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Abstract—An important practical open question has been to
design explicit, structured optical receivers that achieve the
Holevo limit in the contexts of optical communication and
“quantum reading.” The Holevo limit is an achievable rate that
is higher than the Shannon limit of any known optical receiver.
We demonstrate how a sequential decoding approach can achieve
the Holevo limit for both of these settings. A crucial part of our
scheme for both settings is a non-destructive “vacuum-or-not”
measurement that projects ann-symbol modulated codeword
onto the n-fold vacuum state or its orthogonal complement, such
that the post-measurement state is either then-fold vacuum or
has the vacuum removed from the support of then symbols’ joint
quantum state. The sequential decoder for optical communication
requires the additional ability to perform multimode optic al
phase-space displacements—realizable using a beamsplitter and
a laser, while the sequential decoder for quantum reading also
requires the ability to perform phase-shifting (realizable using a
phase plate) and online squeezing (a phase-sensitive amplifier).

One of the first accomplishments in quantum information
theory was the upper bound (now known as theHolevo
bound) on how much classical information can be encoded
into a quantum system, such that another party can reliably
recover it using a quantum measurement [1]. Subsequently,
Holevo, Schumacher, and Westmoreland (HSW) proved that
the Holevo bound is also an achievable rate for classical
communication over a quantum channel [2], [3], establishing
a lower bound on a quantum channel’s classical capacity.
These initial results were the impetus for the field of quantum
information theory [4], a generalization of Shannon’s classi-
cal information theory that takes into account the quantum-
physical nature of the carrier of information, channel, and
the receiver measurement. The main accomplishment of HSW
was to provide a mathematical specification of a decoding
measurement that a receiver, bound only by the laws of
quantum mechanics, could perform on the output codeword
to recover the classical data transmitted by a sender at any
rate below the Holevo limit. The HSW decoder prescription in
general leads to a collective measurement on the codeword’s
joint quantum state, which may not be doable by detecting
each individual symbol of the codeword separately.

For the single-mode lossy bosonic channel—which can be
used to construct a wide class of practical free-space and fiber
optical channels—it was shown that the single-letter Holevo

bound is in fact the ultimate channel capacity [5], given by

g (ηNS) ≡ (ηNS + 1) log (ηNS + 1)− ηNS log (ηNS) (1)

bits per channel use, whereNS is the mean transmitted photon
number per channel use, andη ∈ (0, 1] is the input-output
power transmissivity. Furthermore, conventional laser-light
(coherent-state) modulation with symbols chosen i.i.d. from an
isotropic Gaussian prior distribution, can achieve this capacity
(i.e., it is not necessary to use exotic non-classical states, such
as squeezed or entangled states). The lossy bosonic channel
preserves a coherent state (|α〉 → |√ηα〉), thus preserving
its purity. The average output state is a zero-mean circularly-
symmetric Gaussian mixture of coherent states, which is a
thermal state with mean photon numberηNS , which saturates
the entropy boundg (ηNS). A converse proof shows that no
other choice of modulation states and/or priors can exceed
this capacity [5]. This result enabled comparing the ultimate
channel capacity with the ideal Shannon limits of the classical
channels induced by the quantum noise-characteristics of
standard optical receivers, such as homodyne, heterodyne and
direct detection receivers [5]. In spite of this accomplishment,
it remains unclear how one could construct an implementation
of the HSW decoding measurement for the bosonic channel
using known optical components.

The theory of HSW also applies in the setting of “quantum
reading” [6], where one can obtain a quantum advantage in
the rate of read out of classical information stored in a digital
memory. Classical bits are encoded into the reflectivity and
phase of memory cells. A transmitter irradiates the memory
with light that in turn is modulated by a passive linear
reflection from the memory cells (each cell is a single-mode
lossy bosonic channel, but this time information is encoded
in the memory cell’s transmissivity and phase). A mono-
static receiver gathers the reflected light for measurementand
processing. The above is a bare-bone model for optical disks
such as CDs or DVDs. Pirandola originally considered this
task in the context of quantum channel discrimination and
demonstrated a quantum advantage. He and his collaborators
later considered a coded strategy (in the information-theoretic
sense) [7]. Later work [8], [9] improved upon Ref. [7],
by demonstrating how to achieve the Holevo limitg (NS)
bits/cell, whereNS is the mean number of photons available at
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the transmitter to shine on each memory cell on an average.
It turns out however, that the strategy for achievingg (NS)
is different from that of the lossy bosonic channel, and
surprisingly, a coherent-state probe fails to achieve the Holevo
capacity [8], [9]. The classical information is encoded into the
phase of the cells (with each having perfect reflectivity). The
symbols of the phase code are chosen i.i.d. and uniformly at
random from the interval[0, 2π). The transmitter shines each
cell with the single-mode quantum superposition state:

|φII 〉 ≡
∞
∑

n=0

√

Nn
S / (NS + 1)n+1 |n〉 , (2)

and the receiver performs a collective measurement on the
received codeword (|n〉 is a photon number state [10]). The
average state of the received ensemble is a completely de-
phased version of|φII 〉, yet again, a thermal state with mean
photon numberNS , which saturates the entropy boundg (NS).
Again, the authors of Ref. [8] left open the question of a
structured capacity-achieving receiver measurement.

