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Abstract—An important practical open question has been to bound is in fact the ultimate channel capacity [5], given by
design explicit, structured optical receivers that achiee the
Holevo limit in the contexts of optical communication and 9 (7Ns) = (nNs + 1) log (nNs + 1) — nNglog (nNs) (1)

“quantum reading.” The Holevo limit is an achievable rate that . . .
is higher than the Shannon limit of any known optical receive bits per channel use, whefés is the mean transmitted photon

We demonstrate how a sequential decoding approach can ackie  humber per channel use, amde (0, 1] is the input-output
the Holevo limit for both of these settings. A crucial part ofour power transmissivity. Furthermore, conventional |aggintl

scheme for both settings is a non-destructive “vacuum-or-ot” (coherent-state) modulation with symbols chosen i.igirfan
measurement that projects ann-symbol modulated codeword jsqqnic Gaussian prior distribution, can achieve thisaity

onto the n-fold vacuum state or its orthogonal complement, such . it | t ¢ fi lassical st h
that the post-measurement state is either thex-fold vacuum or (i.e., itis not necessary to use exotic non-classical statec

has the vacuum removed from the support of thex symbols’ joint  @s squeezed or entangled states). The lossy bosonic channel
quantum state. The sequential decoder for optical communition  preserves a coherent stater)( — |,/7a)), thus preserving
requires the additional abl|lty to perform multimode OptiC al its puriw_ The average Output state is a zero-mean Cidyl.ﬂar
phase-space displacements—realizable using a beamspittand gy mmetric Gaussian mixture of coherent states, which is a

a laser, while the sequential decoder for quantum reading ab - .
requires the ability to perform phase-shifting (realizable using a thermal state with mean photon numbgYs, which saturates

phase plate) and online squeezing (a phase-sensitive anfigh).  the entropy bound (nNs). A converse proof shows that no
other choice of modulation states and/or priors can exceed

One of the first accomplishments in quantum informatioifis capacity [[5]. This result enabled comparing the ultgna
theory was the upper bound (now known as tHelevo channel capacity with the ideal Shannon limits of the ctassi
bound) on how much classical information can be encodeghannels induced by the quantum noise-characteristics of
into a quantum system, such that another party can relialskandard optical receivers, such as homodyne, heterodyhe a
recover it using a quantum measuremeént [1]. Subsequendirect detection receiversl[5]. In spite of this accomptisimt,
Holevo, Schumacher, and Westmoreland (HSW) proved thiatemains unclear how one could construct an implemermrtatio
the Holevo bound is also an achievable rate for classigafl the HSW decoding measurement for the bosonic channel
communication over a quantum chanri€l [2], [3], establighirusing known optical components.
a lower bound on a quantum channel’s classical capacity.The theory of HSW also applies in the setting of “quantum
These initial results were the impetus for the field of quamtureading” [6], where one can obtain a quantum advantage in
information theory[[4], a generalization of Shannon’s slas the rate of read out of classical information stored in atellgi
cal information theory that takes into account the quanturmemory. Classical bits are encoded into the reflectivity and
physical nature of the carrier of information, channel, anghase of memory cells. A transmitter irradiates the memory
the receiver measurement. The main accomplishment of HSwith light that in turn is modulated by a passive linear
was to provide a mathematical specification of a decodirgflection from the memory cells (each cell is a single-mode
measurement that a receiver, bound only by the laws lesy bosonic channel, but this time information is encoded
quantum mechanics, could perform on the output codewdrd the memory cell's transmissivity and phase). A mono-
to recover the classical data transmitted by a sender at &tgtic receiver gathers the reflected light for measurermedt
rate below the Holevo limit. The HSW decoder prescription iprocessing. The above is a bare-bone model for optical disks
general leads to a collective measurement on the codeworilsh as CDs or DVDs. Pirandola originally considered this
joint quantum state, which may not be doable by detectiigsk in the context of quantum channel discrimination and
each individual symbol of the codeword separately. demonstrated a quantum advantage. He and his collaborators

