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Abstract—We derive the capacity region of the state-dependent receiver, whereR, and R, denote therates (in bits per
semideterministic broadcast channel with noncausal state channel use) of data transmission to the deterministic and
information at the transmitter. One of the two outputs of this o qeterministic receivellsThe messageds, and M, are
channel is a deterministic function of the channel input andthe - - Yoo
channel state, and the state is assumed to be known noncaugdb assumed to be |ndepend§nt and uniformly dlstrlbuted._As for
the transmitter but not to the receivers. We show that appenihg the broadcast channel without a stdte [L], [2], we define the
the state to the deterministic output does not increase cagity. capacity regionof this channel as the closure of all rate-pairs

We also derive an outer bound on the capacity of general that are achievable in the sense that the probability that at
(not necessarily semideterministic) state-dependent baalcast least one of the receivers decodes its message incorreatly ¢
channels. be made arbitrarily close to zero.

Index Terms—Broadcast channel, capacity region, channel-  The main result of this paper is a single-letter characteriz
state information, Gel'fand-Pinsker problem, semidetermnistic. tion of the capacity region:

Theorem 1:The capacity region of the channiel (1) when the
states are known noncausally to the transmitter is the conve
|. INTRODUCTION closure of the union of rate-paifsz,, R.) satisfying
E characterize the capacity region of the discrete,

memoryless, state-dependent, semideterministic broad- Ry < H(YS) (2a)
cast channel. This channel has a single transmitting nade, t R, <I(U;Z) - I(U; S) (2b)
receiving nodes, and an internal state, all of which areraesu Ry+ R, <H(YI|S)+I(U;Z)-I(U;S,Y) (2¢)

to take value in finite sets. One of the receiving nodes— S )

the “deterministic receiver'—observes a symbolthat is a ©ver all joint distribution on(X, Y, Z, 5,U) whose marginal

deterministic function of the transmitted symheland the ©Nn S is the given state distributior’s and under which,

(random) stateS conditional onX and S, the channel outputy” and Z are
drawn according to the channel lald (1) independently/of

Y = f(z,S5) with probability one (1a)
L. .. _PXYZSU(‘rayaZaSau)

and the other receiving node—the “nondeterministic — Pu(s) P 10y — W 3

receiver'—observes a symbdgl, which is random: conditional = Ps(s) Pxuv|s (@, uls) {y_f(x’s)} (2]z,5)- (3)

on the input beingr and the state being, the probability Here 1{-} denotes the indicator functihMoreover, this

that it equalsz is W (z|z, s): is also the capacity region when the state sequence is also
PrlZ —2X —2.§ =gl = W . 1b revealed to the deterministic receiver, i.e., when the rimapp
1 d “ °l (2l 5) (1b) f(-,-) is replaced by the mapping@:, s) — (f(z, s), s).
The state sequenc8 is assumed to be independent and Proof: See Sections]ll and]ll. u
identically distributed (IID) according to some lafs (+) As to the cardinality of the auxiliary random varialile
Pr[S = 5] = Ps(s) (1c) Proposition 1: To exhaust the capacity region of the chan-

nel (@), we may restrict the auxiliary random variablen (@)
and to be revealed to the encoder in a noncausal way: talltake value in a s€f whose cardinalityZ{(| is bounded by
future values of the state are revealed to the transmitferde

transmission begins. Ul < x-S +1, 4
We consider a scenario where the encoder wishes to cony@yere ¥ and S denote the input and state alphabets.

two private messaged/, € {1,..., 2"} to the determinis- Proof: See AppendiXA. -

. : R, s _ .

tic receiver, andV/. € {1,...,2""+} to the nondeterministic  Broadcast channelwithout stateshave been studied ex-

. ” . .
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broadcast channels were also considered before [9]-[11], where the wunion is over all joint distribution on

capacity regions of most such channels are still unknown. (X,Y, Z, S, Uy, U,,U.) whose marginal isPs; that satisfies
Steinberg[[9] studied thdegradedstate-dependent broad-the Markov condition

cast channel with causal and with noncausal state-infoomat

at the transmitter. He derived the capacity region for thesah (Uo, Uy, Uz)—o—(X, §)——(Y, Z); )

case, but for the noncausal case his outer and inner bound$,88 under which the conditional law oV, Z) given (X, S)

not coincide. Steinberg and Shanail[10] then derived anrinng that of the given channel.