In this paper, we address the open questions from Refs. [5],
[8], [9], by detailing a structured quantum measurement that
can achieve both of the above Holevo limits (for optical
communication and quantum reading). The measurement is a
sequential decoder, in the sense that it is a sequence of binary-
outcome measurements that ask, “Was the received quantum
state produced from the first codeword? the second codeword?
the third?” etc., proceeding until the answer to one of the
questions is “yes.” Our work builds on recent insights of
Giovannettiet al. [11] and Sen [12] in sequential decoding for
quantum channels. Our primary contribution here is to show
how to construct these measurements in an optical setting.

Our sequential decoding scheme for the lossy bosonic
channel requires two capabilities at the receiver. First, the
receiver should be able to apply a “displacement operator,”
which simply requires highly reflective beamsplitters and a
strong laser local oscillator [13]. Second, the receiver should
be able to perform a quantum non-demolition measurement
to determine whether ann-mode state is in the vacuum
state or not. That is, the measurement operators are of the
form {|0〉 〈0|⊗n

, I⊗n − |0〉 〈0|⊗n}, where|0〉 is the vacuum
state andI is the identity operator. After performing such a
measurement on ann-mode state|ψ〉, the post-measurement
state should be either|0〉⊗n or (|ψ〉 − c |0〉⊗n

)/
√

1− |c|2,
with c = 〈0|⊗n|ψ〉. The key aspect of this measurement is
that its disturbance to ann-mode state becomes asymptotically
negligible asn becomes large, as long as the number of code-
words is no larger than∼ 2ng(ηNS). Our sequential decoding
scheme for quantum reading requires the “vacuum-or-not”
measurement described above, and the ability to perform phase
shifting and online squeezing [10].

We structure this paper as follows. Section I reviews stan-
dard definitions and notation that are helpful for understanding
the rest of the paper. Section II describes how a sequential
decoder operates when decoding classical information trans-
mitted over a pure-state classical-quantum channel, and for
completeness, Appendix B provides a proof that this scheme

achieves the Holevo capacity. Section III provides a summary
of the operations needed for sequential decoding of the lossy
bosonic channel. Section IV details an implementation of
a sequential decoder for quantum reading. We conclude in
Section V with a summary and a list of open questions.

I. DEFINITIONS AND NOTATION

We denote quantum systems asA, B, and C and their
corresponding Hilbert spaces asHA, HB, and HC with
respective dimensionsdA, dB , anddC . We denote pure states
of the systemA with a ket |φ〉A and the corresponding density
operator asφA = |φ〉〈φ|A. All kets that are quantum states
have unit norm, and all density operators are positive semi-
definite with unit trace. We model our lack of access to a
quantum system with the partial trace operation. That is, given
a two-qubit stateρAB shared between Alice and Bob, we
can describe Alice’s state with the reduced density operator:
ρA =TrB

{

ρAB
}

, where TrB denotes a partial trace over Bob’s
system. LetH(A)ρ ≡ −Tr

{

ρA log ρA
}

be the von Neumann
entropy of the stateρA.

II. SEQUENTIAL DECODING

In this section, we describe the operation of a sequential
decoder that can reliably recover classical information encoded
into a pure state ensemble. Appendix B contains a full error
analysis, demonstrating that the scheme achieves capacity.

Suppose that a classical-quantum channel of the form
x→ |φx〉 connects a sender Alice to a receiver Bob. For our
purposes here, it does not matter whether the classical input x
is discrete or continuous.

Theorem 1: Let x → |φx〉 be a classical-quantum channel
and letρ ≡ ∑

x pX (x) |φx〉 〈φx| for some distributionpX (x).
Then the rateH (ρ) bits per channel use is achievable for com-
munication over this channel by having the receiver employ a
sequential decoding strategy.

Proof: We break the proof into several steps.
Codebook Construction. Before communication begins,

Alice and Bob agree upon a codebook. We allow them to
select a codebook randomly according to the distribution
pX (x). So, for every messagem ∈ M ≡

{

1, . . . , 2nR
}

,
generate a codewordxn (m) ≡ x1 (m) · · ·xn (m) randomly
and independently according to

pXn (xn) ≡
n
∏

i=1

pX (xi) .

