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Abstract

We develop a new method for showing the optimality of the Gaussian distribution in multiterminal
information theory problems. As an application of this method we show that Marton’s inner bound
achieves the capacity of the vector Gaussian broadcast channels with common message.

1 Introduction

Channels with additive Gaussian noise are a commonly used model for wireless communications. Hence
computing the capacity regions or bounds on the capacity regions for these classes of channels are of wide
interest. Usually these bounds or capacity regions are represented using auxiliary random variables and
distributions on these auxiliary random variables. Evaluations of these bounds then becomes an optimization
problem of computing the extremal auxiliary random variables. In several instances involving Gaussian
noise channels, it turns out that the optimal auxiliaries and the inputs are Gaussian. However proving the
optimality of Gaussian distributions are usually very cumbersome and involve certain non-trivial applications
of the entropy-power-inequality(EPI), and the perturbation ideas behind its proof.

For the two-receiver vector Gaussian broadcast channel with private messages, the capacity region was
established[14] by showing that certain inner and outer bounds match. This argument was indirect, and
hence the approach has been hard to generalize to other situations. In the following sections we develop
a novel way of proving the optimality of Gaussian input distribution for additive Gaussian noise channels.
There are many potential straightforward applications of this new approach which will yield new results as
well as recover the earlier results in a simple manner. For the purpose of this article, we will restrict ourselves
to two-receiver vector Gaussian channels. We will recover the known results for the private messages case
and obtain the capacity region in the presence of a common message as well.

1.1 Preliminaries

Broadcast channel[4] refers to a communication scenario where a single sender, usually denoted by X , wishes
to communicate independent messages (M0,M1,M2) to two receivers Y1, Y2. The goal of the communication
scheme is to enable receiver Y1 to recover messages (M0,M1) and receiver Y2 to recover messages (M0,M2);
both events being required to occur with high probability. For introduction to the broadcast channel problem
and a summary of known work one may refer to Chapters 5, 8, and 9 in [6].

A broadcast channel is characterized by a probability transition matrix q(y1, y2|x). The following broad-
cast channel is referred to as the vector additive Gaussian broadcast channel

Y1 = G1X+ Z1

Y2 = G2X+ Z2.

In the above X ∈ Rt, G1, G2 are t× t matrices, and Z1,Z2 are Gaussian vectors independent of X.

Remark 1. We assume, w.l.o.g. that Z1, Z2 ∼ N (0, I).
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A product broadcast channel is a broadcast channel whose transition probability has the form q1(Y11,Y21|X1)×
q2(Y12,Y22|X2). A vector additve Gaussian product broadcast channel can be represented as

[

Y11

Y12

]

=

[

G11 0
0 G12

] [

X1

X2

]

+

[

Z11

Z12

]

[

Y21

Y22

]

=

[

G21 0
0 G22

] [

X1

X2

]

+

[

Z21

Z22

]

.

In the above Z11,Z12,Z21,Z22 are independent Gaussian vectors, also independent of X1,X2.

Remark 2. In this paper we assume that all our channel gain matrices are invertible. Since the set of
all matrices are dense (with respect to say, Frobenius norm) by continuity, our capacity results extend to
non-invertible cases.

We present some simple claims regarding additive Gaussian channels which will be useful later.

Claim 1. Consider the following vector additive Gaussian product channel with identical components

Y1 = GX1 + Z1

Y2 = GX2 + Z2

Further let Z1, Z2 be independent and distributed as N (0, I). Define

X̃ =
1√
2
(X1 +X2), X′ =

1√
2
(X1 −X2), Ỹ =

1√
2
(Y1 +Y2), Y′ =

1√
2
(Y1 −Y2).

Then I(X1,X2;Y1,Y2) = I(X̃,X′; Ỹ,Y′).

Proof. The proof is a trivial consequence of the fact that h(Ỹ,Y′) = h(Y1,Y2) and h(Ỹ,Y′|X̃,X′) =
h(Z̃,Z′) = h(Z1,Z2) = h(Y1,Y2|X1,X2) where Z̃ = 1√

2
(Z1 + Z2),Z

′ = 1√
2
(Z1 − Z2).

Remark 3. An interesting consequence of Gaussian noise is that Z̃ and Z′ are again independent and dis-
tributed according to N (0, I). Hence Ỹ,Y′ can be regarded as the outputs of the Gaussian channel when
the inputs are distributed according to X̃,X′. This observation is peculiar to additive Gaussian channels.

Claim 2. In vector additive Gaussian product broadcast channels with invertible channel gain matrices, the
random variables Y11 and Y22 are independent if and only if X1 and X2 are independent.

Proof. Here we prove the non-trivial direction. Suppose Y11 and Y22 are independent. We know that
Y11 = G11X1 + Z11 and Y22 = G22X2 + Z22 where Z11,Z22 are mutually independent and independent of
the pair X1,X2. Taking characteristic functions we see that

E
(

ei(t1·Y11+t2·Y22)
)

= E
(

eit1·Y11
)

E
(

eit2·Y22
)

= E
(

eit1·Z11
)

E
(

eit1·G11X1
)

E
(

eit2·G22X2
)

E
(

eit2·Z22
)

.

On the other hand

E
(

ei(t1·Y11+t2·Y22)
)

= E
(

eit1·Z11
)

E
(

ei(t1·G11X1+t2·G22X2)
)

E
(

eit2·Z22
)

.

Since E
(

eit1·Z11
)

,E
(

eit2·Z22
)

> 0 ∀t1, t2 we have that

E
(

ei(t1·G11X1+t2·G22X2)
)

= E
(

eit1·G11X1
)

E
(

eit2·G22X2
)

, ∀t1, t2.

Hence G11X1 and G22X2 are independent; since G11 and G22 are invertible, X1 and X2 are independent.
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2 Optimality of Gaussian via factorization of concave envelopes

We devise a new technique to show that Gaussian distribution achieves the maximum value of an optimization
problem, subject to a covariance constraint. Though some of the results have been known earlier[10], the
technique presented here allows us to obtain much broader results.

The main idea behind the approach is to show that if a certain X (say zero mean) achieves the maximum
value of an optimization problem, then so does 1√

2
(X1 +X2) and

1√
2
(X1 −X2); where X1, X2 are two i.i.d.

copies of X . Further we will show that 1√
2
(X1+X2) and

1√
2
(X1−X2) have to be independent as well, which

forces the initial distribution to be Gaussian, see Theorem 3 and Corollary 3 in Appendix A.1. Alternately,
one can repeat averaging procedure inductively and use central limit theorem to conclude that Gaussian
distribution achieves the maximum. To show the first step we go to the two-letter version1 of the channel,
use a factorization property of the function involved and then Claim 1 to move from the pair X1, X2 to
1√
2
(X1 +X2).

Remark 4. It is worth noting the remarkable similarity of the structure of the arguments that follow for
the three optimization problems below for which we show the optimality of Gaussian. In particular the first
example, though trivial, contains most of the key intuitive elements.

2.1 Example 1: Mutual information

Let Y = GX + Z represent a point-to-point channel, where Z ∼ N (0, I) and G is invertible. Given K � 0,
consider the following optimization problem:

V(K) = max
X:E(XXT )�K

I(X;Y).

Remark 5. By writing max instead of sup we are indeed claiming the existence of a maximizing distribution.
This is a non-trivial technical issue that we will deal with (in the Appendix) for the newer functions that we
consider. The same arguments used for establishing Claim 6 can be used (essentially verbatim) to imply the
existence of a maximizing distribution here. Furthermore for the above optimization problem it is well-known
that X ∼ N (0,K) achieves V(K) and the aim here is to give a simple illustration of our approach.

Consider a product channel consisting of two identical components of the point-to-point channel described
above: q(Y1|X1)× q(Y2|X2). We call the below claim as the factorization property of mutual information.

Claim 3. The following inequality holds for the product channel

I(X1,X2;Y1,Y2) ≤ I(X1;Y1) + I(X2;Y2).

Further if equality is achieved at some p(x1,x2) then X1,X2 must be independent.

Proof. The proof is essentially a consequence of the following equality for product channels

I(X1,X2;Y1,Y2) = I(X1;Y1) + I(X2;Y2)− I(Y1;Y2).

Further, if equality holds then Y1,Y2 must be independent, which from Claim 2 implies that X1 and X2

are independent.

Let p∗(x) be a zero mean distribution that achieves V(K).

Claim 4. Let (X1,X2) ∼ p∗(x1)p∗(x2) be two i.i.d. copies of p∗(x). Then the following distributions X̃ =
1√
2
(X1 +X2), X

′ = 1√
2
(X1 −X2) also achieve V(K). Further the random variables X̃,X′ are independent.

