low error floors. In addition, these ensembles
areuniversal in the sense that one and the same ensemble is
good for the whole class of BMS channels, assuming that the
channel is known at the receiver. In fact, we have shown the
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stronger statement that almost all codes in such an ensemble
are good for all channels in this class.

Let us discuss some open questions.

Maxwell Conjecture:As a byproduct of our proof, we
know that the MAP threshold of coupled ensembles is
essentially equal to the area threshold of the uncoupled
ensemble. In addition we know that the MAP threshold
of the uncoupled ensemble is also upper bounded by the
area threshold. The Maxwell conjecture states that in fact
the MAP threshold of the uncoupled ensemble isequal
to the area threshold. So if one can establish that the
MAP threshold of the uncoupled ensemble is at least
as large as the MAP threshold of the coupled ensemble,
then the Maxwell conjectured would be proved. A natural
approach to resolve this issue is to use interpolation
techniques and it is likely that the Maxwell conjecture
can be proved in a way similar as this was done in [93]
for other graphical models.
Convergence Speed:As discussed previously, we only
give weak bounds on the speed of convergence of the
ensemble to the Shannon capacity (as a function of the de-
grees, the constellation lengthL, as well as the coupling
width w). Numerical evidence suggests much stronger
results. Settling the question of the actual convergence
speed is both challenging and interesting.
Lifting of Restrictions:Our results apply only to suf-
ficiently large degrees whereas numerical calculations
indicate that the threshold saturation effect equally shows
up for small degrees. This is a consequence of the fact
that at many places we have used simple extremes of
information combining bounds. With sufficient effort it is
likely that one can extend the proof to many dds which
are currently not covered by our statement.
General Ensembles:In a similar vein, we restricted
our investigation to regular ensembles to keep things
simple, but the same technique applies in principle also to
irregular or even structured ensembles. Again, depending
on the structure of the underlying ensemble, much effort
might be required to derived the necessary bounds.
Wiggle Size:Perhaps the weakest link in our derivation is
the treatment of the connection widthw. In our current
statements this connection width has to be chosen large.
Empirically, small such lengths, such as the extreme case
w = 2 give already excellent results and by increasingw
the convergence to the area threshold seems to happen
exponentially fast. How to derive practically relevant
bounds for such small values ofw is an important open
problem.
Scaling:More generally, from a practical point of view,
what is needed is a firm understanding of how the
performance of such codes scale in each of the parameters
in dl, dr, L,M , as well asw. Only then will it be possible
to design codes in a principled fashion.
Practical Issues:Further important topics are, the design
of good termination schemes which mitigate the rate-
loss, a systematic investigation of how structure in the
interconnection pattern as well as the codes influences the

performance, and how to optimally choose the scheduling
(e.g., windowed decoding) to control the complexity of
the decoder [75].
General Models:As was discussed briefly in the intro-
duction, the threshold saturation phenomenon has been
empirically found to hold in a large variety of systems.
This suggests that one should be able to formulate a
rather general theory rather than finding a separate proof
for each of these cases. For all one-dimensional systems
this has recently been accomplished in [109]. For higher-
dimensional or infinite-dimensional systems this is a
challenging open problem.

V. ACKNOWLEDGMENTS

We would like to thank H. Hassani, S. Korada, N. Macris,
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APPENDIX A
ENTROPY VERSUSBATTACHARYYA – LEMMA 4

Lemma 49 (Bounds on Binary Entropy Function):Let
h2(x) = −x log2(x) − (1 − x) log2(1 − x). Then for
x ∈ [0, 1/2],

h2(x) ≥ 1− (1− 2x)2, (24)

h2(x) ≤ 2
√

x(1 − x), (25)

h2(x) ≤
11

4
x

3
4 . (26)

Proof: To prove (24), write

h2(x)
[110, Lemma II.1]

= 1− 1

2 ln 2

∞∑

n=1

(1− 2x)2n

n(2n− 1)

≥ 1−(1−2x)2
1

2 ln 2

∞∑

n=1

1

n(2n− 1)
︸ ︷︷ ︸

=1

= 1− (1 − 2x)2.

Consider now (25). Set g(z) = 2
√

(1− x)x −
h2(x) | x=(1−z)/2 =

√
1− z2 − h2(

1−z
2 ). We want to

show thatg(z) ≥ 0 for z ∈ [0, 1]. We have

g′(z) = − z√
1− z2

+
1

2 ln 2
ln
(1 + z

1− z

)

,

g′′(z) = − 1

(1− z2)3/2
+

1

(1− z2) ln 2
.

The following claims are straightforward to verify using the
explicit formulae forg(z), g′(z), andg′′(z): (i) g(0) = g(1) =
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0, (ii) g′(0) = 0, (iii) g′′(0) > 0, (iv) g′′(z) = 0 has exactly
one solution in[0, 1].

Suppose there exists aw, 0 < w < 1, so thatg(w) < 0.
Then from (i), (ii) and (iii) we must haveg(z) = 0 for at least
three distinct elements of[0, 1]. Rolle’s theorem then implies
that g′(z) = 0 has at least two distinct solutions in(0, 1)
and hence at least three distinct solutions in[0, 1] (since by
(i) g′(0) = 0). Using Rolle’s theorem again, this implies that
g′′(z) = 0 has at least two solutions in[0, 1], contradiction
(iv).

We prove (26) along similar lines. Considerg(x) = 11
4 x

3
4 −

a x
ln 2 + x log2(x), wherea = 4(1+ ln(11 ln(2)

16 )) ≈ 1.035 > 1.
Note thatg(x) ≤ 11

4 x
3
4 − h2(x) for x ∈ [0, 12 ] (to verify this,

upper bound the term−(1 − x) log2(1 − x) of the entropy
function byx/ ln(2)). So if we can prove thatg(x) ≥ 0 for
x ∈ [0, 12 ] then we are done.

Direct inspections of the quantities shows thatg(0) = 0,
g′(0+) = +∞, g(x∗) = g′(x∗) = 0, where x∗ =
14641 log(2)4

65536 ≈ 0.05157, andg(12 ) > 0.
It follows that if there exists anx ∈ [0, 12 ] so thatg(x) < 0

then g(x) must have at least4 roots in this range, therefore
by Rolle g′(x) must have at least3 roots, and again by Rolle
g′′(x) must have at least2 roots. But an explicit check shows
that g′′(x) = − 33

64x
5
4
+ 1

x ln(2) = 0. So g′′(x) = 0 can only
have a single solution.

Proof of Lemma 4: Let |a| denote the density in the|D|-
domain. Then

√

H(|a|) =

√
∫ 1

0

h2
(1− z

2

)
|a|(z)dz

(24)
≥

√
∫ 1

0

(1− z2)|a|(z)dz

Jensen
≥

∫ 1

0

√

1− z2|a|(z)dz = B(|a|).

This proves thatB(|a|)2 lower bounds H(|a|). For the upper
bound we have

B(|a|) =
∫ 1

0

√

1− z2|a|(z)dz

=

∫ 1

0

(√

1−z2−h2(
1−z
2

)
)

︸ ︷︷ ︸

≥0 by (25) withx = 1−z
2

|a|(z)dz + H(|a|).

�

APPENDIX B
UPPERBOUND ON BP THRESHOLD– LEMMA 11

Proof: We use ideas from extremes of information com-
bining. We get an upper bound on the BP threshold by
assuming that the densities at check nodes are from the BSC
family and that densities at variable nodes are from the BEC
family.

Let x represent the entropy of the variable-to-check message
and letc denote the entropy of the channel. If for anyx ∈ [0, c]

h2((1− (1− 2h−1
2 (x))dr−1)/2) > (x/c)

1
dl−1 , (27)

then DE will not converge to the perfect decoding FP. The
left-hand side represents the minimum entropy at the output
of a check node which we can get if the input entropy is

x (and this minimum is achieved if the input density is from
the BSC family). The right-hand side represents the maximum
input entropy which we can have at the input of a variable node
if we want an output entropy equal tox (and this minimum
is achieved if the input density is from the BEC family). Note
that we can extend the inequality (27) toall x ∈ [0, 1] without
changing the condition since forx ∈ (c, 1], the right hand side
is strictly bigger than1, whereas the left-hand side is always
bounded above by1.

The preceding condition is equivalent to saying that in order
for DE to succeed, we must have

c ≤ x

(h2((1 − (1− 2h−1
2 (x))dr−1)/2))dl−1

,

for all x ∈ [0, 1]. We can also write this as

c ≤ h2(x)

(h2((1− (1 − 2x)dr−1)/2))dl−1
,

wherex ∈ [0, 12 ].
We want to show thatc cannot be too large, i.e., we are

looking for an upper bound onc. Note that any value ofx
gives a bound. Let us choosex = 1

2
√
dr−1

. This gives the
bound

c ≤
h2(

1
2
√
dr−1

)

(h2(
1−e−

√
dr−1

2 ))dl−1
.

To obtain the above inequality we first write(1− 2x)dr−1 as
exp((dr − 1) log(1 − 2x)). For x ∈ [0, 12 ] we use the Taylor
expansion

log(1−2x) = −2x− (2x)2

2
− (2x)3

3
... ≤ −2x = − 1√

dr − 1
.

Thus exp((dr−1) log(1−2x)) ≤ exp(−
√
dr − 1) andh2((1−

(1− 2x)dr−1)/2) ≥ h2(
1−e−

√
dr−1

2 ). We want to simplify the
expression even further. Using [110, Lemma II.1] and bringing
out the first term in the summation,

h2(x) = 1− 1

2 ln 2
(1− 2x)2 − 1

2 ln 2

∞∑

n=2

(1 − 2x)2n

n(2n− 1)

≥ 1− 1

2 ln 2
(1− 2x)2 − 1

2 ln 2

∞∑

n=2

(1− 2x)2n

= 1− 1

2 ln 2
(1− 2x)2 − (1− 2x)4

2 ln 2

∞∑

n=0

((1 − 2x)2)n

= 1− 2

ln 2
(x− 1

2
)2 − 8(x− 1/2)4

ln(2)(1− 4(x− 1/2)2)
. (28)

Substitutingx = (1 − e−
√
dr−1)/2 we have

h2(
1−e−

√
dr−1

2
)dl−1≥(1−e

−2
√
dr−1

2 ln 2
− e−4

√
dr−1

2 ln 2

1

1−e−2
√
dr−1

)dl−1

≥1− (dl − 1)

2 ln 2

(

e−2
√
dr−1+

e−4
√
dr−1

1−e−2
√
dr−1

)

.

We conclude that

c ≤
h2(

1
2
√
dr−1

)

1− (dl−1)
2 ln 2

(

e−2
√
dr−1+ e−4

√
dr−1

1−e−2
√

dr−1

) ≤
h2(

1
2
√
dr−1

)

1− dle−2
√
dr−1

.
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APPENDIX C
BASIC PROPERTIES OF THEWASSERSTEINMETRIC –

LEMMA 13

Proof:

(i) Alternative Definitions: The equivalence of the basic
definition (cf. Definition 12) and the first alternative
description is shown in (6.2) and (6.3) in [104]. The
equivalence of the first and second alternative descriptions
is shown in [111].

(ii) Boundedness: Follows directly from either of the two
alternative descriptions.

(iii) Metrizable and Weak Convergence: See [104, Theorem
6.9].

(iv) Polish Space: See [104, Theorem 6.18].
(v) Convexity: We have

∣
∣
∣

∫ 1

0

f(x)(α|a|(x) + ᾱ|b|(x)− α|c|(x) − ᾱ|d|(x))dx
∣
∣
∣ ≤

α
∣
∣
∣

∫ 1

0

f(x)(|a|(x)−|c|(x))dx
∣
∣
∣+ᾱ
∣
∣
∣

∫ 1

0

f(x)(|b|(x)−|d|(x))dx
∣
∣
∣.

(vi) Regularity wrt⊛: Let f̃(·) be Lip(1)[0, 1]. Without loss
of generality assume that̃f(0) = 0. Indeed, since we
consider the difference of densities, subtracting a constant
does not affect the integral. Definef(x) for x ∈ [−1, 1]
by settingf(x) = f̃(x) for x ∈ [0, 1] andf(x) = f̃(−x)
for x ∈ [−1, 0]. Then f(x) is Lip(1)[−1, 1] and also
f(0) = 0.
Let d = a ⊛ c and e = b ⊛ c be the D-domain
representation. Thusd(d, e) is characterized by

∣
∣
∣

∫ 1

0

f̃(z)(|d|(z)− |e|(z))dz
∣
∣
∣

(i)
=
∣
∣
∣

∫ 1

−1

f(z)(d(z)− e(z))dz
∣
∣
∣

(ii)
=
∣
∣
∣

∫ 1

−1

∫ 1

−1

(a(x)c(y) − b(x)c(y))f(g(x, y))dxdy
∣
∣
∣

(iii)
=
∣
∣
∣

∫ 1

0

|c|(y)dy
∫ 1

0

(|a|(x) − |b|(x))h(x, y)dx
∣
∣
∣.

In step (i) we use the construction off(z) along with the
relation betweenD and |D| domains given by (29). We
definedg(x, y) = tanh(tanh−1(x)+tanh−1(y)) = x+y

1+xy
and step (ii) follows by explicitly writing the variable
node convolution in theD-domain. In step (iii) we
defined

h(x, y) =
1

4

∑

i∈{±1}

∑

j∈{±1}
f(g(ix, jy))(1 + ix)(1 + jy).

To obtain this equivalent formulation of the integral in
step (iii) we make use of the symmetry conditions ofD-
densities and the implied relationship betweenD and|D|
densities fory ∈ [0, 1],

a(−y) = a(y)
1−y
1+y

, a(y) = |a|(y)1+y
2

. (29)

We claim thath(x, y) is Lip(2)[0, 1] (as a functionx).
This will settle the proof of the lemma. Notice that

h(x, y) is a linear combination of four functions. Let us
consider a generic term. Writingg(·, ·) explicitly, we have

|f(g(ix, jy))(1+ix)−f(g(iz, jy))(1+iz)|(1+jy)

= |f( ix+jy
1+ijxy

)(1+ix)−f( iz+jy
1+ijzy

)(1+iz)|(1+jy)

≤|f( ix+jy
1+ijxy

)(1+ix)−f( iz+jy
1+ijzy

)(1+ix)|(1+jy)

+|f( iz+jy
1+ijzy

)(1+ix)−f( iz+jy
1+ijzy

)(1+iz)|(1+jy)
(i)
≤ (1 + ix)(1 + jy)

(1 − y2)

(1 + ijxy)(1 + ijzy)
|(ix− iz)|

+ (1 + jy)|(ix− iz)|

In (i) we use the Lipschitz continuity off(·) and i2 =
j2 = 1 to obtain the first term. We use|f(·)| ≤ 1 to obtain
the second term in (i). Indeed, sincẽf is Lip(1)[0, 1] and
f̃(0) = 0 we must have|f(x)| = |f̃(|x|)| = |f̃(|x|) −
f̃(0)| ≤ |x| ≤ 1. Also, in the above expression, we can
replace|(ix− iz)| by |x− z|.
Now we sum over all possiblei, j and divide by 4 to get

|h(x, y)− h(z, y)| ≤ 1

4
|x− z| ×

( ∑

i∈{±1},j∈{±1}
(1 + jy)

+
∑

i∈{±1},j∈{±1}
(1 + ix)(1 + jy)

(1− y2)

(1 + ijxy)(1 + ijzy)

)

.

Since
∑

j∈{±1} jy = 0 we have
∑

i∈{±1},j∈{±1}
(1 + jy) = 4.

Let us consider the other term. We split the sum into two
parts, one sum overij > 0 and the other overij < 0.
We have
∑

ij<0

(1 + ix)(1 + jy)
(1 − y2)

(1 + ijxy)(1 + ijzy)
= 2

1− y2

(1 − zy)
,

∑

ij>0

(1 + ix)(1 + jy)
(1 − y2)

(1 + ijxy)(1 + ijzy)
= 2

1− y2

(1 + zy)
.

Adding the two we get the total contribution

2(1− y2)
( 1

1 + zy
+

1

1− zy

)

= 4
1− y2

1− z2y2
≤ 4.

Putting everything together we get

|h(x, y)− h(z, y)| ≤ 2|x− z|.

To get a good bound ond(a⊛i ⊛ c, b⊛i ⊛ c) in terms of
d(a, b) for i ≥ 2 consider

c′ =
1

i

i∑

j=1

a⊛i−j ⊛ b⊛j−1,

and note that the Wasserstein metric can be expressed
directly in the L-domain as

d(a, b) =

∫ ∞

0

∣
∣
∣

∫ x

−x

(a(y)− b(y))dy
∣
∣
∣

2e−x

(1 + e−x)2
dx
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Applying this representation we observe that

d(a⊛ c⊛ c′, b⊛ c⊛ c′) =
1

i
d(a⊛i ⊛ c, b⊛i ⊛ c)

which yields

d(a⊛i ⊛ c, b⊛i ⊛ c) ≤ 2id(a, b) .

(vii) Regularity wrt�: Let f(x) be Lip(1)[0, 1]. Let d = a� c

ande = b � c be theD-domain representation.
∣
∣
∣

∫ 1

0

f(z)(|d|(z)− |e|(z))dz
∣
∣
∣

(a)
=
∣
∣
∣

∫ 1

0

∫ 1

0

(|a|(x)|c|(y) − |b|(x)|c|(y))f(xy)dxdy
∣
∣
∣

≤
∫ 1

0

dy c(y)
∣
∣
∣

∫ 1

0

f(xy)(|a|(x) − |b|(x))dx
∣
∣
∣,

where step (a) follows since in the|D|-domain, check-
node convolution corresponds to a multiplication of the
values.
But note that if f(x) is Lip(1)[0, 1] then f(xy) is
Lip(|y|)[0, 1]. Hence,

d(a � c, b � c) ≤ d(a, b)

∫ 1

0

dy |c|(y)y

E(c)=
∫ 1
0

(1−y)
2 |c|(y)dy
= d(a, b)(1 − 2E(c))

B(c)≤2
√

E(c)(1−E(c))

≤ d(a, b)

√

1−B2(c).

Above, the relation between the Battacharyya and error
parameters can be obtained via extremes of information
combining (see [62]). Let us focus on the last part. To
get a good bound ond(a�i, b�i) in terms ofd(a, b) for
i ≥ 2, consider

c =
1

i

i∑

j=1

a�i−j
� b�j−1,

and note that the Wasserstein metric can be expressed
directly in the D-domain as

d(a, b) =

∫ 1

0

∣
∣
∣

∫ x

−x

(a(y)− b(y))dy
∣
∣
∣dx

Applying this representation, we observe that

d(a � c, b � c) =
1

i
d(a�i, b�i).

This yields

d(a�i, b�i) ≤ id(a, b)(1− 2E(c))

= d(a, b)

i∑

j=1

(1−2E(a�i−j
� b�j−1))

= d(a, b)

i∑

j=1

(1−2E(a))i−j(1−2E(b))j−1

≤ d(a, b)

i∑

j=1

(1−B2(a))
i−j
2 (1−B2(b))

j−1
2 .

(viii) Regularity wrt DE: Follows from properties (vi) and (vii).

(ix) Wasserstein Bounds Battacharyya and Entropy:Let g be
a positive function on[0, 1] and letf be aC2 concave
decreasing function on[0, 1]. Then, for anyc ≥ |g|∞,

−
∫ 1

0

f ′(x)g(x)dx ≤ c
(

f(1− 1

c

∫ 1

0

g(z)dz)− f(1)
)

.

Before proving the inequality let us use it to establish the
stated bounds. Setg(z) = ||B|(z)−|A|(z)|. Then|g|∞ ≤
1 and

∫ 1

0
g(z)dz = d(a, b). Now, for the Battacharyya

bound letf(z) =
√
1− z2 and note

|B(b)−B(a)| =
∣
∣
∣

∫ 1

0

f(z)(b(z)− a(z))dz
∣
∣
∣

=
∣
∣
∣−
∫ 1

0

f ′(z)(|B|(z)− |A|(z))dz
∣
∣
∣

≤ −
∫ 1

0

f ′(z)g(z)dz .

We obtain

|B(b)−B(a)| ≤
√

1− (1− d(a, b))2

=
√

d(a, b)
√

2− d(a, b) .