bound for general (not necessarily degraded) state-depénd For the semideterministic channel, we choose the auxiliary

broadcast channels with noncausal state-informations Thindom variables if{5) as follows:

inner bound is based on Marton’s inner bound for broadcast

channels without state§][7] and on Gel'fand-Pinsker coding Up =0 (deterministic) (7a)
[22]. In fact, the direct part of our Theordm 1 can be deduced U, =Y (7b)
from [10] with a proper choice of the auxiliary random U, =U. (7¢)

variables (see Sectidn IItA).
Our proof of the converse part of Theoréin 1 borrows fromfote that the Markov conditiori 6) is satisfied becatSés

the Gel'fand-Pinsker converse for single-user channets wi deterministic function of X, S) and because in Theordm 1

states [[12] as well as from the Korner-Martdr [7] and thwe restrictU to be such that/ ——(X, S)——(Y, Z). With

Nair-El Gamal [13] approaches to outer-bounding the capacthis choice ofUo, Uy, andU., (S) reduces to[{2).

region of broadcast channels without states. But it also has

a new elementthe choice/definition of the auxiliary randomp_ Self-contained proof

variable depends on the codebodls we demonstrate in Sec-

. . We next provide a self-contained proof of the direct part
tion[V] our proof can be extended to general (not necessaril . .

- . of TheorentlL. As in[[10, Theorem 1], our proof is based on
semideterministic) state-dependent broadcast channels.

Some special cases of Theorem 1 were solved by Khosrayl!.'?drtgg SG'QHZLE?S;S;E: ggg;ﬂf;?adcaﬁ chanigisL3) [1

Farsani and Marvasti[11]: thully deterministic case, the_ _First note that the joint distributiof](3) can also be writte
case where the states are known to the nondeterministic

receiver, and the case where the channel is degraded Sso
(X, S)——Y ——Z forms a Markov chain. Pxyzsu(z,y, 2z, 8,u)
The rest of this paper is organized as follows. We prove the _
direct and converse parts of Theorem 1 in Sectidns lI[and IIl. Psle) Prujs(y ule) Paivsu (ely. s, u) Wizle, 5) (8)
In Sectior TV we apply Theorefd 1 to a specific channel whogéth the additional requirement that
nondeterministic output is unaffected by the state. Even so _ 9
noncausal state-information is strictly better than chuak y=f@s). ©)
finally derive a new outer bound on general state-depend@uirther note that, whe®y sy is fixed, all the terms on the
broadcast channels in Section V. right-hand side (RHS) of({2) are fixed except fbfU; Z),
which is convex inPx |y g. Sincel(U; Z) only appears with
a positive sign on the RHS of](2), it follows that the union
over all joint distributions of the forn{{2) can be replaced b
In this section we prove the direct part of Theorém I union only over those whereis a deterministic function of
One way to do this is to use [10, Theorem 1] with théy, v, s), i.e., of the form
choice of the auxiliary random variables that we propose in
SectiorII=A. For completeness and simplicity, we also jmtev Pxyzsu(z,y,2,5,u)
a self-contained proof in Sectidn II-B. = Ps(s) Pyus(y, uls) 1{z = g(y,u, s)} W(z|z, s) (10)

Il. DIRECT PART

for someg: (y,u,s) — = (and subject to[{9)). We shall thus
A. Proof based on[10] only establish the achievability of rate pairs that sat{&yfor
Spme distribution of the forni(10).

It was shown in[[1D, Theorem 1] that the capacity region Choose a stochastic kemePyy s and a mapping

a general (not necessarily semideterministic) statefuigrg

. . . : (y,u,s) — x which, combined withPs and the channel
broadcast channel with noncausal state-information at the . . . . .
. ; . aw, determines the joint distributio_(10) for whichl (9) is
transmitter contains the convex closure of the union of-rate

. N Satisfied. For a given block-length we construct a random
pairs (Ry, R.) satisfying code as follows:g ’

R, < I(U,Uy:Y) — I(Uy, Uy; S) (5a) Cliodebr(])ok: (Bhenerhatez"RyI y.—binhs, eacr;] ct)gntaining"Ry y-
R. < I(Uy, U.: Z) — I(Us, Us: S) (5b) tuples where thé,-th y-tuple in them,-th bin
Ry + R, < —[max{I(Uy; Y),1(Uy; Z)} — I(Up; S)] " y(my,l,), my€{l,....2"%} 1, e {1,... 2"}

+1(Uo,Uy; Y) = I(Uo, Uy; S) + 1(Uo, Uz; Z) s generated 11D according t® (the Y-marginal of [ID))
—I(Uy,U,; S) — I(Uy,; U, |Uy, S), (5¢) independently of the othey-tuples. Additionally, generate



onR- y-bins, each containing™/- u-tuples, where thé.-th provided that, for all7 C {1,...,k} with |7| > 2,

u-tuple in them_-th u-bin _
D o>y H(AGAw) —H{AG): j € THA@)+6(e),

u(m.,l.), m.,e{l,...,2"%} 1, € 1,...,2”Rz €T €T

( ) { ¥ { ¥ i i (16)

is drawn 1ID according toPy (the U-marginal of [I0)) where the conditional entropies are computed with resmect t