Sequential Decoding.Transmitting the codewordxn (m)
throughn uses of the channelx→ |φx〉 leads to the following
quantum state at Bob’s output:

∣

∣φxn(m)

〉

≡
∣

∣φx1(m)

〉

⊗ · · · ⊗
∣

∣φxn(m)

〉

.

Upon receiving the quantum codeword
∣

∣φxn(m)

〉

, Bob per-
forms a sequence of binary-outcome quantum measure-
ments to determine the classical codewordxn (m) that Al-
ice transmitted. He first “asks,” “Is it the first codeword?”
by performing the measurement{

∣

∣φxn(1)

〉 〈

φxn(1)

∣

∣ , I⊗n −
∣

∣φxn(1)

〉 〈

φxn(1)

∣

∣}. If he receives the outcome “yes,” then



he performs no further measurements and concludes that
Alice transmitted the codewordxn (1). If he receives
the outcome “no,” then he performs the measurement
{
∣

∣φxn(2)

〉 〈

φxn(2)

∣

∣ , I⊗n−
∣

∣φxn(2)

〉 〈

φxn(2)

∣

∣} to check if Alice
sent the second codeword. Similarly, he stops if he receives
“yes,” and otherwise, he proceeds along similar lines.

The above concludes the description of the operation of the
sequential decoder. We provide an error analysis demonstrat-
ing that this scheme works well in Appendix B, i.e., the word
error goes to zero asn→ ∞, as long asR < H(ρ). Note that
Sen [12] and Giovannettiet al. [11] already gave a proof that
a sequential decoder works, but our proof in Appendix B is a
bit simpler because it is specialized to the case of pure-state
ensembles (which is sufficient to consider for our settings of
pure-loss optical communication and quantum reading).

III. SEQUENTIAL DECODING FOROPTICAL

COMMUNICATION

We now provide a physical realization of the sequential
decoding strategy in the context of optical communications. In
this setting, we suppose that a lossy bosonic channel, specified
by the following Heisenberg relations, connects Alice to Bob:

b̂ =
√
ηâ+

√

1− ηê, (3)

whereâ, b̂, andê are the respective field operators for Alice’s
input mode, Bob’s output mode, and an environmental input
mode (assumed to be in its vacuum state). The transmissivity
η ∈ [0, 1] is the fraction of Alice’s input photons that make
it to Bob on average. We assume that Alice is constrained to
using mean photon numberNS per channel use.

The strategy for achieving the classical capacity of this
channel is for Alice to induce a classical-quantum channel,
by selectingα ∈ C and preparing a coherent state|α〉 [10] at
the input of the channel in (3). The resulting induced classical-
quantum channel to Bob is of the following form:

α → |√ηα〉.
By choosing the distributionpX (x) in Theorem 1 to be an
isotropic, complex Gaussian with varianceNS :

pNS
(α) ≡ (1/πNS) exp

{

− |α|2/NS

}

,

we have thatg (ηNS) is an achievable rate for classical
communication. The quantityg (ηNS) is the entropy of the
average state of the ensemble{pNS

(α) , |√ηα〉}:
∫

d2α pNS
(α) |√ηα〉〈√ηα|,

which is a thermal state with mean photon numberηNS [10].
Each quantum codeword selected from the ensemble

{pNS
(α) , |α〉} has the following form:

|αn (m)〉 ≡ |α1 (m)〉 ⊗ · · · ⊗ |αn (m)〉 .
We assumeη = 1 above and for the rest of this section without
loss of generality. Thus, the sequential decoder consists of
measurements of the following form for allm ∈ M:

{

|αn (m)〉 〈αn (m)| , I⊗n − |αn (m)〉 〈αn (m)|
}

. (4)

Observing that

|αn (m)〉 = D (α1 (m))⊗ · · · ⊗D (αn (m)) |0〉⊗n
,

whereD (α) ≡ exp
{

αâ† − α∗â
}

is the well-known unitary
“displacement” operator from quantum optics [10] and|0〉⊗n

is then-fold tensor product vacuum state, it is clear that the
decoder can implement the measurement in (4) in three steps:

1) Displace then-mode codeword state by

D (−α1 (m))⊗ · · · ⊗D (−αn (m)) ,

by employing highly asymmetric beam-splitters with a
strong local oscillator [13].

2) Perform a “vacuum-or-not” measurement of the form
{

|0〉 〈0|⊗n
, I⊗n − |0〉 〈0|⊗n

}

.

If the vacuum outcome occurs, decode as themth

codeword. Otherwise, proceed.
3) Displace byD (α1 (m)) ⊗ · · · ⊗ D (αn (m)) with the

same method as in Step 1.
The receiver just iterates this strategy for every codewordin

the codebook, and Theorem 1 states this strategy is capacity-
achieving.