For the entropy case we setf(z) = h2(
1−z
2 ). The same

argument as above yields

|H(b)− H(a)| ≤ h2(
d(a, b)

2
)

≤ 1

ln 2

√

d(a, b)
√

2− d(a, b) .

We prove the stated inequality. Let us define

ĝ(z) = c1{z≥1− 1
c

∫
1
0
g(x)dx} ,

wherec ≥ |g|∞. For eachz ∈ [0, 1] we have
∫ 1

0
(g(z)−

ĝ(z))dz ≥ 0 with equality atz = 1. Hence,

0 ≥
∫ 1

0

f ′′(z)
(∫ z

0

(g(x)− ĝ(x))dx
)

dz

= −
∫ 1

0

f ′(z)(g(z)− ĝ(z))dz.

This yields

−
∫ 1

0

f ′(z)g(z)dz ≤ −
∫ 1

0

f ′(z)ĝ(z))dz

= c
(
f(1− 1

c

∫ 1

0

g(x)dx)− f(1)
)
.

(x) Battacharyya Sometimes Bounds Wasserstein: Since the
cumulative|D|-distribution of∆0 is equal to1 on [0, 1],
the maximum possible value, we have

d(a,∆0) =

∫ 1

0

(1− |A|(z))dz

= 1− 2E(a) ≤
√

1−B(a)2 . (30)

Similarly, since the cumulative|D|-distribution of∆1 is
0 on [0, 1), we have

d(a,∆1) =

∫ 1

0

|A|(z)dz = 2E(a) ≤ B(a) . (31)
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APPENDIX D
WASSERSTEINMETRIC AND DEGRADATION – LEMMA 14

Proof:

(i) Wasserstein versus Degradation: Let f be a function of
bounded total variation on[0, 1]. (This implies thatf
has left and right limits.) Note that we include|f(0−)|
and|f(1+)| in the definition of total variation, which we
denote by

∫ 1

0
|f ′(x)|dx. DefineF (x) =

∫ x

0
f(z)dz. We

claim that ifF ≥ 0 then
(∫ 1

0

F (x)dx
)(∫ 1

0

|f ′(x)|dx
)

≥ 1

2

(∫ 1

0

|f(x)|dx
)2

This claim implies statement (i) by settingf(z) =
(|B|(1 − z) − |A|(1 − z)) and noting that, in this case,
∫ 1

0 |f ′(z)|dz ≤ 2.
We now prove the claim. LetS be the set of pointsx
in [0, 1], including the endpoints, wheref(x−)f(x+) ≤
0. Note thatS is closed and we may assumef = 0
on S. The complement ofS is a collection of disjoint
open intervals such thatf is either strictly positive or
strictly negative in each interval. Consider the subset of
intervals on whichf is strictly negative. Without loss
of generality we may take this collection to be finite.
Indeed, suppose there are countably infinitely many such
intervalsJ1, J2, ... Define an approximationfk by setting
fk(x) = −f(x) for x ∈ ∪∞

i=k+1Ji and fk(x) = f(x)
otherwise. ThenFk(x) =

∫ x

0
fk(z)dz ≥ F (x) ≥ 0 and

Fk → F uniformly. Furthermore,
∫ 1

0 |fk(x)| =
∫ 1

0 |f(x)|
and

∫ 1

0
|f ′

k(x)| converges to
∫ 1

0
|f ′(x)| from below.

By taking unions of intervals as necessary we can find an
increasing sequence0 = x1, x2, ..., x2k, x2k+1 = 1 such
that on Ii = [xi, xi+1] we havef ≥ 0 for i odd and
f ≤ 0 for i even. The sequence of pointsxi is strictly
increasing except possibly for the last pair which may
coincide at1. Define

hi = max
x∈Ii

|f(x)| ,

wi = |
∫

Ii

f(x)dx|/hi =
∫

Ii

|f(x)|dx/hi ,

wherewi = 0 if hi = 0. Note thatwi ≤ |Ii|. We have

∫ 1

0

|f ′(x)|dx ≥ 2

2k∑

i=1

hi

∫ 1

0

|f(x)|dx =

2k∑

i=1

hiwi .

We claim in addition that

2

∫ 1

0

F (x)dx ≥
2k∑

i=1

hiw
2
i .

The desired result then follows from Jensen’s inequality

∑2k
i=1 hiw

2
i

∑2k
i=1 hi

≥
(∑2k

i=1 hiwi
∑2k

i=1 hi

)2

.

Now, note that
∫ 1

0

F (x) =

∫ 1

0

(1− x)f(x)dx .

It is straightforward to show that for oddi we have
∫

Ii

(1− x)f(x)dx ≥ 1

2
((x̄i+1 + wi)

2 − x̄2i+1)hi

and for eveni we have
∫

Ii

(1− x)f(x)dx ≥ −1

2
(x̄2i − (x̄i − wi)

2)hi

wherex̄ = 1− x. Indeed, for oddi we have
∫ z

xi
(f(x)−

hi1{x≥xi+1−wi})dx ≥ 0 for all z ∈ [xi, xi+1] with
equality atz = xi+1. Hence
∫ xi+1

xi

(1− x)(f(x) − hi1{x≥xi+1−wi})dx

=

∫ xi+1

xi

(∫ z

xi

(f(x)− hi1{x≥xi+1−wi})dx
)

dz ≥ 0,

which gives
∫ xi+1

xi

(1− x)f(x)dx

≥
∫ xi+1

xi

(1− x)hi1{x≥xi+1−wi})dx

= −1

2
hi(x̄

2
i+1 − (x̄i+1 + wi)

2) .

The argument for eveni is similar. We obtain

2

∫

I2i−1∪I2i

(1− x)f(x)dx ≥

h2i−1w
2
2i−1 + h2iw

2
2i + 2(h2i−1w2i−1 − h2iw2i)x̄2i

Defining x̄2k+2 = 0 for notational convenience, we can
write

2

∫ 1

0

(1 − x)f(x)dx−
2k∑

i=1

hiw
2
i

≥ 2

k∑

i=1

(h2i−1w2i−1 − h2iw2i)x̄2i

= 2

k∑

i=1

(
i∑

j=1

(h2j−1w2j−1 − h2jw2j)

)

(x̄2i − x̄2(i+1))

= 2

k∑

i=1

F (x2i+1)(x̄2i − x̄2(i+1)) ≥ 0,

and the proof is complete.
(ii) Entropy and Battacharyya Bound Wasserstein: Let us first

focus on the inequality between the Wasserstein distance
and the Battacharyya parameter. From point (i) we know
that

d(a, b) ≤ 2

√
∫ 1

0

z(|B| − |A|)dz

= 2

√
∫ 1

0

(∫ 1

z

(|B|(x) − |A|(x))dx
)

dz.

By integrating by parts twice we have

B(a) =

∫ 1

0

√

1− z2|a|(z)dz
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=

∫ 1

0

(1− z2)−
3
2

(∫ 1

z

|A|(x)dx
)

dz, (32)

and

H(a) =

∫ 1

0

h2

(1− z

2

)

|a|(z)dz

=
1

ln 2

∫ 1

0

(1 − z2)−1
(∫ 1

z

|A|(x)dx
)

dz.

Thus we obtain
∫ 1

0

z(|B|−|A|)dz ≤ (ln 2)(H(b)−H(a)) ≤ B(b)−B(a) .

This yields

d(a, b) ≤ 2
√

(ln 2)(H(b)− H(a)) ≤ 2
√

B(b)−B(a).

For the final inequality first note thatg(z) = (1 −
z2)−1

(∫ 1

z
(|B|(x) − |A|(x))dx

)

≤ 1 . Let v =
∫ 1

0
g(z)dz = (ln 2)(H(b)− H(a)) . It follows that

B(b)−B(a) =

∫ 1

0

1√
1− z2

g(z)dz

≤
∫ 1

1−v

1√
1− z2

dz = arccos(1 − v)

≤ π

2

√
v =

π

2

√

ln 2(H(b)− H(a))

≤
√

2(H(b)− H(a)) .

(iii) Continuity for Ordered Families: Assume thata ≺ b.
From point (ii) we know that

d(a, b) ≤ 2
√

B(b)−B(a),

and the continuity follows from the continuity of the
Battacharyya parameter for smooth channel families.

APPENDIX E
SUFFICIENT CONDITION FOR CONTINUITY – LEMMA 17,

CONTINUITY FOR LARGE ENTROPIES– LEMMA 18,
UNIVERSAL BOUND ON CONTINUITY REGION –

LEMMA 19

Lemma 50 (Bound onB): Consider twoL-densitiesa1 ≺
a2. Then, for any degree distributionρ(·),
(B(ρ(a2))−B(ρ(a1))) ≤ (B(a2)−B(a1))ρ

′(1−B2(a1)).

Proof: Let a be a density and letU be distributed
according to the corresponding|D|-distribution. By Jensen’s
inequality we have

B(a) = E[(1 − U2)
1
2 ] ≤ (E[1 − U2])

1
2 = (1−ma,1)

1
2 ,

where we have introduced the notationma,k = E[U2k]. The
Taylor expansion(1− u2)

1
2 = 1−∑∞

k=1 αku
2k gives

B(a) = 1−
∞∑

k=1

αkma,k

whereαk is positive for eachk. The functionalsma,k have the
important (Fourier) propertymρ(a),k = ρ(ma,k) [62].5 Since

5We introduced here only the even moments, since only these are needed.
The odd moments are multiplicative as well.

uk is convex and increasing fork ≥ 1, we havema1,k ≥
ma2,k. Hence,

B(ρ(a2))−B(ρ(a1))

=
∞∑

k=1

αk

(
ρ(ma1,k)− ρ(ma2,k)

)

≤
∞∑

k=1

αkρ
′(ma1,k)

(
ma1,k −ma2,k

)

≤ ρ′(ma1,1)
(

∞∑

k=1

αk(ma1,k −ma2,k)
)

≤ ρ′(1−B2(a1))
(

∞∑

k=1

αk(ma1,k −ma2,k)
)

= ρ′(1−B2(a1))
(
B(a2)−B(a1)

)
.

Lemma 51 (Bound on Derivative ofB): Consider twoL-
densitiesa1 ≺ a2. Let 0 ≤ h1 ≤ h2 ≤ 1 and let ch1 and
ch2 denote the two corresponding channels from an ordered
family {ch}. SetBhi = B(chi} for i = 1, 2. Then, for any dd
pair (λ, ρ)

|B(Th1(a1))−B(Th2(a2))| ≤
α |B(a1)−B(a2)|+ |Bh1 −Bh2 | ,

whereα = Bh1λ
′(1)ρ′(1−B2(a1)).

Proof: First, sinceB(a⊛ b) = B(a)B(b), B(Th(a)) =
Bhλ(B(ρ(a))). Second, since0 ≤ λ(x) ≤ 1 and λ′(x) ≤
λ′(1), |λ(x1)−λ(x2)| ≤ λ′(1)|x1−x2| for all x1, x2 ∈ [0, 1].
This implies that|B(Th1(a1))−B(Th1(a2))| is upper bounded
by λ′(1)Bh1 |B(ρ(a1)) − B(ρ(a2))|. Using the triangle in-
equality, we get

|B(Th1(a1))−B(Th2(a2))|
≤ |B(Th1(a1))−B(Th1(a2))|+|B(Th1(a2))−B(Th2(a2))|
≤ λ′(1)Bh1 |B(ρ(a1))−B(ρ(a2))|+ |Bh1 −Bh2 |. (33)

The first term above can be bounded using Lemma 50.
Proof of Lemma 17: Denote byxh the BP FP for the channel

ch and notice that any other FPx′
h

for the same channel
is necessarily upgraded with respect toxh, i.e., x′

h
≺ xh.

Indeed,x′
h
≺ ∆0. By applying the density evolution operator,

we deduce thatx′
h
≺ x

(ℓ)
h

, wherex(ℓ)
h

is the density afterℓ
iterations of BP. By taking the limitℓ → ∞ we getx′

h
≺ xh.

We conclude that ifxh does not satisfy (9) then neither can
any other FP for the same channel.

Assume on the other hand thatxh satisfies (9) and that there
exists a distinct FP for the same channel, necessarily upgraded
with respect toxh, also satisfying (9). Call this densityx′

h
. In

this case,

|B(xh)−B(x′
h
)| xh, x

′
h

are FPs
= |B(Th(xh))−B(Th(x

′
h
))|

Lemma 51
≤ (1− δ)|B(xh)−B(x′

h
)|,

a contradiction sinceδ > 0. The above argument shows that
there can be at most one FP with this property and that this
FP must be the forward DE one.
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Let us now prove Lipschitz continuity, c.f. (10). Under our
hypotheses, the two FPsxh1 and xh2 are the BP FPs for
channelsch1 and ch2 . Consider therefore the respective BP
sequences (starting with∆0) {x(ℓ)

h1
}ℓ≥0, {x(ℓ)h2

}ℓ≥0. For eachℓ,
x
(ℓ)
h1

(respectivelyx(ℓ)
h2

) is degraded with respect toxh1 (respec-
tively xh2 ), and therefore satisfies the condition (9), since the
latter does. Furthermore, assuming without loss of generality
h2 > h1, we havex(ℓ)

h2
≻ x

(ℓ)
h1

. Let δ(ℓ)
△
= |B(x

(ℓ)
h1

)−B(x
(ℓ)
h2

)|.
Since DE is initialized with∆0, we haveδ0 = 0. By applying
Lemma 51 we getδℓ+1 ≤ (1−δ) δℓ+|Bh1−Bh2 |, and therefore

δℓ ≤ (1 + (1− δ) + (1− δ)2 + · · ·+ (1− δ)ℓ−1) |Bh1 −Bh2 |

≤ 1− (1 − δ)ℓ

1− (1 − δ)
|Bh1 −Bh2 | .

The thesis follows by taking theℓ→ ∞ limit. �

Proof of Lemma 18: For β ∈ [0, 1] define

g(β) =
β

(1− (1− β2)dr−1)
dl−1

2

. (34)

Note thatg(1) = 1 and thatg(β) is continuous.
Assume that we run forward DE with the channelc and

that B(c) = g(β), for someβ ∈ [0, 1]. We then claim that
for the resulting FPx, B(x) ≥ β. To see this, let{x(ℓ)}
denote the sequence of densities withx(0) = ∆0. Using
the Battacharyya functional on the DE equations and then
extremes of information combining bounds we see that

B(x(ℓ)) ≥ B(c)
(

1− (1 −B(x(ℓ−1))2)dr−1
) dl−1

2

.

Note that ifB(x(ℓ−1)) ≥ β then

B(x(ℓ)) ≥ B(c)
(

1− (1−B(x(ℓ−1))2)dr−1
) dl−1

2

≥ g(β)
(

1− (1 − β2)dr−1
) dl−1

2

= β.

The induction is anchored by noting that1 = B(∆0) ≥ β
since we assumed thatβ ∈ [0, 1]. In summary, for eachβ ∈
(0, 1], equation (34) gives us the lower boundB(x) ≥ β for the
FP x of forward DE with the channelB(c) = g(β). Another
way of interpreting (34) is that it gives us an upper bound on
B(c) if we fix B(x) = β.

According to Lemma 17, the GEXIT curve is Lipschitz
continuous (in the Battacharyya parameter) at the FP(ch, xh)
if

B(xh) ≥
√

1− (B(ch)(dl − 1)(dr − 1))−
1

dr−2 . (35)

Note that (34) as well as (35) (if we interpret the inequality
as an equality) give rise to curves in the(B(c),B(x)) space.
Inserting (34) into (35) gives us the points where these two
curves cross. If we set

√
x = B(xh), massage the resulting

expression, and set it to0, we get (11). As shown in the
subsequent Lemma 52, (11) has a unique positive solution
in (0, 1] (i.e., the two curves only cross once),b(x) < a(x)
after this solution, andg(β) is an increasing function above
this solution. The situation is shown in Figure 8.

Inserting this solution back into (34) gives us a value
of B(ch) so that for all channels with larger Battacharyya

0.2 0.4

0.2

0.4

0.0 B(c) = g(β)

B
(x
)
=

β

Fig. 8. Consider the(3, 6)-regular ensembles. TheC-shaped curve on the
right is (34). This curve has two branches. The top branch gives a tighter
bound and pairs(B(c),B(x)) generated by DE must lie above this branch.
The second curve, given by (35), denotes the region (above the curve) where
there can be at most one FP. The GEXIT curve for the BEC is shownas a
dashed curve. The portion of this GEXIT curve starting at(1, 1) which is
contained in the gray area is guaranteed to be smooth.

constant the densities generated by forward DE are non-trivial
and are Lipschitz continuous. This insertion is equivalentto
evaluatingc(x) at x = x̃.

Let us finish the proof by showing thatB(xh) ≥ xu(1) for
all h > h̃. Indeed, from the extremes of information combining
we have

B(xh) ≤ (1− (1−B(xh)
dr−1))dl−1,

where above we have replacedB(ch) ≤ 1. Above inequality
implies that eitherB(xh) = 0 or B(xh) ∈ [xu(1), 1]. From the
above discussion we know that forh > h̃ the densities gen-
erated by forward DE are non-trivial. Putting things together
we conclude thatB(xh) ≥ xu(1).

Lemma 52 (Unique Zero):For dr ≥ dl ≥ 3 let

a(x) = (1− (1 − x)dr−1)dl−1,

b(x) = (dl − 1)2(dr − 1)2x(1 − x)2(dr−2),

c(x) =
√

x/a(x).

Then there is a unique solution ofa(x) = b(x) in the interval
(0, 1], call it x̃. Further,c(x) is increasing forx ∈ [x̃, 1].

Proof: Set L = dl − 1 andR = dr − 1, multiply the
equation by1/L2 and sety = (1 − x)R. This gives the
equivalent equationA(y) = B(y), whereA(y) = (1−y)L/L2,
andB(y) = R2(y2−

2
R − y2−

1
R ).

The functionA(y) is (i) decreasing and convex forL ≥ 2,
(ii) A(0) = 1/L2 > 0, (iii) A(1) = 0. The functionB(y) is
(i) increasing fory ∈ [0, y1 = (2R−2

2R−1 )
R], (ii) decreasing for

y ∈ [y1, 1], (iii) concave fory ∈ [y2 = ( (2R−2)(R−2)
(2R−1)(R−1) )

R, 1],
and (iv)B(0) = B(1) = 0. Note that0 ≤ y2 < y1 since we
assumed thatR ≥ 2.

We conclude that in the region[0, y1] there is exactly one
solution, call it ỹ: there is at least one since1/L2 = A(0) >

B(0) = 0, whereasA(y1) < 1/L2
R≥L≥2

≤ R/8 < R2−3+ 1
R <

R22−2+ 1
R (2

1
R − 1) = B(12 ) ≤ B(y1) (sincey1 is the position

whereB(y) is maximized); and there is only one solution
since in [0, y1], A(y) is strictly decreasing, whereasB(y) is
increasing.

In the region,y ∈ [y1, 1) there can be no further solution
sinceA(y1) < B(y1), A(1) = B(1) = 0, andA(y) is convex
whereasB(y) is concave.
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Note thatb(x) starts at0, then increases until it reaches
its maximum, and then decreases back to0, which it reaches
at x = 1. Let x̂ be the largest value within[0, 1] so that
b(x̂) = 1 (we will verify shortly that this is well defined).
Sinceb(x̂) = 1 but a(x) ≤ 1 for all x ∈ [0, 1], it is clear that
x̂ ≤ x̃. Note thatx̃ is obtained fromỹ. Recall that we want
to show thatc(x) is increasing forx ∈ [x̃, 1]. We will show
the stronger statement thatc(x) is increasing forx ∈ [x̂, 1].
This is equivalent to showing thatx/a(x) is increasing in this
range. Note that(x/a(x))′ = p(x)q(x), where

q(x) = 1− (1 − x)dr−2((dldr − dl − dr)x + 1),

and p(x) ≥ 0 for x ∈ [0, 1]. The factorq(x) can be written
asydr−1(dldr − dl − dr)− ydr−2((dldr − dl − dr + 1) + 1),
wherey = 1− x. This polynomial has two sign changes and
hence by Descarte’s rule of signs at most two positive roots.It
follows thatq(x) has at most2 roots forx ≤ 1. Sinceq(0) = 0
andq(1) = 1, there must be exactly one root ofq(x) in (0, 1]
and once the function is positive, it stays so within[0, 1]. It
therefore suffices to prove thatq(x̂) ≥ 0. By definition of x̂
we have(1 − x̂)dr−2 = 1

(dl−1)(dr−1)
√
x̂

. We therefore have

q(x̂) = r(z) | z=x̂, where

r(z) = 1− (dldr−dl−dr)
√
z

(dl−1)(dr−1)
− 1

(dl−1)(dr−1)
√
z
.

