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Abstract—A relay channel is one in which a Source and
Destination use an intermediate Relay station in order to improve
communication rates. We propose the study of relay channels
with classical inputs and quantum outputs and prove that
a “partial decode and forward” strategy is achievable. We
divide the channel uses into many blocks and build codes in
a randomized, block-Markov manner within each block. The
Relay performs a standard Holevo-Schumacher-Westmoreland
quantum measurement on each block in order to decode part
of the Source’s message and then forwards this partial message
in the next block. The Destination performs a novel “sliding-
window” quantum measurement on two adjacent blocks in order
to decode the Source’s message. This strategy achieves non-trivial
rates for classical communication over a quantum relay channel.

I. INTRODUCTION

Suppose that a Source wishes to communicate with a remote
Destination. Suppose further that a Relay is available that can
decode the messages transmitted by the Source during one
time slot and forward them to the Destination during the next
time slot. With the Relay’s help, the Source and Destination
can improve communication rates because the Destination can
decode the intended messages in parallel from the channel
outputs at two consecutive time slots. In this way, useful
information is received both from the Source and the Relay.

The relay channel has been studied extensively in the
context of classical information theory [1], [2], [3]. There,
the discrete memoryless relay channel is modelled as a con-
ditional probability distribution p(y1, y|x, x1), where y1 and
y are the respective outputs at the Relay and Destination
whenever the Source and Relay input symbols x and x1. Two
important families of coding strategies exist for relay channels:
compress-and-forward and decode-and-forward [1], [3]. The
partial decode-and-forward strategy differs from the decode-
and-forward strategy in that it has the Relay decode only part
of the message from the Source [1].

The study of quantum channels with information-theoretic
techniques has been an active area for some time now [4].
Theoretical interest has focused on classical-quantum channels
of the form (X , NX→B(x)≡ρBx , HB), where, for each of the
inputs x ∈ X , there corresponds an output quantum state, de-
scribed by a density operator ρBx in a finite-dimensional Hilbert
spaceHB . Classical-quantum channels are a useful abstraction
for studying general quantum channels and correspond to
the transmitters being restricted to classical encodings. In
this setting, single-letter formulas characterize the capacity of
point-to-point [5], [6] and multiple-access channels [7] and
give achievable rates for other network channels [8], [9], [10].

The study of quantum channels finds practical applica-
tions in optical communications. Bosonic channels model the

quantum aspects of optical communication channels, where
information is encoded into continuous degrees of freedom. It
is known that collective quantum measurements on bosonic-
channel outputs outperform classical strategies, particularly in
the low-photon-number regime [11]. In other words, quantum
measurements are necessary to achieve their ultimate capacity.
Ref. [11] also demonstrates that classical encoding is sufficient
to achieve the Holevo capacity of the lossy bosonic channel,
giving further motivation for the theoretical study of classical-
quantum models.

In this paper, we develop a “partial decode and forward”
strategy for classical-quantum relay channels. Our results here
are the first extension of the quantum simultaneous decoding
techniques used in [8], [9] to multi-hop networks. In the
partial-decode-and-forward strategy given here, the Relay de-
codes part of the Source’s message in one block and forwards
it in the next. The Destination performs a novel “sliding-
window” quantum measurement to decode both parts of the
Source’s message in two consecutive blocks [12], [2] and in
doing so allows for the Source and Destination to achieve non-
trivial communication rates. We state our main result in the
Section II, introduce the necessary background on quantum
systems and quantum decoding in Section III, and give the
proof in Section IV. We conclude and discuss open problems
in Section V.

II. RESULTS

A classical-quantum relay channel N is a map with two
classical inputs x and x1 and two output quantum systems
B1 and B. For each pair of possible input symbols (x, x1) ∈
X ×X1, the channel prepares a density operator ρB1B

x,x1
defined

on the tensor-product Hilbert space HB1 ⊗HB :

ρB1B
x,x1
≡ NXX1→B1B(x, x1), (1)

where B1 is the Relay output and B is the Destination output.
The theorem below captures the main result of our paper:

Theorem 1 (Partial decode-forward inner bound). Let {ρx,x1
}

be a cc-qq relay channel as in (1). Then a rate R is achievable,
provided that the following inequality holds:

R ≤ max
p(u,x,x1)

min

{
I(XX1;B)θ ,

I(U ;B1|X1)θ + I(X;B|X1U)θ

}
, (2)

where the information quantities are with respect to the
classical-quantum state θUXX1B1B ≡∑
x,u,x1

p (u, x, x1) |u〉〈u|U⊗|x〉〈x|X⊗|x1〉〈x1|X1⊗ρB1B
x,x1

. (3)
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Our code construction employs codebooks {xn1},
{un}, and {xn} generated according to the distribution
p(x1)p(u|x1)p(x|u, x1). We split the message for each
block into two parts (m, `) ∈ M × L such that the rate
R = Rm+R`. The Relay fully decodes the message ` and re-
encodes it directly in the next block (without using binning).
The Destination exploits a “sliding-window” decoding
strategy [12], [2] by performing a collective measurement on
two consecutive blocks. In this approach, the message pair
(mj , `j) sent during block j is decoded from the outputs of
blocks j and j + 1, using an “AND-measurement.”