Remark 2: The above strategy is reminiscent of the class of
conditional pulse nulling receivers [14], which are usefulin
discriminatingM -ary pulse-position-modulation coded states
with |α〉 in theith slot and vacuum states|0〉 in the otherM−1
slots. In this strategy, the receiver hypothesizes at first that
the transmitted codeword is the first codeword|α〉 |0〉⊗M−1,
nulls the first mode by applyingD† (α), and direct-detects the
first mode. If the sender in fact transmitted the first codeword,
then the resulting state is ideally|0〉⊗m, and direct detection
of the first mode should ideally produce no “clicks.” If there
is no click, then the receiver direct detects the other modesto
confirm the original hypothesis. If there are no further clicks,
then the receiver declares that the sender transmitted the first
codeword. If there is a further click, then the receiver guesses
the codeword corresponding to the position of the click. If on
the first mode there is a click, then the receiver hypothesizes
that the transmitted codeword is the second one and repeats
the above algorithm on the nextM − 1 modes.

The difference between the sequential decoding strategy
and conditional pulse nulling is that the codewords are dif-
ferent, and the vacuum-or-not measurement in the sequential
decoding strategy is much more difficult to perform in practice
than direct detection, which annihilates the detected quantum
state. Ideally, the vacuum-or-not should be a non-demolition
measurement such that the post-measurement state is|0〉⊗n

or (|ψ〉 − c |0〉⊗n)/
√

1− |c|2, with c = 〈0|⊗n|ψ〉, if the pre-
measurement state is|ψ〉, with probabilitiesp0 = |c|2 and
p1 = 1− p0, respectively, of the two possible outcomes.

Remark 3: The crucial (and most difficult) step in sequen-
tial decoding for the lossy bosonic channel is the vacuum-
or-not measurement. Oiet al. have provided a method for
performing this measurement, by interacting the light field
with a three-level atom in a STIRAP process [15]. This



approach would likely be quite lossy in practice, so it wouldbe
ideal to determine an all-optical vacuum-or-not measurement.

Remark 4: If the mean input photon numberNS ≪ 1, then
one does not require a full Gaussian distributed codebook in
order to achieve capacity. A simpler method, called binary
phase-shift keying, suffices to approach capacity very closely.
In this approach, the ensemble for generating a codebook
randomly is just{1/2, |±α〉}. This also simplifies the se-
quential decoder because the only displacements required
for implementation areD (±α). An additional advantage is
that a random linear encoder should achieve the capacity,
by an argument similar to that on pages 3-14 and 3-15 of
Ref. [16]. BPSK polar codes are capacity-achieving for low-
photon number as well [17].

Remark 5: Tan proved a variation of Theorem 1 for the
lossy bosonic channel in her thesis [18], but the analysis in
Appendix B demonstrates that it is actually not necessary to
perform a measurement onto the average typical subspace. We
avoided having to do so by demonstrating that it is sufficient
to code for a typical-projected version of the channel and
applying Sen’s non-commutative union bound from Ref. [12].

Remark 6: The above sequential decoding approach also
works well in the context of private classical communication
over a lossy bosonic channel [19], [20]. The private classical
capacity of the channel in (3) isg (ηNS) − g ((1− η)NS)
(compare to its public classical capacity ofg (ηNS)), and
the strategy for encoding is again to choose coherent states
randomly according to an isotropic Gaussian prior. The se-
quential decoder can just test for all codewords in a codebook
of size 2ng(ηNS) and recover the transmitted private message
correctly. The privacy in the scheme comes about by choos-
ing 2ng((1−η)NS) codewords corresponding to each message
and selecting one of these uniformly at random in order to
randomize Eve’s knowledge of the transmitted message [19].

IV. SEQUENTIAL DECODING FORQUANTUM READING

The sequential decoding strategy also finds application
in “quantum reading” [6]. In this setting, we suppose that
information is encoded into passive memory cells of an
optically-readable memory, which a transceiver can read out
by irradiating them with laser (or quantum) light and detecting
the reflected light. More specifically, we can model theith

optical memory cell as a beamsplitter of the following form:

b̂i = exp{iθi}
√
ηiâi +

√

1− ηiêi,

where the parametersηi and θi are the respective reflectivity
and phase of theith cell, andâi, b̂i, and êi are the respective
field operators for the transmitter’sith input mode, theith

reflected mode, and an environmental mode (assumed to be
in its vacuum state). We assume perfect channels from the
transmitter to the optical memory cells and from the cells back
to the receiver (which is co-located with the transmitter).

