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Abstract—We derive the capacity region of the state-dependent
semideterministic broadcast channel with noncausal state-
information at the transmitter. One of the two outputs of thi s
channel is a deterministic function of the channel input andthe
channel state, and the state is assumed to be known noncausally to
the transmitter but not to the receivers. We show that appending
the state to the deterministic output does not increase capacity.

We also derive an outer bound on the capacity of general
(not necessarily semideterministic) state-dependent broadcast
channels.

Index Terms—Broadcast channel, capacity region, channel-
state information, Gel’fand-Pinsker problem, semideterministic.

I. I NTRODUCTION

W E characterize the capacity region of the discrete,
memoryless, state-dependent, semideterministic broad-

cast channel. This channel has a single transmitting node, two
receiving nodes, and an internal state, all of which are assumed
to take value in finite sets. One of the receiving nodes—
the “deterministic receiver”—observes a symbolY that is a
deterministic function of the transmitted symbolx and the
(random) stateS

Y = f(x, S) with probability one, (1a)

and the other receiving node—the “nondeterministic
receiver”—observes a symbolZ, which is random: conditional
on the input beingx and the state beings, the probability
that it equalsz is W (z|x, s):

Pr[Z = z|X = x, S = s] = W (z|x, s). (1b)

The state sequenceS is assumed to be independent and
identically distributed (IID) according to some lawPS(·)

Pr[S = s] = PS(s) (1c)

and to be revealed to the encoder in a noncausal way: all
future values of the state are revealed to the transmitter before
transmission begins.

We consider a scenario where the encoder wishes to convey
two private messages: My ∈ {1, . . . , 2nRy} to the determinis-
tic receiver, andMz ∈ {1, . . . , 2nRz} to the nondeterministic
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receiver, whereRy and Rz denote therates (in bits per
channel use) of data transmission to the deterministic and
nondeterministic receivers.1 The messagesMy and Mz are
assumed to be independent and uniformly distributed. As for
the broadcast channel without a state [1], [2], we define the
capacity regionof this channel as the closure of all rate-pairs
that are achievable in the sense that the probability that at
least one of the receivers decodes its message incorrectly can
be made arbitrarily close to zero.

The main result of this paper is a single-letter characteriza-
tion of the capacity region:

Theorem 1:The capacity region of the channel (1) when the
states are known noncausally to the transmitter is the convex
closure of the union of rate-pairs(Ry, Rz) satisfying

Ry < H(Y |S) (2a)

Rz < I(U ;Z)− I(U ;S) (2b)

Ry +Rz < H(Y |S) + I(U ;Z)− I(U ;S, Y ) (2c)

over all joint distribution on(X,Y, Z, S, U) whose marginal
on S is the given state distributionPS and under which,
conditional onX and S, the channel outputsY and Z are
drawn according to the channel law (1) independently ofU :

PXY ZSU (x, y, z, s, u)

= PS(s)PXU|S(x, u|s)1
{

y = f(x, s)
}

W (z|x, s). (3)

Here 1{·} denotes the indicator function.2 Moreover, this
is also the capacity region when the state sequence is also
revealed to the deterministic receiver, i.e., when the mapping
f(·, ·) is replaced by the mapping(x, s) 7→

(

f(x, s), s
)

.
Proof: See Sections II and III.

As to the cardinality of the auxiliary random variableU :
Proposition 1: To exhaust the capacity region of the chan-

nel (1), we may restrict the auxiliary random variableU in (2)
to take value in a setU whose cardinality|U| is bounded by

|U| ≤ |X | · |S|+ 1, (4)

whereX andS denote the input and state alphabets.
Proof: See Appendix A.

Broadcast channelswithout stateshave been studied ex-
tensively [3]. Our work can be considered as an extension
to broadcast channels with states of prior work by Gel’fand,
Marton, and Pinsker on deterministic and semideterministic
broadcast channels without states [2], [4]–[8]. State-dependent

1To be precise, we should replace2nRy and2nRz with their integer parts,
but, for typographical reasons, we shall not.

2The value of1{statement} is 1 if the statement is true and is0 otherwise.
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broadcast channels were also considered before [9]–[11], but
capacity regions of most such channels are still unknown.

Steinberg [9] studied thedegradedstate-dependent broad-
cast channel with causal and with noncausal state-information
at the transmitter. He derived the capacity region for the causal
case, but for the noncausal case his outer and inner bounds do
not coincide. Steinberg and Shamai [10] then derived an inner
bound for general (not necessarily degraded) state-dependent
broadcast channels with noncausal state-information. This
inner bound is based on Marton’s inner bound for broadcast
channels without states [7] and on Gel’fand-Pinsker coding
[12]. In fact, the direct part of our Theorem 1 can be deduced
from [10] with a proper choice of the auxiliary random
variables (see Section II-A).

Our proof of the converse part of Theorem 1 borrows from
the Gel’fand-Pinsker converse for single-user channels with
states [12] as well as from the Körner-Marton [7] and the
Nair-El Gamal [13] approaches to outer-bounding the capacity
region of broadcast channels without states. But it also has
a new element:the choice/definition of the auxiliary random
variable depends on the codebook.As we demonstrate in Sec-
tion V, our proof can be extended to general (not necessarily
semideterministic) state-dependent broadcast channels.

Some special cases of Theorem 1 were solved by Khosravi-
Farsani and Marvasti [11]: thefully deterministic case, the
case where the states are known to the nondeterministic
receiver, and the case where the channel is degraded so
(X,S)⊸−−Y⊸−−Z forms a Markov chain.