later considered a coded strategy (in the information+iteo

For the single-mode lossy bosonic channel—which can Bense) [[7]. Later work[][8],[19] improved upon Ref.l[7],
used to construct a wide class of practical free-space aad fiby demonstrating how to achieve the Holevo lingit Ns)
optical channels—it was shown that the single-letter Holewits/cell, whereNg is the mean number of photons available at
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the transmitter to shine on each memory cell on an averagehieves the Holevo capacity. Section Il provides a surgmar
It turns out however, that the strategy for achievingVs) of the operations needed for sequential decoding of the loss
is different from that of the lossy bosonic channel, andosonic channel. Section IV details an implementation of
surprisingly, a coherent-state probe fails to achieve thke¥d a sequential decoder for quantum reading. We conclude in
capacity [[8], [9]. The classical information is encodedittie Section ¥ with a summary and a list of open questions.
phase of the cells (with each having perfect reflectivitheT
symbols of the phase code are chosen i.i.d. and uniformly at
random from the interval0, 2). The transmitter shines each We denote quantum systems as B, and C' and their

cell with the single-mode quantum superposition state: ~ corresponding Hilbert spaces a4, H5, and 1 with
respective dimension$,, dg, anddc. We denote pure states

) = Z \/Ng/ (Ng +1)"" n), (2) of the systemA with a ket |¢)* and the corresponding density
ot operator asp? = |¢><¢|A. All kets that are quantum states

and the receiver performs a collective measurement on Ve unit norm, and all density operators are positive semi-
received codeword|) is a photon number state [10]). Thedefinite with unit trace. We model our lack of access to a
average state of the received ensemble is a completely §#antum system with the partial trace operation. That i
phased version ofi¢;), yet again, a thermal state with mear® tWo-qubit stat-epAB shared between Alice and Bob, we
photon numbeNs, which saturates the entropy boup@Ng). €an describe Alice’s state with the reduged density operato
Again, the authors of Ref[8] left open the question of & =Trs {»"”}, where Ti; denotes a partial trace over Bob's
structured capacity-achieving receiver measurement. system. Lett (4), = ~Tr{p" logp" } be the von Neumann

In this paper, we address the open questions from Réfs. [8tropy of the statg”.
[8l, @, t_)y detailing a structured quantum mgasurement.tha Il. SEQUENTIAL DECODING
can achieve both of the above Holevo limits (for optical
communication and quantum reading). The measurement i
sequential decoder, in the sense that it is a sequence cj/bin§
outcome measurements that ask, “Was the received quan

state produced from the first codeword? the second codewo Eipoose that a classical-auantum channel of the form
the third?” etc., proceeding until the answer to one of the PP q

questions is “yes.” Our work builds on recent insights of — |¢) connects a sender Alice to a receiver Bob. For our

Giovannettiet al. [11] and Sen([12] in sequential decoding foPUrPOses here, it QOes not matter whether the classica inpu
Ny |ald|screte or continuous.

guantum channels. Our primary contribution here is to sho :
. : . Theorem 1. Let z — |¢.) be a classical-quantum channel
how to construct these measurements in an optical setting. .
dletp =" px () |¢z) (¢.| for some distributionp x ().

Our sequential decoding scheme for the lossy boso E ; i )
channel requires two capabilities at the receiver. Firsg t en th(_e rate (p) p|ts per channel use s ach|ev§\bleforcom-
receiver should be able to apply a “displacement operato'?,wn'cat'on over this channel by having the receiver employ a

: . : . . . equential decoding strategy.
which simply requires highly reflective beamsplitters and E) Proof: We break the proof into several steps.

strong laser local oscillatofr [13]. Second, the receiverusth ) e .
g [13] Codebook Construction. Before communication begins,

be able to perform a quantum non-demolition measurem%t d Bob debook. We allow th ¢
to determine whether am-mode state is in the vacuum’ '€ @nd bob agrée upon a codebook. We allow them 1o

state or not. That is, the measurement operators are of fifect @ codebook randomly accordmgﬁto the d|7slt}£|but|0n

form {]0) (0|®™, 1®™ — |0) (0]®"}, where|0) is the vacuum PX (). So, for every messagen < M = {1,....2"",

state and/ is the identity operator. After performing such JJ€nerate a codeword" (m) = 1 (m) -2 (m) randomly

measurement on an-mode statdi)), the post-measurementanOI independently according to

state should be eithd0)®” or (|¢) — ¢]0)*™)//1— |2, -

with ¢ = (0|®"|+)). The key aspect of this measurement is px» (2") = pr (z3)