III. PRELIMINARIES

In this section, we introduce the notation used in our paper
and some background information on quantum decoding.

1) Quantum systems: We denote quantum systems as B1

and B and the corresponding Hilbert spaces as HB1 and HB .
We represent quantum states of a system B with a density
operator ρB , which is a positive semi-definite operator with
unit trace. Let H(B)ρ ≡ −Tr

[
ρB log2 ρ

B
]

denote the von
Neumann entropy of the state ρB . In order to describe the
“distance” between two quantum states, we use the notion of
trace distance. The trace distance between states σ and ρ is
‖σ − ρ‖1 = Tr|σ − ρ|, where |X| =

√
X†X [4]. Two states

can substitute for one another up to a penalty proportional to
the trace distance between them:

Lemma 1. Let 0 ≤ ρ, σ,Λ ≤ I . Then

Tr [Λρ] ≤ Tr [Λσ] + ‖ρ− σ‖1 . (4)

Proof: This follows from a variational characteriza-
tion of trace distance as the distinguishability of the
states under an optimal measurement M [4]: ‖ρ− σ‖1 =
2 max0≤M≤I Tr [M(ρ− σ)].

2) Quantum decoding: In a communication scenario, the
decoding operations performed by the receivers correspond
to quantum measurements on the outputs of the channel. A
quantum measurement is a positive operator-valued measure
(POVM) {Λm}m∈M on the system Bn. To be a valid POVM,
the set {Λm} of |M| operators should all be positive semi-
definite and sum to the identity: Λm ≥ 0,

∑
m Λm = I .

Suppose we are given positive operators {Pm}m∈M that
are apt at detecting (Tr[Pm ρm] ≥ 1 − ε) and distinguishing
(Tr[Pm ρm′ 6=m] ≤ ε) the output states produced by each mes-
sage. We can construct a valid POVM (known as the square-
root measurement [5], [6]) by normalizing these operators:

Λm ≡

(∑
k

Pk

)−1/2

Pm

(∑
k

Pk

)−1/2

. (5)

The error analysis of a square-root measurement is greatly
simplified by using the Hayashi-Nagaoka operator inequality.

Lemma 2 (Hayashi-Nagaoka [13]). If S and T are operators
such that 0 ≤ T and 0 ≤ S ≤ I , then

I − (S + T )
− 1

2 S (S + T )
− 1

2 ≤ 2 (I − S) + 4T. (6)

3) Error analysis: In the context of our coding strategy, we
analyze the average probability of error at the Relay:

p̄Re ≡
1

|L|
∑
`j

Tr
{(
I − Γ

Bn
1(j)

`j

)
ρ
Bn

1(j)

`j

}
,

and the average probability of error at the Destination:

p̄De ≡
1

|M||L|
∑
mj ,`j

Tr
[(
I − Λ

Bn
(j)B

n
(j+1)

mj ,`j

)
ρ
Bn

(j)B
n
(j+1)

mj ,`j

]
. (7)

The operators
(
I − Γ`j

)
and

(
I − Λmj ,`j

)
correspond to the

complements of the correct decoding outcomes.

Definition 1. An (n,R, ε) partial-decode-and-forward code
for the quantum relay channel consists of two codebooks
{xn(mj , `j)}mj∈M,`j∈L and {xn1 (`j)}`j∈L and decoding
POVMs

{
Γ`j
}
`j∈L

and
{

Λmj ,`j

}
mj∈M,`j∈L

such that the
average probability of error is bounded from above as pe =
p̄Re + p̄De ≤ ε.

A rate R is achievable if there exists an (n,R− δ, ε)
quantum relay channel code for all ε, δ > 0 and sufficiently
large n.

IV. ACHIEVABILITY PROOF

The channel is used for b blocks, each indexed by j ∈
{1, . . . , b}. Our error analysis shows that:
• The Relay can decode the message `j during block j.
• The Destination can simultaneously decode (mj , `j) from

a collective measurement on the output systems of blocks
j and j + 1.

The error analysis at the Relay is similar to that of the
Holevo-Schumacher-Westmoreland theorem [5], [6]. The mes-
sage `j can be decoded reliably, if the rate R` obeys the
following inequality:

R` ≤ I (U ;B1|X1)θ . (8)

We give a proof in the Appendix.
The decoding at the Destination is a variant of the quantum

simultaneous decoder from [8], [9]. To decode the message
(mj , `j), the Destination performs a “sliding-window” de-
coder, implemented as an “AND-measurement” on the outputs
of blocks j and j+ 1. This coding technique does not require
binning at the Relay or backwards decoding at the Destination
[12], [2].

In this section, we give the details of the coding strategy
and analyze the probability of error at the Destination.

Codebook construction. Fix a distribution p(u, x, x1) and
independently generate a different codebook for each block j:
• Randomly and independently generate 2nR` sequences

xn1 (`j−1), `j−1 ∈
[
1 : 2nR`

]
, according to

n∏
i=1

p(x1i).