The rest of this paper is organized as follows. We prove the
direct and converse parts of Theorem 1 in Sections II and III.
In Section IV we apply Theorem 1 to a specific channel whose
nondeterministic output is unaffected by the state. Even so,
noncausal state-information is strictly better than causal. We
finally derive a new outer bound on general state-dependent
broadcast channels in Section V.

II. D IRECT PART

In this section we prove the direct part of Theorem 1.
One way to do this is to use [10, Theorem 1] with the
choice of the auxiliary random variables that we propose in
Section II-A. For completeness and simplicity, we also provide
a self-contained proof in Section II-B.

A. Proof based on [10]

It was shown in [10, Theorem 1] that the capacity region of
a general (not necessarily semideterministic) state-dependent
broadcast channel with noncausal state-information at the
transmitter contains the convex closure of the union of rate-
pairs(Ry , Rz) satisfying

Ry ≤ I(U0, Uy;Y )− I(U0, Uy;S) (5a)

Rz ≤ I(U0, Uz;Z)− I(U0, Uz;S) (5b)

Ry +Rz ≤ −
[

max{I(U0;Y ), I(U0;Z)} − I(U0;S)
]+

+ I(U0, Uy;Y )− I(U0, Uy;S) + I(U0, Uz;Z)

− I(U0, Uz;S)− I(Uy;Uz|U0, S), (5c)

where the union is over all joint distribution on
(X,Y, Z, S, U0, Uy, Uz) whose marginal isPS ; that satisfies
the Markov condition

(U0, Uy, Uz)⊸−−(X,S)⊸−−(Y, Z); (6)

and under which the conditional law of(Y, Z) given (X,S)
is that of the given channel.

For the semideterministic channel, we choose the auxiliary
random variables in (5) as follows:

U0 = 0 (deterministic) (7a)

Uy = Y (7b)

Uz = U. (7c)

Note that the Markov condition (6) is satisfied becauseY is
a deterministic function of(X,S) and because in Theorem 1
we restrictU to be such thatU⊸−−(X,S)⊸−−(Y, Z). With
this choice ofU0, Uy, andUz, (5) reduces to (2).

B. Self-contained proof

We next provide a self-contained proof of the direct part
of Theorem 1. As in [10, Theorem 1], our proof is based on
Marton’s inner bound for general broadcast channels [7], [14]
and on Gel’fand-Pinsker coding [12].

First note that the joint distribution (3) can also be written
as

PXY ZSU (x, y, z, s, u)

= PS(s)PY U|S(y, u|s)PX|Y SU (x|y, s, u)W (z|x, s) (8)

with the additional requirement that

y = f(x, s). (9)

Further note that, whenPY SU is fixed, all the terms on the
right-hand side (RHS) of (2) are fixed except forI(U ;Z),
which is convex inPX|Y US . SinceI(U ;Z) only appears with
a positive sign on the RHS of (2), it follows that the union
over all joint distributions of the form (2) can be replaced by
a union only over those wherex is a deterministic function of
(y, u, s), i.e., of the form

PXY ZSU (x, y, z, s, u)

= PS(s)PY U|S(y, u|s)1
{

x = g(y, u, s)
}

W (z|x, s) (10)

for someg : (y, u, s) 7→ x (and subject to (9)). We shall thus
only establish the achievability of rate pairs that satisfy(2) for
some distribution of the form (10).

Choose a stochastic kernelPY U|S and a mapping
g : (y, u, s) 7→ x which, combined withPS and the channel
law, determines the joint distribution (10) for which (9) is
satisfied. For a given block-lengthn, we construct a random
code as follows:

Codebook:Generate2nRy y-bins, each containing2nR̃y y-
tuples where thely-th y-tuple in themy-th bin

y(my, ly), my ∈ {1, . . . , 2nRy}, ly ∈ {1, . . . , 2nR̃y}

is generated IID according toPY (the Y -marginal of (10))
independently of the othery-tuples. Additionally, generate



3

2nRz u-bins, each containing2nR̃z u-tuples, where thelz-th
u-tuple in themz-th u-bin

u(mz , lz), mz ∈ {1, . . . , 2nRz}, lz ∈ {1, . . . , 2nR̃z}

is drawn IID according toPU (the U -marginal of (10))
independently of the otheru-tuples and of they-tuples.

Encoder: To send Messagemy ∈ {1, . . . , 2nRy} to the
deterministic receiver and Messagemz ∈ {1, . . . , 2nRz} to
the nondeterministic receiver, look for ay-tuple y(my , ly)
in y-bin my and a u-tuple u(mz, lz) in u-bin mz such
that

(

y(my , ly),u(mz , lz)
)

is jointly typical with the state
sequences:

(

y(my , ly),u(mz , lz), s
)

∈ T (n)
ǫ (PY US) , (11)

whereT (n)
ǫ (·) denotes theǫ-strongly typical setwith respect

to a certain distribution. If such a pair can be found, send

x = g
(

y(my , ly),u(mz , lz), s
)

, (12)

where in the aboveg(y,u, s) denotes the application of the
function g(y, u, s) componentwise. (Note that in this case
the sequence received by the deterministic receiver will be
y(my , ly).) Otherwise send an arbitrary codeword.