that its disturbance to ammode state becomes asymptotically =1

negligible as» becomes large, as long as the number of code-Sequential Decoding.Transmitting the codeword™ ()

words is no larger than- 279("Ns)  Our sequential decodingthroughn uses of the channel — |¢,) leads to the following

scheme for quantum reading requires the “vacuum-or-ngtuantum state at Bob’s output:

measurement described above, and the ability to performepha _

shifting and online squeezing [10]. [Banm)) = [ (m)) © @ |00 ) -
We structure this paper as follows. Section | reviews staklpon receiving the quantum codewowmn(m)>, Bob per-

dard definitions and notation that are helpful for underditasn forms a sequence of binary-outcome quantum measure-

the rest of the paper. Secti¢d Il describes how a sequentints to determine the classical codewaftd(m) that Al-

decoder operates when decoding classical informatiorstraice transmitted. He first “asks,” “Is it the first codeword?”

mitted over a pure-state classical-quantum channel, and by performing the measuremepﬁtqbzn(l)) <¢In(1)] Lo —

completeness, AppendiX B provides a proof that this schemn(l)> <¢In(1)]}. If he receives the outcome “yes,” then

|. DEFINITIONS AND NOTATION

én this section, we describe the operation of a sequential
ecoder that can reliably recover classical informatiacoeled
m}ﬁ a pure state ensemble. Appenfix B contains a full error
?@é\lysis, demonstrating that the scheme achieves capacity



he performs no further measurements and concludes tRdiserving that

Alice transmitted the codeword:™ (1). If he receives n B ®n
the outcome “no,” then he performs the measurement o™ (m)) = D (a1 (m)) ® - ® D (an (M) 0)°",
{|ban(2)) (Gar )|, 1¥™ = |ban(2)) (¢an(2)|} to check if Alice  where D (o) = exp {aa’ — a*a} is the well-known unitary
sent the second codeword. Similarly, he stops if he receivgfsplacement” operator from quantum optics][10] dﬁiﬁi@”
“‘yes,” and otherwise, he proceeds along similar lines. is the n-fold tensor product vacuum state, it is clear that the

The above concludes the description of the operation of thecoder can implement the measuremen(lin (4) in three steps:
sequential decoder. We provide an error analysis demdnstra 1) Displace thes-mode codeword state by

ing that this scheme works well in AppendiX B, i.e., the word

error goes to zero as — oo, as long ask < H(p). Note that D(—a1(m))®---® D (—ay (m)),
Sen [12] and Giovannetét al. [11] already gave a proof that

a sequential decoder works, but our proof in Appefdix B is a
bit simpler because it is specialized to the case of pute-sta
ensembles (which is sufficient to consider for our settinfys o
pure-loss optical communication and quantum reading). {|O> (0™, 1% —10) <O|®”}.

by employing highly asymmetric beam-splitters with a
strong local oscillatori [13].
2) Perform a “vacuum-or-not” measurement of the form

Ill. SEQUENTIAL DECODING FOROPTICAL If the vacuum outcome occurs, decode as th&
COMMUNICATION codeword. Otherwise, proceed.
We now provide a physical realization of the sequential 3) Displace byD (a; (m)) @ --- @ D (a, (m)) with the
decoding strategy in the context of optical communicatiéms same method as in Step 1.
this setting, we suppose that a lossy bosonic channel,f@EECi  The receiver just iterates this strategy for every codeviord
by the following Heisenberg relations, connects Alice tdBoO e codebook, and Theordih 1 states this strategy is capacity
h— Vi + ma () achieving.

. R o . Remark 2: The above strategy is reminiscent of the class of
wherea, b, ande are the respective field operators for Alice’s.ongitional pulse nulling receivers [14], which are useful
input mode, Bob’s output mode, and an environmental iNpfscriminatingM-ary pulse-position-modulation coded states
mode (assumed to be in its vacuum state). The transmissiyjfyn ) in the it slot and vacuum staté8) in the otherM/ — 1
n € [0,1] is the fraction of Alice’s input photons that makeg|ots, In this strategy, the receiver hypothesizes at firat t
it to Bob on average. We assume that Alice is constrained s transmitted codeword is the first codewauid |0>®Mfl,
using mean photon numbé¥s per channel use. nulls the first mode by applyin®' (), and direct-detects the