The objective is for the transmitter to interrogate each
optical memory cell with some quantum state of light with
mean photon numberNS . The receiver then collects all of the
reflected light and performs some measurement to recover the

classical information encoded in the memory cells. If we use
a coherent-state transmitter to interrogate each cell, we call
it the Type I setting [8]. If we do not allow the transmitter
to retain any state entangled with the transmitted light, but
allow it to send any quantum state (entangled spatially across
modes or an unentangled non-classical product state), then
this is termed the Type II setting [8]. Finally, if we do allow
for entanglement assistance, in the sense that the transmitter
can prepare two modes in an entangled state for each of the
n memory cells, send one to a memory cell while retaining
the other, then this is termed a Type III setting [8]. In each of
the three settings, the receiver is always allowed to perform
a general (collective) quantum measurement on the reflected
n modes (and the retainedn modes, in case of Type III). It
is straightforward to prove thatg (NS) is the Holevo (upper)
bound on the capacity of quantum reading in the Type I and
Type II settings, while it is unknown whetherg (NS) could be
exceeded in the Type III setting [8].

Recently, Guhaet al. proved that the following strategy
achieves theg (NS) bound for quantum reading using a Type II
transmitter [8], [9]. The transmitter interrogates each memory
cell with a quantum state of light of the form in (2). It is
straightforward to compute that the mean number of photons
in this state isNS: 〈φII | n̂ |φII 〉 = NS , where n̂ = â†â
is the photon number operator [10]. Each memory cell has
classical information encoded into only the phase variableθi
(with ηi = 1), so that a randomly chosen code in the sense of
Theorem 1 is selected from the following ensemble:

{1/2π, |φII ,θ〉} , (5)

where

|φII ,θ〉 ≡
∞
∑

n=0

√

Nn
S / (NS + 1)n+1 exp{inθ} |n〉 , (6)

and eachθ is selected uniformly at random from the interval
[0, 2π). The average state of this code ensemble is

1

2π

2π
∫

0

dθ |φII ,θ〉〈φII ,θ| =

∞
∑

n=0

Nn
S / (NS + 1)

n+1 |n〉 〈n| ,

which is a thermal state with mean photon numberNS . (The
effect of phase-randomizing the state|φII 〉 is simply to de-
phase it to a thermal state.) Thus, a random code constructed
from the ensemble in (5) along with a sequential decoder
saturates the entropy boundg (NS) because the average state
is a thermal state.

It is not clear to us at the moment how to implement a
sequential decoder for the above Type II strategy. Though, if
we allow for a Type III transmitter, the strategy is straightfor-
ward to specify. First, the transmitter interrogates each optical
memory cell with one mode of a two-mode squeezed vacuum
state [10] of the following form:

|φIII 〉 ≡
∞
∑

n=0

√

Nn
S / (NS + 1)

n+1 |n〉 |n〉 ,



while retaining the other mode. The encoding in the optical
memory cells is the same as above, such that the memory
cells have classical information encoded only into a uniformly
random phase. The code ensemble is then{1/2π, |φIII ,θ〉},
with |φIII ,θ〉 defined similarly as in (6). The authors of Ref. [8]
showed that this ensemble also saturates theg(NS) bound.
Consider themth quantum codeword to have the form:

|φIII ,θn(m)〉 ≡ |φIII ,θ1(m)〉 ⊗ · · · ⊗ |φIII ,θn(m)〉.

Consider further that each of the states in the above tensor
product can be written as

|φIII ,θi(m)〉 = (P (θi (m))⊗ I)S (r) |0〉⊗2 ,

whereP (θi (m)) = exp{in̂θi (m)} is a phase shifter,S (r)
is a two-mode squeezing operator [10] with the squeezing
strength r, s.t. NS = sinh2 r, and |0〉⊗2 is a two-mode
vacuum state. This then leads us to specify themth step of
the sequential decoder, which proceeds as follows:

1) Apply the operator
(

P † (θi (m))⊗ I
)

by phase-shifting
the first mode of theith pair by−θi (m).

2) Apply the unsqueezing operatorS† (r). The receiver can
accomplish this with a phase-sensitive amplifier.

3) Perform a “vacuum-or-not” measurement of the same
form as in Step 2 in the previous section. If the vacuum
outcome occurs, decode as themth codeword. Other-
wise, proceed.

4) Apply the squeezing operatorS (r).
5) Apply the operator(P (θi (m))⊗ I) by phase-shifting

the first mode of theith pair by θi (m).

The receiver again iterates this strategy for all codewords
in the codebook, and Theorem 1 states that this strategy is
Holevo-capacity-achieving, i.e., it achievesg(NS) bits/cell.

Remark 7: At NS ≪ 1, a binary phase-shift keying code
approximately achieves the Holevo limit ofg (NS), i.e.,
CBPSK(NS) = H2

(

(1± e−2NS)/2
)

. The code ensemble
for this case is just{(1/2, |φIII 〉) , (1/2, |φIII ,π〉)}, and the
sequential decoder only needs to have phase shifts of 0 or
π. Interestingly enough, with binary phase modulation, evena
coherent-state (Type I) transmitter can achieveCBPSK(NS).