Deterministic decoder: Try to find theuniquey-bin, say
m′

y, that contains the received sequencey and output its
numberm′

y. If there is more than one such bin, declare an
error.

Nondeterministic decoder: Try to find the uniqueu-bin
m′

z which contains au(m′
z , l

′
z) that is jointly typical with the

received sequencez:
(

u(m′
z, l

′
z), z

)

∈ T
(n)
2ǫ (PUZ) , (13)

and outputm′
z . If more than one or no such bin can be found,

declare an error.
We next analyze the error probability of the above coding

scheme. There are three types of errors:
Encoder errs. This happens only if there is no pair

(ly, lz) ∈ {1, . . . , 2nR̃y} × {1, . . . , 2nR̃z} that satisfies (11).
To bound this probability, we use the Multivariate Covering
Lemma [2, Lemma 8.2], which we restate as follows:

Lemma 1:Fix some joint distribution PA(0)...A(k)
on

(A(0), . . . , A(k)), and fix positiveǫ̃ and ǫ with ǫ̃ < ǫ. Let
An

(0) be a random sequence satisfying

lim
n→∞

Pr
[

An
(0) ∈ T

(n)
ǫ̃ (PA(0)

)
]

= 1. (14)

For eachj ∈ {1, . . . , k}, let An
(j)(mj), mj ∈ {1, . . . , 2nrj},

be pairwise independent conditional onAn
(0), each distributed

according to
∏n

i=1 PA(j)|A(0)=a(0),i
. Assume that

{

An
(j)(mj) : mj ∈ {1, . . . , 2nrj}

}

, j ∈ {1, . . . , k}

are mutually independent conditional onAn
(0). Then there

existsδ(ǫ) which tends to zero asǫ tends to zero such that

lim
n→∞

Pr

[

(An
(0), A

n
(1)(m1), . . . , A

n
(k)(mk)) /∈ T (n)

ǫ

for all (m1, . . . ,mk)

]

= 0

(15)

provided that, for allJ ⊆ {1, . . . , k} with |J | ≥ 2,
∑

j∈J

rj >
∑

j∈J

H(A(j)|A(0))−H({A(j) : j ∈ J }|A(0))+δ(ǫ),

(16)
where the conditional entropies are computed with respect to
PA(0)...A(k)

.
We apply Lemma 1 by choosingk = 3, A(0) = 0

(deterministic) sõǫ = 0, and

A(1) = Y, r1 = R̃y, (17a)

A(2) = U, r2 = R̃z, (17b)

A(3) = S, r3 = 0. (17c)

The joint distribution is chosen to bePY US . We then obtain
that the probability that the encoder errs tends to zero asn
tends to infinity provided that

R̃y > I(Y ;S) + δ(ǫ) (18a)

R̃z > I(U ;S) + δ(ǫ) (18b)

R̃y + R̃z > H(Y ) +H(U) +H(S)

−H(Y, U, S) + δ(ǫ). (18c)

Deterministic decoder errs.This happens only if there is
more than one bin that contains the receivedy. We may now
assume that the encoding was successful so (11) is satisfied.
Theny is in T

(n)
ǫ (PY ), and

PY (y) ≤ 2−n(H(Y )−δ(ǫ)) (19)

where δ(ǫ) tends to zero whenǫ tends to zero. Hence the
probability that a specificy-tuple in a bin that was not
chosen by the encoder, which, by our code construction, was
independently chosen from the receivedy, happens to be the
same asy, is upper-bounded by the RHS of (19). Further
note that the total number ofy-tuples outside the bin chosen
by the encoder is2nR̃y

(

2nRy − 1
)

. Using the union bound,
we obtain that the probability that the deterministic decoder
errs is at most

2nR̃y
(

2nRy − 1
)

2−n(H(Y )−δ(ǫ)), (20)

which tends to zero asn tends to infinity provided that

Ry + R̃y < H(Y )− δ(ǫ). (21)

Nondeterministic decoder errs.This happens if either the
u-tuple u(mz, lz) is not jointly typical with the receivedz-
tuple, or if au-tuple in a different bin happens to be jointly
typical with the receivedz-tuple. Assuming that the encoding
was successful, the probability of the former case tends to zero
asn tends to infinity by (11) and by the Markov Lemma [2,
Lemma 12.1]. To upper-bound the probability of the latter
case, note that anyu(m′

z , l
′
z), wherem′

z 6= mz, is chosen
independently ofu(mz, lz) andy(my , ly), and is hence also
independent of the receivedz. By the Joint Typicality Lemma
[2, p.29] we have

Pr
[

(U(m′
z , l

′
z),Z) ∈ T

(n)
2ǫ (PUZ )

]

≤ 2−n(I(U ;Z)−δ(ǫ)) (22)

where the probability is computed with respect to the randomly
chosen codebook. Next note that the total number of such
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u-tuples is2nR̃z
(

2nRz − 1
)

. Applying the union bound, we
obtain that the probability that there exists at least oneu-tuple
that is not in the chosen bin but that is jointly typical withz
is at most

2nR̃z
(

2nRz − 1
)

2−n(I(U ;Z)−δ(ǫ)), (23)

which tends to zero asn tends to infinity provided that

Rz + R̃z < I(U ;Z)− δ(ǫ). (24)

Summarizing (18), (21), and (24), and lettingǫ tend to zero,
we conclude that the above coding scheme has vanishing error
probability asn tends to infinity for all(Ry , Rz) satisfying (2).
By time-sharing we further achieve the convex hull of all rate-
pairs satisfying (2) for joint distributions of the form (10). This
concludes the proof of the direct part of Theorem 1.