A quick check shows thatr(z) ≥ 0 for z ∈ [ 1
(dldr−dl−dr)2

, 1].
The proof will be complete if we can show that̂x ∈
[ 1
(dldr−dl−dr)2

, 1]. We do this in two steps. We claim that

x̂ ≥ x̆ =
c ln

√
(dl−1)(dr−1)

dr−2 , wherec = 1

1+
ln
√

(dl−1)(dr−1)

dr−2

, and

that x̆ ∈ [ 1
(dldr−dl−dr)2

, 1]. The second claim is immediate.
To see the first,

b(x̆) ≥ (dl−1)2(dr−1)c ln
√

(dl−1)(dr−1)e2(dr−2) ln(1−x̆)

≥ (dl−1)2(dr−1)c ln
√

(dl−1)(dr−1)e−
2(dr−2)x̆

1−x̆

=
(dl−1)(dr−2) ln

√

(dl−1)(dr−1)

dr − 2 + ln
√

(dl − 1)(dr − 1)
≥ 1 = b(x̂).

This shows that that the maximum ofb(x) in [0, 1] is above
1 and sox̂ is well defined. Since further,b(x) is a unimodal
function andx̂ was defined to be the largest value ofx ∈ [0, 1]
so thatb(x̂) = 1 it follows that x̂ ≥ x̆, as claimed.

Proof of Lemma 19: Let a(x), b(x) and c(x) be as defined
in Lemma 18. We will provide an upper bound on the unique
solution ofa(x) = b(x). Notice thata(x) represents the DE
equations for a BEC with parameterǫ = 1. Therefore, we
know that forx ≥ xu(1), a(x) ≥ x. We claim thatb(x) and
l(x) = x intersect only at one point in(0, 1]. Indeedb(x) = x,
x ∈ (0, 1], is equivalent to

x = 1− ((dl − 1)(dr − 1))−
1

dr−2 , x.

Sinceb(1) = 0, whereasl(1) = 1, we conclude that forx ∈
[x, 1], b(x) ≤ x.

We further claim thatx ≥ xu(1). Let us assume this for a
moment. Then we havea(x) ≥ x ≥ b(x) for x ∈ [x, 1]. We
conclude that the unique solution ofa(x) = b(x) in (0, 1] is
upper bounded byx.

We finish the lemma by provingx ≥ xu(1). Indeed, since
x 6= 0, all we need to show is that(1−(1−x)dr−1)dl−1 ≥ x6.
For 3 = dr = dl one can verify the validity of the claim
directly. In general, we have

(1− (1− x)dr−1)dl−1 ≥ (1− (1 − x)dr−2)dl−1

=
(

1− 1

(dl − 1)(dr − 1)

)dl−1

≥ 1− 1

dr − 1

≥ 1−
( 1

(dl − 1)(dr − 1)

) 1
dr−2

= x,

where the last inequality follows since

( 1
(dl−1)(dr−1))

1
dr−2

dr≥4

≥ 1
dr−1 .

The Battacharyya parameter of the channel is thus upper
bounded by

√

x/a(x). Using the upper bound on the entropy
in Lemma 4, we get the claimed bound.

It remains to show that this bound converges to0 when we
fix the rate and let the dds tend to infinity. To simplify our
notation, letL = dl − 1 andR = dr − 1. We have

h =
√

x/a(x) =

√
(

1− (LR)
− 1

R−1

)(

1− (LR)
− R

R−1

)−L

(a)
≤ e

1
4

√

1− (LR)
− 1

R−1 = e
1
4

√

1− e−
ln(RL)
R−1

≤ e
1
4

√

1− e
− 2√

R−1 ≤ e
1
4

√
2

(dr − 2)
1
4

,

where (a) is obtained by using the following sequence of
inequalities,
√
(

1− (LR)
− R

R−1

)−L

=

√

e−L ln(1−(LR)
− R

R−1 )

Taylor Expansion
for ln(1−x)

≤

√

e

L(LR)
− R

R−1

1−(LR)
− R

R−1 ≤

√

e
(L(LR)−1)

R
R−1

1−(LR)−1 ≤e 1
2(dr−2)

dr≥4

≤ e
1
4 .

We finish the proof by showing that̃h ≤ h andB(xh) ≥
xu(1) for h ≥ h. Let us first show that̃h ≤ h. Note that
h̃ = hBMS(c(x̃)), where recall thathBMS(·) is the function
which maps the Battacharyya constant of an element of the
family to the corresponding entropy. Thus we haveh̃ ≤ c(x̃).
The proof is now complete by observing thatc(x̃) ≤ c(x),
due to the monotonicity of the functionc(x) for x ≥ x̃, as
shown in Lemma 52. �

APPENDIX F
ENTROPY PRODUCT INEQUALITY – LEMMA 21

By definition, we have

H(a⊛ b) =

∫ 1

0

∫ 1

0

|a|(x)|b|(y)k(x, y)dxdy,

with the kernel as given in the statement. Differentiating,we
have

ky(x, y) = − 1

2 ln(2)

(

ln
1 + y

1− y
− x ln

1 + xy

1− xy

)

,

6Recall that for the BEC(1), the DE equation is given byx = (1 − (1 −
x)dr−1)dl−1. Furthermore, there are 3 FPs namely, 0,xu(1) (unstable) and
1 (stable). Finally, we have that(1− (1− x)dr−1)dl−1 ≥ x if and only if
x = 0 or x ∈ [xu(1), 1]. See Chapter 3 in [62] for more details.
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kyy(x, y) = − 1− x2

ln(2)(1− y2)(1 − x2y2)
,

kxxyy(x, y) =
2

ln(2)

1 + 3x2y2

(1− x2y2)3
.

Integrating by parts twice for each dimension, we see that

H(a⊛ b) =

∫ 1

0

∫ 1

0

|a|(x)|b|(y)k(x, y)dxdy

=

∫ 1

0

∫ 1

0

˜|A|(x) ˜|B|(y)kxxyy(x, y)dxdy.

This proves the alternative representation of this integral.
Note that the bound (i) is implied by 1

(1−x2y2)3 ≤ (1 −
x2)−

3
2 (1− y2)−

3
2 . Let u = (1− x2)−1 andv = (1 − y2)−1.

Then the desired inequality is equivalent to 1
(1/u+1/v−1/uv)3 ≤

u
3
2 v

3
2 for u, v ≥ 1. Raising both sides to the power of23 this

becomes 1
(1/u+1/v−1/uv)2 ≤ uv . Multiplying both sides by

1
(uv)2 this can be written asuv ≤ (v + u − 1)2 which is
equivalent to0 ≤ (v − 1)2 + (u− 1)2 + uv − 1 , proving the
claim.

This boundkxxyy(x, y) ≤ 8
ln(2) (1 − x2)−

3
2 (1 − y2)−

3
2

immediately gives rise to the claim (iii): the right-hand side
factorizes and, excluding the constant8/ ln(2), each factor is
just the Battacharyya kernel in this representation ((1−x2)− 3

2

is the second derivative of
√
1− x2, the Battacharyya kernel

in the |D|-domain, cf. (32)). Note that we can use the
upper bound onkxxyy(x, y) to obtain (iii) since by (2), the
differences( ˜|B′|(y)− ˜|B|(y)) and( ˜|A′|(x)− ˜|A|(x)) are non-
negative.

It remains to prove the claim (ii). We claim that ifd(b′, b) ≤
δ then| ˜|B′|(y)− ˜|B|(y)| ≤ min{δ, 1−y}. The second bound is
immediate since0 ≤ ||B′|(y)−|B|(y)| ≤ 1 so that| ˜|B′|(y)−
˜|B|(y)| ≤

∫ 1

y dy = 1 − y. To see that the difference is less

thanδ we have| ˜|B′|(y)− ˜|B|(y)| ≤
∫ 1

y
||B′|(z)−|B|(z)|dz ≤

∫ 1

0 ||B′|(z)− |B|(z)|dz (i),Lemma13
= d(b′, b). We now have

H((a′ − a)⊛ (b′ − b))

≤
∫ 1

0

∫ 1

0

| ˜|A′|(x) − ˜|A|(x)|| ˜|B′|(y)− ˜|B|(y)|kxxyy(x, y)dxdy

≤ 8

ln(2)
B(a′ − a)

∫ 1

0

min{δ, 1− y}(1− y2)−
3
2 dy

≤ 8

ln(2)
B(a′ − a)

√
2δ,

where to obtain the second inequality we combine the upper
bound onkxxyy(x, y) derived above with the alternative rep-
resentation ofB(a) as given in (32).

APPENDIX G
EVALUATION OF GEXIT INTEGRAL – LEMMA 26

For the proof of Lemma 26 it will be handy to have the
following two lemmas available.

Lemma 53 (Entropy of Single-Parity Check Code):
Consider a single-parity check code of lengthdr. Let X
denote a codeword, chosen uniformly at random from this

code. Let Y denote the result of passing the codeword
through a BMS channel with densityx. Then

H(X |Y ) = drH(x)− H(x�dr).

Proof: Let X1, ..., Xdr be uniform random bits and let
Z denote their parity. SupposeXi is transmitted through the
BMS channel with densityx. Let the received vector beY .

The entropy of the single parity check code is H(X |Z =
0, Y ). By symmetry we have H(X |Z = 0, Y ) = H(X |Z =
1, Y ) = H(X |Z, Y ). Now H(X,Z|Y ) = H(X |Y ) +
H(Z|X,Y ) = H(X |Y ) =

∑dr

i=1 H(x), but we also have
H(X,Z|Y ) = H(Z|Y )+H(X |Z, Y ) = H(x�dr )+H(X |Z, Y ).
Thus, the entropy of the single parity check code is

H(X |Z, Y ) = drH(x) − H(x�dr) .

Now consider the channel that transmits a bit once through
the channel with densitya and again through a channel with
densityb. The entropy of the combined channel is H(a⊛ b).
This is equivalent to the single parity check code of two bits.
Hence

H(a⊛ b) = H(a) + H(b)− H(a � b),

which proves (the Duality Rule of) Lemma 6.
Lemma 54 (Entropy of Tree Code):Consider the(dl, dr)-

regular computation tree of height2 (see e.g., Figure 9). This
tree represents a code of length1 + dl(dr − 1) containing
21+dl(dr−2) codewords. LetX be chosen uniformly at random
from the set of codewords and letY be the result of sending
the components ofX through independent BMS channels. The
root node goes through the BMS channelc and all leaf nodes
are passed through the BMS channelx. Then,

H(X |Y ) = H(x̃) + dl(dr − 1)H(x)− H(x̃ � x�dr−1)

− (dl − 1)H(x�dr−1), (36)

wherex̃ = c⊛ (x�dr−1)⊛dl−1.
Proof: Using the chain rule, rewrite H(X |Y ) as

H(X |Y ) = H(X1 |Y ) + H(X∼1 |X1, Y∼1),

whereX1 corresponds to the root variable node andX∼1 is the
set of all the leaf nodes. The first term is computed by density
evolution by considering all the independent messages flowing
from the leaf nodes into the root node. Indeed, we convolve
the channel densityc with the densities coming from thedl
check nodes, each of which has densityy = x�dr−1. Thus we
get

H(X1 |Y ) = H(c⊛ y⊛dl)
x̃=c⊛y⊛dl−1

= H(x̃⊛ x�dr−1)
Lemma 6
= H(x̃) + H(x�dr−1)− H(x̃ � x�dr−1).

Further,

H(X∼1 |X1 = 0, Y∼1) = H(X∼1 |X1 = 1, Y∼1)

= dl[(dr − 1)H(x) − H(x�dr−1)].

Indeed, when we condition on the root node to take either
0 or 1, we split the code intodl codes, each of which is a
single parity-check code of lengthdr − 1. Using the previous
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Lemma 53, we obtain the above expressions. Combining the
above statements proves the claim.7

Remark 55:We stress that in Lemma 54,(c, x) need not
form a FP pair. Thusx will be different from x̃, in general.
We will use the above expression whenx̃ and x are “close”
(in the Wasserstein sense), i.e.,(c, x) forms an approximate
FP pair. This will allow us to give an estimate of the entropy
of the tree code.

Proof of Lemma 26: Note first that the integral
G(dl, dr, {ch, xh}1h) is well defined. This is true since we
assumed thath ≥ h̃. This implies that we are integrating over
a continuous function (cf. Corollary 22). Hence the integral
exists. All that remains to be shown is that the value of this
integral is indeed1− dl

dr
−A, as claimed.

To evaluate the integral we consider the code corresponding
to the (dl, dr)-regular computation tree of height2 as in
Lemma 54. LetX be chosen uniformly at random from the set
of codewords and assume that the component corresponding
to the root node is sent through the channelch, whereas all
components corresponding to the leaf nodes are sent through
the channelxh. Let Y be the received word. Since{ch, xh}h
is, by assumption, a FP family, the density flowing from any
check node into the root node isyh = x�dr−1

h
and so the total

density seen by the variable node (excluding the observation of
the variable node itself) isy⊛dl

h
. Therefore, the GEXIT integral

associated to the root of this tree code is the desired integral.
We will evaluate this integral by first determining the sum of
all the GEXIT integrals associated to this tree and then by
subtracting from it the GEXIT integrals associated to the leaf
nodes.

In the sequel we will perform manipulations, such as writing
a total derivative as the sum of its partial derivatives or writing
a function as the integral of its derivative. In a first pass
we will assume that all these operations are well defined.
In a second step we will then see how to justify these steps
by approximating the desired integrals by a series of simple
integrals.

Label the variable nodes of the tree with the set{1, . . . , 1+
dl(dr−1)} so that the root has label1. Note that by assumption
H(ch) = h, so that the entropy of the first component ofY ,
call it h1, is h. The entropy of the remaining components, call
them hi, i ∈ {2, . . . , 1 + dl(dr − 1)}, are all equal and take
on the value H(xh). So we imagine that all components are
parameterized byh.

From Definition 23 we have,

G(dl, dr, {ch, xh}1h∗) =
∫ 1

h∗

∂H(X1 |Y (h))

∂h1

∂h1(h)

∂h
dh.

Note that

∫ 1

h∗
dh

d
dh

H(X |Y (h)) =

∫ 1

h∗

∂H(X1 |Y (h)

∂h1

∂h1(h)

∂h
dh+

7 For completeness, although the exact marginal does not factor into the
computation, note that there are21+dl(dr−2) codewords in the code. Out of
those,2dl(dr−2) have a0 in the root node. So the marginal ofX1 = 0/1
is one-half.

+

1+dl(dr−1)
∑

i=2

∫ 1

h∗

∂H(Xi |Y (h))

∂hi

∂hi(h)

∂h
dh

︸ ︷︷ ︸

GEXIT of leaf nodes

. (37)

The lhs evaluates to
∫ 1

h∗
dh

d
dh

H(X |Y ) = H(X |Y (1))− H(X |Y (h∗))

=
(

1 + dl(dr − 1)− dl

)

−
(

H(x)(1 + dl(dr − 1))− H(x�dr )− (dl − 1)H(x�dr−1)
)

.

The last inequality is obtained by using Lemma 54 for the two
endpoints and recalling that we setx = xh∗ .

Let us consider the leaf node contributions. By symmetry
these contributions are all identical. If we focus on a single
check node, then again due to symmetry, the GEXIT integrals
of all leaf nodes is the same. But the sum of all the GEXIT
integrals is equal to the change in entropy of a single-parity
check code of lengthdr. Thus, using Lemma 53, we see that
the integral of any single GEXIT integral is equal to

1

dr

(

(dr − 1)− (drH(x)− H(x�dr ))
)

. (38)

Combining all these statements, we get

G(dl, dr, {ch, xh}1h∗) =
(

1 + dl(dr − 1)− dl

)

−
(

H(x)(1 + dl(dr − 1))− H(x�dr)− (dl − 1)H(x�dr−1)
)

− dl(dr − 1)

dr

(

(dr − 1)− (drH(x) − H(x�dr))
)

= 1− dl
dr

−A.

It remains to justify the previous derivation. We proceed
as follows. Instead of working with{ch, xh}, we will work
with a simpler family which is piece-wise linear and “close”
to the original family. Because it is piece-wise linear, the
operations are simple to justify. Because it is “close” to the
original family, the result is “close” to what we want to show.
By taking a sequence of such families which approximate the
original family closer and closer, we obtain the desired result.

Let us start by constructing a piece-wise linear family, call
it {c̃h, x̃h}, which approximates the original family{ch, xh}.
Consider the channel family{ch} and sample it uniformly in
h with a spacing of∆h. To be precise, pick the samples (from
the original family) ati∆h, for an appropriate range of integers
i. By a suitable choice we can ensure thath

∗ = i∆h for some
i ∈ N. In general,h = 1 will not be of the formi∆h. This
means that the last sample is not lying on the lattice. But we
can ensure that also for the last sample the “gap” (in entropy) is
at most∆h. This is all that is needed for the proof. Hence, for
notational convenience we will ignore this issue and assume
that all samples have the formi∆h.

Construct from this set of samples a family by constructing
a piece-wise linear interpolation, call the result{c̃h}. Note that
since the entropy functional is linear, this construction leads
to a family so that H(c̃h) = h. Further,{c̃h} is ordered and
piece-wise smooth. We claim that

d(ch, c̃h) = d(ch, αci∆h + ᾱc(i+1)∆h) ≤ 2
√

ln(2)∆h,
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where i = ⌊ h

∆h
⌋ and α ∈ [0, 1] is a suitable interpolation

factor. In the last step we have made use of (v) in Lemma 13,
the convexity property of the Wasserstein distance, and the
fact that consecutive samples have an entropy difference of
(at most)∆h. Further, since they are ordered, i.e.,ci∆h ≺
ch ≺ c(i+1)∆h, an entropy difference of at most∆h implies
a Wasserstein distance of at most2

√

ln(2)∆h (cf. (ii) of
Lemma 14).

To eachch=i∆h corresponds a FPxh, call it xi∆h. Take
the collection{xi∆h}. Since this collection is ordered we can
construct from it an ordered and piece-wise smooth family
via a linear interpolation of consecutive samples in the same
manner as we have done this for the channel family. We have

d(x(i+1)∆h, xi∆h)
(i)
≤ 2
√

B(x(i+1)∆h)−B(xi∆h)

(ii)
≤ 2

√

1

δ
(B(c(i+1)∆h)−B(ci∆h)

(iii)
≤
√

8

δ
(∆h)

1
4 .

Step (i) follows from Lemma 14, property (ii). In step (ii)
we made use of the fact thath∗ > h̃(dl, dr, {ch}), so that
according to Lemma 17,δ ≥ 1−B(ch∗)(dl − 1)(dr − 1)(1−
B(xh∗)

2)dr−2 > 0. In step (iii) we used once more Lemma 14,
property (ii). Now consider the distanced(xh, x̃h). We have

d(xh, x̃h) ≤ αd(xh, xi∆h) + ᾱd(xh, x(i+1)∆h) ≤
√

8

δ
(∆h)

1
4 .

The last inequality above follows from considering the same
steps as before, since the densities are ordered and each of
them are FPs at channels with entropy difference at most∆h.
Recall that{ch, xh} is a FP family, hence we can write

d(x̃h, c̃h ⊛ ((x̃h)
�dr−1)⊛dl−1)

≤d(x̃h, xh)+d(ch⊛((xh)
�dr−1)⊛dl−1, c̃h⊛((x̃h)

�dr−1)⊛dl−1)

≤d(x̃h, xh)+2d(c̃h, ch)+2d((x�dr−1
h

)⊛dl−1, (x̃�dr−1
h

)⊛dl−1)

≤4
√

ln(2)∆h + (4(dl − 1)(dr − 1) + 1)

√

8

δ
(∆h)

1
4 .

In words, {c̃h, x̃h}h≥h∗ forms an approximate FP family.
Above, we have used properties (v) and (vi) of Lemma 13.

Let us now apply the family{c̃h, x̃h}h≥h∗ to the depth-2
tree. More precisely, we consider the depth-2 tree code where
the root node is passed through the channelc̃h and the leaves
are passed through the channelx̃h. We claim that all GEXIT
integrals are well defined and that their sum is indeed the
difference of the entropies. Let us prove this claim in steps.