• For each xn1 (`j−1), randomly and conditionally inde-
pendently generate 2nR` sequences un(`j |`j−1), `j ∈[
1 : 2nR`

]
according to

n∏
i=1

p (ui|x1i(`j−1)).



• For each xn1 (`j−1) and each corresponding un(`j |`j−1),
randomly and conditionally independently generate 2nRm

sequences xn(mj |`j , `j−1), mj ∈
[
1 : 2nRm

]
, according

to the distribution:
n∏
i=1

p
(
xi|x1i(`j−1) , ui(`j |`j−1)

)
.

Transmission. The transmission of (`j ,mj) to the Desti-
nation happens during blocks j and j + 1. At the beginning
of block j, we assume that the Relay has correctly decoded
the message `j−1. During block j, the Source inputs the new
messages mj and `j , and the Relay forwards the old message
`j−1. That is, their inputs to the channel for block j are
the codewords xn(mj , `j , `j−1) and xn1(`j−1), leading to the
following state at the channel outputs:

ρ
(j)
mj ,`j ,`j−1

≡ ρB
n
1(j)B

n
(j)

xn(mj ,`j ,`j−1),xn
1 (`j−1).

During block j+1, the Source transmits (mj+1, `j+1) given
`j , whereas the Relay sends `j , leading to the state:

ρ
(j+1)
mj+1,`j+1,`j

≡ ρB
n
1(j+1)B

n
(j+1)

xn(mj+1,`j+1,`j),xn
1 (`j).

Our shorthand notation is such that the states are identified by
the messages that they encode, and the codewords are implicit.

Decoding at the Destination. We now determine a decod-
ing POVM that the Destination can perform on the output
systems spanning blocks j and j+1. The Destination is trying
to recover messages `j and mj given knowledge of `j−1.

First let us consider forming decoding operators for block
j+ 1. Consider the state obtained by tracing over the systems
X , U , and B1 in (3):

θX1B =
∑
x1

p (x1) |x1〉〈x1|X1 ⊗ τBx1
,

where τBx1
≡
∑
u,x p (u|x1) p (x|x1, u) ρBx,x1

. Also, let τ̄B de-
note the following state: τ̄B ≡

∑
x1
p (x1) τBx1

. Corresponding
to the above states are conditionally typical projectors [4] of
the following form:

Π(j+1)
τ`j

≡ Π
Bn

(j+1)
τxn

1 (`j)
, Π

(j+1)
τ̄ ≡ Π

Bn
(j+1)

τ̄ ,

which we combine to form the positive operator:

P
Bn

(j+1)

`j |`j−1
≡ Π

(j+1)
τ̄ Π(j+1)

τ`j
Π

(j+1)
τ̄ , (9)

that acts on the output systems Bn(j+1) of block j + 1.

Let us now form decoding operators for block j. Define the
conditional typical projector for the state ρ(j)

mj ,`j ,`j−1
as

Π(j)
ρmj,`j |`j−1

≡ Π
Bn

(j)
ρxn(mj,lj ,lj−1),xn

1 (lj−1)
. (10)

The state obtained from (3) by tracing over X and B1 is

θUX1B =
∑
u,x1

p (u|x1) p (x1) |u〉〈u|U ⊗ |x1〉〈x1|X1 ⊗ ρ̄Bu,x1
,

where ρ̄Bu,x1
≡
∑
x p (x|x1, u) ρBx,x1

. Define also the doubly
averaged state ¯̄ρBx1

≡
∑
u,x p (x|x1, u) p (u|x1) ρBx,x1

.

The following conditionally typical projectors will be useful
in our decoding scheme:

Π
(j)
ρ̄`j |`j−1

≡ Π
Bn

(j)

ρ̄un(lj ,lj−1),xn
1 (lj−1)

, Π
(j)
¯̄ρ|`j−1

≡ Π
Bn

(j)

¯̄ρxn
1 (lj−1)

.

We can then form a positive operator “sandwich”:

P
Bn

(j)

mj ,`j |`j−1
≡ Π

(j)
¯̄ρ|`j−1

Π
(j)
ρ̄`j |`j−1

Π(j)
ρmj,`j |`j−1

Π
(j)
ρ̄`j |`j−1

Π
(j)
¯̄ρ|`j−1

. (11)

Finally, we combine the positive operators from (9) and (11)
to form the “sliding-window” positive operator:

P
Bn

(j)B
n
(j+1)

mj ,`j |`j−1
= P

Bn
(j)

mj ,`j |`j−1
⊗ PB

n
(j+1)

`j |`j−1
, (12)

from which we can build the Destination’s square-root mea-
surement Λ

Bn
(j)B

n
(j+1)

mj ,`j |`j−1
using the formula in (5). This measure-

ment is what we call the “AND-measurement.”