1A two letter version of a channel q(y|x) is a product channel consisting of identical components q(y1|x1)× q(y2|x2).
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Proof. Let Ỹ = 1√
2
(Y1 +Y2), Y

′ = 1√
2
(Y1 −Y2). The claim is a consequence of Claim 3 and the following

observations:

2V(K) = I(X1;Y1) + I(X2;Y2)

= I(X1,X2;Y1,Y2)

(a)
= I(X̃,X′; Ỹ,Y′)

(b)

≤ I(X̃; Ỹ) + I(X′;Y′)

≤ V(K) + V(K) = 2V(K).

Here the first equality comes because p∗(x) achieves V(K), the second one because X1 and X2 are inde-
pendent. Equality (a) is a consequence of Claim 1, Inequality (b) is a consequence of Claim 3, and the last
inequality follows from the following:

E(X̃X̃T ) = E(X′X′T ) =
1

2

(

E(X1X
T
1 ) + E(X2X

T
2 )
)

� K,

and the definition of V(K). Since the extremes match, all inequalities must be equalities. Hence (b) must
be an equality, which implies from Claim 3 that X̃,X′ are independent. Similarly we require I(X̃; Ỹ) =
I(X′;Y′) = V(K) as desired.

Hence we have shown that X ∼ p∗(x) that achieves a maximum has the following property: If (X1,X2)
are i.i.d. copies each distributed according to p∗(x), then X1 + X2 and X1 − X2 are also independent.
Thus from Theorem 3 and Corollary 3(Appendix A.1) we have that X ∼ N (0,K ′) for some K ′ � K.
Alternately, one could also use the following approach: For any X ∼ p∗(x) (assume zero mean) that achieve
the maximum, we know that 1√

2
(X1 +X2) also achieves the maximum. Hence proceeding by induction, we

can use Central limit theorem to deduce that the Gaussian distribution also achieves the maximum. This
alternate approach is elaborated for the next example in Appendix C.

Remark 6. For this example, we can use the monotonicity of the log | · | function to deduce that K ′ = K.
In the examples that follow below we do not have any such monotonicity. Hence, we will only establish that
the optimizing distribution is a Gaussian, which is sufficient for our purposes.

2.2 Example 2: Difference of mutual informations

Consider a vector additive Gaussian broadcast channel. For λ > 1 let the following function of p(x) be
defined by

sλ(X) := I(X;Y1)− λI(X;Y2).

Let sλ(X|V ) := I(X;Y1|V )− λI(X;Y2|V ).
Further define

Sλ(X) := C(sλ(X))

denote the upper concave envelope2 of sλ(X). It is a straightforward exercise to see that

C(sλ(X)) = sup
p(v|x):

V →X→(Y1,Y2)

I(X;Y1|V )− λI(X;Y2|V ) = sup
p(v|x)

sλ(X|V ).

We also define Sλ(X|V ) :=
∑

v p(v)Sλ(X|V = v) for finite V and its natural extension for arbitrary V .

Remark 7. We will try to keep the language simple in the main body of this paper. In the Appendix we will
deal with the various technical issues with due diligence.

For a product broadcast channel q1(y11,y21|x1)×q2(y12,y22|x2) let Sλ(X1,X2) denote the corresponding
upper concave envelope. The following claim is referred to as the “factorization of Sλ(X1,X2)”.

2The upper concave envelope of a function f(x) is the smallest concave function g(x) such that g(x) ≥ f(x), ∀x.
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Claim 5. The following inequality holds for product broadcast channels

Sλ(X1,X2) ≤ Sλ(X1|Y22) + Sλ(X2|Y11) ≤ Sλ(X1) + Sλ(X2).

For additive Gaussian noise broadcast channels if p(v|x1,x2) realizes Sλ(X1,X2), i.e. Sλ(X1,X2) = sλ(X1,X2|V ),
and equality is achieved above i.e. Sλ(X1,X2) = Sλ(X1) + Sλ(X2), then all of the following must be true

1. X1 and X2 are conditionally independent of V

2. V,X1 achieves Sλ(X1)

3. V,X2 achieves Sλ(X2).

Proof. For any p(v|x1,x2) observe the following

I(X1,X2;Y11,Y12|V )− λI(X1,X2;Y21,Y22|V )

= I(X1;Y11|V ) + I(X2;Y12|V,Y11)− λI(X2;Y22|V )− λI(X1;Y21|V,Y22)

= I(X1;Y11|V,Y22) + I(X2;Y12|V,Y11)− λI(X2;Y22|V,Y11)− λI(X1;Y21|V,Y22)− (λ− 1)I(Y11;Y22|V )

≤ Sλ(X1|Y22) + Sλ(X2|Y11)− (λ− 1)I(Y11;Y22|V )

≤ Sλ(X1) + Sλ(X2)− (λ− 1)I(Y11;Y22|V )

≤ Sλ(X1) + Sλ(X2).

Since equality holds all inequalities are tight. Hence Y1 and Y2 are conditionally independent of V implying
that X1 and X2 are conditionally independent of V (Claim 1). Hence

I(X1;Y11|V,Y22)− λI(X1;Y21|V,Y22) = I(X1;Y11|V )− λI(X1;Y21|V ) = Sλ(X1),

I(X2;Y12|V,Y11)− λI(X2;Y22|V,Y11) = I(X2;Y12|V )− λI(X2;Y22|V ) = Sλ(X2).

This completes the proof.

2.2.1 Maximizing the concave envelope subject to a covariance constraint

Consider an Additive Gaussian Noise broadcast channel q(y1, y2|x). For K � 0, define

Vλ(K) = sup
X:E(XXT )�K

Sλ(X).

Claim 6. There is a pair of random variables (V∗,X∗) with |V∗| ≤ t(t+1)
2 + 1 such that

Vλ(K) = sλ(X∗|V∗).

Proof. This is a technical claim that shows that the supremum is indeed attained. The details are present
in the Appendix B.

The goal of this section is to show that a single Gaussian distribution achieves Vλ(K), i.e. we can
take V to be trivial and X ∼ N (0,K ′),K ′ � K. (This result is known and was first shown by Liu and
Vishwanath[10] using perturbation based techniques. We use this here as a non-trivial illustration of our
technique and then our final result in the next section is new.)

Consider a product channel consisting of two identical components q(Y11,Y21|X1)× q(Y12,Y22|X2).

Notation: In the remainder of the section we assume that p∗(v,x) achieves Vλ(K) , |V | = m ≤ t(t+1)
2 + 1

and Xv be a centered random variable (zero-mean) distributed according to p(X|V = v). Further let
Kv = E(XvX

T
v ). Then we have

∑m
v=1 p∗(v)Kv � K and in particular that Kv’s are bounded.

Claim 7. Let (V1, V2,X1,X2) ∼ p∗(v1,x1)p∗(v2,x2) be two i.i.d. copies of p∗(v,x). We assume that

|V | ≤ t(t+1)
2 + 1. Let

Ṽ = (V1, V2), X̃|
(

Ṽ = (v1, v2)
)

∼ 1√
2
(Xv1 +Xv2) , X′|

(

Ṽ = (v1, v2)
)

∼ 1√
2
(Xv1 −Xv2) .

In the above we take Xv1 and Xv2 to be independent random variables. Then the following hold:
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1. X̃,X′ are conditionally independent given Ṽ .

2. Ṽ , X̃ achieves Vλ(K).

3. Ṽ ,X′ achieves Vλ(K).

Proof.

2Vλ(K) = sλ(X1|V1) + sλ(X2|V2)

= sλ(X1,X2|V1, V2)

(a)
= sλ(X̃,X′|Ṽ )

(b)

≤ Sλ(X̃,X′)

(c)

≤ Sλ(X̃) + Sλ(X
′)

≤ Vλ(K) + Vλ(K) = 2Vλ(K).

Here the first equality comes because p∗(v,x) achieves Vλ(K), the second one because (V1,X1) and (V2,X2)
are independent. Equality (a) is a consequence of Claim 1, inequality (c) is a consequence of Claim 5, and
the last inequality follows from the following:

E(X̃X̃T ) = E(X′X′T ) =
∑

v1,v2

p∗(v1)p∗(v2)
(Kv1 +Kv2)

2
=

m
∑

v=1

p∗(v)Kv � K,

and the definition of Vλ(K). Since the extremes match, all inequalities must be equalities. Hence (b) must
be an equality, p(ṽ, x̃,x′) achieves Sλ(X̃,X′); and since (c) is also equality from Claim 5 we conclude that
X̃,X′ are conditionally independent of Ṽ .Furthermore, we also obtain that p(ṽ|X̃) achieves Sλ(X̃), which
from the last inequality matches Vλ(K). Similarly for p(ṽ|X′).