independently of the other-tuples and of the-tuples. Pagy.. A

Encoder: To send Messagen, € {1,...,2"%} to the We apply Lemma[ll by choosing = 3, Ay = 0

deterministic receiver and Message. € {1,...,2""%} to (deterministic) sc¢ = 0, and

the nondeterministic receiver, look for g@tuple y(m,,l,) -

in y-bin m, and au-tuple u(m.,l.) in wu-bin m, such Ap =Y, n :}?y’ (17a)

that (y(my,1,), u(m.,l.)) is jointly typical with the state Ay =U, r2=R,, (17b)

sequence: Agy=S, 1r=0. (17¢)
(y(my, 1), u(mz,1.),s) € 7 (Pyys), (11) The joint distribution is chosen to bBy;s. We then obtain

() _ _ that the probability that the encoder errs tends to zera as
where7:™ (-) denotes the-strongly typical sewith respect tends to infinity provided that

to a certain distribution. If such a pair can be found, send

R, > I(Y;8) +(e) (18a)
X = g(Y(mya ly)a u(m., lz)7 S)a (12) RZ > I(U; S) +0(e) (18b)
where in the aboveg(y,u,s) denotes the application of the R,+R.>H(Y)+ HU)+ H(S)
function g(y, u,s) componentwise. (Note that in this case —H(Y,U,S) + 6(e). (18c¢)
the sequence received by the deterministic receiver will be
y(my,1,).) Otherwise send an arbitrary codeword. Deterministic decoder errs. This happens only if there is

Deterministic decoder: Try to find the uniquey-bin, say More than one bin that contains the receiyedVe may now
m!, that contains the received sequengeand output its assume that the encoding was successfulsb (11) is satisfied.

numberm,,. If there is more than one such bin, declare ahheny is in 7 (Py), and
error. _ _
s . . . P < 2 nHY)=d(e)) 19
Nondeterministic decoder: Try to find the unique u-bin v(v) < (19)
m’, which contains ax(m/,, ) that is jointly typical with the where d(¢) tends to zero whenr tends to zero. Hence the

2z

received sequence probability that a specificy-tuple in a bin that was not
. ) chosen by the encoder, which, by our code construction, was
(u(mz7 lz)7z) €Ty (Puz), (13) independently chosen from the receivwedhappens to be the

and outputr’. If more than one or no such bin can be found@Me asy, is upper-bounded by the RHS df {19). Further

declare an error note that the total number oftuples outside the bin chosen

iOnR, (onR, __ i i
We next analyze the error probability of the above codirgy 1€ encoder ig (2"fv —1). Using the union bound,
scheme. There are three types of errors: we obtain that the probability that the deterministic desrod

Encoder errs. This happens only if there is no pairerrs Is at most

(l,,1,) € {1,...,2"R} x {1,...,2"F=} that satisfies[(11). onky (2By — 1) 27 nH)=8()), (20)
To bound this probability, we use the Multivariate Covering
Lemma [2, Lemma 8.2], which we restate as follows: which tends to zero as tends to infinity provided that
Lemma 1:Fix some join'F _ di§tributi0n PA(‘Q”'A(’“) on R, +Ru < H(Y) - 5(e). (21)
(A, ---»Aw)), and fix positiveé and e with € < e. Let ‘ ‘
A?o) be a random sequence satisfying Nondeterministic decoder errs.This happens if either the
u-tuple u(m,,1,) is not jointly typical with the received-
lim Pr [A?O) c Tg(n)(PAm) )} - 1. (14) tuple, or if au-tuple in a different bin happens to be jointly
nreo typical with the received-tuple. Assuming that the encoding
For eachj € {1,...,k}, let Al (mj), m; € {1,...,2"}, was successful, the probability of the former case tendsito z
be pairwise independent conditional ﬂr’(?o), each distributed asn tends to infinity by [(Ill) and by the Markov Lemnig [2,
according to[ [}, P )| Ay=ag,. ;- Assume that Lemma 12.1]. To upper-bound the probability of the latter
case, note that anu(m’,l.), wherem/ # m,, is chosen
{A@)(mg‘): m; € {1,.. .,2’"1}}, je{l,... k} independently ofu(m,[,) andy(m,,l,), and is hence also

independent of the received By the Joint Typicality Lemma
are mutually independent conditional offi,. Then there [2, p.29] we have

existsd(e) which tends to zero astends to zero such that

|:(A?O)7A?1)(ml), - ,A?k) (mk)) ¢ 7;(71)} .
for all (mq,...,mg)