III. C ONVERSEPART

In this section we show that, even if the state sequenceS

is revealed to the deterministic receiver (which observesY),
any achievable rate-pair must be in the convex closure of the
union of rate-pairs satisfying (2).

Given any code of block-lengthn, we first derive a bound
on Ry:

nRy = H(My) (25)

≤ I(My;Y
n, Sn) + nǫn (26)

= I(My;Y
n|Sn) + nǫn (27)

=

n
∑

i=1

I(My;Yi|Y
i−1, Sn) + nǫn (28)

≤

n
∑

i=1

H(Yi|Y
i−1, Sn) + nǫn (29)

≤

n
∑

i=1

H(Yi|Si) + nǫn, (30)

where ǫn tends to zero asn tends to infinity. Here, (26)
follows from Fano’s Inequality; (27) becauseMy and Sn

are independent; (28) from the chain rule; (29) by dropping
negative terms; and (30) because conditioning cannot increase
entropy.

We next boundRz as in [12]:

nRz = H(Mz) (31)

≤ I(Mz;Z
n) + nǫn (32)

=

n
∑

i=1

I(Mz;Zi|Z
i−1) + nǫn (33)

=
n
∑

i=1

I
(

Mz, S
n
i+1;Zi

∣

∣Zi−1
)

−

n
∑

i=1

I
(

Sn
i+1;Zi

∣

∣Mz, Z
i−1

)

+ nǫn (34)

=

n
∑

i=1

I
(

Mz, S
n
i+1;Zi

∣

∣Zi−1
)

−

n
∑

i=1

I
(

Zi−1;Si

∣

∣Mz, S
n
i+1

)

+ nǫn (35)

=

n
∑

i=1

I
(

Mz, S
n
i+1;Zi

∣

∣Zi−1
)

−

n
∑

i=1

I
(

Mz, Z
i−1, Sn

i+1;Si

)

+ nǫn (36)

≤
n
∑

i=1

I
(

Mz, Z
i−1, Sn

i+1;Zi

)

−

n
∑

i=1

I
(

Mz, Z
i−1, Sn

i+1;Si

)

+ nǫn (37)

=

n
∑

i=1

I(Vi;Zi)− I(Vi;Si) + nǫn. (38)

Here, (32) follows from Fano’s Inequality; (33) and (34) from
the chain rule; (35) from Csiszár’s Identity [15]

n
∑

i=1

I
(

Cn
i+1;Di

∣

∣Di−1
)

=

n
∑

i=1

I
(

Di−1;Ci

∣

∣Cn
i+1

)

; (39)

(36) becauseSi and (Mz, S
n
i+1) are independent; (37) from

the chain rule and by dropping negative terms; and (38) by
defining the auxiliary random variables

Vi , (Mz, Z
i−1, Sn

i+1), i ∈ {1, . . . , n}. (40)

We next bound the sum rateRy +Rz:

n(Ry +Rz) = H(My,Mz) (41)

= H(Mz) +H(My|Mz) (42)

≤ I(Mz ;Z
n) + I(My;Y

n, Sn|Mz) + nǫn, (43)

where the last step follows from Fano’s Inequality. Of the
two mutual informations on the RHS of (43) we first bound
I(Mz;Z

n):

I(Mz;Z
n) =

n
∑

i=1

I(Mz;Zi|Z
i−1) (44)

≤

n
∑

i=1

I(Mz, Z
i−1;Zi) (45)

=

n
∑

i=1

I
(

Mz, Z
i−1, Sn

i+1, Y
n
i+1;Zi

)

−

n
∑

i=1

I
(

Sn
i+1, Y

n
i+1;Zi

∣

∣Mz, Z
i−1

)

(46)

=

n
∑

i=1

I
(

Mz, Z
i−1, Sn

i+1, Y
n
i+1;Zi

)

−
n
∑

i=1

I
(

Zi−1;Si, Yi

∣

∣Mz, S
n
i+1, Y

n
i+1

)

(47)

=

n
∑

i=1

I
(

Mz, Z
i−1, Sn

i+1, Y
n
i+1;Zi

)

−

n
∑

i=1

I
(

Mz, Z
i−1, Sn

i+1, Y
n
i+1;Si, Yi

)

+

n
∑

i=1

I
(

Mz, S
n
i+1, Y

n
i+1;Si, Yi

)

. (48)
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Here, (44), (45), and (46) follow from the chain rule; (47) by
applying Csiszár’s Identity (39) between(Sn, Y n) and Zn;
and (48) again from the chain rule.