Error analysis at the Destination. In this section, we prove
that the Destination can correctly decode the message pair
(mj , `j) by employing the measurement {ΛB

n
(j)B

n
(j+1)

mj ,`j |`j−1
} on the

output state ρ(j)
mj`j`j−1

⊗ρ(j+1)
mj+1`j+1 j̀

spanning blocks j and j+ 1.
The average probability of error for the Destination is given
in (7). For now, we consider the error analysis for a single
message pair (mj , `j):

p̄De ≡Tr
[(
I −Λ

Bn
(j)B

n
(j+1)

mj ,`j |`j−1

)
ρ

(j)
mj`j`j−1

⊗ρ(j+1)
mj+1`j+1 j̀

]
.

≤ 2 Tr
{(
I − PB

n
(j)B

n
(j+1)

mj ,`j |`j−1

)
ρ

(j)
mj`j`j−1

⊗ρ(j+1)
mj+1`j+1 j̀

}
+ 4

∑
(`′j ,m′j)6=(`j ,mj)

Tr
{
P
Bn

(j)B
n
(j+1)

m′j ,`
′
j |`j−1

ρ
(j)
mj`j`j−1

⊗ρ(j+1)
mj+1`j+1 j̀

}
,

where use the Hayashi-Nagaoka inequality (Lemma 2) to
decompose the error operator (I − Λ

Bn
(j)B

n
(j+1)

mj ,`j |`j−1
) into two

components: (I) a term corresponding to the probability that
the correct detector does not “click”: (I − PB

n
(j)B

n
(j+1)

mj ,`j |`j−1
), and

(II) another term corresponding to the probability that a wrong
detector “clicks”:

∑
(`′j ,m′j)

P
Bn

(j)B
n
(j+1)

m′j ,`
′
j |`j−1

. These two errors are
analogous to the classical error events in which an output
sequence yn is either not jointly typical with the correct
codeword or is jointly typical with another codeword.

We will bound the expectation of the average probability of
error EUnXnXn

1

{
p̄De
}

, using the properties of typical projectors
[4], and the following lemmas:

Lemma 3. For any operators 0 ≤ PA, QB ≤ I , we have:

(IAB − PA⊗QB) ≤ (IA−PA)⊗IB + IA⊗(IB −QB).

Proof: Expand and rearrange (I − P )⊗ (I −Q) ≥ 0.

Lemma 4 (Gentle Operator Lemma for Ensembles [14]). Let
{p(x) , ρx} be an ensemble and let ρ̄ ≡

∑
x p(x) ρx. If an

operator Λ, where 0 ≤ Λ ≤ I , has high overlap with the
average state, Tr [ Λ ρ̄ ] ≥ 1− ε, then the subnormalized state√

Λρx
√

Λ is close in trace distance to the original state ρx
on average: EX

{∥∥∥√ΛρX
√

Λ− ρX
∥∥∥

1

}
≤ 2
√
ε.



The first term (I) is bounded as follows:

Tr
[(
I − PB

n
(j)B

n
(j+1)

mj ,`j |`j−1

)
ρ

(j)
mj`j`j−1

⊗ρ(j+1)
mj+1`j+1 j̀

]
= Tr

[(
I − PB

n
(j)

mj ,`j |`j−1
⊗PB

n
(j+1)

`j |`j−1

)
ρ

(j)
mj`j`j−1

⊗ρ(j+1)
mj+1`j+1 j̀

]
≤ Tr

[(
I − PB

n
(j)

mj ,`j |`j−1

)
ρ

(j)
mj ,`j ,`j−1

]
︸ ︷︷ ︸

α

Tr
[
ρ

(j+1)
mj+1,`j+1,`j

]
︸ ︷︷ ︸

=1

+ Tr
[
ρ

(j)
mj ,`j ,`j−1

]
︸ ︷︷ ︸

=1

Tr
[(
I − PB

n
(j+1)

`j |`j−1

)
ρ

(j+1)
mj+1,`j+1,`j

]
︸ ︷︷ ︸

β

,

where the inequality follows from Lemma 3.
We proceed to bound the term β as follows:

β = Tr
[(
I − PB

n
(j+1)

`j |`j−1

)
ρ

(j+1)
mj+1,`j+1,`j

]
= Tr

[(
I −Π

(j+1)
τ̄ Π(j+1)

τ`j
Π

(j+1)
τ̄

)
ρ

(j+1)
mj+1,`j+1,`j

]
= 1− Tr

[
Π

(j+1)
τ̄ Π(j+1)

τ`j
Π

(j+1)
τ̄ ρ

(j+1)
mj+1,`j+1,`j

]
≤ 1− Tr

[
Π(j+1)
τ`j

ρ
(j+1)
mj+1,`j+1,`j

]
+
∥∥∥Π

(j+1)
τ̄ ρ

(j+1)
mj+1,`j+1,`j

Π
(j+1)
τ̄ − ρ(j+1)

mj+1,`j+1,`j

∥∥∥
1
,

where the inequality follows from Lemma 1.
By taking the expectation over the code randomness, we

obtain the upper bound:

E
UnXnXn

1

{β} = 1− E
Xn

1

Tr

[
Π(j+1)
τ`j

E
UnXn|Xn

1

{
ρ

(j+1)
mj+1,`j+1,`j

}]
+ E
UnXnXn

1

∥∥∥Π
(j+1)
τ̄ ρ

(j+1)
mj+1,`j+1,`j

Π
(j+1)
τ̄ − ρ(j+1)

mj+1,`j+1,`j

∥∥∥
1

≤ 1− (1− ε) + 2
√
ε.