The root integral has the form

∑

i

∫ (i+1)∆h

i∆h

H((c(i+1)∆h − ci∆h)⊛ zh)
dh
∆h

,

wherex̃h = ( h

∆h
−⌊ h

∆h
⌋)x⌈ h

∆h
⌉∆h

+(⌈ h

∆h
⌉− h

∆h
)x⌊ h

∆h
⌋∆h

and
zh = ((x̃h)

�dr−1)⊛dl . If we expand outzh explicitly then we
see that the segment fromi to (i+1) has the form

∑

α(
h

∆h
−

⌊ h

∆h
⌋)jα(⌈ h

∆h
⌉− h

∆h
)kαbi,α for some fixed densitiesbi,α which

are various convolutions of two consecutive densitiesxi∆h and
x(i+1)∆h and some strictly positive integersjα and kα. Set

σ = ( h

∆h
−⌊ h

∆h
⌋), so thatσ goes from0 to 1 in each segment.

Then in each segment the integral has the form
∫ 1

0

H
(

(c(i+1)∆h − ci∆h)⊛
∑

α

σjα(1 − σ)kαbi,α

)

dσ

=
∑

α

jα!kα!

(jα + kα + 1)!
H((c(i+1)∆h − ci∆h)⊛ bi,α).

So the root integral is in fact well defined. The same argument
can be repeated for the leaf integrals to show that they are also
well defined.

If we consider one segment and add all the contributions
(which as we saw can be written down explicitly) we can
verify that the sum of all the GEXIT integrals is indeed equal
to the difference of the entropy of the tree. This calculation is
in principle straightforward but somewhat tedious, so we skip
the details.

If {c̃h, x̃h} were a true FP family then the GEXIT integral
of the root node would be equal to1− dl

dr
−A. This follows by

the same steps which we used in our initial casual derivation:
once we know that all integrals exist and add up to the total
change in the entropy of the tree code, all that is needed to
draw this conclusion is to observe that for a true FP family we
can use a symmetry argument to compute the value of each
leaf GEXIT integral.

However{c̃h, x̃h} is only an approximate (in the Wasserstein
distance) FP family. But we know that by making∆h suffi-
ciently small, we can make the approximation arbitrarily good.
It is intuitive that by taking a sequence of such approximations
which converges to a true FP family the limiting value of the
GEXIT integral of the root node should again be1− dl

dr
−A.

Let us show this more precisely.
We have already established that the sum of the individual

GEXIT integrals is equal to the total change of the entropy
of the tree code. This change only depends on the endpoints
but not on the chosen path. In particular, the endpoints for
{c̃h, x̃h}1h=h∗ and{ch, xh}1h=h∗ are the same.

All is left is therefore to prove that each leaf GEXIT integral
has a value which approaches (38) when∆h approaches0. We
know that this would be true if all the messages entering check
nodes werẽxh and so the GEXIT integral was

∫ 1

h∗ H( d̃xh
dh ⊛

x̃�dr−1
h

)dh. But the actual GEXIT integral is
∫ 1

h∗
H( d̃xh

dh ⊛zh)dh,
wherezh is the density flowing from the “interior” of the tree
into a leaf node. Let us now show that

∫ 1

h∗

(

H(
dx̃h
dh

⊛ zh)− H(
dx̃h
dh

⊛ x̃�dr−1
h

)
)

dh
∆h→0→ 0.

In fact, let us show that
∫ 1

h∗
|H(

dx̃h
dh

⊛ zh)− H(
dx̃h
dh

⊛ x̃�dr−1
h

)|dh ∆h→0→ 0.

Note that for anyh ∈ [h∗, 1] we have

d(x̃�dr−1
h

, zh) = d(x̃�dr−1
h

, x̃�dr−2
h

� c̃h ⊛ (x̃�dr−1
h

)⊛dl−1)

(vii) ,Lemma 13
≤ d(x̃h, c̃h ⊛ (x̃�dr−1

h
)⊛dl−1)

∆h→0→ 0.

Using the same line of reasoning as in in the proof of Corol-
lary 22, we see that therefore for eachh, lim∆h→0 |H( d̃xh

dh ⊛
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zh) − H( d̃xh
dh ⊛ x̃�dr−1

h
)| = 0. Since the integrand is also

bounded, it follows by Lebesgue’s dominated convergence
theorem that also the integral of this quantity overh converges
to 0 when∆h is taken to0.

The only thing which remains to be done is to prove that the
GEXIT integral of the root node when we use the linearized
family converges to the true GEXIT integral when we let∆h

tend to0. We will do this in several steps by considering the
chain of integrals

(i) G(dl, dr, {ch, xh}1h∗),
(ii) G(dl, dr, {ch, x̂h}1h∗),
(iii) G(dl, dr, {c̃h, x̂h}1h∗),
(iv) G(dl, dr, {c̃h, x̃h}1h∗),
and by showing that the value of consecutive such integrals
is arbitrarily close. Here,{x̂h} is a family which is piece-
wise constant on each segment, taking on the value of its left
boundary.

First note that the integral in (i) is well defined, being the
integral over a continuous function. That the integrals in (i)
and (ii) are close follows by the same line of arguments as
we just used above. The same idea applies to prove that the
integrals (iii) and (iv) are close to each other. Finally, the value
of (ii) and (iii) is in fact equal. This is true since{x̂)h} is in
fact constant on each segment and{ch} agrees with{c̃h} at
the endpoints of the segments.

�

APPENDIX H
NEGATIVITY – LEMMA 27

We prove Lemma 27 by showing the following slightly
stronger statement.

Lemma 56:Let x be anL-density and consider a degree-
distribution (dl, dr) such thatdr ≥ 1 + 5( 1

1−r )
4
3 . Define

I1 = [(34 )
dl−1

2 + 1
2(dr−1)3 ,

1
2e

dl

dr
], and I2 = [ 1

2e
dl

dr
, dl

dr
−

dle
−4(dr−1)(

2dl
11edr

)
4
3 − κ], whereκ > 0.

(i) Assume thatx is a δ-approximate FP, i.e.,d(x, c ⊛

(x�dr−1)⊛dl−1) ≤ δ, for some channelc and δ ≤
( ln(2)dl

16
√
2dr

)2. Then if H(x) ∈ I1, A ≤ − 1
16e

dl

dr
.

(ii) For H(x) ∈ I2, A ≤ −κ.

Proof: Sety = x�dr−1. Let us first characterize the area
A in a more convenient form. We have

A = H(x) + (dl − 1− dl/dr)H(x�dr )− (dl − 1)H(y)

= H(x)− dl
dr

H(y)+(dl−1−dl/dr)(H(x�dr )−H(y)).

For theL-distributionsx andy let |x| and|y| be the associated
|D| distributions. Following the lead of L. Boczkowski [112]
we write

H(x) =

∫ 1

0

|x|(z)h2(
1 − z

2
)dz

(a)
= 1−

∫ 1

0

|x|(z)
∑

n≥1

αnz
2ndz

= 1−
∑

n≥1

αn

∫ 1

0

|x|(z)z2n
︸ ︷︷ ︸

mx,n

dz
(b)
= 1−

∑

n≥1

αnmx,n. (39)

In step (a) we have used the expansion of Lemma 49, where
αn = 1

2 ln(2)n(2n−1) , n ≥ 0. Note thatαn ≥ 0 and that
∑

n≥1 αn = 1. Most importantly, as mentioned in the proof
of Lemma 50, the momentsmx,n are multiplicative under�.
This implies that ford ≥ 1, H(x�d) = 1 −

∑

n≥1 αnm
d
x,n.

E.g., for two distributionsx andy we have

1−H(x � y) = 1−
∫ ∫

|x|(z1)|y|(z2)h2(
1−z1z2

2
)dz1dz2

=

∫∫

|x|(z1)|y|(z2)
∑

n≥1

αnz
2n
1 z2n2 dz1dz2 =

∑

n≥1

αnmx,nmy,n,

where in the first equality we use that in the|D|-domain the
check node operation is simply a multiplication.

Assume at first that H(x) ∈ [(34 )
dl−1

2 , 1
2e

dl

dr
+ 1

2(dr−1)3 ] and
that x = c ⊛ y⊛dl−1 for some channelc. Define ψ(x) =
(1− x)xdr−1. Then

A = H(x)− dl
dr

H(y) + (dl − 1− dl/dr)
∑

n

αnψ(mx,n)

(a)
≤ H(x)− dl

dr
H(y) + (dl − 1− dl/dr)

(1− 1
dr
)dr

dr − 1
︸ ︷︷ ︸

B

(b)
≤ H(x)− dl

dr
H(x)

2
dl−1 +

dl − 1− dl/dr
dr − 1

(1− 1

dr
)dr

(c)
≤ 1

2e

dl
dr

+
1

2(dr − 1)3
− dl
dr

3

4
+
dl
dr

1

e
≤ − 1

8e

dl
dr
.

In (a) we used the boundψ(x) ≤ (1− 1
dr

)dr

dr−1 so that
∑

n αnψ(mx,n) ≤ (1− 1
dr

)dr

dr−1 . Consider step (b). Set H(y) =

h2(p)
Lemma 49

≥ 4pp̄. Then

H(x) = H(c⊛ y⊛dl−1) ≤ H(y⊛dl−1) ≤ H(a⊛dl−1
BSC(p))

Lem. 4
≤ B(a⊛dl−1

BSC(p)) = (4pp̄)
dl−1

2 ≤ H(y)
dl−1

2 .

In step (c) we substituted the upper and lower bounds on
H(x) for the first and second expression respectively. Also,
in the last inequality, we have 1

2(dr−1)3 ≤ dl

dr
(34 − 13

8e ) since

we assumed thatdr ≥ 1+5(dr/dl)
4
3 ≥ 1+(2 dl

dr
(34 − 13

8e ))
− 4

3 .
Let us summarize. Ifx = c ⊛ y⊛dl−1 and if H(x) ∈

[(34 )
dl−1

2 , 1
2e

dl

dr
+ 1

2(dr−1)3 ] then A ≤ − 1
8e

dl

dr
. Let us drop

the condition x = c ⊛ y⊛dl−1 and assume instead that
d(x, c⊛ y⊛dl−1) ≤ δ. Define x̃ = c⊛ y⊛dl−1. Then

A ≤ H(x̃)− dl
dr

H(y) +B + (H(x)− H(x̃))

≤ H(x̃)− dl
dr

H(y)+B+3
√
δ ≤ − 1

8e

dl
dr

+3
√
δ ≤ − 1

16e

dl
dr
.

The one-before last step follows since if H(x) ∈ I1 then
H(x̃) ∈ [(34 )

dl−1

2 , 1
2e

dl

dr
+ 1

2(dr−1)3 ] and so we can apply the
previous procedure. Also in the above computations we have
used property (ix) of Lemma 13 to bound|H(x) − H(x̃)| ≤
3
√
δ.

For H(x) ∈ [ 1
2e

dl

dr
, dl

dr
− dle

−4(dr−1)(
dl

16edr
)2 − κ],

A = H(x)− dl
dr

H(y) + (dl − 1− dl
dr

)
∑

n

αnψ(mx,n)
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(a)
≤ H(x)− dl

dr
H(y) + (dl − 1− dl

dr
)
∑

n

αnm
dr−1
x,n

(b)
≤ H(x)− dl

dr
H(y) + (dl − 1− dl

dr
)
∑

n

αnm
dr−1
x,1

(c)
≤ H(x)− dl

dr
H(y)+(dl−1− dl

dr
)
∑

n

αn(1−2h−12 (H(x)))2(dr−1)

(d)
≤ h2(p)−

dl
dr

(1− e−4(dr−1)p) + (dl−
dl
dr

)(1− 2p)2(dr−1)

(e)
≤ dl
dr

−dle−4(dr-1)(
2dl

11edr
)
4
3−κ− dl

dr
+dle

−4(dr−1)(
2dl

11edr
)
4
3

≤ −κ.
In (a) we upper boundψ(x) = (1 − x)xdr−1 by xdr−1, x ∈
[0, 1], and note thatmx,n ∈ [0, 1]. In (b) we usemx,n ≤ mx,1

(this is true sincex2n is decreasing for each fixedx ∈ [0, 1]
as a function ofn) and thatxdr−1 is increasing. Step (c)
is a consequence of the boundmx,1 ≤ (1 − 2h−1

2 (H(x)))2.
Let us prove this inequality. Equivalently, we want to show
H(x) ≤ h2

(
1−√

mx,1

2

)

. By Jensen

mx,n =

∫

|x|(z)z2ndz ≥
(∫

|x|(z)z2dz
)n

= mn
x,1.

Using the above we have,

1−
∑

n≥1

αnmx,n ≤ 1−
∑

n≥1

αnm
n
x,1 = h2

(1−√
mx,1

2

)

.

The claim is proven by noticing that the lhs above is equal to
H(x).

Step (d) uses the following lower bound on H(y) =
H(x�dr−1). Set H(x) = h2(p). From extremes of information
combining we know that we get the lowest entropy if we
assume thatx is a BSC density. Therefore,

H(y) ≥ h2
(1− (1− 2p)dr−1

2

) (24)
≥ 1−(1−2p)2(dr−1)

= 1− e2(dr-1) ln(1-2p) ≥ 1−e−4(dr−1)p.

Consider finally step (e). We know thath2(p) ∈ I2. Combined
with (26) and(1−2p)2(dr−1) ≤ e−4(dr−1)p we conclude that
p ≥ ( 2

11e
dl

dr
)

4
3 .

APPENDIX I
SPACING OFFPS –LEMMA 57 AND TRANSITION LENGTH

OF FPS – LEMMA 61

If we are given a proper one-side FP (with any boundary
condition) then consecutive elements of the FP cannot be too
different from each other. This is made precise in the following
lemma.

Lemma 57 (Spacing of FP):Let (c, x) be a proper one-
sided FP on[−N, 0], N ≥ 0 with any boundary condition.

(i) For i ∈ [−N + 1, 0]

d(xi, xi−1) ≤
dl − 1

w
, B(xi)−B(xi−1) ≤

dl − 1

w
.

(ii) Let x̄i denote the weighted averagēxi =
1
w2

∑w−1
j,k=0 xi+j−k. Then, for anyi ∈ [−∞,∞],

d(x̄i, x̄i−1) ≤
1

w
, B(x̄i)−B(x̄i−1) ≤

1

w
.

Discussion:Each of these two claims states that consecutive
distributions are “close” either wrt the Wasserstein distance or
the Battacharyya parameter. Further, the difference is either
for the distributions themselves or their averages.

Proof:

(i) To simplify notation, for i ∈ [−N + 1, 0] fixed, let
fj =

(
1
w

∑w−1
k=0 xi+j−k−1

)�dr−1
. Writing the DE equa-

tions explicitly,

xi = c⊛
( 1

w

w∑

j=1

fj

)⊛dl−1

, xi−1 = c⊛
( 1

w

w−1∑

j=0

fj

)⊛dl−1

.

Note that the expressions forxi and xi−1 are similar.
The only difference is thatxi containsfw whereasxi−1

containsf0. Rewrite both expressions in the form

xi = c⊛
( 1

w

w∑

j=1

aj

)⊛dl−1
, xi−1 = c⊛

( 1

w

w∑

j=1

bj

)⊛dl−1
,

where ai = bi = fi−1, i = 2, . . . , w, a1 = fw, and
b1 = f0. Now expandxi as well asxi−1 in the form

xi =
∑

d1,...,dw:d1+...+dw=dl−1

(
dl−1

d1,...,dw

)

w−(dl−1) a
⊛d1
1 ⊛cd2,...,dw ,

xi−1 =
∑

d1,...,dw:d1+...+dw=dl−1

(
dl−1

d1,...,dw

)

w−(dl−1) b
⊛d1
1 ⊛cd2,...,dw ,

wherecd2,...,dw = a⊛d2

2 ⊛ . . .⊛ a⊛dw
w ⊛ c. Note that the

terms in the expansions ofxi andxi−1 with d1 = 0 are
identical. Therefore, if we considerB(xi) − B(xi−1),
these terms cancel. We can upper bound the difference
by the Battacharyya constant of all those terms of the
expansion ofxi which correspond tod1 ≥ 1, i.e.,

B(xi)−B(xi−1)

≤ w−(dl−1)
∑

d1≥1,...,dw,
s.t.d1+···+dw=dl−1

(
dl − 1

d1, . . . , dw

)

B(a⊛d1
1 ⊛ cd2,...,dw)

≤ w−(dl−1)
∑

d1≥1,...,dw,
s.t.d1+···+dw=dl−1

(
dl − 1

d1, . . . , dw

)

= 1− (1− 1

w
)dl−1 ≤ dl − 1

w
.

If we are interested in the Wasserstein distance instead,
we can proceed in an almost identical fashion. The only
difference is that in the last sequence of inequalities
we use the convexity property (v) and the boundedness
property (ii) of (the Wasserstein metric) Lemma 13.

(ii) Using the convexity property (v) of (the Wasserstein
metric) Lemma 13 and canceling common terms, we get

d(x̄i, x̄i−1) = d
( 1

w2

w−1∑

j,k=0

xi+j−k,
1

w2

w−1∑

j,k=0

xi+j−k−1

)

=
1

w2
d
(
w−1∑

j=0

xi+j ,

w−1∑

j=0

xi−1−j

)
≤ 1

w
.
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The proof for the Battacharyya parameter proceeds in
an identical fashion and uses the linearity of the Bat-
tacharyya parameter.

Lemma 58 (Basic Bounds on FP):Let (c, x) be a proper
one-sided FP on[−N, 0],N ≥ 0 with any boundary condition.
Let Bi = B(xi) denote the Battacharyya parameter of the
density of thei-th section. Then for alli ∈ [−N, 0],

Bi ≤ B(c)(1− (1− 1

w2

w−1∑

j,k=0

Bi+j−k)
dr−1)dl−1.

Proof: For all i ∈ [−N, 0]

xi = c⊛
( 1

w

w−1∑

j=0

( 1

w

w−1∑

k=0

xi+j−k

)�dr−1
)⊛dl−1

.

Since the Battacharyya parameter is multiplicative in⊛ and
linear,

B(xi) = B(c)
( 1

w

w−1∑

j=0

B
(( 1

w

w−1∑

k=0

xi+j−k

)�dr−1
))dl−1

.

Further, recall from Lemma 5, property (iv), and the ensuing
discussion, thatB(a�dr−1) ≤ 1− (1−B(a))dr−1, so that

B
(( 1

w

w−1∑

k=0

xi+j−k

)�dr−1
)

≤ 1−
(
1− 1

w

w−1∑

k=0

Bi+j−k

)dr−1
.

Combining, we get

Bi ≤ B(c)
(

1− 1

w

w−1∑

j=0

(
1− 1

w

w−1∑

k=0

Bi+j−k

)dr−1
)dl−1

.

Let f(x) = (1 − x)dr−1, x ∈ [0, 1]. Since f ′′(x) =
(dr − 1)(dr − 2)(1 − x)dr−3 ≥ 0, f(x) is convex. Let
yj =

1
w

∑w−1
k=0 Bi+j−k. Then by Jensen,

1

w

w−1∑

j=0

f(yj) ≥ f(
1

w

w−1∑

j=0

yj),

which proves the claim.
Lemma 59 (Basic Properties ofh(x), [53]): Consider the

(dl, dr)-regular ensemble withdl ≥ 3 and let ǫ ∈ (ǫBP, 1],
where ǫBP(dl, dr) is the BP threshold the regular ensemble
when transmitting over the BEC. Defineh(x) = ǫ(1 − (1 −
x)dr−1)dl−1 − x.

(i) For ǫ > ǫBP, h(x) = 0 has exactly three solutions, one
of them being 0 and the other two denoted byxu(ǫ) and
xs(ǫ) with 0 < xu(ǫ) < xs(ǫ). Further,h(x) ≤ 0 for all
x ∈ [0, xu(ǫ)] andh(x) ≥ 0 for all x ∈ [xu(ǫ), xs(ǫ)].

(ii) h′(xu(ǫ)) > 0 and h′(xs(ǫ)) < 0; |h′(x)| ≤ dldr for
x ∈ [0, 1].