Pr [(U(m' I),Z) € 7'2(:) (Pyz)| <27 "UWH=0) (22)

zr7'z

lim Pr
n— o0

where the probability is computed with respect to the rarigom
(15) chosen codebook. Next note that the total number of such



u-tuples ison k- (anz _ 1)_ Applying the union bound, we _ zn:l (M sn Z-| Zifl)
- zy Mi41s “

obtain that the probability that there exists at least o+taple =

that is not in the chosen bin but that is jointly typical with n
is at most = I(M., 27,875 Si) + nen (36)
2nﬁzz (2nRz o 1) 27n(I(U;Z)75(5))7 (23) . i=1
1—1 n .
which tends to zero as tends to infinity provided that = ZI (MZ,Z J i+1in)
~ =1
R, + R, <I(U;Z)—d(e). (24) n _
= I(M., 27", 8] 15 Si) + ney (37)

Summarizing[(1B) [(21), and (P4), and lettiatend to zero,
we conclude that the above coding scheme has vanishing error
probability as» tends to infinity for all(R,, R.) satisfying [2). =
By time-sharing we further achieve the convex hull of alerat

pairs satisfying[{R) for joint di_stributions of the forfn (LT his Here, [32) follows from Fano's Inequalitf{83) ad)34)rro
concludes the proof of the direct part of Theorlem 1. the chain rule:[(35) from Csiszar's Identify [15]

i=1

I

N
Il
-

I(Vi; Z;) — I(Vi; Si) + nep. (38)

n

D I(ChyDi| DY) =3 1(D7H G ClL )5 (39)
i=1

=1

IIl. CONVERSEPART

In this section we show that, even if the state sequeéhce
is revealed to the deterministic receiver (which obser¥gs . _
any achievable rate-pair must be in the convex closure of tfR8) becauses; and (M, 57, ,) are independent[(87) from

union of rate-pairs satisfyingl(2). the. c_hain rule a_nd by dropping rlegative terms; dnd (38) by
Given any code of block-length, we first derive a bound defining the auxiliary random variables
on fly: Vit (M., 27, S8y), i€ {l,...n}.  (40)
R, = H(M, 25
iy (My) (25) We next bound the sum raf@, + R.:
<I(My; Y™, 5™) + nej, (26)
=I1(My; Y™ S™) 4+ ne, (27) n(Ry + R.) = H(M,, M) (41)
n i o = H(M.) + H(M,|M,) (42)
:ZlI(My,}/JY ,S )—l—nen (28) SI(MZ;ZH)+I(My;Yn,Sn|Mz)+n€n7 (43)

where the last step follows from Fano’s Inequality. Of the

1Iyi—1 gon
< ZH(MY ,5") + nen (29) two mutual informations on the RHS df (43) we first bound
o I(M.; Z™):
<> H(Yi|S:) + nen, (30) n _
= I(M;Z") = I(M.; Z,|Z") (44)
where ¢, tends to zero as tends to infinity. Here,[(26) i=1
follows from Fano’s Inequality;[(27) becaus¥, and S™ " i1
are independent[_(28) from the chain rule:](29) by dropping = ZI(MZ’Z 1 Zi) (45)
negative terms; an@(B0) because conditioning cannotasere Zf
entropy. =Y I (M., 2" 'S, Y 15 Z;
We next boundR, as in [12]: ; ( e )
z — H Mz 31 - n n . i—
nkt ( ) ( ) _ZI(SH-D i+17Zi’MZaZ 1) (46)
<I(M.;Z™) + ney, (32) =1
=" I(M; Zi\ 2771 + ey, (33) =N I (M.,Z S8 Y Z)
i=1 i=1
=3 I(M., S} Zi| 27 =Y I(Z758, Y5 M., ST Y ) (4T)
i=1 i=1
—ZI( ;L+1;Zi|Mz,Zi_l)+n€n (34) :ZI(Mz,Zi_la T Y Zs)
=1 =1
=Y I(M., S5 Zi| 271) = T (M., 27, 87, Y S, V)
1=1 =1

n

= I(Z7N8 | M., SP ) +nen (35) + 3 T (M, SF, Y 90, Vi) (48)

i=1 i=1



Here, [44),[(4b), and_(46) follow from the chain rule;X47) by Summarizing [(30),[(38), and_(b8) and letting tend to

applying Csiszar's Identity[ (39) betweds™, Y™) and Z™; infinity, we obtain that any achievable rate-p@it,, R.) must

and [48) again from the chain rule. be contained in the convex closure of the union of rate-pairs
We next study the sum of the last term on the RHS of (48htisfying

and the second mutual information on the RHS[ofl (43):

" R, < H(Y|S) (59a)
ZI (M, 871, Y138, Ys) + I(My; Y™, S™ M) R, <I(V;Z)—1I(V;S) (59b)
=1 . R,+ R, <HYI|S)+I(V,T;2)-I(V,T;5,Y) (59c)
= ZI (M, 8741, Y15 8, Vi) where, given(X, S), the outputyY, Z) are drawn according
i=1 to the channel law{1) independently of the auxiliary random
= W om variables(V, T').
+ZI(My;Si7Y;‘MZaSi+17Y;+1) (49) ( )