As a consequence, Xv1 , Xv2 are independent random variables and (Xv1 +Xv2) , (Xv1 −Xv2) are also
independent random variables. Thus from Corollary 3 (in Appendix A.1) Xv1 ,Xv2 are Gaussians, say having
the same distribution as Xv ∼ N (0,K ′). Since v1, v2 are arbitrary, all Xvi are Gaussians, having the same
distribution as Xv. Then

Vλ(K) =

m
∑

i=1

p∗(vi)sλ(Xvi ) =

m
∑

i=1

p∗(vi)sλ(Xv) = sλ(Xv).

Hence we obtain the following theorem.

Theorem 1. There exists X∗ ∼ N (0,K ′),K ′ � K such that Vλ(K) = sλ(X∗).

Remark: Notice that we never used the precise form of Sλ(X) but just used that the implications of
Claim 5. In the next section we will define a new concave envelope that will also satisfy a condition similar
to Claim 5, and then establish the optimality of Gaussian.

Corollary 1. If X ∼ N (0,K) then there exists X∗ ∼ N (0,K ′),K ′ � K such that Sλ(X) = sλ(X∗) =
Vλ(K).

Proof. Clearly from Theorem 1 and definition of Vλ(K) we have

Sλ(X) ≤ Vλ(K) = sλ(X∗).

On the other hand let X′ ∼ N (0,K −K ′) be independent of X∗. Note that X ∼ X′ +X∗ and

Sλ(X) = sup
V

sλ(X|V ) ≥ sλ(X|X′) = sλ(X∗).

6



2.3 Example 3: A more complicated example

The function we considered in the previous section can be used determine the capacity region of vector
Gaussian broadcast channel with only private messages[10](see Section 3.1). The function we consider in
this section will enable us to determine the capacity region of vector Gaussian broadcast channel with
common message as well (see Section 3.2).

For λ0, λ1, λ2 > 0 and for α ∈ [0, 1] (and ᾱ := 1− α) consider the following function of p(x) defined by

t~λ(X) := −λ0αI(X;Y1)− λ0ᾱI(X;Y2) + (λ1 + λ2)I(X;Y2) + λ1Sλ1+λ2
λ1

(X).

Further let
T~λ(X) := C(t~λ(X))

denote the upper concave envelope of t~λ(X). It is easy to see that

C(t~λ(X)) = sup
p(w|x)

−λ0αI(X;Y1|W )− λ0ᾱI(X;Y2|W ) + (λ1 + λ2)I(X;Y2|W ) + λ1Sλ1+λ2
λ1

(X|W ).

For a product broadcast channel q1(y11,y21|x1)×q2(y12,y22|x2) let T~λ(X1,X2) denote the corresponding
upper concave envelope. The following claim is referred to as the “factorization of T~λ(X1,X2)”.

Claim 8. When λ0 > λ1 + λ2 the following inequality holds for product broadcast channels

T~λ(X1,X2) ≤ T~λ(X1|Y22) + T~λ(X2|Y11) ≤ T~λ(X1) + T~λ(X2).

For additive Gaussian noise broadcast channels if p(w,X1,X2) realizes T~λ(X1,X2) and equality is achieved
above then all of the following must be true

1. X1 and X2 are conditionally independent of W

2. W,X1 achieves T~λ(X1)

3. W,X2 achieves T~λ(X2).

Proof. Observe the following

− λ0αI(X1,X2;Y11,Y12|W )− λ0ᾱI(X1,X2;Y21,Y22|W ) + (λ1 + λ2)I(X1,X2;Y21,Y22|W )

+ λ1Sλ1+λ2
λ1

(X1,X2|W )

≤ −λ0αI(X1;Y11|W )− λ0αI(X2;Y12|W,Y11)− λ0ᾱI(X2;Y22|W )− λ0ᾱI(X1;Y21|W,Y22)

+ (λ1 + λ2)I(X2;Y22|W ) + (λ1 + λ2)I(X1;Y21|W,Y22) + λ1Sλ1+λ2
λ1

(X1|W,Y22) + λ1Sλ1+λ2
λ1

(X2|W,Y11)

≤ −λ0αI(X1;Y11|W,Y22)− λ0αI(X2;Y12|W,Y11)− λ0ᾱI(X2;Y22|W,Y11)− λ0ᾱI(X1;Y21|W,Y22)

+ (λ1 + λ2)I(X2;Y22|W,Y11) + (λ1 + λ2)I(X1;Y21|W,Y22) + λ1Sλ1+λ2
λ1

(X1|W,Y22)

+ λ1Sλ1+λ2
λ1

(X2|W,Y11)− (λ0 − λ1 − λ2)I(Y11;Y22|W )

≤ T~λ
(X1|Y22) + T~λ

(X2|Y11)− (λ0 − λ1 − λ2)I(Y11;Y22|W )

≤ T~λ
(X1) + T~λ

(X2)− (λ0 − λ1 − λ2)I(Y11;Y22|W ).

Since equality holds, using Claim 1 we have X1 and X2 are conditionally independent of W . Further using
this and the equality observe that

− λ0αI(X1;Y11|W,Y22)− λ0ᾱI(X1;Y21|W,Y22) + (λ1 + λ2)I(X1;Y21|W,Y22) + λ1Sλ1+λ2
λ1

(X1|W,Y22)

= −λ0αI(X1;Y11|W )− λ0ᾱI(X1;Y21|W ) + (λ1 + λ2)I(X1;Y21|W ) + λ1Sλ1+λ2
λ1

(X1|W )

= T~λ
(X1).

Similarly for X2. This completes the proof.

7



Remark: The above claim is the equivalent of Claim 5.

For K � 0, define
V̂~λ(K) = sup

X:E(XXT )�K

T~λ(X).

Claim 9. There exists a pair (W∗,X∗) with |W∗| ≤ t(t+1)
2 + 1 such that V̂~λ(K) = t~λ(X∗|W∗).

Notation: In the remainder of the section we assume that p∗(w,x) achieves V̂~λ(K), |W | = m ≤ t(t+1)
2 + 1

and Xw be a centered random variable (zero-mean) distributed according to p(X|W = w). Further let
Kw = E(XwX

T
w). Then we have

∑m
w=1 p∗(w)Kw � K and in particular that Kw’s are bounded.

Claim 10. Let (W1,W2,X1,X2) ∼ p∗(w1,x1)p∗(w2,x2) be two i.i.d. copies of p∗(w, x). We assume that

|W | ≤ t(t+1)
2 + 1. Let

W̃ = (W1,W2), X̃|
(

W̃ = (w1, w2)
)

∼ 1√
2
(Xw1 +Xw2) , X′|

(

W̃ = (w1, w2)
)

∼ 1√
2
(Xw1 −Xw2) .

In the above we take Xw1 and Xw2 to be independent random variables. Then the following hold:

1. X̃,X′ are conditionally independent given W̃ .

2. W̃ , X̃ achieves V̂~λ(K).

3. W̃ ,X′ achieves V̂~λ(K).

Proof.

2V̂~λ(K) = t~λ(X1|W1) + t~λ(X2|W2)

= t~λ(X1,X2|W1,W2)

(a)
= t~λ(X̃,X′|W̃ )

(b)

≤ T~λ(X̃,X′)

(c)

≤ T~λ(X̃) + T~λ(X
′)

≤ V̂~λ(K) + V̂~λ(K) = 2V̂~λ(K).

The proof mirrors that of Claim 7. Here the first equality comes because p∗(w,x) achieves V̂~λ(K), the second
one because (W1,X1) and (W2,X2) are independent. Equality (a) is a consequence of Claim 1, inequality
(c) is a consequence of Claim 8, and the last inequality follows from the following:

E(X̃X̃T ) = E(X′X′T ) =
∑

w1,w2

p∗(w1)p∗(w2)
(Kw1 +Kw2)

2
=

m
∑

w=1

p∗(w)Kw � K,

and the definition of V̂~λ(K). Since the extremes match, all inequalities must be equalities. Hence (b) must

be an equality, p(w̃, x̃,x′) achieves T~λ(X̃,X′); and since (c) is also equality from Claim 8 we conclude that

X̃,X′ are conditionally independent of W̃ . Furthermore, we also obtain that p(w̃|X̃) achieves T~λ(X̃), which

from the last inequality matches V̂~λ(K). Similarly for p(w̃|X′).

As a consequence, Xw1 , Xw2 are independent random variables and (Xw1 +Xw2) , (Xw1 −Xw2) are also
independent random variables. Thus from Corollary 3 (in Appendix A.1) Xw1 ,Xw2 are Gaussians, say
having the same distribution as Xw ∼ N (0,K ′). Since w1, w2 are arbitrary, all Xwi

are Gaussians, having
the same distribution as Xw. Then

V̂~λ(K) =

m
∑

i=1

p∗(wi)t~λ(Xwi
) =

m
∑

i=1

p∗(wi)t~λ(Xw) = t~λ(Xw).