The inequality follows from EUnXn|Xn
1

{
ρ

(j+1)
mj+1,`j+1,`j

}
= τ`j ,

the properties of typical projectors [4]: EXn
1

Tr[Π(j+1)
τ`j

τ`j ] ≥
1− ε, Tr[Π(j+1)

τ̄ τ̄ ] ≥ 1− ε and Lemma 4.
The error term α is bounded in a similar fashion.

We can split the sum in the second type of error, (II), as∑
(`′j ,m′j) 6=(`j ,mj) (·) =

∑
m′j 6=mj

(·) +
∑
`′j 6=`j , m′j

(·):

∑
(`′j ,m′j)6=(`j ,mj)

Tr
[
P
Bn

(j)B
n
(j+1)

m′j ,`
′
j |`j−1

ρ
(j)
mj`j`j−1

⊗ρ(j+1)
mj+1`j+1 j̀

]
=

∑
m′j 6=mj

Tr
[
P
Bn

(j)B
n
(j+1)

m′j ,`j |`j−1
ρ

(j)
mj`j`j−1

⊗ρ(j+1)
mj+1`j+1 j̀

]
︸ ︷︷ ︸

(A)

+
∑

l′j 6=lj , m′j

Tr
[
P
Bn

(j)B
n
(j+1)

m′j ,`
′
j |`j−1

ρ
(j)
mj`j`j−1

⊗ρ(j+1)
mj+1`j+1 j̀

]
︸ ︷︷ ︸

(B)

.

We now analyze the two terms (A) and (B) separately.

a) Matching `j , wrong mj: By performing the error
analysis for the case where `j is decoded correctly, but
mj is decoded incorrectly, we obtain the bound Rm <
I(X;B|UX1) = H(B|UX1) −H(B|UXX1) − δ, using the
following properties of typical projectors [4]:

Π(j)
ρm′

j
,`j |`j−1

≤2n[H(B|UXX1)+δ]ρ
(j)
m′j ,`j ,`j−1

, (13)

Π
(j)
ρ̄`j |`j−1

ρ̄
(j)
`j ,`j−1

Π
(j)
ρ̄`j |`j−1

≤2−n[H(B|UX1)−δ]Π
(j)
ρ̄`j |`j−1

. (14)

Consider the first term:

(A) =
∑

m′j 6=mj

Tr
[
P
Bn

(j)B
n
(j+1)

m′j ,`j |`j−1
ρ

(j)
mj`j`j−1

⊗ρ(j+1)
mj+1`j+1 j̀

]
=
∑

m′j 6=mj

Tr
[(
P
Bn

(j)

m′j ,`j |`j−1
⊗PB

n
(j+1)

`j |`j−1

)
ρ

(j)
mj ,`j ,`j−1

⊗ρ(j+1)
mj+1,`j+1,`j

]
≤
∑

m′j 6=mj

Tr
[
P
Bn

(j)

m′j ,`j |`j−1
⊗IB

n
(j+1) ρ

(j)
mj ,`j ,`j−1

⊗ ρ(j+1)
mj+1,`j+1,`j

]
=
∑

m′j 6=mj

Tr
[
P
Bn

(j)

m′j ,`j |`j−1
ρ

(j)
mj ,`j ,`j−1

]

=
∑

m′j 6=mj

Tr

[
Π

(j)
¯̄ρ|`j−1

Π
(j)
ρ̄`j |`j−1

¬︷ ︸︸ ︷
Π(j)
ρm′

j
,`j |`j−1

Π
(j)
ρ̄`j |`j−1︸ ︷︷ ︸

­

Π
(j)
¯̄ρ|`j−1

ρ
(j)
mj ,`j ,`j−1

]

We now upper bound expression ¬ using (13) and take the
conditional expectation with respect to Xn:

E
Xn|UnXn

1

{
ρ

(j)
m′j ,`j ,`j−1

}
= ρ̄

(j)
`j ,`j−1

,

which is independent of the state ρ(j)
mj ,`j ,`j−1

since m′j 6= mj .

The resulting expression in ­ has the state ρ̄(j)
`j ,`j−1

sandwiched
between its typical projector on both sides, and so we can use
(14). After these steps, we obtain the upper bound:

E
Xn|UnXn

1

{(A)} ≤ 2n[H(B|XUX1)+δ] 2−n[H(B|UX1)−δ]×

E
Xn|UnXn

1

∑
m′j 6=mj

Tr
[
Π

(j)
¯̄ρ|`j−1

Π
(j)
ρ̄`j |`j−1

Π
(j)
¯̄ρ|`j−1

ρ
(j)
mj ,`j ,`j−1

]
≤ 2n[H(B|XUX1)+δ]2−n[H(B|UX1)−δ]

∑
m′j 6=mj

Tr
[
ρ

(j)
mj ,`j ,`j−1

]
≤ |M| 2−n[I(X;B|UX1)−2δ]. (15)