To prove the converse part of Theoréi 1, it remains to
replacelV andT" with a single auxiliary random variable. I.e.,

Il
-

|
.M:N-

I (My, M., S, Y S, yl.) (50) it remains to find an auxiliary random variakle such that
B 1(V; 2) = 1(V;S) < I(U; Z) = I(U; S) (60a)
= T (My, M., 7,1, Y{543 55, Y5) and
=1

H(Y|S) + I(U; Z) — I(U;S,Y). (60b)

s
Il
-

-

]( LY Si’ My, M., qu) (51) In fact, as we shall see, either choosirigo be V' will satisfy

P} (€0) or else choosing it to b@/, T') will satisfy (€0). If we
n _ chooseU = V, then [60R) is satisfied with equality, and the
- ZI (My, M., S, S, Y158, Y)) requirement[{60b) becomes
i=1
n I(T; Z|V) — I(T; S, Y|V) < 0. (61)
=Y T(SM, Y S| My, M, St 52 _ :
; (%0, Y i| My ) 62 On the other hand, if we choodé = (V,T), then [60b) is
n satisfied with equality, and the requirement (60a) becomes
= I(M MzaSi_lasn ’Yn 757,7}/;
; (My R ) I(T; Z|V) — I(T; S|V) > 0. (62)

n

_ i1 on n . aq It remains to show thaat least oneof the two requirements
ZI(My’MZ’S St Y S) - (59) (67) and [[6R) must be satisfied: if it iE_(61), then we shall

i=1

n chooseU as V, and if it is (62), then we shall choodé

= Z[ (My,Mz, st ?+1aYi11§Yi| gl.) (54) as (V,T). To this end we note that for all random variables
i=1 Ta Z7 ‘/7 Sv Y

= H(Yi[S)). (55) I(T;2|V) = I(T;8,Y|V) < I(T; Z|V) — I(T; S|V), (63)
=1

. because the RHS minus the left-hand side/(;Y|S,V),
Here, @) and:(EO)_ follow from the chain rulé: {51) by apply\'/vhich is nonnegative. This implies that at least one[of (61)
ing Csiszar's Identity betweenS”,Y™) and S"; (52) from

) ; and [62) must hold. We have thus shown that there must exist
the chain rule; [(83) becauss; and (M,,M,,S""!) are

. . . i a U which satisfies both inequalities in_{60), hence the bounds
|n_dependent[(54) again from th? chain rule; dnd (55_) be&;auE) can be relaxed td](2). This concludes the proof of the
given(M,, M., S™), the channel inputX™ are determined by converse part of Theore 1

the encoder, and hendé" are also determined, so
H (Y; | My, M., 5", Y%, ) =0. (56) IV. AN EXAMPLE

Combining [48), [(4B), and_(55), using the definitiohs](40), consider a broadcast channel whose input, output, and state
and further defining alphabets are all binary and whose law is

A yn ;
. /Tz — L+ S {17 .. .,TL}, (57) Ps(l) -1— PS(O) — 0 (643)
we obtain : § Y=zaS (64b)
n(Ry + R.) <Y I(Vi,Ti; Zi) = > _I(Vi, T3 S, Y5) W(Z=alz,s)=1-W(Z=z&llz,s)=1-p (64c)

=1 =1 for some constant8 < p,o < 1. The deterministic output”

+ ZH(Yi|Si) + ne,,. (58) of this channel is the modulo-two sum of the inputand
— the stateS, and the channel frome to the nondeterministic



output Z is unaffected by the state and is a binary symmetr

channel with crossover probabiligy 0% N(;ncaus;ll
To cancel the state’s effect, the encoder could flip the input
wheneverS = 1, but this would hurt the nondeterministic ol R Causal
receiver. In fact, if the state is unbiased-€ 0.5), and if only RN
causalstate-information is available at the encddi¢nen one B N 1
cannot do better than time-sharing: S
oy . . . ~
Proposition 2: The capacity region of the channel164) witt  °?f . 7
o = 0.5 when the states are knoveausallyto the transmitter o S
but not to the receivers, is the union overe [0, 1] of rate- 0151 R 1
pairs (R,, R.) satisfying .
01} s, |
R, <A (65a) N
~
R, < (1 - /\)(1 - Hb(p)) (65b) 005 TN 1
~
l.e., it is the collection of rate pairs satisfying R
R DO 0‘1 0‘2 0‘3 0‘4 D.‘S 0‘6 0‘7 0‘8 0‘9 1
R,+—Z= _<1. 66 R
VT S (©) :
Proof: See AppendixB. B Fig. 1. The capacity regions of the chanfell(64) whes: 0.5 andp = 0.2