V. CONCLUSION

We have demonstrated that a sequential decoding strategy
achieves the Holevo capacity for optical communication and
quantum reading, by building on information-theoretic works
on sequential decoding in Refs. [11], [12]. Both schemes
employ a “vacuum-or-not” measurement which distinguishes
coherently and in a non-demolition way between the vacuum
or “not vacuum,” so that the disturbance on the encoded state
is asymptotically negligible for long codewords (as long asthe
code rate is less than the Holevo limit). For optical commu-
nication, the only other operation needed is implementing a
displacement operator, while the sequential quantum reading
receiver requires phase shifting and online squeezing.

The most important open problems going forward concern
making the scheme more practical. In this vein, it might

be helpful to realize an all-optical implementation of the
“vacuum-or-not” measurement—which could help both on the
scalability front, and relative ease of implementation as com-
pared to a system that uses atom-light interaction [15]. Also,
the sequential decoding scheme given here is impractical from
a computational perspective because it requires an exponential
number of measurements (there are an exponential number of
codewords). It would be better to have a sequential decoder
that decodes one bit at a time and would thus require only a lin-
ear number of measurements. The polar decoder for classical-
quantum channels is one such sequential decoder [17], but it
remains unclear to us how to implement it with optical devices.

We thank J. P. Dowling, V. Giovannetti, P. Hayden, L.
Maccone, and J. H. Shapiro for useful discussions.

REFERENCES

[1] A. S. Holevo, “Bounds for the quantity of information transmitted by a
quantum communication channel,”Problems of Information Transmis-
sion, vol. 9, pp. 177–183, 1973.

[2] ——, “The capacity of the quantum channel with general signal states,”
IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 269–273, 1998.

[3] B. Schumacher and M. D. Westmoreland, “Sending classical information
via noisy quantum channels,”Physical Review A, vol. 56, no. 1, pp. 131–
138, July 1997.

[4] M. M. Wilde, From Classical to Quantum Shannon Theory, June 2011,
arXiv:1106.1445.

[5] V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, J. H. Shapiro, and
H. P. Yuen, “Classical capacity of the lossy bosonic channel: The exact
solution,” Phys. Rev. Lett., vol. 92, no. 2, p. 027902, January 2004.

[6] S. Pirandola, “Quantum reading of a classical digital memory,” Physical
Review Letters, vol. 106, p. 090504, March 2011.

[7] S. Pirandola, C. Lupo, V. Giovannetti, S. Mancini, and S.L. Braunstein,
“Quantum reading capacity,”New Journal of Physics, vol. 13, no. 11,
p. 113012, November 2011, arXiv:1107.3500.

[8] S. Guha, Z. Dutton, R. Nair, J. H. Shapiro, and B. J. Yen, “Information
capacity of quantum reading,” inFrontiers in Optics, 2011.

[9] S. Guhaet al., “Achieving the Holevo limit in quantum reading,” 2012,
in preparation.

[10] C. Gerry and P. Knight,Introductory Quantum Optics. Cambridge
University Press, November 2004.

[11] V. Giovannetti, S. Lloyd, and L. Maccone, “Achieving the Holevo bound
via sequential measurements,” December 2010, arXiv:1012.0386.

[12] P. Sen, “Achieving the Han-Kobayashi inner bound for the quan-
tum interference channel by sequential decoding,” September 2011,
arXiv:1109.0802.

[13] M. G. A. Paris, “Displacement operator by beam splitter,” Physics
Letters A, vol. 217, pp. 78–80, July 1996.

[14] S. Guha, J. L. Habif, and M. Takeoka, “PPM demodulation:On
approaching fundamental limits of optical communications,” in Proceed-
ings of the 2010 IEEE International Symposium on Information Theory,
Austin, Texas, USA, June 2010, pp. 2038–2042, arXiv:1001.2447.
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APPENDIX A
IMPORTANT LEMMAS

In order to describe the “distance” between two quantum
states, we use the notion oftrace distance. The trace distance
between statesσ andρ is ‖σ−ρ‖1 = Tr |σ − ρ|, where|X | =√
X†X. Two states that are similar have trace distance close

to zero, whereas states that are perfectly distinguishablehave
trace distance equal to two.

Two states can substitute for one another up to a penalty
proportional to the trace distance between them:

Lemma 8: Let 0 ≤ ρ, σ,Λ ≤ I. Then

Tr [Λρ] ≤ Tr [Λσ] + ‖ρ− σ‖1 . (7)

Proof: This follows from a variational characteriza-
tion of trace distance as the distinguishability of the
states under an optimal measurementM [4]: ‖ρ− σ‖1 =
2max0≤M≤I Tr [M(ρ− σ)].