(iii) There exists a unique value0 ≤ x∗(ǫ) ≤ xu(ǫ) so that
h′(x∗(ǫ)) = 0, and there exists a unique valuexu(ǫ) ≤
x∗(ǫ) ≤ xs(ǫ) so thath′(x∗(ǫ)) = 0. Further,h(x) is
decreasing in[0, x∗(ǫ)].

(iv) Let κ∗(ǫ) = min{−h′(0), −h(x∗(ǫ))
x∗(ǫ)

}. The quantityκ∗(ǫ)
is non-negative and depends only on the channel param-
eter ǫ and the degrees(dl, dr).

(v) For 0 ≤ ǫ ≤ 1, x∗(ǫ) > 1
d2
l
d2
r
.

(vi) For 0 ≤ ǫ ≤ 1, κ∗(ǫ) ≥ 1
8d2

r
.

(vii) Let κ∗ andx∗ denote the universal lower bounds, given
in the previous part, onκ∗(ǫ) andx∗(ǫ), respectively. If
we draw a line from0 with slope−κ∗, thenh(x) lies
below this line forx ∈ [0, x∗].

(viii) For ǫ ∈ (ǫBP, 1] we have

xu(ǫ) ≥ xu(1) ≥ (dr − 1)
− dl−1

dl−2 . (40)

Remark 60:The functionh(x) is the DE equation for the
(dl, dr)-regular ensemble when transmitting over the BEC.
The two non-zero solutions,xu(ǫ) and xs(ǫ) represent the
unstable and the stable FPs of DE [62]. In the following, we
will be using extremes of information combining techniques
to relate the Battacharyya parameters viah(x).

In Figure 6 we see that within a few sections the constel-
lation changes from reliable sections (towards the boundary)
to sections which all have more or less the same reliability.
In other words, this transition happens quickly. This is made
precise in the following lemma.

Lemma 61 (Transition Length):Let ǫBP be the BP threshold
for transmission over the BEC using the(dl, dr)-regular (un-
coupled) ensemble. Forǫ ∈ (ǫBP, 1], let xu(ǫ) be the smaller of
the two strictly positive roots of the equationh(x) = 0, where
h(x) = ǫ(1 − (1 − x)dr−1)dl−1 − x. For 0 ≤ ǫ ≤ ǫBP, define
xu(ǫ) = limδ↓ǫBP xu(δ).

Consider transmission over a BMS channelc. Let w be
admissible in the sense of property (iv) of Definition 40. Let
(c, x) be a proper one-sided FP on[−N, 0] with any boundary
condition. LetBi = B(xi) denote the Battacharyya parameter
of the density associated to thei-th section and defineǫ =
B(c).

Then, there exists a positive constantc(dl, dr) which de-
pends ondl and dr, but not onN or the channelc, so that
for any δ > 0

∣
∣
∣{i : δ < Bi < xu(ǫ)}

∣
∣
∣ ≤ w

c(dl, dr)

δ
.

Proof: Throughout the proof we setǫ = B(c) and we
write Bi for B(xi).

Note first that we have to prove the statement only forǫ ∈
(ǫBP, 1]. This is true since we have definedxu(ǫ) to coincide
with xu(ǫ

BP) for ǫ ∈ [0, ǫBP] and since further the functionh,
which we use to bound the process, is strictly decreasing as
a function ofǫ. Hence, in the sequel our language will reflect
the fact that we haveǫ ∈ (ǫBP, 1].

(i) The number of sections such thatBi ∈ [δ, x∗(ǫ)] is at
mostw( 1

κ∗δ
+ 1). If δ > x∗(ǫ) then the number of sections

in this part is 0. Hence wlog assumeδ < x∗(ǫ). Let i be the
smallest index so thatBi ≥ δ. If Bi+(w−1) ≥ x∗(ǫ) then the
claim is trivially fulfilled. Assume therefore thatBi+(w−1) ≤
x∗(ǫ). From the monotonicity ofg(·) and the fact thatx is
increasing,

xi = c⊛ g(xi−(w−1), . . . , xi, . . . , xi+(w−1))

≺ c⊛ g(xi+(w−1), . . . , xi+(w−1)).
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This implies

Bi

extremes of info. comb.
≤ ǫg(Bi+(w−1), . . . ,Bi+(w−1)).

As a consequence we get

Bi+(w−1) −Bi ≥ Bi+(w−1) −ǫg(Bi+(w−1), . . . ,Bi+(w−1))

= −h(Bi+(w−1))
Lemma 59 (iii)

≥ −h(δ)
Lemma 59 (vii)

≥ κ∗(ǫ)δ.

This is equivalent toBi+(w−1) ≥ Bi +κ∗(ǫ)δ. More gen-
erally, using the same line of reasoning,Bi+l(w−1) ≥
Bi +lκ∗(ǫ)δ, as long asBi+l(w−1) ≤ x∗(ǫ).

We summarize, the total distance we have to cover is
x∗ − δ and every(w − 1) sections we cover a distance of
at least κ∗(ǫ)δ as long as we have not surpassedx∗(ǫ).
Therefore, after(w − 1)⌊x∗(ǫ)−δ

κ∗(ǫ)δ
⌋ sections we have either

passedx∗ or we must be strictly closer tox∗ than κ∗(ǫ)δ.
Hence, to cover the remaining distance we need at most
(w − 2) extra sections. The total number of sections needed
is therefore upper bounded byw − 2 + (w − 1)⌊x∗(ǫ)−δ

κ∗(ǫ)δ
⌋,

which, in turn, is upper bounded byw( x∗(ǫ)
κ∗(ǫ)δ

+ 1). The
final claim follows by boundingx∗(ǫ) with 1 andκ∗(ǫ) by κ∗.

(ii) The number of sections such thatBi ∈ [x∗(ǫ), xu(ǫ)]
is at most 2w( 4

3κ∗(x∗)2
+ 1) Let us define

Bi = 1
w2

∑w−1
j,k=0 Bi+j−k . From Lemma 58,

Bi ≤ ǫg(Bi,Bi, . . . ,Bi) = Bi + h(Bi). Summing
this inequality over all sections from−∞ to k ≤ 0 we get,

k∑

i=−∞
Bi ≤

k∑

i=−∞
Bi +

k∑

i=−∞
h(Bi).

Writing
∑k

i=−∞ Bi in terms of theBis and rearranging terms,

−
k∑

i=−∞
h(Bi) ≤

1

w2

w−1∑

i=1

(
w − i+ 1

2

)

(Bk+i −Bk−i+1)

≤ w

6
(Bk+(w−1) −Bk−(w−1)).

Let us summarize:

Bk+(w−1) −Bk−(w−1) ≥ − 6

w

k∑

i=−∞
h(Bi). (41)

Without loss of generality we can assume that there exists
a sectionk so thatx∗(ǫ) ≤ Bk−(w−1) (we know from point
(i) that we must reach this point unless the constellation istoo
short, in which case the statement is trivially fulfilled). Con-
sider sectionsBk−(w−1), . . . ,Bk+(w−1), so that in addition
Bk+(w−1) ≤ xu(ǫ). If no suchk exists then there are at most
2w− 1 points in the interval[x∗(ǫ), xu(ǫ)], and the statement
is correct a fortiori.

Our plan is to use (41) to lower bound
Bk+(w−1) −Bk−(w−1). This means, we need a lower
bound for − 6

w

∑k
i=−∞ h(Bi). Since by assumption

Bk+(w−1) ≤ xu(ǫ), it follows that Bk ≤ xu(ǫ), so that
every contribution in the sum− 6

w

∑k
i=−∞ h(Bi) is positive

(cf. Lemma 59 (i)). Further, by (the Spacing) Lemma 57,
w(Bi −Bi−1) ≤ 1. Hence,

− 6

w

k∑

i=−∞
h(Bi) ≥ −6

k∑

i=−∞
h(Bi)(Bi −Bi−1)

≥ 6κ∗(ǫ)

∫ x∗(ǫ)/2

0

xdx =
3κ∗(ǫ)(x∗(ǫ))2

4
.

Let us explain how we obtain the last inequality. First we
claim that there must exist a sectioni with Bi between
x∗(ǫ)/2 andx∗(ǫ). Indeed, suppose on the contrary that this
was not true. Letk∗ ≤ k be the smallest section number
such thatBk∗ ≥ x∗(ǫ). Clearly, such ak∗ exists. Indeed,
sincex∗(ǫ) ≤ Bk−(w−1), it follows thatBk ≥ x∗(ǫ). Since
B−∞ = 0, we must haveBk∗−1 ≤ x∗(ǫ)/2. This implies that
Bk∗ −Bk∗−1 > x∗(ǫ)/2. Using (the Spacing) Lemma 57 we
conclude thatdl−1

w ≥ x∗(ǫ)/2. Hencew ≤ 2dl/x∗(ǫ). Using
the universal lower bound onx∗(ǫ), we getw ≤ 2d3l d

2
r , a con-

tradiction to the hypothesis of the lemma. Finally, according
to Lemma 59 part (iv),−h(x) ≥ κ∗(ǫ)x for x ∈ [0, x∗(ǫ)],
which implies the inequality. Combined with (41) this implies
that

Bk+(w−1) −Bk−(w−1) ≥
3κ∗(ǫ)(x∗(ǫ))2

4
.

We summarize, the total distance we have to cover isxu(ǫ)−
x∗(ǫ) and every2(w − 1) steps we cover a distance of at
least 3κ∗(ǫ)(x∗(ǫ))

2

4 as long as we have not surpassedxu(ǫ).
Allowing for 2(w − 1) − 1 extra steps to cover the last part,
bounding againw− 1 by w, boundingxu(ǫ)−x∗(ǫ) by 1 and
replacingκ∗(ǫ) and x∗(ǫ) by their universal lower bounds,
proves the claim.

APPENDIX J
SATURATION – THEOREM 47

Before we proceed to prove the Saturation theorem, we
introduce a key technical element required in the proof,a
family of spatial (approximate) FPs. This is the content of
Definition 62 and Theorem 63. Then, Theorem 64 shows that
the GEXIT integral of this family depends only on its end-
points. Combined with the Negativity lemma 27 this imposes
a strong constraint on the channel value of the spatial FPs,
culminating in the proof of the Saturation theorem.

Definition 62 (Interpolation):Let (c∗, x∗), c∗ ∈ {ch}, de-
note an increasing one-sided constellation on[−N, 0] for
the parameters(dl, dr, w). Let h

∗ = H(c∗) > 0 and let
0 ≤ L ≤ N .

The family (of constellations) for the(dl, dr, L, w)-
ensemble, based on(c∗, x∗), is denoted by{cσ, xσ}h

∗

σ=0.
Each elementxσ is symmetric with respect to the spatial

index and the components are indexed by[−L,L]. Hence it
suffices to define the constellations in the range[−L, 0] and
then we setxσ,i = xσ,−i for i ∈ [0, L]. As usual, we set
xσ,i = ∆+∞ for i /∈ [−L,L]. For i ∈ [−L, 0] andσ ∈ [0, h∗)
define

xσ,i =

{

aσ,i, σ ∈ ( h
∗

2 , h
∗),

2
h∗σx

∗
i−N+L + (1 − 2

h∗σ)∆+∞, σ ∈ [0, h
∗

2 ],
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where forσ ∈ ( h
∗

2 , h
∗),

aσ,i =α(σ)x
∗
i−⌈(2− 2

h∗ σ)(N−L)⌉+

(1− α(σ))x∗i−⌈(2− 2
h∗ σ)(N−L)⌉+1,

α(σ) =
(

(N − L)(2− 2

h∗
σ)
)

mod (1).

Finally, cσ = ch=h∗ = c∗. �

Discussion:
(i) Notice that in the above definition whenσ approaches

h
∗, thenxσ,i = x∗i .

(ii) In the definition above, we keep the channel constant
across the sections and overσ. In other words, the
channel remains constant for all the constellations in the
family.
We denote the two partitions in the interpolation as
phases, e.g.,(h∗/2, h∗) corresponds to phase I and[0, h

∗

2 ]
corresponds to phase II.

(iii) The above interpolation might look complicated. But
there is a straightforward interpretation. Think of one-
sided constellations. We are interested in a constellation
of sizeL.
In phase I, the basic idea is to “move” the constellation
x∗ to the right and at each point in time to “chop off” the
overhanging parts both on the left and on the right. We
do this until the left most section ofx∗ is at position
−L. If x∗ were a continuous function, i.e., suppose
we had a continuum of sections, then this would be
all we need to do. Butx∗ is discrete, so in order to
get a continuous interpolation we interpolate between
two consecutive elements ofx∗. This mimics the “wave
effect” we mentioned in the beginning.
In phase II, the residual constellation is uniformly
brought down to∆+∞ in each section.

In the next lemma we show that if we have an interpolated
family constructed via the above definition, then the resulting
family is a family of approximate FPs.

Lemma 63 (Interpolation Yields Approximate FP Family):
Let (c∗, x∗), c∗ ∈ {ch}, denote an increasing one-sided
constellation on [−N, 0] with free or fixed boundary
condition for the parameters(dl, dr, w) and letw ≤ L < N .
Assume that(c∗, x∗) fulfills the following conditions, for
some0 < δ ≤ 1

w .
(i) Constellation is close to∆+∞ “on the left” :

B(x∗−N+L) ≤ δ.

(ii) Constellation is flat “on the right”

x∗−L = x∗−L+1 = · · · = x∗0 = x.

Also, d(x∗−L−w+1, x) ≤ δ.
(iii) Constellation is approximate FP: For i ∈ [−N, 0],

d(x∗i , c
∗ ⊛ g(x∗i−w+1, . . . , x

∗
i+w−1)) ≤ δ.

Let {cσ, xσ}h
∗

σ=0 denote the family as described in Defini-
tion 62. Then this family is an approximate FP family. More
precisely, forσ = 0 andσ = h

∗

(i) {cσ}σσ and{xσ}σσ are ordered by degradation, increasing,
and piece-wise linear,

(ii) xσ,i = ∆+∞ for i /∈ [−L,L] and for allσ and
(iii) for any σ ∈ [σ, σ) and anyi ∈ [−L+w− 1,−w+ 1]∪

[w − 1, L− w + 1]

d(xσ,i,cσ ⊛ g(xσ,i−w+1, . . . , xσ,i+w−1))

≤ 2(dl − 1)(dr − 1)

w
+ δ. (42)

Discussion:For the boundary[−L,−L+w−2]∪[L−w+2, L]
and in the middle[−w+2, w−2] the interpolation does not in
general result in an approximate FP. Fortunately this does not
cause problems. We will see in Theorem 64 that each section
gives only a small contribution to the GEXIT integral. If we
chooseL sufficiently large then we can safely ignore a fixed
number of sections.

Proof:

(i) That {cσ}σσ and {xσ}σσ are ordered by degradation, in-
creasing, and piece-wise linear follows by construction.

(ii) In the same way, thatxσ,i = ∆+∞ for i /∈ [−L,L] and
for all σ also follows by construction.

(iii) It remains to check that the family so defined constitutes
an approximate FP family. Since the family, by definition,
is symmetric around the section0, we check only for the
sections belonging in[−L+ w − 1,−w + 1].

Phase I: Think of i and σ as fixed,i ∈ [−L + w −
1,−w+1]. Definec = c(σ) andj = i−⌈(2− 2

h∗ σ)(N−
L)⌉. Setz∗j = cx∗j + c̄x

∗
j+1. With these conventions, we

want to bound

d(z∗j , ch∗ ⊛ g(z∗j−w+1, · · · , z∗j+w−1)).

Using the convexity property (v) of (the Wasserstein
metric) Lemma 13, it is sufficient to bound

d(x∗j , ch∗ ⊛ g(z∗j−w+1, · · · , z∗j+w−1)), and

d(x∗j+1, ch∗ ⊛ g(z∗j−w+1, · · · , z∗j+w−1))

separately. The two bounds are identical and their
derivation is also essentially identical. Let us therefore
concentrate on the first expression. Using first the
triangle inequality and then the regularity properties
(vi) and (vii) as well as the convexity property (v), we
upper bound the first expression by

d(ch∗ ⊛ g(x∗j−w+1, . . . , x
∗
j+w−1),

ch∗ ⊛ g(z∗j−w+1, · · · , z∗j+w−1))+

+ d(x∗j , ch∗ ⊛ g(x∗j−w+1, . . . , x
∗
j+w−1))

≤ 2d
(( 1

w

w−1∑

l=0

( 1

w

w−1∑

k=0

x∗j+l−k
)�dr−1

)⊛dl−1
,

( 1

w

w−1∑

l=0

( 1

w

w−1∑

k=0

z∗j+l−k
)�dr−1

)⊛dl−1)
+δ

≤ 2(dl−1)

w

w−1∑

l=0

d
(( 1

w

w−1∑

k=0

x∗j+l−k
)�dr−1

,

( 1

w

w−1∑

k=0

z∗j+l−k
)�dr−1

)

+δ
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≤ 2(dl−1)(dr − 1)

w2

w−1∑

l=0

d
(w−1∑

k=0

x∗j+l−k,
w−1∑

k=0

z∗j+l−k

)

+δ

=
2(dl-1)(dr-1)

w2

j+w−1
∑

l=j

d(

w−1∑

k=0

x∗l−k,
w−1∑

k=0

cx∗l−k+c̄x
∗
l−k+1)+δ

=
2(dl−1)(dr−1)

w2
c̄

j+w−1
∑

l=j

d(x∗l−w+1, x
∗
l+1)+δ

≤ 2(dl−1)(dr−1)

w
+δ,

where to obtain the first inequality we use the approx-
imate nature ofx∗ and in the last step we have used
property (ii) of Lemma 13.
Phase II: In this regime we interpolate the “tail” of
the original constellation uniformly to∆+∞. From the
assumption of the lemma we haveB(x∗−N+L) ≤ δ.
Since x∗ is increasing we must haveB(x∗i−N+L) ≤
B(x∗−N+L) for i ∈ [−L, 0]. Lemma 13, property (iii),
then implies thatd(x∗i−N+L,∆+∞) ≤ δ for all i ∈
[−L, 0].
Again, think ofi andσ as fixed,i ∈ [−L+w−1,−w+
1]. Setc = 2σ/h∗ andj = i−N + L. Then

d(cx∗j+ c̄∆+∞, ch∗⊛g(cx
∗
j−w+1+ c̄∆+∞,. . .,cx

∗
j+w−1+ c̄∆+∞)

≤ d(cx∗j+ c̄∆+∞,∆+∞)

+ d(∆+∞, ch∗⊛g(cx
∗
j−w+1+ c̄∆+∞,. . .,cx

∗
j+w−1+ c̄∆+∞)

≤ 2(dl − 1)(dr − 1)δc+ cδ

δ≤1/w

≤ 2(dl − 1)(dr − 1)

w
+ δ,

where to obtain the penultimate inequality we use
Lemma 33 to bound the distance ofch∗⊛g(cx

∗
j−w+1 +

c̄∆+∞, . . . , cx∗j+w−1 + c̄∆+∞) to ∆+∞(= ch∗ ⊛

g(∆+∞, . . . ,∆+∞), since∆+∞ is always an FP of
DE) and the second expression is the distance of
cx∗j + c̄∆+∞ to ∆+∞, which is bounded using the
previous arguments.

Next, we show that if we have an approximate family of
FPs, then the area under the GEXIT integral associated to the
family depends only on the “end points” of the interpolated
family.

Theorem 64 (Area Theorem for Approx. FP Family):
Let {cσ, xσ}σσ denote an approximate FP family for the
(dl, dr, L, w) ensemble. More precisely,

(i) {cσ}σσ and{xσ}σσ are ordered by degradation, increasing,
and piece-wise linear8,

(ii) xσ,i = ∆+∞ for i /∈ [−L,L] and for allσ,
(iii) xσ,i = xσ for i ∈ [−L,L],
(iv) xσ,i = xσ for i ∈ [−L,L], and
(v) for all i ∈ [−L+ w − 1,−w + 1] ∪ [w − 1, L− w + 1]

andσ ∈ [σ, σ]

d(xσ,i, cσ ⊛ g(xσ,i−w+1, . . . , xσ,i+w−1)) ≤ δ.

8In fact, we will apply this theorem to the family given in Definition 62.
More generally, however, given a set of distinct ordered densitiesa1 ≺ a2 ≺
· · · ≺ an, we get a piece-wise linear family by linearly interpolating always
between consecutive densities.