However, withnoncausalstate-information the transmitter""“h nonca_usal (solid line) and with causal (dashed linajesinformation at
can cancel the effect of the state without hurting the nondt(ra"—3 fransmiter.
terministic receiver:
Proposition 3: The capacity region of the channéﬂ64) =14+ (1 — Hb(ﬂ)) — (1 — Hb(a)) (74)
when the states are known noncausally to the transmitter but — 1 — Hy(B) + Ho(a) (75)
. . K . b b
not to the receivers, is the union overe [0, 1] of rate-pairs
(Ry, R,) satisfying where [7B) follows becaus¥ can be computed frorf andY,
and because, giveR, U is independent ofS, Y'). Taking the
Ry < Hp(a) (672) convex closure of[((88)[(T1), and_(75) over € [0,1], we
R. <1— Hp(B) (67b) obtain the region characterized By {67).
To see that one cannot do better than (67), we observe that
A the capacity region of the channel164) with states known non
fZal—p)+(1-ap (67¢) causally to the transmitter must be contained in the capacit
The capacity regions of the channiell(64) wher: 0.5 and region when the states are also known to both receivers. The
p = 0.2 with noncausal and with causal state-information afatter case, however, is equivalent to the following breedc
depicted in Figuré]l. channel without states:
We present two different proofs for Propositign 3: the first — (76a)
is based on the achievability part of Theoriem 1; the second is 4
based on the fact that revealing the states to the detetininis W(Z =zlr) =1-W(Z=z®1fz) =1-p. (76b)

receiver does not increase the capacity region. The capacity region ofl{76) can be found in [1, Example
First proof of Proposition(B: We let U be a uniform 15 g 5] and is the same as the region characterized by 7).
binary random variable that is independent $f and let Second proof of Propositiofi] 3: By Theorem[l, the
X be the outcome of feeding/ into a binary symmetric capacity region of the channdl {64) with states known non-
channel of crossover probability (independently of5). Note  caysally to the transmitter is unchanged if the states @@ al
that now the channel front/ to Z is a binary symmetric reyealed to the deterministic receiver. Whéris revealed to
channel with crossover probabilityas defined in{(67c). Using the deterministic receiver, it can forimS and thus recover.
Theoreni L we obtain that the capacity region contains @k ratrpjs reduces the channel to the one without st&ts (76). ¢denc

where

pairs (R, i) satisfying the capacity region of interest is the same as the capacity
R, < H(Y|S) =1 (68) region of [Z6), which is given by the union ovare [0, 1] of
Y rate-pairs satisfyind (67) [1, Example 15.6.5]. [ |
R. < I(U;Z) — I(U;5) (69)
= (1 - Hb(ﬁ)) -0 (70) V. A GENERAL OUTER BOUND
=1— Hy(f) (71) We next generalize our converse of Secfioh Il to a broadcast
R,+R,<HYI|S)+I(U;Z)—-I(U;S5Y) (72) channel that is not necessarily semideterministic. Such a
=1+ (1— Hp(B)) — I(U; X) (73) channelis described by the transition law and the state law

PrlY =y, Z=2|X=2,5=s]=W 77a
3By “causal” we mean that the transmitter, when transmittiig knows g Y | L s] (y: 22, ) (772)
the past and present staté% but not the future states? ;. Pr[S = s] = Ps(s). (77b)



We let the state sequenc® be known noncausally to therate-pairs(R,, R.) satisfying
transmitter and also known to the receiver which obselves

The capacity region is defined in the same way as for the Ry < I(X;Y|S) (86a)
semideterministic broadcast channel. In particular, wesizter R, <I(V;Z)—I(V;5) (86b)
only two private messages. R,+ R, <IX;Y|S)+I(V,T;Z) - I(V,T;S5,Y) (86¢)

Applying the techniques of Sectiénllll, we obtain the fol- ) )
lowing outer bound on the capacity region of the charingl.(7?yNere: given(X, S), the outputs(Y, Z) are drawn according
(The bound is tight for semideterministic channels.) to the channel law(717) independently of the auxiliary rando

Proposition 4: The capacity region of the channéﬁ_‘[??)yari_ables(v’ T) Now to prove .Propositi.olﬁlfl it remains to find
with the state sequence being revealed noncausally to th&ngle auxiliary random variablg satisfying

transmitter and also revealed to the receiver which obséfye I(V;2) = I(V;S) < I(U; Z) — I(U; S) (87a)
is contained in the convex closure of rate-pairs satisfying B
and
R, < I(X;Y]S) (78a)
R. <I(U;Z) —I(U;S) (78b) I(X;Y|S)—|—I(V,T, Z)—I(V,T;S,Y)

Ry +R. < I(X;Y|S)+ I(U; Z) — I(U; S, Y) (780) SIXGYIS) +1(U;2) - 1U;5,Y) (87b)

to replace bothi” and 7. Now note that[(87) is equivalent

for joint distributions of the form to (60). Hence, according to our arguments in Secfioh I,