We next study the sum of the last term on the RHS of (48)
and the second mutual information on the RHS of (43):

n
∑

i=1

I
(

Mz, S
n
i+1, Y

n
i+1;Si, Yi

)

+ I(My;Y
n, Sn|Mz)

=

n
∑

i=1

I
(

Mz, S
n
i+1, Y

n
i+1;Si, Yi

)

+
n
∑

i=1

I
(

My;Si, Yi

∣

∣Mz, S
n
i+1, Y

n
i+1

)

(49)

=

n
∑

i=1

I
(

My,Mz, S
n
i+1, Y

n
i+1;Si, Yi

)

(50)

=

n
∑

i=1

I
(

My,Mz, S
n
i+1, Y

n
i+1;Si, Yi

)

+

n
∑

i=1

I
(

Si−1;Si, Yi

∣

∣My,Mz, S
n
i+1, Y

n
i+1

)

−
n
∑

i=1

I
(

Sn
i+1, Y

n
i+1;Si

∣

∣My,Mz, S
i−1

)

(51)

=

n
∑

i=1

I
(

My,Mz, S
i−1, Sn

i+1, Y
n
i+1;Si, Yi

)

−

n
∑

i=1

I
(

Sn
i+1, Y

n
i+1;Si

∣

∣My,Mz, S
i−1

)

(52)

=

n
∑

i=1

I
(

My,Mz, S
i−1, Sn

i+1, Y
n
i+1;Si, Yi

)

−
n
∑

i=1

I
(

My,Mz, S
i−1, Sn

i+1, Y
n
i+1;Si

)

(53)

=

n
∑

i=1

I
(

My,Mz, S
i−1, Sn

i+1, Y
n
i+1;Yi

∣

∣Si

)

(54)

=

n
∑

i=1

H(Yi|Si). (55)

Here, (49) and (50) follow from the chain rule; (51) by apply-
ing Csiszár’s Identity between(Sn, Y n) and Sn; (52) from
the chain rule; (53) becauseSi and (My,Mz, S

i−1) are
independent; (54) again from the chain rule; and (55) because,
given(My,Mz, S

n), the channel inputsXn are determined by
the encoder, and henceY n are also determined, so

H
(

Yi

∣

∣My,Mz, S
n, Y n

i+1

)

= 0. (56)

Combining (43), (48), and (55), using the definitions (40),
and further defining

Ti , Y n
i+1, i ∈ {1, . . . , n}, (57)

we obtain

n(Ry +Rz) ≤

n
∑

i=1

I(Vi, Ti;Zi)−

n
∑

i=1

I(Vi, Ti;Si, Yi)

+

n
∑

i=1

H(Yi|Si) + nǫn. (58)

Summarizing (30), (38), and (58) and lettingn tend to
infinity, we obtain that any achievable rate-pair(Ry, Rz) must
be contained in the convex closure of the union of rate-pairs
satisfying

Ry < H(Y |S) (59a)

Rz < I(V ;Z)− I(V ;S) (59b)

Ry +Rz < H(Y |S) + I(V, T ;Z)− I(V, T ;S, Y ) (59c)

where, given(X,S), the outputs(Y, Z) are drawn according
to the channel law (1) independently of the auxiliary random
variables(V, T ).

To prove the converse part of Theorem 1, it remains to
replaceV andT with a single auxiliary random variable. I.e.,
it remains to find an auxiliary random variableU such that

I(V ;Z)− I(V ;S) ≤ I(U ;Z)− I(U ;S) (60a)

and

H(Y |S) + I(V, T ;Z)− I(V, T ;S, Y ) ≤

H(Y |S) + I(U ;Z)− I(U ;S, Y ). (60b)

In fact, as we shall see, either choosingU to beV will satisfy
(60) or else choosing it to be(V, T ) will satisfy (60). If we
chooseU = V , then (60a) is satisfied with equality, and the
requirement (60b) becomes

I(T ;Z|V )− I(T ;S, Y |V ) ≤ 0. (61)

On the other hand, if we chooseU = (V, T ), then (60b) is
satisfied with equality, and the requirement (60a) becomes

I(T ;Z|V )− I(T ;S|V ) ≥ 0. (62)

It remains to show thatat least oneof the two requirements
(61) and (62) must be satisfied: if it is (61), then we shall
chooseU as V , and if it is (62), then we shall chooseU
as (V, T ). To this end we note that for all random variables
T, Z, V, S, Y

I(T ;Z|V )− I(T ;S, Y |V ) ≤ I(T ;Z|V )− I(T ;S|V ), (63)

because the RHS minus the left-hand side isI(T ;Y |S, V ),
which is nonnegative. This implies that at least one of (61)
and (62) must hold. We have thus shown that there must exist
aU which satisfies both inequalities in (60), hence the bounds
(59) can be relaxed to (2). This concludes the proof of the
converse part of Theorem 1.

IV. A N EXAMPLE

Consider a broadcast channel whose input, output, and state
alphabets are all binary and whose law is

PS(1) = 1− PS(0) = σ (64a)

Y = x⊕ S (64b)

W (Z = x|x, s) = 1−W (Z = x⊕ 1|x, s) = 1− p (64c)

for some constants0 ≤ p, σ ≤ 1. The deterministic outputY
of this channel is the modulo-two sum of the inputx and
the stateS, and the channel fromx to the nondeterministic
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outputZ is unaffected by the state and is a binary symmetric
channel with crossover probabilityp.

To cancel the state’s effect, the encoder could flip the inputx
wheneverS = 1, but this would hurt the nondeterministic
receiver. In fact, if the state is unbiased (σ = 0.5), and if only
causalstate-information is available at the encoder,3 then one
cannot do better than time-sharing:

Proposition 2: The capacity region of the channel (64) with
σ = 0.5 when the states are knowncausallyto the transmitter
but not to the receivers, is the union overλ ∈ [0, 1] of rate-
pairs(Ry , Rz) satisfying

Ry ≤ λ (65a)

Rz ≤ (1− λ)
(

1−Hb(p)
)

. (65b)

I.e., it is the collection of rate pairs satisfying

Ry +
Rz

1−Hb(p)
≤ 1. (66)

Proof: See Appendix B.
However, withnoncausalstate-information the transmitter

can cancel the effect of the state without hurting the nonde-
terministic receiver:

Proposition 3: The capacity region of the channel (64)
when the states are known noncausally to the transmitter but
not to the receivers, is the union overα ∈ [0, 1] of rate-pairs
(Ry, Rz) satisfying

Ry ≤ Hb(α) (67a)

Rz ≤ 1−Hb(β) (67b)

where
β , α(1 − p) + (1 − α)p. (67c)

The capacity regions of the channel (64) whenσ = 0.5 and
p = 0.2 with noncausal and with causal state-information are
depicted in Figure 1.