The first inequality follows because each operator inside the
trace is positive and less than the identity.

b) Wrong `j (and thus wrong mj): We obtain the bound
R ≡ R` + Rm ≤ I(XX1;B) = I(X1;B) + I(UX;B|X1)
from the “AND-measurement” and the following inequalities:

Tr[Π(j+1)
τ`j

] ≤ 2n[H(B|X1)+δ], (16)

Π
(j+1)
τ̄ τ̄ Π

(j+1)
τ̄ ≤ 2−n[H(B)−δ]Π

(j+1)
τ̄ , (17)

Tr[Π(j)
ρmj,`j |`j−1

] ≤ 2n[H(B|UXX1)+δ], (18)

Π
(j)
¯̄ρ|`j−1

¯̄ρ
(j)
|`j−1

Π
(j)
¯̄ρ|`j−1

≤ 2−n[H(B|X1)−δ]Π
(j)
¯̄ρ|`j−1

. (19)



Consider the following term:

(B) =
∑

`′j 6=`j ,m′j

Tr
[
P
Bn

(j)B
n
(j+1)

m′j ,`
′
j |`j−1

ρ
(j)
mj`j`j−1

⊗ρ(j+1)
mj+1`j+1 j̀

]
=
∑

`′j 6=`j ,m′j

Tr
[(
P
Bn

(j)

m′j ,`
′
j |`j−1

⊗PB
n
(j+1)

`′j |`j−1

)
ρ

(j)
mj`j`j−1

⊗ρ(j+1)
mj+1`j+1 j̀

]
=
∑

`′j 6=`j ,m′j

Tr
[
P
Bn

(j)

m′j ,`
′
j |`j−1

ρ
(j)
mj ,`j ,`j−1

]
︸ ︷︷ ︸

(B1)

Tr
[
P
Bn

(j+1)

`′j |`j−1
ρ

(j+1)
mj+1,`j+1,`j

]
︸ ︷︷ ︸

(B2)

We want to calculate the expectation of (B) under the
code randomness EUnXnXn

1
. The random variables in different

blocks are independent, and so we can analyze the expectations
of the terms (B1) and (B2) separately.

Consider first the calculation in block j, which leads to the
following bound on the expectation of (B1):

E
UnXnXn

1

{(B1)} = E
UnXnXn

1

{
Tr
[
P
Bn

(j)

m′j ,`
′
j |`j−1

ρ
(j)
mj ,`j ,`j−1

]}
= E
UnXnXn

1

Tr

 Π
(j)
ρ̄`′

j
|`j−1

Π
(j)
ρm′

j
,`′

j
|`j−1

Π
(j)
ρ̄`′

j
|`j−1
×

Π
(j)
¯̄ρ|`j−1

ρ
(j)
mj ,`j ,`j−1

Π
(j)
¯̄ρ|`j−1



= E
Xn

1

Tr


E

UnXn|Xn
1

{Π(j)
ρ̄`′

j
|`j−1

Π(j)
ρm′

j
,`′

j
|`j−1

Π
(j)
ρ̄`′

j
|`j−1
}×

Π
(j)
¯̄ρ|`j−1

E
UnXn|Xn

1

{
ρ

(j)
mj ,`j ,`j−1

}
︸ ︷︷ ︸

®

Π
(j)
¯̄ρ|`j−1



= E
Xn

1

Tr


E

UnXn|Xn
1

{Π(j)
ρ̄`′

j
|`j−1

Π(j)
ρm′

j
,`′

j
|`j−1

Π
(j)
ρ̄`′

j
|`j−1
}×

Π
(j)
¯̄ρ|`j−1

¯̄ρ
(j)
|`j−1

Π
(j)
¯̄ρ|`j−1︸ ︷︷ ︸

¯


≤ 2−n[H(B|X1)−δ] E

UnXnXn
1

Tr
[

Π
(j)
ρ̄`′

j
|`j−1

Π
(j)
ρm′

j
,`′

j
|`j−1

Π
(j)
ρ̄`′

j
|`j−1

Π
(j)
¯̄ρ|`j−1

]
≤ 2−n[H(B|X1)−δ] E

UnXnXn
1

Tr
[
Π(j)
ρm′

j
,`′

j
|`j−1

]
≤ 2−n[H(B|X1)−δ] E

UnXnXn
1

2n[H(B|X1UX)+δ]

= 2−n[I(UX;B|X1)−2δ]

The result of the expectation in ® is ¯̄ρ
(j)
|`j−1

, and we can bound
the expression in ¯ using (19). The first inequality follows
because all the other terms in the trace are positive operators
less than the identity. The final inequality follows from (18).