Consider a density operatorρ with the following spectral
decomposition:

ρ =
∑

x

pX (x) |x〉 〈x| .

The weakly typical subspace is defined as the span of all
vectors such that the sample entropyH (xn) of their classical
label is close to the true entropyH (X) of the distribution
pX (x) [4]:

TXn

δ ≡ span
{

|xn〉 :
∣

∣H (xn)−H (X)
∣

∣ ≤ δ
}

,

where

H (xn) ≡ − 1

n
log (pXn (xn)) ,

H (X) ≡ −
∑

x

pX (x) log pX (x) .

The projectorΠn
ρ,δ onto the typical subspace ofρ is defined

as
Πn

ρ,δ ≡
∑

xn∈TXn

δ

|xn〉 〈xn| ,

where we have “overloaded” the symbolTXn

δ to refer also to
the set ofδ-typical sequences:

TXn

δ ≡
{

xn :
∣

∣H (xn)−H (X)
∣

∣ ≤ δ
}

.

The three important properties of the typical projector areas
follows:

Tr
{

Πn
ρ,δρ

⊗n
}

≥ 1− ǫ,

Tr
{

Πn
ρ,δ

}

≤ 2n[H(X)+δ],

2−n[H(X)+δ]Πn
ρ,δ ≤ Πn

ρ,δρ
⊗nΠn

ρ,δ ≤ 2−n[H(X)−δ]Πn
ρ,δ,

where the first property holds for arbitraryǫ, δ > 0 and
sufficiently largen.

Lemma 9 (Gentle Operator Lemma for Ensembles):
Given an ensemble{pX (x) , ρx} with expected density
operatorρ ≡

∑

x pX (x) ρx, suppose that an operatorΛ such
that I ≥ Λ ≥ 0 succeeds with high probability on the stateρ:

Tr {Λρ} ≥ 1− ǫ.

Then the subnormalized state
√
Λρx

√
Λ is close in expected

trace distance to the original stateρx:

EX

{∥

∥

∥

√
ΛρX

√
Λ− ρX

∥

∥

∥

1

}

≤ 2
√
ǫ.

A proof of the above lemma is available in Ref. [4].

APPENDIX B
ERROR ANALYSIS FOR SEQUENTIAL DECODING

In general, if Alice transmits themth codeword, then the
probability for Bob to decode correctly with this sequential
decoding strategy is as follows:

Tr
{

φxn(m)Π̂m−1 · · · Π̂1φxn(m)Π̂1 · · · Π̂m−1φxn(m)

}

,

where we make the abbreviations

φxn(m) ≡
∣

∣φxn(m)

〉 〈

φxn(m)

∣

∣ ,

Π̂i ≡ I⊗n −
∣

∣φxn(i)

〉 〈

φxn(i)

∣

∣ .

So the probability that Bob makes an error when decoding the
mth codeword is just

1− Tr
{

φxn(m)Π̂m−1 · · · Π̂1φxn(m)Π̂1 · · · Π̂m−1φxn(m)

}

.

To further simplify the error analysis, we consider the expec-
tation of the above error probability, under the assumptionthat
Alice selects a message uniformly at random according to a
random variableM and that the codewordxn is selected at
random according to the distributionpXn (xn) (as described
above):

1− E
Xn,M

Tr
{

φXn(M)Π̂M−1 · · · Π̂1φXn(M)Π̂1 · · · Π̂M−1

}

.

(8)
For the rest of the proof, it is implicit that the expectationE

is with respect to random variablesXn andM .
Our first observation is that, for the purposes of our error

analysis, we can “smooth” the channelxn → φxn , by
imagining instead that we are coding for a projected versionof
the channelΠ φxn Π, whereΠ is the typical projector for the
average stateρ ≡ ∑

x pX (x)φx. Doing so simplifies the error
analysis by cutting off large eigenvalues that reside outside of
the high-probability typical subspace. Furthermore, we expect
that doing so should not affect the error analysis very much
because most of the probability tends to concentrate in this
subspace anyway. That we can do so follows from the fact
that

1 = ETr
{

φXn(M)

}

= ETr
{

ΠφXn(M)

}

+ ETr
{

Π̂φXn(M)

}

= ETr
{

ΠφXn(M)Π
}

+ Tr
{

Π̂EφXn(M)

}

= ETr
{

ΠφXn(M)Π
}

+ Tr
{

Π̂ρ⊗n
}

,



whereΠ̂ ≡ I −Π. Furthermore, we know that

ETr
{

φXn(M)Π̂M−1 · · · Π̂1φXn(M)Π̂1 · · · Π̂M−1

}

= ETr
{

Π̂1 · · · Π̂M−1φXn(M)Π̂M−1 · · · Π̂1φXn(M)