Pxyzsu(2,y, 2, 5,u) = Ps(s) Pxu|s(a,u|ls) W (y, z|z,s). ~ such al can always be found. u
(79)
Proof: To bound R,, we note that[{28) holds also for APPENDIXA
the general broadcast channell(77), and we continde (28) as PROOF OFPROPOSITIONT]
follows:

It suffices to show that, given any joint distributiéty z s/
of the form [3), there exists another distributiétyy zsy of

nRy <Y I(My;Yi|Y'™', S™) + ne, (80)  the same form
=1 ~
_ " O a1 Pxyzsu(@,y,2,5,u)
< 2 T(My XYY, 87) + nen (B1) = Ps(s) Pxujs(w,uls) L{y = f(,5)} W(z]z,s) (88)
i , satisfying
=Y HY[Y'™', 8" - HYi|X;,S) +nen  (82) i
= Hu Py(u) > o}‘ <118 +1, (89)
< ZI(Xi;mSi) + ney,. (83) where Py denotes the marginal dPxy zsu on U, and
=1
Here [82) follows because, giveiX;,.S;), the channel out- H(Y|S)‘P - H(Y|S)|I5 (90a)
put Y; is independent of M, Y=, 51 S ). IU; 2) = 1(U;9)|, = 1(U; Z) = I(U;S)| 5 (90b)
We bound R, exactly as[(38) withV;, i € {1,...,n}, H(Y|S)+I(U; Z2) - 1(U;S,Y)],,

defined as in[{40).
To bound the sum-rat®, + R, note that[(4B),[(48), and
(54) still hold, but [55) should be replaced by To this end, consider the followingY| - |S| + 1 functions
of u, all of which are determined by the conditional distribu-

ZI (My’MmSi—l’ le,ii-’il;ﬁ-l Si) _ ZI(XiQ}/i|Si), tion Pxyzsv and are independent of the margirfa}:

=l =t 84) ho(u) 2 H(S|U = u) — H(Z|U = u) (91a)
which is true becausélM,, M., S™) determinesX;, and hi(u) & H(Y,S|\U =u) — H(Z|U = u) (91b)
because, wio feedbac G, ) e OUPUYL (1) 2 Py

Indep (My, Mz, S Vi) 9 reX,seS, (xs)#(1,1). (91c)

= H(Y|S)+1(U; Z) — I(U; 5,Y)| 5. (90c)

el n n We now look for aP; (which will replacePy;) such that
WBy + 1) S D T4 T 20) = 310 T 5 Y) S By (uho(u) = H(SIU) - H(Z|U)|, (922)
n uelU
+ ) I(X3;YilS)) + nen, 85) N Py(whi(u) = H(Y,S|U) - H(Z|U)|, (92b)
i=1 uel
whereT;, i € {1,...,n}, are defined in[{37). > Pu(u)he o(u) = Pxs(w,s),

Summarizing [(83), [(38), and_(B5) we conclude that theucu
desired capacity region is contained in the convex closfire o xeX,se€S,(x,8) #(1,1). (92¢)



By the Support Lemm&_ ]2, p.631], suchRy can be found
whose support-size is at most the total number of consgiaint

- ZI(My, M., S XL YL Y) +ne, (105)
which equalsX| - |S| + 1. Choosing o

5 5 =Y I(My,M,, S X1y, n 106
PXYZSU(:an7Z,S,’U,)éPU(U)nyzs‘U(x’y7Z7s|u) (93) ; ( Y 9 5 5 )+n€ ( )
for all (z,y,z,s,u) yields a joint distribution that satis- " i
fies [89). We next show that this choice also satisfies (88) = ZI(Mvaz,S ;Yi) + nen. (107)
and [90). First note thaf (9Rc) implies thBky zys has the =1
same marginal oi.X, S) as Pxyzus. In particular, Here, [10b) and [(107) follow becauseXi~' is a
~ i i—1Y- H
Ps(s) = Ps(s), s€S. (94) function of (M, M., S '); and [106) because, given

(M, M,, S, X*=1), the outputy; is independent o¥ *~.
This combined with the fact that we used the conditional diga the same way we can obtain
tribution Pxy 75| to generatéPxy zsuy shows thatPxy zsu

is indeed of the form{88). Furthermore, these imply that nR, < iI(MmMz, Si=1 7). (108)
pXYZS(xayvzvs):PXYZS(xayaZaS) (95) ] =1
for all (x,y, z,s). Hence we have We define
A i—1 .
H(Y|S)|I5:H(Y|S)|P (96a) T, 2 (M, M, S8 ), ie{l,...,n} (109)
H(Z)—-H(S)|;=H(Z) - H(S)|, (96b) which clearly satisfy the conditions
H(Z) = HY,8)|p = H(Z) = HY,S)|p 960y g Ty (X, 80—V, Z0), i€ {1,...,m}.
On the other hand[_(9Ra) arld (92b) imply (110)
We now have