Now we consider the expectation of the second term:

E
UnXnXn

1

{(B2)} = E
UnXnXn

1

{
Tr
{
P
Bn

(j+1)

`′j |`j−1
ρ

(j+1)
mj+1,`j+1,`j

}}
= Tr

{
P
Bn

(j+1)

`′j |`j−1
E

UnXnXn
1

{
ρ

(j+1)
mj+1,`j+1,`j

}}
= Tr

{
P
Bn

(j+1)

`′j |`j−1
τ̄⊗n

}
= Tr

{
Π

(j+1)
τ̄ Π(j+1)

τ`′
j

Π
(j+1)
τ̄ τ̄⊗n

}
= Tr

{
Π(j+1)
τ`′

j

Π
(j+1)
τ̄ τ̄⊗nΠ

(j+1)
τ̄

}

≤ 2−n[H(B)−δ]Tr
{

Π(j+1)
τ`′

j

Π
(j+1)
τ̄

}
≤ 2−n[H(B)−δ]2n[H(B|X1)+δ] = 2−n[I(X1;B)−2δ].

Combining the upper bounds on (B1) and (B2) gives our
final upper bound:

E
UnXnXn

1

{(B)} = E
UnXnXn

1

∑
`′j 6=`j ,m′j

(B1)× (B2)

≤
∑

`′j 6=`j , m′j

2−n[I(UX;B|X1)−2δ] × 2−n[I(X1;B)−2δ]

≤ |L||M| 2−n[I(X1;B)+I(UX;B|X1)−4δ]. (20)

By choosing the size of message sets to satisfy equations (8),
(15) and (20), the expectation of the average probability of
error becomes arbitrarily small for n sufficiently large.

V. DISCUSSION

We proved the achievability of the rates given by the
partial decode and forward inner bound, thus extending the
study of classical-quantum channels to multi-hop scenarios.
An interesting open question is to determine a compress-
and-forward strategy for the quantum setting. Another avenue
for research would be to consider quantum communication
scenarios, and results here might have applications for the
design of quantum repeaters [15].
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APPENDIX

A. Decoding at the Relay

In this section we give the details of the POVM construction
and the error analysis for the Relay decoder.

POVM Construction. During block j, the Relay wants to
decode the message `j encoded in un(`j , `j−1), given the
knowledge of the message `j−1 from the previous block.
Consider the state obtained by tracing over the systems X
and B in (3):

θUX1B1 =
∑
u,x1

p (u|x1) p (x1) |u〉 〈u|U ⊗ |x1〉 〈x1|X1 ⊗ σB1
u,x1

,

where σB1
u,x1

≡
∑
x p (x|x1, u) TrB

{
ρB1B
x,x1

}
. Further tracing

over the system U leads to the state

θX1B1 =
∑
x1

p (x1) |x1〉 〈x1|X1 ⊗ σ̄B1
x1
,

where σ̄x1
≡
∑
u p (u|x1)σB1

u,x1
. Corresponding to the above

conditional states are conditionally typical projectors of the
following form

Πσ`j |`j−1
≡ Π

Bn
1(j)

σun(`j ,`j−1),xn
1 (`j−1)

, Πσ̄|`j−1
≡ Π

Bn
1(j)

σ̄xn
1 (`j−1)

.

The Relay constructs a square-root measurement {Γ`j} using
formula (5) and the following positive operators:

P
Bn

1(j)

`j |`j−1
≡ Πσ̄|`j−1

Πσ`j |`j−1
Πσ̄|`j−1

(21)

Error analysis. In this section we show that dur-
ing block j the Relay will be able to decode `j from
the state ρ

Bn
1(j)

xn(mj ,lj ,lj−1),xn
1 (lj−1), provided the rate R` <

I(U ;B1|X1) = H(B1|X1) − H(B1|UX1) − δ. The bound
follows from the following properties of typical projectors:

Tr[Πσ`j |`j−1
] ≤ 2n[H(B1|UX1)+δ] (22)

Πσ̄|`j−1
σ̄ Πσ̄|`j−1

≤ 2−n[H(B1|X1)−δ]Πσ̄|`j−1
, . (23)

The average probability of error at the Relay is given by:

p̄Re ≡
1

|L|
∑
`j

Tr
{(
I − Γ

Bn
1(j)

`j |`j−1

)
ρ
Bn

1(j)

mj ,`j ,`j−1

}
,

We consider the probability of error for a single message
`j and begin by applying the Hayashi-Nagaoka operator in-
equality (Lemma 2) to split the error into two terms:

p̄Re ≡ Tr
[(
I −Γ

Bn
1(j)

`j |`j−1

)
ρ
Bn

1(j)

mj ,`j ,`j−1

]
≤ 2 Tr

[(
I − PB

n
1(j)

`j |`j−1

)
ρ
Bn

1(j)

mj ,`j ,`j−1

]
︸ ︷︷ ︸

(I)

+ 4
∑
`′j 6=`j

Tr
[
P
Bn

1(j)

`′j |`j−1
ρ
Bn

1(j)

mj ,`j ,`j−1

]
︸ ︷︷ ︸

(II)

.