The strategy for achieving the classical capacity of thigst mode. If the sender in fact transmitted the first codelyor
channel is for Alice to mducg a classical-quantum channghen, the resulting state is ideallp)®™, and direct detection
by selectingn € C and preparing a coherent statg [10] at ot the first mode should ideally produce no “clicks.” If there
the input of the channel i (3). The resulting mduc.ed cE@@si s no click, then the receiver direct detects the other mades
quantum channel to Bob is of the following form: confirm the original hypothesis. If there are no furtherkdic

a = |yma). then the receiver declares that the sender transmittedrte fi
) R ) codeword. If there is a further click, then the receiver gess
By choosing the distributiop (z) in Theorenl to be an e codeword corresponding to the position of the click.iif o

isotropic, complex Gaussian with variandé: the first mode there is a click, then the receiver hypothesize
pys (@) = (1/7Ng) exp {_ |a|2/NS}, that the transmitted codeword is the second one and repeats
the above algorithm on the ne&f — 1 modes.

we have thatg (nNg) is an achievable rate for classical The difference between the sequential decoding strategy
communication. The quantity (nNg) is the entropy of the and conditional pulse nulling is that the codewords are dif-

average state of the ensemfler, (o), |\/7a)}: ferent, and the vacuum-or-not measurement in the seqlientia
) decoding strategy is much more difficult to perform in preeti
/d @ pns (@) [v/na)(ynal, than direct detection, which annihilates the detected wuman

S ) state. Ideally, the vacuum-or-not should be a non-dermaliti
which is a thermal state with mean photon numbafs [10]. easurement such that the post-measurement stde3%i&

Each quantum codeword selected from the ensem@p(hm —¢|0)®™)/ /T — [, with ¢ = (0|2 |4, if the pre-
{pns (@), |e)} has the following form: measurement state is), with probabilitiesp, = |c|* and
o™ (m)) = |ag (M) @ -+ ® |an (M)) . p1 = 1 — po, respectively, of the two possible outcomes.

B . . . Remark 3: The crucial (and most difficult) step in sequen-
We assume = 1 above and for the rest of this section WlthOu{ial decoding for the lossy bosonic channel is the vacuum-

loss of generality. Thus, th_e sequential decode.zr ConS'Stso?-not measurement. it al. have provided a method for
measurements of the following form for alt € M:

performing this measurement, by interacting the light field
{la™ (m)) (a™ (m)|, I®" —|a™ (m)) (" (m)|}. (4) with a three-level atom in a STIRAP process|[15]. This



approach would likely be quite lossy in practice, so it woldd classical information encoded in the memory cells. If we use
ideal to determine an all-optical vacuum-or-not measurémea coherent-state transmitter to interrogate each cell, alie c
Remark 4: If the mean input photon numbéfs < 1, then it the Type | setting [[B]. If we do not allow the transmitter
one does not require a full Gaussian distributed codebookto retain any state entangled with the transmitted light, bu
order to achieve capacity. A simpler method, called binasflow it to send any quantum state (entangled spatiallysscro
phase-shift keying, suffices to approach capacity veryetyos modes or an unentangled non-classical product state), then
In this approach, the ensemble for generating a codebdbis is termed the Type Il setting![8]. Finally, if we do allow
randomly is just{1/2, |+a)}. This also simplifies the se- for entanglement assistance, in the sense that the traesmit
guential decoder because the only displacements requioesh prepare two modes in an entangled state for each of the
for implementation areD (+«). An additional advantage isn memory cells, send one to a memory cell while retaining
that a random linear encoder should achieve the capacthg other, then this is termed a Type Il setting [8]. In eath o
by an argument similar to that on pages 3-14 and 3-15 thfe three settings, the receiver is always allowed to perfor
Ref. [16]. BPSK polar codes are capacity-achieving for lova general (collective) quantum measurement on the reflected
photon number as well [17]. n modes (and the retained modes, in case of Type Ill). It
Remark 5: Tan proved a variation of Theoreld 1 for thds straightforward to prove that(Ns) is the Holevo (upper)
lossy bosonic channel in her thesis|[18], but the analysis limund on the capacity of quantum reading in the Type | and
Appendix[B demonstrates that it is actually not necessary Tgpe Il settings, while it is unknown whether Ng) could be
perform a measurement onto the average typical subspace.a¥eeeded in the Type Il setting![8].
avoided having to do so by demonstrating that it is sufficient Recently, Guhaet al. proved that the following strategy
to code for a typical-projected version of the channel arathieves thg (IVs) bound for quantum reading using a Type Il
applying Sen’s non-commutative union bound from Refl [12{ransmitter[[8], [9]. The transmitter interrogates eachnmogy
Remark 6: The above sequential decoding approach alsell with a quantum state of light of the form ifl(2). It is
works well in the context of private classical communicatiostraightforward to compute that the mean number of photons
over a lossy bosonic channél [19], [20]. The private clagsicin this state isNg: (¢i| 7 |¢1) = Ns, wheren = afa
capacity of the channel i (3) ig (nNs) — g ((1 —n) Ns) is the photon number operatdr [10]. Each memory cell has
(compare to its public classical capacity 9{nNgs)), and classical information encoded into only the phase variéble
the strategy for encoding is again to choose coherent stafeith n; = 1), so that a randomly chosen code in the sense of
randomly according to an isotropic Gaussian prior. The s€heoren{l is selected from the following ensemble:
guential decoder can just test for all codewords in a codeboo
of size 279(7Ns) and recover the transmitted private message {1/2m, |ou0)}, (5)
correctly. The privacy in the scheme comes about by Cho%’here
ing 279((1—mNs) codewords corresponding to each message