Define

A({cσ, xσ}σσ) =
L∑

i=−L

G({cσ, ĝ(xσ,i−w+1,. . ., xσ,i+w−1)}σσ),

whereG({cσ, ĝ(xσ,i−w+1,. . ., xσ,i+w−1)}σσ) is the GEXIT inte-
gral introduced in Definition 23. Let

A(x) = H(x) + (dl − 1− dl
dr

)H(x�dr )− (dl − 1)H(x�dr−1).

ThenA({cσ, xσ}σσ) is well defined and

∣
∣
∣

A({cσ, xσ}σσ)
2L+ 1

−A(xσ) +A(xσ)
∣
∣
∣ ≤ b(dl, dr, δ, w, L),

where

b(dl, dr, δ, w, L) =
11w(1 + dldr)

2L+1
+4(

√
2+

2

ln 2
dl(dr−1))

√
δ.

Discussion:In words, the theorem says that for any family of
spatial FPs which start and end at a constant (over all sections)
FP, the GEXIT integral is given by the end-points and is close
to the difference of theA expression introduced in Lemma 26.
In fact, from the Lemma 26 we see that, graphically, this is
equal to the area under the BP GEXIT curve of the underlying
ensemble between the two end-points.

Proof: Let us consider the circular ensemble which is
associated to(dl, dr, L, w) (see Definition 31). As defined
in the statement of the lemma, fori ∈ [−L,L], the chan-
nel “seen” at positioni is cσ,i = cσ. For the remaining
sectionsi ∈ [L + 1, L + w − 1] we impose the “natural”
conditioncσ,i = ∆+∞. As a consequence, for these positions
xσ,i = ∆+∞.

Since{cσ} as well as{xσ} are piece-wise linear, all GEXIT
integrals are well defined (see the proof of Lemma 26).
Consequently,A({cσ, xσ}σσ) is well-defined.

Instead of determiningA({cσ, xσ}σσ), directly, let us deter-
mine the equivalent quantity associated to the circular ensem-
ble, i.e., we include thew−1 extra positions[L+1, L+w−1].
Since for all “extra” positions the associated channel is con-
stant, and so the additional integrals are zero, the numerical
value of these two unnormalized GEXIT integrals is in fact
identical.

We will now derive upper and lower bounds for the GEXIT
integrals for the given approximate FP family. Recall: fori ∈
[−L + w − 1,−w + 1] ∪ [w − 1, L − w + 1] we have aδ-
approximate (in the Wasserstein metric) FP family. Fori ∈
[−L,−L+w − 2]∪ [−w + 2, w − 2]∪ [L−w + 2, L] all we
know is that the channel is a monotone function ofσ. Finally,
for i ∈ [L+ 1, L+ w − 1] the channel is frozen to “perfect.”

Let us start by deriving a lower bound.
Boundary:For i ∈ [−L,−L + w − 2] ∪ [−w + 2, w −
2] ∪ [L − w + 2, L] the GEXIT integral is non-negative.
Thus, in this regime, we get a lower bound by setting
each GEXIT integral to 0 (cf. Lemma 16).
Interior: Consider the GEXIT integrals fori ∈ [−L +
w − 1,−w + 1] ∪ [w − 1, L− w + 1].

Technique:Rather than evaluating these integrals
directly we use the technique introduced in [108],
i.e., we consider the computation tree of height2
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rooted in nodei as shown in Figure 9 for the specific
case(dl = 2, dr = 4). More precisely, there are

leaves

root

Fig. 9. Computation tree of height 2 for(2, 4)-regular LDPC ensemble.

dl check nodes connected to this root variable node
and(dr−1) further variable nodes connected to each
such check node. So in total there aredl check nodes
in this tree and1 + dl(dr − 1) variable nodes. We
call the starting variable node, theroot and all other
variable nodes,leaves. By symmetry it suffices to
consider one branch of this computation tree in detail.
Let j, j ∈ [i, i + w − 1], denote the position of a
particular check node. We assume that the choice
of j is done uniformly over this interval. Letkl,
l ∈ [1, dr − 1], kl ∈ [j − w + 1, j], denote the
position of the l-th variable node attached to this
check node, and let the index of the root node be
0. For the leaf nodes we assume again a uniform
choice of kl over the allowed interval. Note that,
wlog, we have set the positionl = 0 for the root
variable node. For each computation tree assign to its
root node the channelcσ,i, whereas each leaf variable
node at positionkl “sees” the channelxσ,kl

. Note that
for our model of the tree, the distribution (averaged
over this choice) which flows into the root node is
exactly ĝ(xσ,i−w+1,. . ., xσ,i+w−1), as required for the
computation ofA({cσ, xσ}σσ).
Let us describe the basic trick which will help us to
accomplish the computation. We will first determine
the sum of all GEXIT integrals associated to such
a tree. From this we will then subtract the GEXIT
integrals associated to its leaf nodes. This will give
us the GEXIT integral associated to the root node,
which is what we are interested in.
More precisely, we use (37). The lhs of this equation
gives us the contribution of the overall tree and the
rhs contains the GEXIT integral of the root node plus
the GEXIT integrals of the leaf nodes. For the current
case, we stress that all the operations (integrals of
derivatives and partial derivatives) in (37) are well-
defined since the family we consider is piece-wise
linear
Contributions from overall tree:Recall that fori ∈

[−L,L], xi,σ = xσ andxi,σ = xσ.
Consider first the caseσ = σ and i ∈ [−L + w −
1,−w+1]∪ [w− 1, L−w+1]. From Lemma 54 we
know that the conditional entropy H(X |Y ) of the
tree code is given by

H(x̃σ) + dl(dr − 1)H(xσ)− H(x̃σ � x�dr−1
σ )

− (dl − 1)H(x�dr−1
σ ),

where x̃σ = cσ ⊛ (x�dr−1
σ )⊛dl−1. Now recall that

d(x̃σ, xσ) ≤ δ. DefineT (x) as

(1+dl(dr−1))H(x)−H(x�dr )−(dl−1)H(x�dr−1).

Then (dropping the subscriptsσ for a moment),

|H(X |Y )− T (x)|
≤ |H(x̃)−H(x)|+|H(x̃ � x�dr−1)−H(x�dr )|
Lem. 13.ix

≤ h2(d(x̃, x)/2)+h2(d(x̃ � x�dr−1, x�dr)/2)

Lem. 13.vii
≤ 2h2(d(x̃, x)/2)

(25)
≤ 4

√

d(x̃, x)/2 ≤ 2
√
2δ.

Exactly the same argument tells us that the entropy of
such a tree forσ = σ is, up to a possible error of size
2
√
2δ, equal toT (xσ). We conclude: the difference

of the total entropy of such a tree is lower bounded
by T (xσ)− T (xσ)− 4

√
2δ, call thisB − 4

√
2δ.

Contributions from leaves:We need to find the
contributions of GEXIT integrals associated to all
the leaf nodes of each such tree rooted at a position
i ∈ [−L + w − 1,−w + 1] ∪ [w − 1, L − w + 1].
The exact such sum is difficult to determine. But we
only need an upper bound to derive a lower bound
on the overall GEXIT integral. Note that GEXIT
integrals are non-negative. Hence, let us compute
the sum of GEXIT integrals of leaf nodes ofall
computation trees, whether they are rooted in a
positioni ∈ [−L+w−1,−w+1]∪[w−1, L−w+1]
or not.
By symmetry, this contribution is easy to determine.
More precisely, consider the following equivalent
procedure. Pick a check node at positionj, j ∈
[−L,L+w−1]. Every check node hasdr connected
variable nodes, where each variable node is picked
with uniform probability and independently from the
range[j−w+1, j] and the choice of thedr variables
is iid (note that the connections are taken on the
circular ensemble).
Contributions from checks in the range[−L,−L +
2w− 3]∪ [−w+2, 2w− 3]∪ [L−w+2, L+w− 1]:
Check nodes in this range might see some frozen
channels or channels which do not form approximate
FPs. Hence we upper bound all GEXIT integrals
associated to check nodes in this range by1 (cf.
Lemma 16). The number of such integrals is(7w −
8)dl(dr − 1).
Contributions from checks in the range[−L+ 2w−
2,−w+1]∪ [2w−2, L−w+1]: Check nodes in this
range only see channels which are approximate FPs
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and none of the channels are frozen. There are(2L−
6w+8)dl(dr−1) such integrals. Let us determine the
contribution for each such integral. Since we consider
an average over all possible computation trees, the
(average) density entering a check node is equal for
all the leaf nodes (there aredr − 1 such densities).
Let us call this densityxσ. If we focus on a check
node at positionj, this density is equal to

xσ =
1

w

w−1∑

k=0

xσ,j−k.

However, the density entering the check node, at
positionj, from the root node will be different from
xσ, since we do not have a family of true FPs. Call
this densityx̃σ. This density is equal to

x̃σ =
1

w

w−1∑

k=0

cσ ⊛ g(xσ,j−k−w+1, . . . , xσ,j−k+w−1).

Since we assumed that we have an approximate FP
family and due to the convexity of the Wasserstein
metric, we conclude thatd(xσ, x̃σ) ≤ δ. Let us define
P (x) = H(x)− 1

dr
H(x�dr). From Lemma 53 we have

that P (x) is the GEXIT integral of a leaf node if
we had a true FP. Since we have an approximate FP,
each such integral can be upper bounded byP (xσ)−
P (xσ)+

8
ln 2

√
2δ, call it C+ 8

ln 2

√
2δ. We derive this

as follows. We want to bound the difference
∣
∣
∣

∫ σ

σ

H(
dxσ
dσ

⊛ zσ)dσ −
∫ σ

σ

H(
dxσ
dσ

⊛ z̃σ)dσ
∣
∣
∣,

where zσ = x�dr−1
σ and z̃σ = x�dr−2

σ � x̃σ.
Since the family,{xσ} is piece-wise linear, we use
(37) (applied in this case to the single parity-check
code), Lemma 53 and symmetry to conclude that
∫ σ

σ
dσH( dxσ

dσ ⊛ zσ) = P (xσ) − P (xσ). Since the
family, {xσ} is piece-wise linear and ordered by
degradation, we can reparameterize the GEXIT in-
tegrals with the Battacharyya parameter which we
denote byb = B(xσ). Thus

∣
∣
∣

∫ b

b

H(
dxb
db

⊛(zb− z̃b))db
∣
∣
∣≤ 8

ln 2

√

2d(x�dr−1
b ,x�dr−2

σ �x̃b).

To see the last inequality, using (ii), Lemma 21 we
have

H((xb′−xb)⊛(zb−̃zb)) ≤
8

ln(2)
B(xb′−xb)

√

2d(z̃b, zb),

where xb ≺ xb′ . SinceB(xb′) = b′ and B(xb) =

b, we get H((xb′−xb)⊛(zb−z̃b))
b′−b ≤ 8

ln(2)

√

2d(z̃b, zb),
which gives us the bound. The last expression can
be further upper bounded (using (vii), Lemma 13)
by 8

ln 2

√

2d(xb, x̃b) ≤ 8
ln 2

√
2δ.

Accounting:Putting everything together, we have

(2L− 4w + 6)
︸ ︷︷ ︸

nb. of interior nodes

(B − 4
√
2δ)

︸ ︷︷ ︸

sum of GEXIT integrals per tree

− (2L− 6w + 8)dl(dr − 1)C
︸ ︷︷ ︸

contributions of approx. FP channels

+

− (7w − 8)dl(dr − 1)
︸ ︷︷ ︸

frozen and non FP contributions

+

− (2L− 6w + 8)dl(dr − 1)
8

ln 2

√
δ

︸ ︷︷ ︸

correction due to approx. FP nature

≥(2L+ 1)(A(xσ)−A(xσ)) +D,

where

D =−(4w − 5)B−(7w− 8)dl(dr − 1)
︸ ︷︷ ︸

≥ −11w(1 + dldr) sinceB ≤ 1 + dldr

− 4
√
δ(2L+ 1)[

√
2 +

2

ln 2
dl(dr − 1)].

Let us derive an upper bound in the same manner.

Boundary:For i ∈ [−L,−L + w − 2] ∪ [−w + 2, w −
2] ∪ [L − w + 2, L] the GEXIT integrals are at most1.
This gives a contribution of4w − 5. As usual, fori ∈
[L+1, L+w− 1] the GEXIT integral is0 and does not
contribute to the area.
Interior: Consider the GEXIT integrals fori ∈ [−L +
w − 1,−w + 1] ∪ [w − 1, L− w + 1].

Technique:We use the same procedure as before-
hand. But this time we need a lower bound of the
GEXIT integrals of the leaf nodes.
Contributions from overall tree:As before, the over-
all contribution of each tree is equal toT (xσ)−T (xσ)
plus an error term of absolute value equal to4

√
2δ.

Contributions from leaves:The idea is same as be-
fore and as before, we will consider the computation
from the point of view of check nodes. As before,
we split the contribution in two regimes,[−L,−L+
2w− 3]∪ [−w+2, 2w− 3]∪ [L−w+2, L+w− 1]
and [−L+ 2w − 2,−w + 1] ∪ [2w − 2, L− w + 1].
Contributions from checks in the range[−L,−L +
2w− 3]∪ [−w+2, 2w− 3]∪ [L−w+2, L+w− 1]:
Check nodes in this range might see some frozen
channels or channels which are not approximate FPs.
Since we are looking for an upper bound, we set the
contribution of such check nodes to be 0.
Contributions from checks in the range[−L+2w−
2,−w + 1] ∪ [2w − 2, L− w + 1]: As we discussed
before, check nodes in this range only see channels
which are approximate FPs and none of the channels
are frozen. Further, all these GEXIT integrals corre-
sponds to computation trees whose rooti is in the
range[−L+w−1,−w+1]∪[w−1, L−w+1]. We can,
therefore, subtract all their contributions, which are
obtained by arguments similar to those used in the
lower bound. There are(2L−6w+8)dl(dr−1) such
integrals and the contribution for each such integral
is at leastC − 8

ln 2

√
δ. Here, the last term takes into

account the approximate FP nature of the channels
and C was defined in the arguments for obtaining
the lower bound.
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Accounting:We have

(4w − 5)
︸ ︷︷ ︸

boundary

+(2L− 4w + 6)
︸ ︷︷ ︸

nb. interior nodes

(B + 4
√
2δ)

︸ ︷︷ ︸

total contribution per tree

+

− (2L− 6w + 8)dl(dr − 1)C
︸ ︷︷ ︸

contr. of interior check nodes

+

+ (2L− 6w + 8)dl(dr − 1)
8

ln 2

√
δ

︸ ︷︷ ︸

correction due to approx. FP nature

≤(2L+ 1)(A(xσ)−A(xσ)) + E,

where

E = (6w − 7)dl(dr − 1)C
︸ ︷︷ ︸

≤ 6wdldr sinceC ≤ dr+1
dr

+(4w − 5)
︸ ︷︷ ︸

≤4wdldr

+ 4
√
δ(2L+ 1)[

√
2 +

2

ln 2
dl(dr − 1)].

Proof of Theorem 47: Rather than deriving the bound
c(dl, dr, δ, w,K,L) for all values of the parameters, we are
only interested in the behavior of this bound for values ofδ
tending to0 and values ofK andL tending to∞. Hence, in
the sequel, nothing is lost by assuming at several spots that
δ is “sufficiently” small andK andL are “sufficiently” large
(consequentlyN is also sufficiently large). This will simplify
our arguments significantly.

Let (c∗, x∗) denote the proper one-sided FP on[−N, 0] with
forced boundary condition which fulfills the stated conditions
for someδ > 0 and2(w− 1) ≤ L andL+w ≤ K ≤ N . We
prove the claim in several steps, where in each step we assert
further properties that such a FP has to fulfill.

Constellation is almost flat and not too small “on the
right”: Recall that by assumptionB(x∗−K) ≥ xu(1) so that
B(x∗i ) ≥ xu(1) for i ∈ [−K, 0]. Using the same reason-
ing as in the discussion at the end of Lemma 14, we can
conclude that there exists ani∗ ∈ [−K,−L − w] such that
D(x∗j , x

∗
k) ≤ D(x∗i∗ , x

∗
j ) + D(x∗j , x

∗
k) + D(x∗k, x

∗
i∗+L+w) =

D(x∗i∗ , x
∗
i∗+L+w) ≤ 2(L+w)

K for all j ≤ k and j, k ∈
[i∗, i∗+L+w]. From part (i) of Lemma 14 we conclude that
d(x∗j , x

∗
k) ≤

√

8(L+ w)/K for all i∗ ≤ j ≤ k ≤ i∗ + L+w.
Clearly, the right-hand side can be made arbitrarily small by
pickingK sufficiently larger thanL+ w.

Constellation can be made exactly flat and not too small
“on the right”: Create from(c∗, x∗) the increasing constella-
tion (c∗, z∗) on [−N, 0] with free boundary condition in the
following way,

z∗i =

{

x∗i , i ∈ [−N, i∗ + w],

x∗i∗+w, i ≥ i∗ + w.

The graphical interpretation is simple. We replace the “almost”
flat part on the right plus the extra part on the right which
might not be flat with an exactly flat part. To simplify our
subsequent notation we setx = x∗i∗+w and from above
arguments note thatB(x) ≥ xu(1). HenceB(z∗i ) ≥ xu(1)
for all i ≥ i∗ + w.

Constellation is approximate FP: Note that by going from
x to z no component in[−N, i∗+L+w] is changed by more

than a distanceκ =
√

8(L+ w)/K. Therefore, if we run DE
on the modified components it is clear that in this range the
output must still be close to the original output. More precisely,
we have for everyi ∈ [−N, i∗ + L+ 1]

d(z∗i , c
∗ ⊛ g(z∗i−w+1, . . . , z

∗
i+w−1))

≤ d(z∗i , x
∗
i ) + d(x∗i , c

∗ ⊛ g(z∗i−w+1, . . . , z
∗
i+w−1))

≤κ+d(c∗⊛g(x∗i−w+1, . . . , x∗i+w−1), c∗⊛g(z∗i−w+1, . . . , z∗i+w−1))
≤ κ+ 2(dl − 1)(dr − 1)κ,

where to get the penultimate inequality we first replacex∗i by
c∗⊛g(x∗i−w+1, . . . , x

∗
i+w−1), sincex∗ is a true FP, and then to

obtain the last inequality we apply Lemma 33. Sinceκ can be
made arbitrarily small by choosingK sufficiently large, this
verifies the approximate FP nature fori ∈ [−N, i∗ + L + 1].
Let us now focus oni ∈ [i∗ + L + 2, 0]. Note that since
L ≥ 2(w − 1), we can use the above argument in particular
for i = i∗+2w−1. For this choice ofi all involved densities,
z∗i−w+1, . . . , z

∗
i+w−1, are equal tox. Therefore, the previous

argument shows that

d(x, c⊛ g(x, . . . , x)) ≤ κ+ 2(dl − 1)(dr − 1)κ. (43)

But for i ≥ i∗ + w all components ofz∗ are equal tox and
so the approximate FP nature ofz∗ is also verified fori ≥
i∗ + 2w − 1. Sincei∗ + 2w − 1 ≤ i∗ + L + 1, we conclude
that z∗ is an approximate FP.

From FP to FP family:From the approximate FP(c∗, z∗)
on [−N, 0] we create the approximate FP family{c∗σ, z∗σ}σ=h

∗

σ=0

on [−L, 0] as described in Definition 62.
Computing GEXIT integral – Definition 23:Using the

basic definition of the GEXIT functional in Definition 23 we
conclude that the GEXIT integral associated to{c∗σ, z∗σ}σ=h

∗

σ=0 ,
A({c∗σ, z∗σ}σσ) is 0 since the channel remains constant through-
out the interpolation.

Computing GEXIT integral – Theorem 64:We now com-
pute the GEXIT integral associated to{c∗σ, z∗σ}σ=h

∗

σ=0 by first
applying Lemma 63 and then Theorem 64.