Hence we obtain the following theorem.
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Theorem 2. There exists X∗ ∼ N (0,K ′),K ′ � K such that V̂~λ(K) = t~λ(X∗).

Corollary 2. If X ∼ N (0,K) then there exists X1∗ ∼ N (0,K1) and an independent random variable
X2∗ ∼ N (0,K2),K1 +K2 = K ′ � K such that T~λ(X) = t~λ(X1∗ +X2∗) = V̂~λ(K) and Sλ1+λ2

λ1

(X1∗ +X2∗) =

sλ1+λ2
λ1

(X1∗) = Vλ1+λ2
λ1

(K1 +K2).

Proof. Clearly from Theorem 2 and definition of V̂~λ(K) we have

T~λ(X) ≤ V̂~λ(K) = t~λ(X∗).

On the other hand let X′ ∼ N (0,K −K ′) be independent of X∗. Note that X ∼ X′ +X∗ and

T~λ(X) = sup
W

t~λ(X|W ) ≥ t~λ(X|X′) = t~λ(X∗).

Now splitting of X∗ into X1∗, X2∗ is possible by Corollary 1.

3 Two capacity regions

3.1 Vector Gaussian Broadcast channel with private messages

Consider a vector Gaussian broadcast channel with only private message requirements. Let C be the capacity
region. For λ > 1 we will seek to maximize the following expression

max
(R1,R2)∈C

R1 + λR2.

The case for λ < 1 is dealt with similarly (with roles of (Y1, Y2) interchanged). The case for λ = 1 follows
by continuity.

Here we consider the Korner-Marton outer bound and Marton’s inner bound (both from [11]) to the
capacity region of the broadcast channel.

Bound 1. The union of rate pairs (R1, R2) satisfying

R2 ≤ I(V ;Y2)

R1 ≤ I(X ;Y1)

R1 +R2 ≤ I(V ;Y2) + I(X ;Y1|V )

over all V → X → (Y1, Y2) forms an outer bound to the broadcast channel.

Denote this region as O.

Bound 2. The union of rate pairs (R1, R2) satisfying

R2 ≤ I(V ;Y2)

R1 ≤ I(U ;Y1)

R1 +R2 ≤ I(U ;Y1) + I(V ;Y2)− I(U ;V )

over all (U, V ) → X → (Y1, Y2) forms an inner bound to the broadcast channel.

Denote this region as I.
One can adapt these inner and outer bounds to additive Gaussian setting by introducing a power con-

straint, i.e. an upper bound on the trace of the covariance matrix, tr(K). However let us put a covariance
constraint on X and denote IK , CK ,OK to be the corresponding inner bound, capacity region, and the outer
bound.

Clearly we have

max
(R1,R2)∈IK

R1 + λR2 ≤ max
(R1,R2)∈CK

R1 + λR2 ≤ max
(R1,R2)∈OK

R1 + λR2.

9



To exhibit the capacity region we will show that

max
(R1,R2)∈OK

R1 + λR2 ≤ max
(R1,R2)∈IK

R1 + λR2.

Thus Marton’s inner bound and Korner-Marton’s outer bound will match in this setting, and therefore also
with the usual trace constraint.

Observe that

max
(R1,R2)∈OK

R1 + λR2 ≤ sup
V →X→(Y1,Y2)

E(XXT )�K

λI(V ;Y2) + I(X;Y1|V )

= sup
V →X→(Y1,Y2)

E(XX
T )�K

λI(X;Y2) + I(X;Y1|V )− λI(X;Y2|V )

≤ max
X:E(XXT )�K

λI(X;Y2) + sup
V→X→(Y1,Y2)

E(XXT )�K

I(X;Y1|V )− λI(X;Y2|V )

≤ max
X:E(XXT )�K

λI(X;Y2) + Vλ(K).

We know that the first term is maximized (Section 2.2) when X ∼ N (0,K) and Vλ(K) is achieved
by sλ(X∗) where X∗ ∼ N (0,K ′),K ′ � K. Now let V∗ ∼ N (0,K − K ′) be independent of X∗ and let
X = V∗ +X∗. Observe that this choice attains both maxima simultaneously. Hence

max
(R1,R2)∈OK

R1 + λR2 ≤ λI(V∗;Y2) + I(X;Y1|V∗) = λI(V∗;Y2) + I(X∗;Y1|V∗).

Lemma 1 (Dirty paper coding). Let X = V∗ +X∗ and V∗, X∗ be independent Gaussians with covariances
K −K ′,K ′ respectively. Then there exists U∗ jointly Gaussian with V∗ such that

I(X;Y1|V∗) = I(U∗;Y1)− I(U∗;V∗).

Here Y1 = GX+ Z, where Z ∼ N (0, I) is independent of V∗,X∗.

Proof. This well-known identification stems from the celebrated paper[3]. Set U∗ = X∗ + AV∗ where A =
K ′GT (GK ′GT + I)−1 and this works (see Chapter 9.5 of [6]).

Now using U∗ as in the above lemma, we obtain

max
(R1,R2)∈OK

R1 + λR2 ≤ λI(V∗;Y2) + I(X∗;Y1|V∗)

= λI(V∗;Y2) + I(U∗;Y1)− I(U∗;V∗).

However using Marton’s inner bound any rate pair satisfying R2 = I(V ;Y2), R1 = I(U ;Y1) − I(U ;V )
such that E(XXT ) � K belongs to IK . Hence

max
(R1,R2)∈OK

R1 + λR2 ≤ λI(V∗;Y2) + I(U∗;Y1)− I(U∗;V∗) ≤ max
(R1,R2)∈IK

R1 + λR2.

Thus the inner and outer bound match for vector Gaussian product channels establishing its capacity region.

3.2 Vector Gaussian Broadcast channel with common message

Consider a vector Gaussian broadcast channel with common and private message requirements. Let C be
the capacity region. Assume λ0 > λ1 + λ2. We will seek to maximize the following expression

max
(R0,R1,R2)∈C

λ0R0 + λ1R1 + (λ1 + λ2)R2.
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Remark 8. The case of maximizing λ0R0 + (λ1 + λ2)R1 + λ2R2 can be dealt with similarly. On the other
hand if λ0 ≤ (λ1 + λ2) then it suffices to consider the private messages capacity region. Actually the setting
λ0 ≥ 2λ1 + λ2 can be deduced from the degraded message sets capacity region and this is also known;
however this will be subsumed in our treatment. Hence the setting we are considering is the only interesting
unestablished case.

In this section we consider the UVW outer bound[12] and Marton’s inner bound[11] to the capacity region
of the broadcast channel with private and common messages.

Bound 3 (UVW outer bound). The union of rate triples (R0, R1, R2) satisfying

R0 ≤ min{I(W ;Y1), I(W ;Y2)}

R0 +R1 ≤ min{I(W ;Y1), I(W ;Y2)}+ I(U ;Y1|W )

R0 +R2 ≤ min{I(W ;Y1), I(W ;Y2)}+ I(V ;Y2|W )

R0 +R1 +R2 ≤ min{I(W ;Y1), I(W ;Y2)}+ I(V ;Y2|W ) + I(X;Y1|V,W )

R0 +R1 +R2 ≤ min{I(W ;Y1), I(W ;Y2)}+ I(U ;Y1|W ) + I(X;Y2|U,W )

over all (U, V,W ) → X → (Y1, Y2) forms an outer bound to the broadcast channel.

As before, denote this region as O.

Bound 4 (Marton’s inner bound). The union of rate pairs (R1, R2) satisfying

R0 ≤ min{I(W ;Y1), I(W ;Y2)}

R0 +R1 ≤ I(U,W ;Y1)

R0 +R2 ≤ I(V,W ;Y2)

R0 +R1 +R2 ≤ min{I(W ;Y1), I(W ;Y2)}+ I(U ;Y1|W ) + I(V ;Y2|W )− I(U ;V |W )

over all (U, V ) → X → (Y1, Y2) forms an inner bound to the broadcast channel.

Denote this region as I.
Impose a covariance constraint K on X and denote IK , CK ,OK to be the corresponding inner bound,

capacity region, and the outer bound respectively. Trivially we have

max
(R0,R1,R2)∈IK

λ0R0 + λ1R1 + (λ1 + λ2)R2 ≤ max
(R0,R1,R2)∈CK

λ0R0 + λ1R1 + (λ1 + λ2)R2

≤ max
(R0,R1,R2)∈OK

λ0R0 + λ1R1 + (λ1 + λ2)R2.