and selecting one of these uniformly at random in order to _ - n n+1 ;
randomize Eve’s knowledge of the transmitted messade [19]. [én.0) = Z \/NS/ (Ns + 1" exp{inf}|n), - (6)

n=0

IV. SEQUENTIAL DECODING FORQUANTUM READING and each is selected uniformly at random from the interval
The sequential decoding strategy also finds applicatigh 27). The average state of this code ensemble is
in “quantum reading”[[6]. In this setting, we suppose that
information is encoded into passive memory cells of an 1 = ntl
optically-readable memory, which a transceiver can read ou o1 /de |bu.0){buol = ZNﬁ/ (Ns +1)"" [n) (n],
by irradiating them with laser (or quantum) light and detegt 0 n=0
the reflected light. More specifically, we can model e which is a thermal state with mean photon numbgy. (The
optical memory cell as a beamsplitter of the following formeffect of phase-randomizing the statg) is simply to de-
5 . . . hase it to a thermal state.) Thus, a random code constructed
bi = explifi b/t + V1 =i, ?rom the ensemble in[]5) )along with a sequential decoder
where the parameterg and 6; are the respective reflectivity saturates the entropy bougd Ns) because the average state
and phase of thé" cell, anda;, b;, andé; are the respective is a thermal state.
field operators for the transmitterd" input mode, thei! It is not clear to us at the moment how to implement a
reflected mode, and an environmental mode (assumed toseguential decoder for the above Type |l strategy. Though, i
in its vacuum state). We assume perfect channels from tive allow for a Type IIl transmitter, the strategy is strafght
transmitter to the optical memory cells and from the celiskbaward to specify. First, the transmitter interrogates eggtical
to the receiver (which is co-located with the transmitter). memory cell with one mode of a two-mode squeezed vacuum
The objective is for the transmitter to interrogate eacdtate [10] of the following form:
optical memory cell with some quantum state of light with o
mean photon numbe¥s. The receiver then collects all of the b ) = Z \/Ng/ (Ns +1)" ™ n) |n),
reflected light and performs some measurement to recover the

2m

n=0



while retaining the other mode. The encoding in the opticak helpful to realize an all-optical implementation of the
memory cells is the same as above, such that the membrgcuum-or-not” measurement—which could help both on the
cells have classical information encoded only into a uniflgr  scalability front, and relative ease of implementation am¢
random phase. The code ensemble is thef2r, |¢u )}, pared to a system that uses atom-light interaction [15]oAls
with |¢y ¢) defined similarly as in{6). The authors of Réf. [8khe sequential decoding scheme given here is impractical fr
showed that this ensemble also saturatesdfi€s) bound. a computational perspective because it requires an exiaghen