}

≥ ETr
{

Π̂1 · · · Π̂M−1φXn(M)Π̂M−1 · · · Π̂1ΠφXn(M)Π
}

− E
∥

∥φXn(M) −ΠφXn(M)Π
∥

∥

1
,

where the inequality follows from Lemma 8. Using the above
observations and the facts that

E
∥

∥φXn(M) −ΠφXn(M)Π
∥

∥

1
≤ 2

√
ǫ, (9)

Tr
{

Π̂ρ⊗n
}

≤ ǫ, (10)

for all ǫ > 0 whenevern is sufficiently large (these are
from the properties of typicality and Lemma 9), we obtain
the following upper bound on (8):

ETr
{

ΠφXn(M)Π
}

−
ETr

{

φXn(M)Π̂M−1 · · · Π̂1ΠφXn(M)ΠΠ̂1 · · · Π̂M−1φXn(M)

}

+ ǫ+ 2
√
ǫ. (11)

(In the next steps, we omit the termsǫ + 2
√
ǫ as they are

negligible.) The most important step of this error analysisis
to apply Sen’s non-commutative union bound (Lemma 3 of
Ref. [12]), which holds for any subnormalized stateσ (σ ≥ 0
and Tr{σ} ≤ 1) and sequence of projectorsΠ1, . . . , ΠN :

Tr {σ}−Tr {ΠN · · ·Π1σΠ1 · · ·ΠN} ≤ 2

√

√

√

√

N
∑

i=1

Tr {(I −Πi)σ}

For our case, we takeΠφXn(M)Π asσ andφXn(M), Π̂M−1,
. . . , Π̂1 as the sequence of projectors. Applying Sen’s bound
and concavity of the square root function leads to the following
upper bound on (11):

2

√

√

√

√ETr
{

Π̂MΠφXn(M)Π
}

+ E

M−1
∑

i=1

Tr
{

φXn(i)ΠφXn(M)Π
}

where Π̂M = I⊗n − φXn(M) and φXn(i) = I⊗n − Π̂i. We
now bound each of the above two terms individually. For the
first term, consider that

ETr
{

Π̂MΠφXn(M)Π
}

≤ ETr
{

Π̂MφXn(M)

}

+ E
∥

∥φXn(M) −ΠφXn(M)Π
∥

∥

1

≤ 2
√
ǫ.

where the last inequality follows from applying (9) and
because

Tr
{

Π̂MφXn(M)

}

= Tr
{(

I⊗n − φXn(M)

)

φXn(M)

}

= 0.

For the second term, consider that

E

M−1
∑

i=1

Tr
{

φXn(i)ΠφXn(M)Π
}

≤ EM

∑

i6=M

EXnTr
{

φXn(i)ΠφXn(M)Π
}

= EM

∑

i6=M

Tr
{

EXn

{

φXn(i)

}

ΠEXn

{

φXn(M)

}

Π
}

=
∑

i6=M

Tr
{

ρ⊗nΠρ⊗nΠ
}

≤ 2−n[H(ρ)−δ]
∑

i6=M

Tr
{

ρ⊗nΠ
}

≤ 2−n[H(ρ)−δ] |M|

The first inequality follows by just adding in all of the future
termsi > M to the sum. The first equality follows because the
random variablesXn (i) andXn (M) are independent, due to
the way that we selected the code (each codeword is selected
independently of a different one). The second equality follows
from averaging the stateφXn with respect to the distribution
pXn , and we drop the expectationEM because the quantities
inside the trace no longer have a dependence on the message
M . The second inequality follows from the entropy bound
for the eigenvalues ofρ⊗n in the typical subspace. The final
inequality follows because Tr{ρ⊗nΠ} ≤ 1.

Thus, the overall upper bound on the error probability with
this sequential decoding strategy is

ǫ′ ≡ ǫ+ 2
√
ǫ+ 2

√

2
√
ǫ+ 2−n[H(ρ)−δ] |M|,

which we can make arbitrarily small by choosing|M| =
2n[H(ρ)−2δ] andn sufficiently large. The next arguments are
standard. We proved a bound on the expectation of the average
probability, which implies there exists a particular code that
has arbitrarily small average error probability under the same
choice of|M| andn. For this code, we can then eliminate the
worst half of the codewords, ensuring that the error probability
of the resulting code is no larger than2ǫ′. Furthermore, it
should be clear that it is only necessary for the sequential
decoder to process the remaining codewords when decoding
messages.

Remark 10: Sen’s proof applies to the more general case of
classical-quantum channelsx→ ρx, with ρx a mixed state, by
employing conditionally typical projectors [12]. For pure-state
classical-quantum channels, the conditionally typical projector
is just the pure state itself, and the proof simplifies as seen
above.
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