For any α ∈ [0, 1] observe that (from first, third, and fourth constraints of UVW outer bound)

max
(R0,R1,R2)∈OK

λ0R0 + λ1R1 + (λ1 + λ2)R2

≤ sup
(V,W )→X→(Y1,Y2)

E(XX
T )�K

αλ0I(W ;Y1) + ᾱλ0I(W ;Y2) + (λ1 + λ2)I(V ;Y2|W ) + λ1I(X;Y1|V,W )

= sup
(V,W )→X→(Y1,Y2)

E(XX
T )�K

αλ0I(X;Y1) + ᾱλ0I(X;Y2)− αλ0I(X;Y1|W )− ᾱλ0I(X;Y2|W )

+ (λ1 + λ2)I(X;Y2|W ) + λ1I(X;Y1|V,W )− (λ1 + λ2)I(X;Y2|V,W )

≤ sup
W→X→(Y1,Y2)

E(XX
T )�K

αλ0I(X;Y1) + ᾱλ0I(X;Y2)− αλ0I(X;Y1|W )− ᾱλ0I(X;Y2|W )

+ (λ1 + λ2)I(X;Y2|W ) + λ1Sλ1+λ2
λ1

(X|W )

≤ max
E(XXT )�K

(αλ0I(X;Y1) + ᾱλ0I(X;Y2)) + max
W→X→(Y1,Y2)

E(XX
T )�K

t~λ
(X|W )

≤ max
E(XXT )�K

(αλ0I(X;Y1) + ᾱλ0I(X;Y2)) + V̂~λ
(K).
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We know that the first term is maximized (Section 2.3) when X ∼ N (0,K) and V̂~λ(K) is achieved by
t~λ(X1∗ +X2∗) where X1∗,X2∗ are independent and X1∗ ∼ N (0,K1),X2∗ ∼ N (0,K2),K1 +K2 � K, and
Sλ1+λ2

λ1

(X1∗ +X2∗) = sλ1+λ2
λ1

(X1∗). See Theorem 2 and Corollary 2. Now let W∗ ∼ N (0,K − (K1 +K2))

be independent of X1∗,X2∗ and let X = W∗ +X1∗ +X2∗. Observe that this choice attains both maxima
simultaneously. For conforming to more standard notation, let us call V∗ = X2∗, thus X = W∗ +X1∗ + V∗.
Thus

max
(R0,R1,R2)∈OK

λ0R0 + λ1R1 + (λ1 + λ2)R2

≤ αλ0I(X;Y1) + ᾱλ0I(X;Y2)− αλ0I(X;Y1|W∗)− ᾱλ0I(X;Y2|W∗)

+ (λ1 + λ2)I(X;Y2|W∗) + λ1I(X;Y1|V∗,W∗)− (λ1 + λ2)I(X;Y2|V∗,W∗)

= αλ0I(W∗;Y1) + ᾱλ0I(W∗;Y2) + (λ1 + λ2)I(V∗;Y2|W∗) + λ1I(X;Y1|V∗,W∗)

= αλ0I(W∗;Y1) + ᾱλ0I(W∗;Y2) + (λ1 + λ2)I(V∗;Y2|W∗) + λ1I(X1∗;Y1|V∗,W∗)

Now using Lemma 1 choose U∗ = X1∗ + ÃV∗ as before to have

I(X1∗;Y1|V∗,W∗) = I(U∗;Y1|W∗)− I(U∗;V∗|W∗).

Hence

max
(R0,R1,R2)∈OK

λ0R0 + λ1R1 + (λ1 + λ2)R2

≤ αλ0I(W∗;Y1) + ᾱλ0I(W∗;Y2) + (λ1 + λ2)I(V∗;Y2|W∗) + λ1(I(U∗;Y1|W∗)− I(U∗;V∗|W∗))

≤ sup
(U,V,W )→X→(Y1 ,Y2)

E(XX
T )�K

αλ0I(W ;Y1) + ᾱλ0I(W ;Y2) + (λ1 + λ2)I(V ;Y2|W ) + λ1(I(U ;Y1|W )− I(U ;V |W ))

Since the above holds for all α ∈ [0, 1], we have

max
(R0,R1,R2)∈OK

λ0R0 + λ1R1 + (λ1 + λ2)R2

≤ min
α∈[0,1]

sup
(U,V,W )→X→(Y1,Y2)

E(XX
T )�K

αλ0I(W ;Y1) + ᾱλ0I(W ;Y2) + (λ1 + λ2)I(V ;Y2|W ) + λ1I(U ;Y1|W )− λ1I(U ;V |W ).

To complete the proof that the inner and outer bounds match we present the following Claim 11 (essen-
tially established in [7]). We will defer the proof of this claim to the Appendix A.2.

Claim 11. We claim that

min
α∈[0,1]

sup
(U,V,W )→X→(Y1,Y2)

E(XX
T )�K

αλ0I(W ;Y1) + ᾱλ0I(W ;Y2) + (λ1 + λ2)I(V ;Y2|W ) + λ1I(U ;Y1|W )− λ1I(U ;V |W )

= sup
(U,V,W )→X→(Y1,Y2)

E(XX
T )�K

min
α∈[0,1]

αλ0I(W ;Y1) + ᾱλ0I(W ;Y2) + (λ1 + λ2)I(V ;Y2|W ) + λ1I(U ;Y1|W )− λ1I(U ;V |W )

= sup
(U,V,W )→X→(Y1,Y2)

E(XX
T )�K

λ0 min{I(W ;Y1), I(W ;Y2)}+ (λ1 + λ2)I(V ;Y2|W ) + λ1I(U ;Y1|W )− λ1I(U ;V |W ).

Now using Marton’s inner bound we can always achieve the following triples: R0 = min{I(W ;Y1), I(W ;Y2)},
R2 = I(V ;Y2|W ), R1 = I(U ;Y1|W )− I(U ;V |W ). Hence

max
(R0,R1,R2)∈OK

λ0R0 + λ1R1 + (λ1 + λ2)R2

≤ sup
(U,V,W )→X→(Y1,Y2)

E(XX
T )�K

λ0 min{I(W ;Y1), I(W ;Y2)}+ (λ1 + λ2)I(V ;Y2|W ) + λ1I(U ;Y1|W )− λ1I(U ;V |W )

≤ max
(R0,R1,R2)∈IK

λ0R0 + λ1R1 + (λ1 + λ2)R2.

Hence Marton’s inner bound and UVW outer bound match and further the boundary is achieved via
Gaussian signaling. To get a explicit characterization of the Gaussian signaling region (established as capacity
here) please see the region given by equations (2)− (4) in [15].
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4 Conclusion

We developed a new method to show the optimality of Gaussian distributions. We illustrated this technique
for three examples and computed the capacity region of the two-receiver vector Gaussian broadcast channel
with common and private messages. We can see several other problems where this technique can have
immediate impact. Some of the mathematical tools and results in the Appendix can also be of independent
interest.
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A Some known results

A.1 A characterization of Gaussian distribution

Theorem 3 (Theorem 1 in [8]). Let X1, ..,Xn be n mutually independent t-dimensional random column
vectors, and let A1, .., An and B1, ..., Bn be non-singular t × t matrices. If

∑n
i=1 AiXi is independent of

∑n
i=1 BiXi, then the Xi are normally distributed.

Remark 9. In this paper we only use Ai, Bi as multiples of I. In this case, the theorem follows from an earlier
result of Skitovic. There were scalar versions of this known since the 30s, including Bernstein’s theorem.
The proof relies on solving the functional equations satisfied by the characteristic functions.

Corollary 3. If X1 and X2 are zero-mean independent t-dimensional random column vectors, and if X1+X2

and X1 −X2 are independent then X1,X2 are normally distributed with identical covariances.

Proof. The fact that X1,X2 are normally distributed follows from Theorem 3. Now observe that E((X1 +
X2)(X1 −X2)

T ) = E(X1 +X2) E(X1 −X2)
T = 0. On the other hand

E((X1 +X2)(X1 −X2)
T ) = E(X1X

T
1 )− E(X2X

T
2 ).

A.2 Min-max theorem

We reproduce the following Corollary from the Appendix of [7] (full version can be found in arXiv).

Corollary 4 (Corollary 2 in arXiv version of [7]). Let Λd be the d-dimensional simplex, i.e. αi ≥ 0 and
∑d

i=1 αi = 1. Let P be a set of probability distributions p(u). Let Ti(p(u)), i = 1, .., d be a set of functions
such that the set A, defined by

A = {(a1, a2, ..., ad) ∈ R
d : ai ≤ Ti(p(u)) for some p(u) ∈ P},

is a convex set.
Then

sup
p(u)∈P

min
α∈Λd

d
∑

i=1

αiTi(p(u)) = min
α∈Λd

sup
p(u)∈P

d
∑

i=1

αiTi(p(u)).