Consider then™ quantum codeword to have the form: number of measurements (there are an exponential number of
codewords). It would be better to have a sequential decoder
[P1,6m(m)) = D16, (m)) @ -+ @ D 9, (m))- that decodes one bit at a time and would thus require only-a lin
Consider further that each of the states in the above ten§&f number of measurements. The polar decoder for classical
product can be written as guantum channels is one such sequential decodér [17], but it
remains unclear to us how to implement it with optical desice
it 6, (m)) = (P (0; (m)) @ 1) S (r)[0)*?, We thank J. P. Dowling, V. Giovannetti, P. Hayden, L.

where P (6; (m)) = exp{inf; (m)} is a phase shifter§ (r) Maccone, and J. H. Shapiro for useful discussions.
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The most important open problems going forward concern

making the scheme more practical. In this vein, it might



APPENDIXA Then the subnormalized statéAp,+/A is close in expected

IMPORTANT LEMMAS trace distance to the original state:
In order to describe the “distance” between two quantum
states, we use the notion whce distance. The trace distance Ex {H\/pr\/K —PX H1} <2V

between states andp is || —p||1 = Tr |o — p|, where| X | =
VXTX. Two states that are similar have trace distance closeA proof of the above lemma is available in Refl [4].
to zero, whereas states that are perfectly distinguishzdote
trace distance equal to two. APPENDIX B
Two states can substitute for one another up to a penalty ERRORANALYSIS FOR SEQUENTIAL DECODING

proportional to the trace distance between them:
Lemma 8: Let0 < p,o,A < I. Then In general, if Alice transmits then™™ codeword, then the
probability for Bob to decode correctly with this sequehtia
Tr [Ap] < Tr[Ao] + [lp— oy - ) decoding strategy is as follows:
Proof: This follows from a variational characteriza- . . ) .
tion of trace distance as the distinguishability of the Tr{(bw"(m)nmfl o Iy Gy (11 - "Hmfl(bm"(m)}a
states under an optimal measurematt [4]: |p — o, =

2maxo< <7 Tr [M(p — o)]. m Wwhere we make the abbreviations
Consider a density operater with the following spectral
decomposition: un(m) = |Gan(m)) (Pan(m)]
f[i = I®n - (1 (1 .
p=>px (@) ) (al. |baniy) (bana|

i ) i So the probability that Bob makes an error when decoding the
The weakly typical subspace is defined as the span of gl .qqeword is just

vectors such that the sample entrady(z™) of their classical

label is c!ose to the true entropy (X) of the distribution ;| _ Tr{%n(m)f{m,l x 'ﬁ1¢m"(m)ﬁ1 o 'ﬁmfld)z"(m)}-

px (z) [4]:

" = span{|z") : ‘H(xn) —H (X)| <4}, To further simplify the error analysis, we consider the expe
tation of the above error probability, under the assumptiar

where Alice selects a message uniformly at random according to a
H (") = 1 log (px~ (z™)), random variablel and that the codeword™ is selected at
n random according to the distributigny- (z™) (as described
H(X)=-> px(2)logpx (x). above):
The projectorlI” ; onto the typical subspace pfis defined 1 — XfEMTr{‘bX"(M)ﬁMfl Iy gxen (I - -ﬁM,l}.
ms= > 2" ", For the rest of the proof, it is implicit that the expectatiBn
zneT" is with respect to random variablég™ and M.
where we have “overloaded” the symbbj(" to refer also to  Our first observation is that, for the purposes of our error
the set ofs-typical sequences: analysis, we can “smooth” the channel'’ — ¢.», by
. _ imagining instead that we are coding for a projected versfon
T3 = {2": |H (2") - H(X)| <6} the channell ¢, II, wherell is the typical projector for the
The three important properties of the typical projector ase average statg = > px (z) ¢... Doing so simplifies the error
follows: analysis by cutting off large eigenvalues that reside detsif
the high-probability typical subspace. Furthermore, weeex
Tr {H?,(;P@n} >1-e that doing so should not affect the error analysis very much
Tr{I,} < o H(X)+0] because most of the probability tends to concentrate in this
2_n[H(X)+6]HZ,5 < H;},(;p@"ﬂﬁg < 2_n[H(X)_5]HZ,67 ;:J;btspace anyway. That we can do so follows from the fact

where the first property holds for arbitragé > 0 and
sufficiently largen. 1=ETr{¢xnnn}
Lemma 9 (Gentle Operator Lemma for Ensembles): -
Given an fensemblersz (), pz} With expecte()j density = ETr {Tlgxnan } +ETr {Hd)X"(M)}
operatorp = 3, px (z) po, Suppose that an operatdrsuch = ETr {Tgxn 11} + Tr {fﬂE¢xn(M)}
that/ > A > 0 succeeds with high probability on the state
— ETr {Tlgxcn(an) 1T} + Tr {T1p™" |,