We will bound the expectation of the average probability
of error by bounding the individual terms. We bound the first
term as follows:

(I) = Tr
[(
I − PB

n
1(j)

`j |`j−1

)
ρ
Bn

1(j)

mj ,`j ,`j−1

]
= Tr

[(
I −Πσ̄|`j−1

Πσ`j |`j−1
Πσ̄|`j−1

)
ρ
Bn

1(j)

mj ,`j ,`j−1

]
= 1− Tr

[
Πσ̄|`j−1

Πσ`j |`j−1
Πσ̄|`j−1

ρ
Bn

1(j)

mj ,`j ,`j−1

]
≤ 1− Tr

[
Πσ`j |`j−1

ρ
Bn

1(j)

mj ,`j ,`j−1

]
+
∥∥∥Πσ̄|`j−1

ρ
Bn

1(j)

mj ,`j ,`j−1
Πσ̄|`j−1

− ρB
n
1(j)

mj ,`j ,`j−1

∥∥∥
1
,

where the inequality follows from Lemma 1.
By taking the expectation over the code randomness we

obtain the bound

E
UnXnXn

1

(I) = 1− E
UnXn

1

Tr

[
Πσ`j |`j−1

E
Xn|UnXn

1

{
ρ
Bn

1(j)

mj ,`j ,`j−1

}]
+ E
UnXnXn

1

∥∥∥Πσ̄|`j−1
ρ
Bn

1(j)

mj ,`j ,`j−1
Πσ̄|`j−1

− ρB
n
1(j)

mj ,`j ,`j−1

∥∥∥
1

= 1− E
UnXn

1

Tr
[
Πσ`j |`j−1

σ`j ,`j−1

]
+ E
UnXnXn

1

∥∥∥Πσ̄|`j−1
ρ
Bn

1(j)

mj ,`j ,`j−1
Πσ̄|`j−1

− ρB
n
1(j)

mj ,`j ,`j−1

∥∥∥
1

≤ 1− E
UnXn

1

Tr
[
Πσ`j |`j−1

σ`j ,`j−1

]
+ 2
√
ε

≤ 1− (1− ε) + 2
√
ε = ε+ 2

√
ε.

The first inequality follows from Lemma 4 and the property

Tr
[
Πσ̄|`j−1

σ̄
]
≥ 1− ε. (24)

The second inequality follows from:

Tr
[
Πσ`j |`j−1

σ`j ,`j−1

]
≥ 1− ε. (25)

To bound the second term we proceed as follows:

E
UnXnXn

1

{(II)} = E
UnXnXn

1

∑
`′j 6=`j

Tr
[
P
Bn

1(j)

`′j |`j−1
ρ
Bn

1(j)

mj ,`j ,`j−1

]

= E
Xn

1

∑
`′j 6=`j

Tr

[
E

UnXn|Xn
1

{
P
Bn

1(j)

`′j |`j−1

}
E

UnXn|Xn
1

{ρB
n
1(j)

mj ,`j ,`j−1
}

]

= E
Xn

1

∑
`′j 6=`j

Tr

[
E

UnXn|Xn
1

{
P
Bn

1(j)

`′j |`j−1

}
σ̄|`j−1

]

The expectation can be broken up because `′j 6= `j and thus
the Un codewords are independent. We have also used

E
UnXn|Xn

1

{ρB
n
1(j)

mj ,`j ,`j−1
} = σ̄|`j−1

. (26)



We continue by expanding the operator P
Bn

1(j)

`′j |`j−1
as follows:

= E
UnXnXn

1

∑
`′j 6=`j

Tr
[
Πσ̄|`j−1

Πσ`′
j
|`j−1

Πσ̄|`j−1
σ̄|`j−1

]

= E
UnXnXn

1

∑
`′j 6=`j

Tr

 Πσ`′
j
|`j−1

Πσ̄|`j−1
σ̄|`j−1

Πσ̄|`j−1︸ ︷︷ ︸
°


≤ E
UnXnXn

1

∑
`′j 6=`j

Tr
[
Πσ`′

j
|`j−1

2−n[H(B1|X1)−δ]Πσ̄|`j−1

]

≤ 2−n[H(B1|X1)−δ] E
UnXnXn

1

∑
`′j 6=`j

Tr
[
Πσ`′

j
|`j−1

]
≤ 2−n[H(B1|X1)−δ] E

UnXnXn
1

∑
`′j 6=`j

2n[H(B1|UX1)+δ]

≤ |L| 2−n[I(U ;B1|X1)−2δ].

The first inequality follows from using (23) on the expression
°. The second inequality follows from the fact that Πσ̄|`j−1

is a positive operator less than the identity. More precisely we
have

Πσ`′
j
|`j−1

Πσ̄|`j−1
= Πσ`′

j
|`j−1

Πσ̄|`j−1
Πσ`′

j
|`j−1

≤ Πσ`′
j
|`j−1

I Πσ`′
j
|`j−1

= Πσ`′
j
|`j−1

.

The penultimate inequality follows from (22).
Thus if we choose R` ≤ I(U ;B1|X1) − 3δ, we can make

the expectation of the average probability of error vanish in
the limit of many uses of the channel.

Proof conclusion. Note that the gentle operator lemma for
ensembles is used several times in the proof to guarantee
that the effect of acting with one of the projectors from
the “measurement sandwich” does not disturb the state too
much. Furthermore, because each of the outputs blocks is
operated on twice, we again depend on the gentle operator
lemma to guarantee that the state disturbance is asymptotically
negligible.
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