We will now show how one can use the Corollary 4 to establish Claim 11.

Proof of Claim 11

Proof. We take P as the set of p(u, v, w,x) that satisfy the covariance constraint. Here we take d = 2 and
set

T1(p(u, v, w, x)) = λ0I(W ;Y1) + λ1I(U ;Y1|W ) + (λ1 + λ2)I(V ;Y2|W )− λ1I(U ;V |W )

T2(p(u, v, w, x)) = λ0I(W ;Y2) + λ1I(U ;Y1|W ) + (λ1 + λ2)I(V ;Y2|W )− λ1I(U ;V |W )

It is clear that the set

A = {(a1, a2) : a1 ≤ T1(p(u, v, w,x)), a2 ≤ T2(p(u, v, w,x))}

is a convex set. (In the standard manner, choose W̃ = (W,Q), and when Q = 0 choose (U, V,W,X) ∼
p1(u, v, w,x) and Q = 1 choose (U, V,W,X) ∼ p2(u, v, w,x)). Hence from Corollary 4, we have

min
α∈[0,1]

sup
(U,V,W )→X→(Y1,Y2)

E(XX
T )�K

αλ0I(W ;Y1) + ᾱλ0I(W ;Y2) + (λ1 + λ2)I(V ;Y2|W ) + λ1I(U ;Y1|W )− λ1I(U ;V |W )

= sup
(U,V,W )→X→(Y1,Y2)

E(XX
T )�K

min
α∈[0,1]

αλ0I(W ;Y1) + ᾱλ0I(W ;Y2) + (λ1 + λ2)I(V ;Y2|W ) + λ1I(U ;Y1|W )− λ1I(U ;V |W )

= sup
(U,V,W )→X→(Y1,Y2)

E(XX
T )�K

λ0 min{I(W ;Y1), I(W ;Y2)}+ (λ1 + λ2)I(V ;Y2|W ) + λ1I(U ;Y1|W )− λ1I(U ;V |W ).
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B Existence of maximizing distributions

The aim of this section is to give formal proofs of Claims 6 and 9 as our arguments critically hinge on proving
properties of maximizing distributions. Our basic topological space consists of Borel probability measures
on Rt endowed with the weak-convergence topology. This is a metric space with the Levy-Prokhorov metric
defining the distance between two probability measures.

Remark 10. For the proofs in this section, it is not necessary to know the precise definition of the metric;
but just that the topological space is a metric space and hence normal. Notation wise, most of the time we
use random variables X instead of the induced probability measure to represent points on this space. We
will also try to state the various theorems that we employ in this section as and when we use them.

B.1 Properties of Additive Gaussian noise

In this section, we will establish certain properties of distributions obtained according to Y = X +Z, where
X and Z are independent and Z ∼ N (0, I). For simplicity of notation, we consider the scalar case. The
authors are confident that these results are known in literature but could not find the relevant sources by a
quick Google search.

Let F̃ (x) = P(X ≤ x) (where the inequality is co-ordinate wise. Note that 0 ≤ F̃ (x) ≤ 1. Then we see
that since fz(z) has a density, we have

P(Y ≤ y) =

∫ ∞

−∞

1√
2π

e−z2/2F̃ (y − z)dz.

Thus we have

P(Y ≤ y + δ) =

∫ ∞

−∞

1√
2π

e−z2/2F̃ (y + δ − z)dz =

∫ ∞

−∞

1√
2π

e−(z+δ)2/2F̃ (y − z)dz.

By Dominated convergence theorem stated below (to justify interchange of derivative and integration) Y
has a density given by

fY (y) = lim
δ→0

1

δ
(P(Y ≤ y + δ)− P(Y ≤ y)) =

∫ ∞

−∞

−z√
2π

e−z2/2F̃ (y − z)dz.

Hence

|fY (y)| ≤
∫ ∞

−∞

|z|√
2π

e−z2/2dz =
2√
2π

.

Again by Dominated convergence theorem we have

f ′
Y (y) =

∫ ∞

−∞

z2 − 1√
2π

e−z2/2F̃ (y − z)dz.

Thus

|f ′
Y (y)| ≤

∫ ∞

−∞

|z2 − 1|√
2π

e−z2/2dz ≤ 2.

Remark 11. Thus Y has a bounded density and a bounded first derivative of the density. In the vector case,
similarly we have a bounded density and a uniformly bounded L1 norm for ∇fY(y).

Next, we state a general lemma which relates weak convergence to convergence of densities.

Lemma 2 (Lemma 1 in [1]). Suppose that Yn and Y have continuous densities fn(y), f(y) with respect to

the Lebesgue measure on R
t. If Yn

w⇒ Y and

sup
n

|fn(y)| ≤ M(y) < ∞, ∀y ∈ R
t

and
fn is equicontinuous, i.e. ∀ y, ǫ > 0, ∃ δ(y, ǫ), n(y, ǫ)
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such that |y− y1| < δ(y, ǫ) implies that |fn(y)− fn(y1)| < ǫ ∀n ≥ n(y, ǫ), then for any compact subset C of
Rt

sup
y∈C

|fn(y) − f(y)| → 0 as n → ∞.

If {fn} is uniformly equicontinuous, i.e. δ(y, ǫ), n(y, ǫ) do not depend on y and f(yn) → 0 whenever
|yn| → ∞ then

sup
y∈Rt

|fn(y) − f(y)| = ‖fn(y)− f(y)‖∞ → 0 as n → ∞.

Claim 12. Let {Xn} be any sequence of random variables and let Yn = Xn + Z. Let fn(y) represent the
density of Yn. Then the collection of functions {fn(y)} is uniformly bounded and uniformly equicontinuous.

Proof. The uniform bound on density is clear from Remark 11. To see the uniform equicontinuity observe
that by mean value theorem

|fn(y + δ)− fn(y)| = |∇fn(y
′) · δ|

(a)

≤ ‖∇fn(y
′)‖1‖δ‖∞ ≤

√
t‖∇fn(y

′)‖1‖δ‖2
where (a) follows from Holder’s inequality. Now the uniform bound on L1 norm of ∇fY(y) from Remark 11
yields the desired equicontinuity.

Definition 1. A collection of random variables Xn on Rt is said to be tight if for every ǫ > 0 there is a
compact set Cǫ ⊂ R

t such that P(Xn /∈ Cǫ) ≤ ǫ, ∀n.
Lemma 3. Consider a sequence of random variables {Xn} such that E(XnX

T
n ) � K, ∀n. Then the sequence

is tight.

Proof. Define Cǫ = {x : ‖x‖22 ≤ tr(K)
ǫ }. By Markov’s inequality P(‖Xn‖2 > tr(K)

ǫ ) ≤ ǫE(‖Xn‖2)
tr(K) ≤ ǫ, ∀n.

Theorem 4 (Prokhorov). If {Xn} is a tight sequence of random variables in Rt then there exists a subse-

quence {Xni
} and a limiting probability distribution X∗ such that Xni

w⇒ X∗.

Lemma 4. Let Xn
w⇒ X∗ and let Z ∼ N (0, I) be pairwise independent of {Xn},X∗. Let Yn = Xn + Z,

Y∗ = X∗ + Z. Further let E(XnX
T
n ) � K,E(X∗XT

∗ ) � K. Let fn(y) denote the density of Yn and f∗(y)
denote the density of Y∗. Then

1. Yn
w⇒ Y

2. fn(y) → f∗(y) for all y

3. h(Yn) → h(Y).

Proof. The first part follows from pointwise convergence of characteristic functions (which is equivalent to

weak convergence) since ΦYn
(t) = ΦXn

(t)e−‖t‖2/2. The second part (a stronger claim that weak conver-
gence) comes from Lemma 2. We have uniform equicontinuity since ∇fn(y) has a uniformly bounded L1

norm (see Remark 11). Bounded L1 norm of ∇fn(y) also implies that f∗(yn) → 0 whenever |yn| → ∞ (A
reason: if a point has density > ǫ then it has a neighbourhood depending only on ǫ where the density is big-
ger than ǫ

2 , hence this implies that this neighbourhood has a lower bounded probability measure depending
only on ǫ. This cannot happen at infinitely many points of a sequence yn such that |yn| → ∞). The third
part comes from Theorem 5(below) in a direct manner as the densities are uniformly bounded, the second
moment(κ = 2) is uniformly bounded by tr(K), and the pointwise convergence from the second part.