Tr{Ap} >1—c



wherell = I — II. Furthermore, we know that For the second term, consider that

. . . . M-1
ETr{xnanTlars -+ Mgl -+ Tlar } E Y Tr{oxnmMoxnanll}
=ETr {ﬁl o T—1éxn (a1 - 'ﬁ1¢xn(M)} !
. . A R <Eum Z ExnTr {¢xn i Mpxnan I}
> ETr {Hl M- 1¢xn (-1 - 'H1H¢X"(M)H} iAM
—E||¢xnan — Hfbxn(M)Hul ; =Em Z Tr{Exn {¢xn ) § HExn {¢xnan } 1T}

i#AM
where the inequality follows from Lemniad 8. Using the above Snir .8n
observations and the facts that B ;\;Tr {p Ty H}
E||¢x» ) — Doxnan |, < 2Ve, 9) < g7 nlH () =] Z Tr {p®"11}
. i#AM
Trellp®" ¢ <, 10
{1moe} < (10) < 9-nlH)=3] |\

for all ¢ > 0 whenevern is sufficiently large (these ar The first inequality follows by just adding in all of the futur

from the _properUes of typicality .and Lemnia 9), we Obta%rmsi > M to the sum. The first equality follows because the
the following upper bound oriX8): random variables(” (i) and X" (M) are independent, due to
the way that we selected the code (each codeword is selected
ETr {Tlgxn (I} — independently of a different one). The second equalityfed
ETr {¢xn(1\4)ﬂz\4—1 .. -ﬁ1H¢xn(1\4)Hﬂ1 .. .ﬂM_lqun(M)} from averaging the statéx- with respect to the distribution
pxn, and we drop the expectatidy, because the quantities
+tet2ve (11) inside the trace no longer have a dependence on the message

(In the next steps, we omit the termas+ 2,/ as they are M. The _second ineqlgalit.y follows.from the entropy bc_)und
negligible.) The most important step of this error analysis [0 the eigenvalues 05" in the typical subspace. The final

to apply Sen's non-commutative union bound (Lemma 3 diequality follows because Tp®" 11} < 1. .
Ref. [12]), which holds for any subnormalized statéo > 0 Thus, the overall upper bound on the error probability with

and T{o} < 1) and sequence of projectors, ..., IIy: this sequential decoding strategy is
¢ = e+ 2V +2y/2//e + 2l (I=0) M),

N
Tr{o}-Tr{lly ---Ioll; - -- Ty} < 2$ > T{-1)o} which we can make arbitrarily small by choosingt| =

=1 2nlH(p)=20] and n sufficiently large. The next arguments are
standard. We proved a bound on the expectation of the average
I%obability, which implies there exists a particular cotiatt
has arbitrarily small average error probability under tame
choice of| M| andn. For this code, we can then eliminate the
worst half of the codewords, ensuring that the error prditpbi

For our case, we takH¢ x~ynIl aso and ¢ xn (), a1,
..., II, as the sequence of projectors. Applying Sen’s bou
and concavity of the square root function leads to the fahow
upper bound on(11):

M1 of the resulting code is no larger thax’. Furthermore, it
2\JETr{ﬁMH¢Xn(M)H} +E Z Tr {$xn (M xcn (a1} should be clear that it is only necessary for the sequential
P decoder to process the remaining codewords when decoding

messages. u

wherelIl,; = 19" — bxn(ary and gxngy = I — II;. We Remark 10: Sen'’s proof applies to the more general case of
now bound each of the above two terms individually. For th&assical-quantum channets— p,, with p, a mixed state, by

first term, consider that employing conditionally typical projectors [12]. For ptstate
R classical-quantum channels, the conditionally typicajgator
ETY{HMH¢xn(M)H} is just the pure state itself, and the proof simplifies as seen
. above.
<ETr{Tldxnin b +Eléxsan — Toxn ],
< 2y/e.
where the last inequality follows from applyindl(9) and
because

Tr {ﬂM(bX"(M)} =Tr{(I®" = dxn(ar) bxn(ar) }
—0.
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