We present two different proofs for Proposition 3: the first
is based on the achievability part of Theorem 1; the second is
based on the fact that revealing the states to the deterministic
receiver does not increase the capacity region.

First proof of Proposition 3: We let U be a uniform
binary random variable that is independent ofS, and let
X be the outcome of feedingU into a binary symmetric
channel of crossover probabilityα (independently ofS). Note
that now the channel fromU to Z is a binary symmetric
channel with crossover probabilityβ as defined in (67c). Using
Theorem 1 we obtain that the capacity region contains all rate-
pairs(Ry , Rz) satisfying

Ry < H(Y |S) = 1 (68)

Rz < I(U ;Z)− I(U ;S) (69)

=
(

1−Hb(β)
)

− 0 (70)

= 1−Hb(β) (71)

Ry +Rz < H(Y |S) + I(U ;Z)− I(U ;S, Y ) (72)

= 1 +
(

1−Hb(β)
)

− I(U ;X) (73)

3By “causal” we mean that the transmitter, when transmittingXi, knows
the past and present statesSi but not the future statesSn

i+1
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
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Fig. 1. The capacity regions of the channel (64) whenσ = 0.5 andp = 0.2
with noncausal (solid line) and with causal (dashed line) state-information at
the transmitter.

= 1 +
(

1−Hb(β)
)

−
(

1−Hb(α)
)

(74)

= 1−Hb(β) +Hb(α) (75)

where (73) follows becauseX can be computed fromS andY ,
and because, givenX , U is independent of(S, Y ). Taking the
convex closure of (68), (71), and (75) overα ∈ [0, 1], we
obtain the region characterized by (67).

To see that one cannot do better than (67), we observe that
the capacity region of the channel (64) with states known non-
causally to the transmitter must be contained in the capacity
region when the states are also known to both receivers. The
latter case, however, is equivalent to the following broadcast
channel without states:

y = x (76a)

W (Z = x|x) = 1−W (Z = x⊕ 1|x) = 1− p. (76b)

The capacity region of (76) can be found in [1, Example
15.6.5] and is the same as the region characterized by (67).

Second proof of Proposition 3: By Theorem 1, the
capacity region of the channel (64) with states known non-
causally to the transmitter is unchanged if the states are also
revealed to the deterministic receiver. WhenS is revealed to
the deterministic receiver, it can formY⊕S and thus recoverx.
This reduces the channel to the one without states (76). Hence
the capacity region of interest is the same as the capacity
region of (76), which is given by the union overα ∈ [0, 1] of
rate-pairs satisfying (67) [1, Example 15.6.5].

V. A GENERAL OUTER BOUND

We next generalize our converse of Section III to a broadcast
channel that is not necessarily semideterministic. Such a
channel is described by the transition law and the state law

Pr[Y = y, Z = z|X = x, S = s] = W (y, z|x, s) (77a)

Pr[S = s] = PS(s). (77b)
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We let the state sequenceS be known noncausally to the
transmitter and also known to the receiver which observesY .
The capacity region is defined in the same way as for the
semideterministic broadcast channel. In particular, we consider
only two private messages.

Applying the techniques of Section III, we obtain the fol-
lowing outer bound on the capacity region of the channel (77).
(The bound is tight for semideterministic channels.)

Proposition 4: The capacity region of the channel (77),
with the state sequence being revealed noncausally to the
transmitter and also revealed to the receiver which observesY ,
is contained in the convex closure of rate-pairs satisfying

Ry < I(X ;Y |S) (78a)

Rz < I(U ;Z)− I(U ;S) (78b)

Ry +Rz < I(X ;Y |S) + I(U ;Z)− I(U ;S, Y ) (78c)

for joint distributions of the form

PXY ZSU (x, y, z, s, u) = PS(s)PXU|S(x, u|s)W (y, z|x, s).
(79)

Proof: To boundRy, we note that (28) holds also for
the general broadcast channel (77), and we continue (28) as
follows:

nRy ≤

n
∑

i=1

I(My;Yi|Y
i−1, Sn) + nǫn (80)

≤

n
∑

i=1

I(My, Xi;Yi|Y
i−1, Sn) + nǫn (81)

=

n
∑

i=1

H(Yi|Y
i−1, Sn)−H(Yi|Xi, Si) + nǫn (82)

≤
n
∑

i=1

I(Xi;Yi|Si) + nǫn. (83)

Here (82) follows because, given(Xi, Si), the channel out-
put Yi is independent of(My, Y

i−1, Si−1, Sn
i+1).

We boundRz exactly as (38) withVi, i ∈ {1, . . . , n},
defined as in (40).