H(S|U) - H(Z|U)|; = H(S|U) - H(Z|U)|,  (97a) .
H(Y,S|U) = H(Z|U)|s = H(Y,S|U) = H(Z|U)| . (97b) nR, <> I(T;Yi) + ney (111a)

Combining [96) and{97) yield§ (®0) and concludes the proof. izl
nR. <> I(Ty: Z;) + nen, (111b)

APPENDIX B Z (

i=1

PROOF OFPROPOSITIO C . . . : -
N2 which imply that the capacity region of interest is contdliine

To prove Propositionl2, we need the following simple outghe convex closure of (98) for distributions 6/, Y, Z, S, T)
bound on the capacity region of any broadcast channel WEQtisfying

causal state-information:

Lemma 2:The capacity region of any state-dependent two- TS, T——(X,S)—(Y,2). (112)
receiver broadcast channel as in](77) with causal state- _ _ . )
information at the transmitter is contained in the convék NOW only remains to show that, to exhaust this region, it

closure of the union of the rate pairs satisfying suffices to consider joint distributions in whict is a function
of (T, S). This is indeed the case because, gifgn (¢, s) and

R, <I(T3Y) (98a) the channel law, both terms on the RHS [of](98) are convex
R. <I(T;2) (98b) in Px|rs. ]

We next proceed to prove Propositidn 2. We begin with the
achievability part, which is straightforward. If the tramister
Pxy zsr(x,y, 2,5, 1) only communicates to the receiver which obser¥eghen it

_ _ can cancel the interference S8fby flipping the input symbol
= Ps(s) Pr() Hz = g(t,5)} Wy, 2|z, 5). (99) wheneverS = 1. In this way the rate-pair
Proof: We boundR, as for single-user channels with

where the union is over all joint distributions of the form

causal state-information [2]. [16] as follows: (Ry, R.) = (1,0) (113)
nR, < I(My;Y™) + ne, (100) can be achieved. On the other hand, if the transmitter only
< I(M,, M.;Y™) + ney, (101) f:ommunlcates to_ the receiver Whlch observgsthen it can
N ignore S and achieve the rate-pair
_ vyl
= 2 M M e (102 (Ry.R2) = (0.1~ Hy(p). (114)

Time-sharing betweerd (I113) and (114) achieves the claimed

capacity region.

" To prove the converse part, we use Lenitha 2. Note that the

< ZI(Myv M., 871 YLV + ney (104) auxiliary random variabld” in L.emmaDZ can be restricted to
P take value in all “input strategiesl [16]. Namely, its aljed

< I(My, M., YY) + ney (103)
=1



is the set of all mappings fror§ to X’. There are four such
mappings:

(4]

T=0: maps0to0andl to0 (115a) [
T=1: mapsOtolandltol (115b) 6]
T=2: mapsOto0andltol (115c)
T=3: maps0tolandl to0. (115d) [
Here,T = 0 or 1 means sending a fixed independently of 8]
S, andT = 2 or 3 means flippinge wheneverS = 1. Using
the “fixed” strategied” = 0 or 1 one can transmit information
to the receiver which observesbut not to the receiver which [9]
observes:
HY|IT=0=HY|T=1)=1 (116) [10]
H(Z|IT =0) = H(Z|T = 1) = 1 - Hy(p); ~ (117)
while using the “flipped” strategie§” = 2 or 3 one can [t
transmit information to the receiver which obsern¥ésut not
to the receiver which observes [12]
HY|T=2)=HY|T=3)=0 (118)
H(Z|IT =2)=H(Z|T =3) =1. (119) [13]
We now have
[14]
R, < I(T;Y) (120)
=HY)-HY|T) (121) [19]
=H(Y) - Pr(0)H(Y|T =0) [16]
—Pr(H)H(Y|T =1) (122)
<1-Pr[T€{0,1}]-1 (123)
=Pr[T € {2,3}] (124)
R. < I(T; Z) (125)
=H(Z)-H(Z|T) (126)

= H(Z)— Pp(0)H(Z|T = 0) — Pp(1)H(Z|T = 1)

—Pr(2)H(Z|IT =2) - Pr(3)H(Z|T =3) (127)
<1-Pr[T €{0,1}] - (1 — Hp(p))
—Pr[Te{2,3}] 1 (128)
= (1=Pr[T €{2,3}]) - (1 — Hp(p)). (129)
Denoting
AE£Pr[T € {2,3}] (130)

we see thatR,, R.) indeed must satisfyf (98). This ends our
proof of Propositiol 2.
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