Theorem 5 (Theorem 1 in [9]). Let {Yi ∈ Ct} be a sequence of continuous random variables with pdf’s {fi}
and Y∗ be a continuous random variable with pdf f∗ such that fi → f∗ pointwise. Let ‖y‖ =

√

y†y denote the
Euclidean norm of y ∈ Ct. If 1)max{supy fi(y), supy f∗(y)} ≤ F ∀i and 2)max{

∫

‖y‖κfi(y)dy,
∫

‖y‖κf∗(y)dy} ≤
L for some κ > 1 and for all i then h(Yi) → h(Y∗).

Remark 12. This theorem is relatively straightforward. One gets lim inf h(Yi) ≥ h(Y∗) coming due to upper
bound on densities and lim suph(Yi) ≤ h(Y∗) due to the moment constraints. Similar kind of result can be
found in Appendix 3A of [6].

We now have the tools to prove Claim 6.
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Proof of Claim 6

Proof. Define
vλ(K) = sup

X:E(XXT )=K

sλ(X).

Let Xn be a sequence of random variables such that E(XnX
T
n ) = K and sλ(Xn) ↑ vλ(K). By the covariance

constraint (Lemma 3) we know that the sequence of random variables Xn forms a tight sequence and by

Theorem 4 there exists X∗
K and a convergent subsequence such that Xni

w⇒ X∗
K . From Lemma 4 we have

that h(Y1ni
), h(Y2ni

) → h(Y∗
1K), h(Y∗

2K) and hence sλ(X
∗
K) = vλ(K). Thus Vλ(K) can be obtained as a

convex combination of sλ(X
∗
K) subject to the covariance constraint.

It takes t(t+1)
2 constraints to preserve the covariance matrix and one constraint to preserve sλ(X|V ).

Hence by Bunt-Carathedory’s theorem3 we can find a pair of random variables (V∗,X∗) with |V∗| ≤ t(t+1)
2 +1

such that Vλ(K) = sλ(X∗|V∗).

B.2 Continuity in a pathwise sense on concave envelopes

In this section we will establish the validity of Claim 9. For this we need more tools and results from analysis.

Claim 13. For λ > 1, there exists Cλ such that sλ(X) ≤ Cλ.

Proof. We know from Theorem 1 that if E(XXT ) � K then

sλ(X) ≤ Sλ(X) ≤ Vλ(K) ≤ sλ(X
∗
K)

for some X∗
K ∼ N (0,K ′),K ′ � K. This implies that

sup
X

sλ(X) ≤ sup
K�0:X∼N (0,K)

I(X;Y1)− λI(X;Y2).

Let Σi = (GT
i Gi)

−1, i = 1, 2. For X ∼ N (0,K), we have

2I(X;Y1)− 2λI(X;Y2) = log |I +G1KGT
1 | − λ log |I +G2KGT

2 |
= log |I +KGT

1 G1| − λ log |I +KGT
2 G2|

= − log |Σ1|+ λ log |Σ2|+ log |Σ1 +K| − λ log |Σ2 +K|.

To bound the last two terms, we use the min-max theorem on eigenvalues: Let µj(A) be the j-th smallest
eigenvalue of symmetric matrix A ∈ Rt×t, we have

µj(A) = min
Lj

max
06=u∈Lj

uTAu

uTu
= max

Lt+1−j

min
06=u∈Lt+1−j

uTAu

uTu
,

where Lj is a j dimensional subspace of Rt. From this theorem we have

µj(K) + µ1(Σ) ≤ µj(K +Σ) ≤ µj(K) + µt(Σ), j = 1, 2, . . . , t.

Hence

log |Σ1 +K| − λ log |Σ2 +K| =
t
∑

j=1

log
µj(K +Σ1)

(µj(K +Σ2))λ

≤
t
∑

j=1

log
µj(K) + µt(Σ1)

(µj(K) + µ1(Σ2))λ

≤ t · log µ∗ + µt(Σ1)

(µ∗ + µ1(Σ2))λ
,

where µ∗ = max{0, 1
λ−1 (µ1(Σ2)− λµt(Σ1))}.

3We need to use Bunt’s extension[2] of Caratheodory’s theorem as we no longer have compactness of the set required for the
usually referred extension due to Fenchel. We can also use vanilla Caratheordory at the expense of one extra cardinality.
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For m ∈ N the set Am := {X : E(‖X‖2) ≤ m} is a closed subset of the topology space. This is because if

Xn
w⇒ X∗ then E(‖X∗‖2) ≤ lim infn E(‖Xn‖2) (by definition of weak convergence and monotone convergence

theorem by considering continuous and bounded functions fn(x) = min{x2, n}.).
We defined Sλ(X) = C(sλ(X)) = supV→X→(Y1,Y2) sλ(X|V ). Taking V = X we observe that Sλ(X) ≥ 0.

Define s̄λ(X) = max{sλ(X), 0}. Now note that Sλ(X) = C(̄sλ(X)), since Sλ(X) ≥ 0.
Let s̄mλ (X) be s̄λ(X) restricted to Am. Let smλ (X) be the continuous extension of s̄mλ (X) from Am on to

P . This exists due to Tietze Extension Theorem (produced below).

Theorem 6 (Tietze Extension Theorem). Let A be a closed subset in a normal topological space, then every
continuous map f : A → R can be extended to a continuous map on the whole space.

Consider a sequence Xn ∈ Am such that Xn
w⇒ X∗. Since the second moments are uniformly bounded,

similar arguments as in Claim 6 will imply that s̄mλ (Xn) → s̄
m
λ (X∗). Further observe that the function s

m
λ (X)

is bounded and non-negative since s̄
m
λ (X) is bounded (above by Cλ) and non-negative.

The following result follows from a recent result in [13]. The convex hull of a function f(X) is the lower
convex envelope, or equivalently −C(−f(X)), where C(·) is the upper concave envelope used in this article.

Theorem 7. For the set of Borel probability measures on Rt endowed with the weak-convergence topology,
the convex hull of an arbitrary bounded and continuous function is continuous.

Proof. This theorem is obtained directly from Corollary 5 and Theorem 1 in [13].

An immediate corollary which follows from the fact that convex hull of f(X) ≡ −C(−f(X)) is the
following:

Corollary 5. For the set of Borel probability measures on Rt endowed with the weak-convergence topology,
the upper concave envelope of an arbitrary bounded and continuous function is continuous.

Now define Sm
λ (X) to be concave envelope of smλ (X). From Corollary 5 we have that Sm

λ (X) is continuous;
Further since s

m
λ (X) is bounded, and non-negative, so is Sm

λ (X). Continuity in particular implies that

if Xn
w⇒ X∗, then Sm

λ (Xn) → Sm
λ (X∗). (1)

Claim 14 (Continuity in a pathwise sense). If Xn
w⇒ X∗ and E(XnX

T
n ),E(X∗XT

∗ ) � K, then Sλ(Xn) →
Sλ(X∗).

Proof. The proof is essentially validating the interchange of limits between m,n in (1). We show a uniform
convergence (in m) of Sm

λ (Xn) → Sλ(Xn) and this suffices to justify the interchange as follows: Given ǫ > 0
choose Mǫ > 0 such that |Sλ(Xn) − Sm

λ (Xn)| < ǫ ∀n whenever m > Mǫ (such an Mǫ exists by uniform
convergence). This implies that ∀m > Mǫ we have

Sλ(Xn) ≤ Sm
λ (Xn) + ǫ,

n→∞
=⇒ lim sup

n
Sλ(Xn) ≤ Sm

λ (X∗) + ǫ,
m→∞
=⇒ lim sup

n
Sλ(Xn) ≤ Sλ(X∗) + ǫ.

Similarly ∀m > Mǫ

Sλ(Xn) ≥ Sm
λ (Xn)− ǫ,

n→∞
=⇒ lim inf

n
Sλ(Xn) ≥ Sm

λ (X∗)− ǫ,
m→∞
=⇒ lim inf

n
Sλ(Xn) ≥ Sλ(X∗)− ǫ.

Hence Sλ(Xn) → Sλ(X∗) provided we show the uniform convergence (in m) of Sm
λ (Xn) → Sλ(Xn).

Given ǫ > 0 consider a V such that Sλ(Xn) ≤ sλ(Xn|V )+ ǫ
4 . Observe that V induces a probability measure

on the space of all probability measures. We now bound the induced probability measure on distributions
such that E(‖X‖2) ≥ m. Since E(‖Xn‖2) ≤ tr(K), from Markov’s inequality the mass of the induced

measure on the probability measures such that E(‖X‖2) ≥ m is at most tr(K)
m . Hence their contribution to

sλ(Xn|V ) is at most Cλtr(K)
m , where Cλ is the global upper bound on sλ(X). Thus by taking m large enough

we can make this smaller than ǫ
4 . Hence

Sm
λ (Xn) ≥ smλ (Xn|V ) ≥ sλ(Xn|V )− ǫ

4
≥ Sλ(Xn)−

ǫ

2
.