More precisely, from the previous arguments we satisfy all
the hypotheses of Lemma 63. This allows us to conclude
that the FP family constructed above is2(dl−1)(dr−1)

w + δ
approximate FP (cf. (42)) ifK is chosen sufficiently large.
Furthermore, since the starting (z∗σ=h∗,i = x for all sections
i ∈ [−L, 0]) and ending constellations (z∗σ=0,i = ∆+∞ for all
sectionsi ∈ [−L, 0]) are flat, we satisfy all the hypotheses of
Theorem 64 from which we conclude that the GEXIT integral
is upper bounded byA(x)+b(dl, dr,

2(dl−1)(dr−1)
w +δ, w, L).9

Flat region has entropy not much smaller thandl

dr
: From

part (viii) Lemma 59 we get

x2u(1) ≥ (dr−1)
−2(

dl−1

dl−2 ) ≥ (dr−1)−3 +
(3

4

) dl−1

2

,

where in the last step we have used condition (vii) in Defini-
tion 40. We conclude that

H(x)
Lem. 4
≥ B2(x) ≥ x2u(1) ≥ (dr−1)−3 +

(3

4

) dl−1

2

. (44)

9Note thatA(∆+∞) = 0.
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We now proceed by contradiction. Let us assume that H(x) ≤
dl

dr
− dle

−4(dr−1)(
2dl

11edr
)
4
3 − 1

dr
. As we just discussed,

d(x, c∗⊛(x�dr−1)⊛dl−1)≤ 2(dl−1)(dr−1)

w
+δ≤(

ln(2)dl

16
√
2dr

)2.

In the last step we assumed without loss of generality
that δ is chosen sufficiently small. The inequality then fol-
lows from the condition (v) in Definition 40. This, to-
gether with (44), guarantees that we satisfy the hypoth-
esis of (the Negativity) Lemma 27. Hence we conclude
that A(x) ≤ − 1

dr
. From condition (vi) in Definition 40

4(
√
2 + 2

ln 2dl(dr − 1))
√

2(dl−1)(dr−1)
w < 1

dr
. Hence for a

sufficiently small δ and a sufficiently largeL, this leads
to the conclusion that the GEXIT integralA({c∗σ, z∗σ}σσ) ≤
A(x) + b(dl, dr,

2(dl−1)(dr−1)
w + δ, w, L) < 0, a contradiction

to the previous computation. As a consequence, we must have

h
∗ = H(c∗) ≥ H(x) ≥ dl

dr
−dle−4(dr−1)(

2dl
11edr

)
4
3 − 1

dr
. (45)

The flat region is close toxBP: We will now show thatx
is close toxBP(c∗), the BP FP when transmitting over the
channelc∗ using the underlying(dl, dr)-regular ensemble.
In the sequel we will denotexBP(c∗) by xBP. To do this,
we will first bound the Wasserstein distance betweenxBP

and x̃, where x̃ is defined to be equal tox∗i∗+L+w. Thus to
bound the distance betweenx andxBP we bound the distances
d(x, x̃) and d(x̃, xBP). Note from the previous part we have
that d(x, x̃) = d(x∗i∗+w, x

∗
i∗+L+w) ≤ κ and hence the distance

betweenx and x̃ can be made arbitrarily small by taking
K sufficiently large. Let us now boundd(x̃, xBP). First, we
show thatd(x̃, c∗⊛g(x̃, . . . , x̃)) can be made arbitrarily small.
Indeed,

d(x̃, c∗ ⊛ g(x̃, . . . , x̃)) ≤d(x̃, x) + d(x, c∗⊛g(x, . . . , x))

+ d(c∗⊛g(x, . . . , x), c∗⊛g(x̃, . . . , x̃))

≤ κ+κ+4(dl−1)(dr−1)κ, (46)

where to get the last inequality we have used the approximate
FP nature ofx (cf. (43)) and the (sensitivity) Lemma 33. Since
κ can be made arbitrarily small, we can make the distance
d(x̃, c∗ ⊛ g(x̃, . . . , x̃)) as small as desired.

Run forward DE, with the channelc∗, starting fromx̃0 = x̃,
xBP
0 = xBP, andw0 = ∆0, respectively. Let̃xℓ = Tc∗(x̃ℓ−1),
xBP
ℓ = Tc∗(x

BP
ℓ−1) = xBP, andwℓ = Tc∗(wℓ−1), ℓ ≥ 1. Recall

thatTc∗(·) is the DE operator for the(dl, dr)-regular ensemble
when transmitting over the channelc∗. We will choose the
value ofℓ shortly. Then

d(x̃, xBP) ≤ d(x̃0, x̃ℓ) + d(x̃ℓ,wℓ) + d(wℓ, x
BP)

≤
ℓ−1∑

j=0

d(x̃j , x̃j+1)+2
√

B(wℓ)−B(x̃ℓ)+2
√

B(wℓ)−B(xBP)).

In the last step we use thatwℓ ≻ x̃ℓ, sincew0 = ∆0 ≻ x̃0
and DE preserves degradation. Similarly, we usewℓ ≻ xBP.
Therefore we can upper bound the Wasserstein distance in
terms of the difference of the respective Battacharyya con-
stants according to (ii), Lemma 14.

Chooseℓ = ⌊ L
w−1⌋. We then claim thatx ≺ x̃j for all 0 ≤

j ≤ ℓ. Let us prove this claim immediately. From construction,
we havex = x∗i∗+w ≺ x∗i∗+L+w = x̃0. Next, we claim that
x̃j ≻ x∗i∗+L+1−(w−1)(j−1) for 1 ≤ j ≤ ℓ. Before we prove
this claim, we apply it immediately to conclude that

x̃j ≻ x∗i∗+L+1−(w−1)(j−1)

j≤ℓ≤ L
w−1≻ x∗i∗+w = x.

To prove the intermediate claim we argue inductively that

x̃j = c∗ ⊛ g(x̃j−1, . . . , x̃j−1)

≻ c∗ ⊛ g(x∗i∗+L+1−(w−1)j, . . . , x
∗
i∗+L+1−(w−1)(j−2))

= x∗i∗+L+1−(w−1)(j−1).

The induction is completed by verifying thatx̃1 ≻ x∗i∗+L+1.
Indeed, from the monotonicity of the spatial FP,x∗, we get

x∗i∗+L+1 = c∗ ⊛ g(x∗i∗+L−w+2, . . . , x
∗
i∗+L+w)

x
∗
i∗+L+w=x̃0

≺ c∗ ⊛ g(x̃0, . . . , x̃0) = x̃1. (47)

Let us now bound the distanced(x̃j , x̃j+1) for 1 ≤ j ≤ ℓ.
Since these elements are derived by DE we can use our bounds
on how the Wasserstein distance behaves under DE (cf. (viii),
Lemma 13) to conclude thatd(x̃j , x̃j+1) ≤ αd(x̃j−1, x̃j),
where α = 2(dl − 1)(dr − 1)(1 − B2(x))

dr−2
2 . To obtain

α we have used̃xj ≻ x for all 0 ≤ j ≤ ℓ to get
min{B(x̃j−1),B(x̃j)} ≥ B(x). Continuing with above in-
equality, it is not hard to see that we getd(x̃j , x̃j+1) ≤
αjd(x̃0, x̃1). This gives a bound of

ℓ−1∑

j=0

d(x̃j , x̃j+1) ≤ d(x̃0, x̃1)
αℓ − 1

α− 1
≤ d(x̃0, x̃1)

1

1− α
,

where in the last inequality we useB(x)
Lemma4

≥ H(x) ≥
dl

dr
− dle

−4(dr−1)(
2dl

11edr
)
4
3 − 1

dr
combined with the condition

(ii) in Definition 40 to getα < 1. From (46) we know that
we can maked(x̃0, x̃1) as small as we want by choosingK
sufficiently large.

Let us now bound the two terms containing Battacharyya
parameters. Note that in each iteration the distance of the
respective Battacharyya constants decreases by a factor ofat
leastβ = B(c∗)(dl−1)(dr−1)(1−min{B(x),B(xBP)}2)dr−2.
Indeed, from Lemma 51,

B(wℓ)−B(x̃ℓ) ≤
(

B(c∗)(dl−1)(dr−1)(1−B(x)2)dr−2
)ℓ

B(wℓ)−B(xBP)≤
(

B(c∗)(dl−1)(dr−1)(1−B(xBP)
2)dr−2

)ℓ

.

For the first inequality we again useB(x̃j) ≥ B(x) for all
0 ≤ j ≤ ℓ. Above we have also usedB(w0) − B(x̃0) =
B(∆0)−B(x̃) ≤ 1 andB(w0)−B(xBP) = B(∆0)−B(xBP) ≤
1. We now have

B(c∗)(dl−1)(dr−1)(1−B(x)2)dr−2 < 1,

B(c∗)(dl−1)(dr−1)(1−B(xBP)2)dr−2 < 1.

For the first inequality we use condition (ii) in Defini-

tion 40 combined withB(x)
Lemma4

≥ H(x) ≥ dl

dr
−
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dle
−4(dr−1)(

2dl
11edr

)
4
3 − 1

dr
. For the second inequality we use

condition (iii) in Definition 40 combined withh∗ ≥ dl

dr
−

dle
−4(dr−1)(

2dl
11edr

)
4
3 − 1

dr
≥ h̃ and Lemma 18.

Therefore we can bound the sum of the two Battacharyya
terms by 4βℓ/2 with β = B(c∗)(dl − 1)(dr − 1)(1 −
min{B(x),B(xBP)}2)dr−2 < 1.

Putting everything together we conclude that by choosing
L,K sufficiently larged(x, xBP) can be made as small as
desired.
h
∗ is close tohA: From Theorem 64 we have

∣
∣
∣

A({c∗σ, z∗σ}σσ)
2L+ 1

−A(x)
∣
∣
∣ ≤ b(dl, dr,

2(dl − 1)(dr − 1)

w
+δ, w, L).

From above arguments we haveA({c∗σ, z∗σ}σσ) = 0 hence

|A(x)| ≤ b(dl, dr,
2(dl − 1)(dr − 1)

w
+ δ, w, L).

Using the formula forA(·) given in Lemma 26 and properties
(vii) and (ix) given in Lemma 13 we have

|A(xBP)−A(x)| ≤ 2
√
2
√

d(x, xBP)

×
(

1 +
√

dr(dl − 1− dl
dr

) +
√

dr − 1(dl − 1)
)

.

Recall thatxBP = xBP(c∗). Combining, we get

|A(xBP)| ≤ b(dl, dr,
2(dl − 1)(dr − 1)

w
+ δ, w, L)

+ 2
√
2
√
δ
(

1 +
√

dr(dl − 1− dl
dr

) +
√

dr − 1(dl − 1)
)

.

Further the BP GEXIT value for all channels betweenh
∗

andhA is lower bounded by 1
2(dr−1)3 . To show this we first

note that from condition (iii) and (viii) in Definition 40 we
satisfy the hypotheses of Lemma 29. Hence from Lemma 29
we havehA ≥ h̃. Also, from (45) we haveh∗ ≥ h̃.

Then for anyh ≥ min{hA, h∗} we haveB(xh) ≥ xu(1)
(cf. Lemma 18). Thus we conclude thatB(xh) ≥ xu(1) ≥

1
(dr−1)3/2

for any h ≥ min{hA, h∗}. Denotingyh = x�dr−1
h

we have,

G(ch,y
⊛dl
h

)
concavity of GEXIT

≥ 2E(y⊛dl
h

)
extremes of info.,

mult. prop. of Batta
≥ 1−

√

1− (B(yh))2dl

(a)
≥ 1−

√

1− 1

(dr − 1)3
≥ 1

2(dr − 1)3
.

To obtain (a) we useB(xh) = B(ch)(B(yh))
dl−1, since

ch and xh form a FP pair. This implies that(B(yh))
2dl =

(B(xh)
B(ch)

)
2dl

dl−1 ≥ (B(xh))
2dl

dl−1 ≥ (xu(1))
2dl

dl−1
Lemma 59

≥ (dr −
1)

−2dl
dl−2 ≥ (dr − 1)−3. The last inequality follows since

condition (vii) in Definition 40 implies thatdl ≥ 6. This
implies

∣
∣
∣

∫
h
∗

hA

G(ch, y
⊛dl
h

)dh
∣
∣
∣ ≥ |h∗ − h

A| 1

2(dr − 1)3
.

Sinceh∗ andhA are both greater thañh, from Lemma 26 we
have
∣
∣
∣

∫
h
∗

hA

G(ch, y
⊛dl
h

)dh
∣
∣
∣ = |A(xBP)−A(xBP

hA
)| = |A(xBP)|,

where the last equality follows sinceA(xBP

hA
) = 0 (cf.

Lemma 29).
Putting everything together we get

|h∗ − h
A|≤2(dr−1)3

(

b(dl, dr,
2(dl − 1)(dr − 1)

w
+ δ, w, L)

+ 2
√
2
√
δ(1 +

√

dr(dl − 1− dl
dr

) +
√

dr − 1(dl − 1))
)

.

APPENDIX K
EXISTENCE OFFP – THEOREM 48

Proof: Before proceeding to the main part of the proof,
let us show that if we assume that there exists a proper FP
on [−N, 0], with forced boundary condition on the right and
∆+∞ on the left (i < −N ) and with Battacharyya parameter
of the constellation (cf. Definition 37) equal toxu(1)/2, then
the desired properties (i) and (ii) mentioned in the statement
of the theorem follow.

Constellation is close to∆+∞ “on the left” : Let N1 be the
largest integer so that for alli < −N + N1, B(xi) ≤ δ. We
have a proper FP andw > 2d3l d

2
r (becausew is by assumption

admissible in the sense of condition (iv) in Definition 40).
Hence by applying (the Transition Length) Lemma 61 we
conclude that the number of sections with Battacharyya pa-
rameter bounded betweenδ andxu(1) is at mostwc(dl, dr)/δ,
where c(dl, dr) is the constant defined in Lemma 61. Since
the Battacharyya parameter of the constellation isxu(1)/2,
we have

(N + 1)
xu(1)

2
≥ (N + 1−N1 − wc(dl, dr)/δ)xu(1).

This implies thatN1 ≥ (N+1)
(

1
2−

wc(dl,dr)
(N+1)δ

)

. Using property
(x) of (the Wasserstein metric) Lemma 13, we conclude that
for all i < −N +N1, d(xi,∆+∞) ≤ δ.

Constellation is not too small “on the right”: Let N1 be as
defined previously. Again, since the Battacharyya parameter
of the constellation is equal toxu(1)/2 we have

(N + 1)
xu(1)

2
≤ N1δ + (N+1−N1),

where on the rhs above we have replaced the sections with
value greater thanδ by the maximum value of1.

This implies thatN1 ≤ (N + 1)
1−xu(1)

2

1−δ . Thus if we define
N2 as the number of sections with Battacharyya parameter at
least equal toxu(1), we must have

N2 ≥ (N + 1)−N1 − wc(dl, dr)/δ

≥ (N + 1)
(xu(1)

4
− wc(dl, dr)

δ(N + 1)

)

,

where we usedδ ≤ xu(1)
4 to obtain the above expression.

It remains to show the existence of the proper FP itself,
with Battacharyya parameter of the constellation equal to
xu(1)/2. We use the Schauder FP theorem in a strong form
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recently proved by Cauty [113]: This theorem states that every
continuous mapf from a convex compact subsetS of a
topological vector space to itself has a FP.

Recall that atopological vector spaceS is a vector space
over a topological fieldF (most often the real or complex
numbers with their standard topologies) which is endowed
with a topology such that vector additionS × S → S and
scalar multiplicationF×S → S are continuous functions.

Let S = L1[0, 1] (whereL1 denotes theL1 norm). Note that
S is a real normed vector space and hence a topological vector
space. LetP denote the space of probability measures on[0, 1]
endowed with the Wasserstein metric. Note thatP ⊂ S, where
we represent elements ofP by their cumulative distribution
functions. Note that the topology onP induced byS coincides
with our choice (cf. second alternative definition in part (i)
of Lemma 13). Also, onP the topology induced by the
Wasserstein metric is equivalent to the weak topology. Since
[0, 1] is a complete separable metric space, so isP , see [104,
Theorem 6.18]. Since[0, 1] is compact, so isP , see [104,
Remark 6.19].

A Cartesian product of a family of topological vector spaces,
when endowed with the product topology, is a topological vec-
tor space. Hence,SN+1, endowed with the product topology,
is a topological vector space.

Let S be the subset

S ={|X| ∈ SN+1 : |X|i is a |D|-distribution, i ∈ [−N, 0];
B(|X|) = xu(1)/2; |X|−N ≺ |X|−N+1 ≺ · · · ≺ |X|0}.

Discussion:As we discussed above, we think of the elements
of P as cumulative distribution functions. In particular, these
are the cdfs in the so called|D| domain. In the sequel, rather
than only referring to cdfs it will often be more convenient
to write down the|D| distributions|x| or D distributionsx,
directly.
S is non-empty: Setting all elements of|x| equal to

xu(1)/2∆0+(1−xu(1)/2)∆1 gives an element in this space.
S is convex: Let x, y ∈ S with |D|-distributions given by

|x| and |y| respectively. Let|v| = β|x| + (1 − β)|y| for some
β ∈ (0, 1). SinceB(·) is a linear operator, we see that

B(|v|) = βB(|x|) + (1 − β)B(|y|) = xu(1)/2.

Also, using (2), we see that|v|i−1 ≺ |v|i for all i ∈ [−N +
1, 0]. Henceβx+ (1− β)y ∈ S.
S is closed: Consider a sequence{|x|(ℓ)}∞ℓ=1 of elements of

S and assume that this sequence converges in the Wasserstein
metric to a limit, call it |x|(∞). We need to show that
|x|(∞) ∈ S, i.e., we claim thatS is closed. In this respect,
recall from our discussion above thatS ⊆ PN+1 and that on
PN+1 the topology induced by the Wasserstein metric is the
weak topology.

From Lemma4.25 in [62] we know that each component of
|x|(∞) is a symmetric|D| distribution. It therefore remains to

shows that (i)B(|x|(∞)) = xu(1)/2, and (ii) |x|(∞)
i−1 ≺ |x|(∞)

i

for all i ∈ [−N + 1, 0]. Both claims follow from the fact that
we can encode the above properties in terms of continuous
functions and that continuous functions preserve the properties
under limits.

Let us show this in detail. We begin with (i). Consider the
sequence{|x|(ℓ)}. We have

B(|x|(ℓ))= 1

N + 1

0∑

j=−N

B(|x|(ℓ)j ),

B(|x|(ℓ)j )=

∫ 1

0

|x|(ℓ)j (y)
√

1− y2 dy.

Now note that
√

1− y2 is a bounded and continuous function
on [0, 1]. Therefore, (weak) convergence of{|x|(ℓ)} to |x|(∞)

implies (weak) convergence ofB(|x|(ℓ)) to B(|x|(∞)) =
xu(1)/2.

Let us show (ii). From (2),|x|(ℓ)j−1 ≺ |x|(ℓ)j is equivalent to
∫ 1

z
|X|(ℓ)j−1(x)dx ≤

∫ 1

z
|X|(ℓ)j (x)dx for all z ∈ [0, 1]. We have

∫ 1

z

|X|(∞)
j−1(x)dx ≤

∫ 1

z

|X|(∞)
j (x)dx+

∫ 1

z

|X|(∞)
j−1(x)dx−

∫ 1

z

|X|(ℓ)j−1(x)dx

−
∫ 1

z

|X|(∞)
j (x)dx+

∫ 1

z

|X|(ℓ)j (x)dx. (48)

By assumption, the sequence{|x|(ℓ)} converges in the sense
of the Wasserstein metric. Therefore from property (iii) of
Lemma 13, for allj ∈ [−N + 1, 0], limℓ→∞ |X|(ℓ)j (x) =

|X|(∞)
j (x) for all x ∈ [0, 1] such that|X|(∞)

j is continuous at
x (in other words, weak convergence is equal to convergence
in distribution). This implies that for allj

lim
ℓ→∞

∣
∣
∣

∫ 1

z

|X|(ℓ)j (x)dx−
∫ 1

z

|X|(∞)
j (x)dx

∣
∣
∣ = 0

so that from (48) we conclude that
∫ 1

z

|X|(∞)
j−1(x)dx ≤

∫ 1

z

|X|(∞)
j (x)dx.

S is compact: Note thatS is a closed subset ofPN+1,
which is compact since it is the product of compact spaces.
HenceS is compact as well.

Definition of mapV (·): In order to show (via Schauder’s
FP theorem) thatS contains a FP of DE we need to exhibit
a continuous map which mapsS into itself. Our first step is
to define a map, call itV (|x|), which “approximates” the DE
equation and is well-suited for applying the FP theorem. The
final step in our proof is then to show that the FP of the map
V (|x|) is in fact a FP of DE itself.