To bound the sum-rateRy + Rz, note that (43), (48), and
(54) still hold, but (55) should be replaced by
n
∑

i=1

I
(

My,Mz, S
i−1, Sn

i+1, Y
n
i+1;Yi

∣

∣Si

)

=

n
∑

i=1

I(Xi;Yi|Si),

(84)
which is true because(My,Mz, S

n) determinesXi, and
because, without feedback, given(Xi, Si), the outputYi is
independent of(My,Mz, S

i−1, Sn
i+1, Y

n
i+1). These together

yield

n(Ry +Rz) ≤

n
∑

i=1

I(Vi, Ti;Zi)−

n
∑

i=1

I(Vi, Ti;Si, Yi)

+

n
∑

i=1

I(Xi;Yi|Si) + nǫn, (85)

whereTi, i ∈ {1, . . . , n}, are defined in (57).
Summarizing (83), (38), and (85) we conclude that the

desired capacity region is contained in the convex closure of

rate-pairs(Ry , Rz) satisfying

Ry < I(X ;Y |S) (86a)

Rz < I(V ;Z)− I(V ;S) (86b)

Ry +Rz < I(X ;Y |S) + I(V, T ;Z)− I(V, T ;S, Y ) (86c)

where, given(X,S), the outputs(Y, Z) are drawn according
to the channel law (77) independently of the auxiliary random
variables(V, T ). Now to prove Proposition 4 it remains to find
a single auxiliary random variableU satisfying

I(V ;Z)− I(V ;S) ≤ I(U ;Z)− I(U ;S) (87a)

and

I(X ;Y |S) + I(V, T ;Z)− I(V, T ;S, Y )

≤ I(X ;Y |S) + I(U ;Z)− I(U ;S, Y ) (87b)

to replace bothV and T . Now note that (87) is equivalent
to (60). Hence, according to our arguments in Section III,
such aU can always be found.

APPENDIX A
PROOF OFPROPOSITION1

It suffices to show that, given any joint distributionPXY ZSU

of the form (3), there exists another distributioñPXY ZSU of
the same form

P̃XY ZSU (x, y, z, s, u)

= PS(s) P̃XU|S(x, u|s)1
{

y = f(x, s)
}

W (z|x, s) (88)

satisfying
∣

∣

∣

{

u : P̃U (u) > 0
}∣

∣

∣
≤ |X | · |S|+ 1, (89)

whereP̃U denotes the marginal of̃PXY ZSU on U , and

H(Y |S)
∣

∣

P
= H(Y |S)

∣

∣

P̃
(90a)

I(U ;Z)− I(U ;S)
∣

∣

P
= I(U ;Z)− I(U ;S)

∣

∣

P̃
(90b)

H(Y |S) + I(U ;Z)− I(U ;S, Y )
∣

∣

P

= H(Y |S) + I(U ;Z)− I(U ;S, Y )
∣

∣

P̃
. (90c)

To this end, consider the following|X | · |S| + 1 functions
of u, all of which are determined by the conditional distribu-
tion PXY ZS|U and are independent of the marginalPU :

h0(u) , H(S|U = u)−H(Z|U = u) (91a)

h1(u) , H(Y, S|U = u)−H(Z|U = u) (91b)

hx,s(u) , PXS|U (x, s|u),

x ∈ X , s ∈ S, (x, s) 6= (1, 1). (91c)

We now look for aP̃U (which will replacePU ) such that
∑

u∈U

P̃U (u)h0(u) = H(S|U)−H(Z|U)
∣

∣

P
(92a)

∑

u∈U

P̃U (u)h1(u) = H(Y, S|U)−H(Z|U)
∣

∣

P
(92b)

∑

u∈U

P̃U (u)hx,s(u) = PXS(x, s),

x ∈ X , s ∈ S, (x, s) 6= (1, 1). (92c)
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By the Support Lemma [2, p.631], such ãPU can be found
whose support-size is at most the total number of constraints,
which equals|X | · |S|+ 1. Choosing

P̃XY ZSU (x, y, z, s, u) , P̃U (u)PXY ZS|U (x, y, z, s|u) (93)

for all (x, y, z, s, u) yields a joint distribution that satis-
fies (89). We next show that this choice also satisfies (88)
and (90). First note that (92c) implies thatP̃XY ZUS has the
same marginal on(X,S) asPXY ZUS . In particular,

P̃S(s) = PS(s), s ∈ S. (94)

This combined with the fact that we used the conditional dis-
tributionPXY ZS|U to generatẽPXY ZSU shows thatP̃XY ZSU

is indeed of the form (88). Furthermore, these imply that

P̃XY ZS(x, y, z, s) = PXY ZS(x, y, z, s) (95)

for all (x, y, z, s). Hence we have

H(Y |S)
∣

∣

P̃
= H(Y |S)

∣

∣

P
(96a)

H(Z)−H(S)
∣

∣

P̃
= H(Z)−H(S)

∣

∣

P
(96b)

H(Z)−H(Y, S)
∣

∣

P̃
= H(Z)−H(Y, S)

∣

∣

P
. (96c)

On the other hand, (92a) and (92b) imply

H(S|U)−H(Z|U)
∣

∣

P̃
= H(S|U)−H(Z|U)

∣

∣

P
(97a)

H(Y, S|U)−H(Z|U)
∣

∣

P̃
= H(Y, S|U)−H(Z|U)

∣

∣

P
. (97b)

Combining (96) and (97) yields (90) and concludes the proof.