Similar argument (taking V ′ such that Sm
λ (Xn) ≤ smλ (Xn|V ′) + ǫ

4 ) also shows that Sλ(Xn) ≥ Sm
λ (Xn)− ǫ

2 .

Hence for all m > 4Cλtr(K)
ǫ we have that |Sλ(Xn)− Sm

λ (Xn)| ≤ ǫ uniformly in n as desired.

We now have the tools to prove Claim 9.

18



Proof of Claim 9

Proof. From Claim 14 and using similar arguments as in the proof of Claim 6 we see that V̂~λ(K) can be

obtained as a convex combination of t~λ(X
∗
K) subject to the covariance constraint. It takes t(t+1)

2 constraints
to preserve the covariance matrix and one constraint to preserve t~λ(X|W ). Hence by Bunt-Carathedory’s

theorem we can find a pair of random variables (W∗,X∗) with |W∗| ≤ t(t+1)
2 + 1 such that V̂~λ(K) =

t~λ(X∗|W∗).

Indeed the proof technique we used carries over almost verbatim to establish this general lemma, which
could be useful in other multi-terminal situations..

Lemma 5. Consider the space of all Borel probability distributions on Rt endowed with the topology induced
by weak convergence. If f(X) is a bounded real-valued function with the following property, P: for any
sequence {Xn} that satisfies the two properties (i) ∃ κ > 1, s/t E(|Xn|κ) ≤ B ∀n (i.e. sequence has a

uniformly bounded κ-th moment) and (ii) Xn
w⇒ X∗, we have f(Xn) → f(X∗); then the same properties

holds for F (X) = C(f(X)), its upper concave envelope; i.e. F (X) is bounded and satisfies P.

Proof. The boundedness of F (X) is immediate. To show that F (X) satisfies property P, we use the same

argument as earlier. Consider a sequence {Xn} with a uniformly bounded κ-th moment such that Xn
w⇒ X∗.

First, restrict f to Am (set of all distributions whose κ-th moment is upper bounded by m) and observe
that this induces is a continuous (by property P of f) and bounded function (on the topology induced by
weak convergence) from this closed set, Am, to reals. Now we extend this restricted function by the Tietze
extension theorem to obtain fm(X), a continuous and bounded function on the whole space. Then from
Corollary 5 we see that the concave envelope of fm(X), denoted by Fm(X) is bounded and continuous.
Finally one can establish a uniform convergence (in n) of Fm(Xn) → F (Xn) and hence conclude that
F (Xn) → F (X∗).

C Alternate path to Theorem 1

Below, we will give an elementary proof of Theorem 1 without invoking Corollary 3.

Corollary 6. For every l ∈ N, n = 2l, let (V n,Xn) ∼
∏n

i=1 p∗(Vi,Xi). Then Ṽ , X̃n achieves Vλ(K) where

Ṽ = (V1, V2, .., Vn) and X̃n|
(

Ṽ = (v1, v2, .., vn)
)

∼ 1√
n
(Xv1 +Xv2 + · · ·+Xvn) . We take Xv1 ,Xv2 , . . . ,Xvn

to be independent random variables here.

Proof. The proof follows from induction using Claim 7.

Consider (V n,Xn) ∼ ∏n
i=1 p∗(Vi,Xi), where p∗(v,x) achieves Vλ(K). Let V = {1, ..,m} where m ≤

t(t+1)
2 + 1. Now consider (V n, X̃n) where X̃n|

(

V n = (v1, v2, .., vn)
)

∼ 1√
n
(Xv1 +Xv2 + · · ·+Xvn) . Again

we take Xv1 ,Xv2 , . . . ,Xvn to be independent random variables.
As is common in information theoretic arguments, we are going to consider typical sequences and atypical

sequences. Let us define typical sequences in the following fashion:

T (n)(V ) := {vn :
∣

∣|{i : vi = v}| − np∗(v)
∣

∣ ≤ nωnp∗(v), ∀v ∈ [1 : m].}

where ωn is any sequence such that ωn → 0 as n → ∞ and ωn
√
n → ∞ as n → ∞. For instance ωn = logn√

n
.

Note that (using Chebychev’s inequality)

P(
∣

∣|{i : vi = v}| − np∗(v)
∣

∣ > nωnp∗(v)) ≤
1− p∗(v)

p∗(v)ω2
nn

.

Hence P(vn /∈ T (n)(V )) → 0 as n → ∞.
Consider any sequence of typical sequences vn ∈ T (n)(V ). Consider a sequence of induced distributions

X̂n ∼ X̃n|vn.

Claim 15. X̂n ⇒ N (0,
∑m

v=1 p∗(v)Kv)
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Proof. For given vn, let An(v) = |{i : vi = v}|. We know that An(v) ∈ np∗(v)(1 ± wn), ∀v. Consider

a c ∈ Rt with ‖c‖ = 1. Let X̂c
n,i ∼ 1√

n
cT · Xvi and X̂c

n,i be independent random variables. Note that
∑n

i=1 X̂
c
n,i ∼ cT X̂n.

Note that

n
∑

i=1

E((X̂c
n,i)

2) =
1

n

∑

v

An(v)c
TKvc → cT

(

∑

v

p∗(v)Kv

)

c.

n
∑

i=1

E((X̂c
n,i)

2; |X̂c
n,i| > ǫ1) =

1

n

∑

v

An(v) E(c
TXvX

T
v c; c

TXvX
T
v c ≥ nǫ21)

≤
∑

v

p∗(v)(1 + ωn) E(c
TXvX

T
v c; c

TXvX
T
v c ≥ nǫ21) → 0.

In the last convergence we use that Kv’s are bounded, and hence cTXv has a bounded seconded mo-
ment. Hence from Lindeberg-Feller CLT4 we have

∑n
i=1 X̂

c
n,i ⇒ N (0, cT

∑

v p∗(v)Kvc). Hence X̂n ⇒
N (0,

∑

v p∗(v)Kv) (Cramer-Wold device).

The next claim shows a uniform convergence of the conditional laws to the Gaussian.

Claim 16. Given any δ > 0, there exists N0 such that ∀n > N0 we have for all vn ∈ T (n)(V )

sλ(X̃n|vn)− sλ(X
∗) ≤ δ,

where X∗ ∼ N (0,
∑

v p∗(v)Kv).

Proof. Assume not. Then we have a subsequence vnk ∈ T (nk)(V ) and distributions X̃nk
|vnk such that

sλ(X̃nk
|vnk) > sλ(X

∗) + δ, ∀k.

However from Claim 15 we know that X̃nk
|vnk

w⇒ X∗ and from Lemma 4 we have sλ(X̃nk
|vnk) → sλ(X

∗),
a contradiction.

Theorem 8. There is a single Gaussian distribution (i.e. no mixture is required) that achieves Vλ(K).

Proof. We know from Corollary 6 that For every l ∈ N, n = 2l, the pair V n, X̃n achieves Vλ(K). Hence

Vλ(K) =
∑

vn

p∗(v
n)sλ(X̃n|vn) =

∑

vn∈T (n)(V )

p∗(v
n)sλ(X̃n|vn) +

∑

vn /∈T (n)(V )

p∗(v
n)sλ(X̃n|vn).

For a given vn, let X̂ ∼ Xn|vn. Then note that E(X̂X̂T ) �∑m
v=1 Kv. Thus sλ(X̂) ≤ I(X̂;Y1) ≤ C for some

fixed constant C that is independent of vn. Thus using Claim 16 we can upper bound Vλ(K) for large n by

Vλ(K) =
∑

vn∈T (n)(V )

p∗(v
n)sλ(X̃n|vn) +

∑

vn /∈T (n)(V )

p∗(v
n)sλ(X̃n|vn)

≤
∑

vn∈T (n)(V )

p∗(v
n)(sλ(X

∗) + δ) + C
∑

vn /∈T (n)(V )

p∗(v
n)

= P(vn ∈ T (n))(sλ(X
∗) + δ) + C P(vn /∈ T (n)).

Here X∗ ∼ N (0,
∑

v p∗(v)Kv). Since P(vn ∈ T (n)) → 1 as n → ∞ we get Vλ(K) ≤ sλ(X
∗) + δ; but δ > 0

is arbitrary, hence Vλ(K) ≤ sλ(X
∗). The other direction Vλ(K) ≤ sλ(X

∗) is trivial from the definition of
Vλ(K) and the fact that

∑

v p∗(v)Kv � K.

4We adopt the notation in Theorem (4.5), Chapter 2 in [5].
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