The mapV (|x|) is constructed as follows. For|x| ∈ S, let
U(|x|) be the map,

(U(|x|))i = g(|x|i−w+1, . . . , |x|i+w−1), i ∈ [−N, 0],
where |x|i = ∆+∞ for i < −N , and where|x|i = ∆0 for
i > 0. DefineV : S → S as

V (|x|) =







U(|x|)⊛ |c|, s.t. B(|c|) = xu(1)
2B(U(|x|)) ,

xu(1)/2 ≤ B(U(|x|)),
ᾱ(|x|)U(|x|) + α(|x|)∆0, otherwise.

In words, ifU(|x|) is “too large”, upgrade it by an appropriate
channel|c|. If, on the other hand,U(|x|) is “too small” then
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we take a convex combination with∆0. In the preceding ex-
pressions, terms likēαU(|x|) denote component-wise products,
i.e., the result is a vector of densities, where thei-th component
is the result of multiplying thei-th component ofU(|x|) with
the scalar̄α(|x|)i. Further,ᾱ is a shorthand for(1− α(|x|)).

It remains to specify the components ofα(|x|). Note that
α(|x|) ∈ [0, 1]N+1. Further, we require that its components are
increasing and that they are all either0 or 1, except possibly
one. I.e.,α(|x|) has the form(0, 0, . . . , 0, αi, 1, . . . , 1), where
i ∈ [−N, 0], andαi ∈ [0, 1]. This defines the vector uniquely.
Pictorially we can think of this map in the following way. We
start at component(U(|x|))0. We take an increasing convex
combination with∆0 until the overall Battacharyya constant
is equal toxu(1)/2. If this is not sufficient, then we set
(V (|x|))0 = ∆0 and repeat this procedure with component
(U(|x|))−1, and so on. To apply Schauder’s theorem, we need
to show that the mapV (·) is well-defined and continuous.

Map V (·) is well defined: First consider the case
B(U(|x|)) ≥ xu(1)/2. In this case xu(1)

2B(U(|x|)) ≤ 1. Since the
Battacharyya parameter is a strictly increasing and continuous
function of the channel10, there exists a unique|c| ∈ {|c|σ}
such thatB(|c|) = xu(1)

2B(U(|x|)) . Note also thatU(|x|) is

monotone (spatially) sinceg(·) is monotonic (as a function of
its arguments) and|x| is monotone. Consequently,U(|x|)⊛ |c|
is monotone. Further, from the multiplicative property of the
Battacharyya parameter at the variable node, we get that
B(V (|x|)) = B(U(|x|))B(|c|) = xu(1)/2. It follows that in
this caseV (|x|) ∈ S.

Consider next the caseB(U(|x|)) < xu(1)/2. If we choose
α = 1 then we get a Battacharyya parameter of1. Further,
the increase in the Battacharyya parameter is continuous.
Hence there exists anα so that the resulting constellation has
Battacharyya constant equal toxu(1)/2. Also, by construction
the resulting constellation is monotone. This shows that also
in this caseV (|x|) ∈ S. In both the cases above, the map
maintains the symmetric nature of theD-distributions.

We summarize,V mapsS into itself. In the rest of the proof,
we will use the notationd(|x|, |y|) =

∑0
i=−N d(|x|i, |y|i) to

denote the Wasserstein distance between two constellations
|x| and |y|.

Continuity of mapV (·): We will show that for every|x| ∈ S
and for anyε > 0, there exists aν > 0 such, that if|y| ∈ S
and d(|x|, |y|) ≤ ν, then d(V (|x|), V (|y|)) ≤ ε. Note that if
d(|x|, |y|) ≤ ν then

(i) d(U(|x|)i, U(|y|)i) ≤ 2(dl − 1)(dr − 1)ν, i ∈ [−N, 0];
(ii) |B(U(|x|)i)−B(U(|y|)i)| ≤

√

4(dl − 1)(dr − 1)ν, i ∈
[−N, 0];

(iii) d(|c||x|, |c||y|) ≤ 2

√

2(N+1)
√

4(dl−1)(dr−1)ν

xu(1)
if

B(U(|x|)) ≥ xu(1)/2 andB(U(|y|)) ≥ xu(1)/2.11

10That the Battacharyya parameter is continuous follows since the channel
family is smooth. Further, since the Battacharyya kernel isstrictly concave
and the channel family is ordered by degradation, the Battacharyya parameter
is strictly increasing.

11We abuse notation slightly to denote the channel associatedto |x|, |y|
by |c||x|, |c||y|, respectively, rather than denoting them by the standard
parameterizationσ.

Assertion (i) is equivalent to Lemma (33) since ifd(|x|, |y|) ≤
ν then a fortiori d(|x|i, |y|i) ≤ ν, i ∈ [−N, 0]. Assertion
(ii) follows from assertion (i) by applying property (ix) of
Lemma 13. To see assertion (iii) we write

|B(|c||x|)−B(|c||y|)| = | xu(1)

2B(U(|x|)) −
xu(1)

2B(U(|y|)) |

≤ xu(1)

2

|B(U(|y|))−B(U(|x|))|
B(U(|x|))B(U(|y|))

≤ 2(N + 1)
√

4(dl − 1)(dr − 1)ν

xu(1)
.

The last inequality follows from assertion (ii) and
B(U(|x|)),B(U(|y|)) ≥ xu(1)/2. Recall that the channel
family is ordered by degradation. We can therefore apply
property (ii) of Lemma 14 to prove our claim.

Choosingν as a function of|x| and using assertion (ii)
above, we can therefore assume that eitherB(U(|x|)) ≥
xu(1)/2 andB(U(|y|)) ≥ xu(1)/2 or B(U(|x|)) ≤ xu(1)/2
andB(U(|y|)) ≤ xu(1)/2. In the first case,

d(V (|x|), V (|y|)) =d(|c||x| ⊛ U(|x|), |c||y| ⊛ U(|y|))
(vi), Lem. 13

≤ 2d(U(|x|), U(|y|)) + 2d(|c||x|, |c||y|)
(i) & (iii)
≤ 4(dl − 1)(dr − 1)ν(N + 1)+

+ 4

√

2(N + 1)
√

4(dl − 1)(dr − 1)ν

xu(1)
.

Let us now focus on the second case. Leti∗ denote the
largest integer in[−N, 0] such thatα(|x|)i∗ is non-zero.
Clearly if B(U(|x|)) < xu(1), theni∗ ≤ 0, else we seti∗ = 1.
Similarly, let j∗ be the corresponding index inα(|y|). Let us
denoteα(|x|)i∗ = α andα(|y|)j∗ = β. Note that0 ≤ α, β ≤ 1.
Wlog we can assume thatj∗ ≤ i∗. With this we can upper
boundd(V (|x|), V (|y|)) by,

j∗−1
∑

i=−N

d(U(|x|)i, U(|y|)i) + d(U(|x|)j∗ , β̄U(|y|)j∗ + β∆0)

+

i∗−1∑

i=j∗+1

d(U(|x|)j ,∆0) + d(ᾱU(|x|)i∗ + α∆0,∆0). (49)

Above we have used that fori ≥ i∗ + 1 we haveV (|y|)i =
V (|x|)i = ∆0. In the casei∗ = j∗, the terms in the interval
[j∗, i∗] collapse tod(ᾱU(|x|)i∗ + α∆0, β̄U(|y|)i∗ + β∆0).

Let us first consider the case whenj∗ < i∗. Note that
B(V (|x|)) = B(V (|y|)) = xu(1)/2. This implies that if we re-
place the Wasserstein distance by the Battacharyya parameter
in (49) the expression evaluates to 0. Then writing thej∗ term
as β̄(B(U(|x|)j∗)−B(U(|y|)j∗))+ β(B(U(|x|)j∗)−B(∆0))
we get

β(1−B(U(|x|)j∗))+
i∗−1∑

i=j∗+1

(1−B(U(|x|)i))

+ (1−B(ᾱU(|y|)i∗ + α∆0))

≤
j∗
∑

i=−N

|B(U(|x|)i)−B(U(|y|)i)|, (50)
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where above we useB(∆0) = 1.
We now continue with (49). We used(U(|x|)j∗ , β̄U(|y|)j∗+

β∆0) ≤ d(U(|x|)j∗ , U(|y|)j∗) + βd(U(|x|)j∗ ,∆0), (x) of
Lemma 13 and (50) to get the upper bound

j∗
∑

i=−N

d(U(|x|)i, U(|y|)i)

+
√

2(N + 1)

√
√
√
√

j∗
∑

i=−N

|B(U(|x|)i)−B(U(|y|)i)|.

Finally using assertions (i) and (ii) above we get that

d(V (|x|),V (|y|)) ≤ 2(N + 1)(dl − 1)(dr − 1)ν

+ 2(N + 1)((dl − 1)(dr − 1)ν)
1
4 .

For the case whenj∗ = i∗ we have

d(ᾱU(|x|)i∗ + α∆0, β̄U(|y|)i∗ + β∆0)

≤ d(ᾱU(|x|)i∗ + α∆0, ᾱU(|y|)i∗ + α∆0)

+ d(ᾱU(|y|)i∗ + α∆0, β̄U(|y|)i∗ + β∆0)

≤d(U(|x|)i∗ , U(|y|)i∗)+d(ᾱU(|y|)i∗+α∆0, β̄U(|y|)i∗+β∆0).

Wlog we can assumeβ ≥ α. This impliesᾱU(|y|)i∗+α∆0 ≺
β̄U(|y|)i∗+β∆0. Hence from (ii) of Lemma 14 we can bound
the second Wasserstein distance above by the difference of the
Battacharyya parameters. Further,

|B(ᾱU(|y|)i∗+α∆0)−B(β̄U(|y|)i∗+β∆0)|
≤ |B(ᾱU(|y|)i∗+α∆0)−B(ᾱU(|x|)i∗+α∆0)|
+ |B(ᾱU(|x|)i∗+α∆0)−B(β̄U(|y|)i∗+β∆0)|.

The first Battacharyya difference on the rhs can be bounded
by |B(U(|y|)i∗)−B(U(|x|)i∗)|. For the second difference we
use same arguments as (50) to obtain

|B(ᾱU(|x|)i∗+α∆0)−B(β̄U(|y|)i∗+β∆0)|

≤
i∗−1∑

i=−N

|B(U(|x|)i)−B(U(|y|)i)|.

Combining everything with the assertions (i) and (ii), in this
case we get

d(V (|x|),V (|y|)) ≤ 2(N + 1)(dl − 1)(dr − 1)ν

+ 2
√
2
√
N + 1((dl − 1)(dr − 1)ν)

1
4 .

Existence of FP ofV (·) via Schauder: We can invoke
Schauder’s FP theorem to conclude thatV (·) has a FP inS,
call it |x|∗.

Existence of FP of DE (U(·)): Let us show that, as a
consequence, DE itself has a FP(|c|∗, |x|∗) with the desired
properties.

If B(U(|x|∗)) ≥ xu(1)/2, then |x|∗ = V (|x|∗) = U(|x|∗) ⊛
|c|∗ with |c|∗ ∈ {|c|σ}. Hence indeed,(|c|∗, |x|∗) is a FP of
DE.

Consider hence the caseB(U(|x|∗)) < xu(1)/2. We will
show that it leads to a contradiction. Recall that in this case

|x|∗ = (1 − α(|x|∗))U(|x|∗) + α(|x|∗)∆0, (51)

and that|x|∗i = ∆0 for i ≥ 1.
Given a density|x| we say that it has a “BEC component”

of u if |x| contains a delta at0 of “weight” u (i.e., contains
a mass ofu at ∆0). In the sequel we will think ofu as the
erasure probability of a binary erasure channel.

Let u be the vector of BEC components corresponding to
|x|∗. SinceB(U(|x|∗)) < xu(1)/2 we know thatu has some
non-trivial components in[−N, 0], and by definition of the
right boundary,ui = 1 for i > 0. We claim that fori ∈
[−N, 0],

ui ≥ g(ui−w+1, . . . , ui+w−1). (52)

Let us prove this claim immediately. Extract the BEC compo-
nent from both the left-hand as well as the right-hand side of
(51). This gives

ui = (1 − αi)BEC(U(|x|∗)i) + αi

≥ (1 − αi)g(ui−w+1, . . . , ui+w−1) + αi, (53)

where we wroteαi as a shorthand forα(|x|∗)i and BEC(·)
denotes weight at∆0. To see the second step, i.e., to see that
BEC(U(|x|∗)i) ≥ g(ui−w+1, . . . , ui+w−1), let |v|∗ denote the
density at the output of the check nodes when the input is
|x|∗. Let v denote the (BEC) density at the output of the check
nodes when the input isu. Some thought shows thatv is also
the BEC component of|v|∗. In words, at check nodes the BEC
component evolves according to density evolution – we get an
erasure at the output of a check node if and only if at least one
of the incoming messages is an erasure. At variable nodes we
only get a bound. If all inputs to a variable node are erasures
then the output is also an erasure, but this is only a sufficient
condition. Thus (53) is proved. Ifαi = 1, thenui = 1 and (52)
is true. Ifαi < 1, thenui ≥ ui−αi

1−αi
≥ g(ui−w+1, . . . , ui+w−1),

where the second step follows from (53).
Extend the constellationu by N3 = ⌈(N + 1) w

dr
dl

−1
⌉ + 1

sections on the right, with values equal to1, and letu(0) denote
this constellation. We claim thatu(0) has at least

N4 ≥ (N + 1)
(1

2
− c(dl, dr)w

δ(N + 1)

)

sections on the left with Battacharyya value between0 andδ
wherec(dl, dr) is the constant of Lemma 61 and only depends
on the dd.

To prove this claim, we consider our original|x|∗ (before
we extracted the BEC components) which was the FP obtained
by Schauder’s theorem. We claim that|x|∗ has at leastN4

segments on the left with Battacharyya constant at mostδ,
where

N4 ≥ (N + 1)
︸ ︷︷ ︸

(a)

− N + 1

2
︸ ︷︷ ︸

(b)

− c(dl, dr)w

δ
︸ ︷︷ ︸

(c)

.

Let us explain each of the terms on the right. There areN+1
segments to start with, which explains (a). At most(N+1)/2
sections on the right can have a Battacharyya value ofxu(1)
or larger (sinceB(|x|∗) = xu(1)/2). This accounts for the
(b) term. Finally, all sectionsi, with i < −(N + 1)/2 + 1,
must be sections where|x|∗ fulfills the actual FP equations,
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i.e., these cannot be sections where the mapV (·) “pushes”
the constellation up to∆0. More precisely, we must have
α(|x|∗)i = 0 for i < −(N + 1)/2 + 1. Indeed, from
construction, starting from the rightmost section, each section
is increased all the way up to∆0 before we move on to
the next section on the left. Since the constellation|x|∗ has
Battacharyya parameter equal toxu(1)/2 ≤ 1/2 we conclude
that for i < −(N + 1)/2+ 1 we must have|x|∗i = (U(|x|∗))i,
which is a true FP of DE for the channel∆0. Therefore, for
these section we can apply (the Transition Length) Lemma 61
and conclude that there are at mostc(dl, dr)w/δ such section
which have Battacharyya value betweenδ andxu(1). This is
the term (c).

The claim now follows since the BEC componentui is
upper bounded by the corresponding Battacharyya parameter,
B(|x|∗i ).

Now consider a further constellationv(0) on [−N,N3]. We
setv(0)i = 0 for all i ∈ [−N, 0]. For i ∈ [1, N3] we setv(0) to
the FP of forward DE according to Lemma 22 in [53], where
the length of the constellation is taken to beN3 − 1, ǫ = 1,
andχ = 1

2 (1−dl/dr). More precisely, Lemma 22 in [53] says
that if we run forward DE, with free boundary condition, when
transmitting over the BEC withǫ = 1 and(dl, dr, N3 − 1, w)
coupled ensemble, then for large enough length, the one-sided
FP of forward DE must be proper (non-trivial and increasing)
and we can lower bound the Battacharyya parameter of the
resulting FP. By our choice ofN3 this FP (on[1, N3]) has
Battacharyya parameter at least1

2 (1−dl/dr). Now sincew ≥
2d3l d

2
r we haveN3 = ⌈(N + 1) w

dr
dl

−1
⌉ + 1 ≥ N + 1. This

implies that N3

N+1+N3
≥ 1

2 . ThusB(v(0)) ≥ 1
4 (1 − dl/dr).

Clearly,v(0) ≤ u(0) (component-wise).
Apply forward DE, when transmitting through BEC with

ǫ = 1, to both constellation with a fixed boundary condition.
More precisely, we have for alli ∈ [−N,N3] u

(ℓ)
i =

g(u
(ℓ−1)
i−w+1, . . . , u

(ℓ−1)
i+w−1) and v(ℓ)i = g(v

(ℓ−1)
i−w+1, . . . , v

(ℓ−1)
i+w−1).

We keepu(ℓ)i = ∆0, andv(ℓ)i = ∆0 fixed, for all i > N3 and
ℓ ∈ N and for i < −N both the constellations have sections
fixed to ∆+∞. Recall thatu(0) is equal tou on [−N, 0] and
equal to1 for the sections[1, N3]. Because of (52), we have
u(0) ≥ u(1). From the monotonicity of the DE operator we
conclude that the sequenceu(ℓ) is decreasing and since it is
bounded from below it must converge. Call this limitu(∞).
We claim that the sequencev(ℓ) is increasing inℓ and since
it is bounded from above it must converge. Call this limit
v(∞). Let us prove the claim thatv(ℓ) is increasing. Indeed,
for i ∈ [−N, 0], v(1)i ≥ v

(0)
i = 0, for i ∈ [1, N3 − w + 1],

v
(1)
i = v

(0)
i (since v(0)i is an FP in that region) and for

i ∈ [N3 − w + 2, N3], v
(1)
i ≥ v

(0)
i (sincev(0)i is an FP with

free boundary condition and hence replacing the boundary
with 1 can only increase the value under DE). Again, from
the monotonicity of DE we have thatv(ℓ) in ℓ. Since v(ℓ)

is increasing and proper we conclude thatv(∞) exists and
is proper. Further,v(∞) ≤ u(∞), sincev(0) ≤ u(0) and the
ordering is preserved under iterations of DE.

SinceB(v(∞)) ≥ B(v(0)) ≥ 1
4 (1 − dl/dr) we claim that

there must exists at leastN5 = N3

(

1− 1+
dl
dr

2(1−δ)−
wc(dl,dr)

N3δ

)

sec-

tions, from the right, with Battacharyya parameter greaterthan
xu(1). Indeed, this can be obtained by considering the sections
[1, N3] of v(0) and then usingv(∞) ≥ v(0). More precisely,
since the sections[1, N3] of v(0) form a proper FP, if we let
N ′

3 denote the number of sections with Battacharyya parameter
less thanδ, then we getB(

∑N3

j=1 v
(0)
j ) ≤ N ′

3δ + N3 − N ′
3.

Since 1
N3

B(
∑N3

j=1 v
(0)
j ) ≥ 1

2 (1−
dl

dr
) we getN ′

3 ≤ N3(1+
dl
dr

)

2(1−δ)
and combining with the transition length Lemma 61, we get
the expression forN5. Further, from the previous discussion,
there are at leastN4 values belowδ on the left. Thus,
it is not hard to see that we can simultaneously choose
δ > 0, w, L ∈ N,K ∈ N, N ∈ N such that

2(w − 1) ≤ L,

L ≤ N4,

L+ w ≤ K ≤ N5 ≤ N3.

We summarize,v(∞) is a proper one-sided FP of DE for
ǫ = 1 with fixed boundary condition andB(v

(∞)
−N+L) ≤ δ

and B(v
(∞)
N3−K) ≥ xu(1). But we know from Theorem 47

that such a FP,v(∞), must have a channel value close to
ǫA(dl, dr), the area threshold of(dl, dr)-regular ensemble
when transmitting over BEC. More precisely, applying The-
orem 47 we conclude that the entropy of the channel of
v(∞) must be less thanǫA(dl, dr)+c(dl, dr, δ, w,K,L). Since
ǫA(dl, dr) ≤ dl

dr
< 112, we conclude that by choosingδ small

enough andK,L,N large enough,c(dl, dr, δ, w,K,L) can
be made arbitrarily small and hence the channel ofv(∞) is
strictly less than 1, leading to a contradiction since we started
with ǫ = 1. This contradiction tells us that we cannot have
B(U(|x|∗)) < xu(1)/2 when we apply the Schauder theorem.
Hence the FP must be a true FP of DE.
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