APPENDIX B
PROOF OFPROPOSITION2

To prove Proposition 2, we need the following simple outer
bound on the capacity region of any broadcast channel with
causal state-information:

Lemma 2:The capacity region of any state-dependent two-
receiver broadcast channel as in (77) with causal state-
information at the transmitter is contained in the convex
closure of the union of the rate pairs satisfying

Ry < I(T ;Y ) (98a)

Rz < I(T ;Z) (98b)

where the union is over all joint distributions of the form

PXY ZST (x, y, z, s, t)

= PS(s)PT (t)1{x = g(t, s)}W (y, z|x, s). (99)

Proof: We boundRy as for single-user channels with
causal state-information [2], [16] as follows:

nRy ≤ I(My;Y
n) + nǫn (100)

≤ I(My,Mz;Y
n) + nǫn (101)

=

n
∑

i=1

I(My,Mz;Yi|Y
i−1) + nǫn (102)

≤

n
∑

i=1

I(My,Mz, Y
i−1;Yi) + nǫn (103)

≤

n
∑

i=1

I(My,Mz, S
i−1, Y i−1;Yi) + nǫn (104)

=

n
∑

i=1

I(My,Mz, S
i−1, X i−1, Y i−1;Yi) + nǫn (105)

=

n
∑

i=1

I(My,Mz, S
i−1, X i−1;Yi) + nǫn (106)

=
n
∑

i=1

I(My,Mz, S
i−1;Yi) + nǫn. (107)

Here, (105) and (107) follow becauseX i−1 is a
function of (My,Mz, S

i−1); and (106) because, given
(My,Mz, S

i−1, X i−1), the outputYi is independent ofY i−1.
In the same way we can obtain

nRz ≤

n
∑

i=1

I(My,Mz, S
i−1;Zi). (108)

We define

Ti , (My,Mz, S
i−1), i ∈ {1, . . . , n} (109)

which clearly satisfy the conditions

Ti ⊥⊥ Si, Ti⊸−−(Xi, Si)⊸−−(Yi, Zi), i ∈ {1, . . . , n}.
(110)

We now have

nRy ≤

n
∑

i=1

I(Ti;Yi) + nǫn (111a)

nRz ≤

n
∑

i=1

I(Ti;Zi) + nǫn, (111b)

which imply that the capacity region of interest is contained in
the convex closure of (98) for distributions on(X,Y, Z, S, T )
satisfying

T ⊥⊥ S, T⊸−−(X,S)⊸−−(Y, Z). (112)

It now only remains to show that, to exhaust this region, it
suffices to consider joint distributions in whichX is a function
of (T, S). This is indeed the case because, givenPTS(t, s) and
the channel law, both terms on the RHS of (98) are convex
in PX|TS .

We next proceed to prove Proposition 2. We begin with the
achievability part, which is straightforward. If the transmitter
only communicates to the receiver which observesY , then it
can cancel the interference ofS by flipping the input symbol
wheneverS = 1. In this way the rate-pair

(Ry , Rz) = (1, 0) (113)

can be achieved. On the other hand, if the transmitter only
communicates to the receiver which observesZ, then it can
ignoreS and achieve the rate-pair

(Ry, Rz) = (0, 1−Hb(p)). (114)

Time-sharing between (113) and (114) achieves the claimed
capacity region.

To prove the converse part, we use Lemma 2. Note that the
auxiliary random variableT in Lemma 2 can be restricted to
take value in all “input strategies” [16]. Namely, its alphabet
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is the set of all mappings fromS to X . There are four such
mappings:

T = 0: maps0 to 0 and1 to 0 (115a)

T = 1: maps0 to 1 and1 to 1 (115b)

T = 2: maps0 to 0 and1 to 1 (115c)

T = 3: maps0 to 1 and1 to 0. (115d)

Here,T = 0 or 1 means sending a fixedx independently of
S, andT = 2 or 3 means flippingx wheneverS = 1. Using
the “fixed” strategiesT = 0 or 1 one can transmit information
to the receiver which observesZ but not to the receiver which
observesY :

H(Y |T = 0) = H(Y |T = 1) = 1 (116)

H(Z|T = 0) = H(Z|T = 1) = 1−Hb(p); (117)

while using the “flipped” strategiesT = 2 or 3 one can
transmit information to the receiver which observesY but not
to the receiver which observesZ:

H(Y |T = 2) = H(Y |T = 3) = 0 (118)

H(Z|T = 2) = H(Z|T = 3) = 1. (119)

We now have

Ry ≤ I(T ;Y ) (120)

= H(Y )−H(Y |T ) (121)

= H(Y )− PT (0)H(Y |T = 0)

− PT (1)H(Y |T = 1) (122)

≤ 1− Pr
[

T ∈ {0, 1}
]

· 1 (123)

= Pr
[

T ∈ {2, 3}
]

(124)

Rz ≤ I(T ;Z) (125)

= H(Z)−H(Z|T ) (126)

= H(Z)− PT (0)H(Z|T = 0)− PT (1)H(Z|T = 1)

− PT (2)H(Z|T = 2)− PT (3)H(Z|T = 3) (127)

≤ 1− Pr
[

T ∈ {0, 1}
]

· (1−Hb(p))

− Pr
[

T ∈ {2, 3}
]

· 1 (128)

=
(

1− Pr
[

T ∈ {2, 3}
])

· (1−Hb(p)). (129)

Denoting
λ , Pr

[

T ∈ {2, 3}
]

(130)

we see that(Ry , Rz) indeed must satisfy (98). This ends our
proof of Proposition 2.
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